340 research outputs found

    Using Coverage for Measuring the Effect of Haptic Feedback in Human Robotic Swarm Interaction

    Get PDF
    A robotic swarm is a decentralized group of robots which overcome failure of individual robots with robust emergent behaviors based on local interactions. These behaviors are not well built for accomplishing complex tasks, however, because of the changing assumptions required in various applications and environments. A new movement in the research field is to add human input to influence the swarm in order to help make the robots goal directed and overcome these problems. This research in Human Swarm Interaction (HSI) focuses on different control laws and ways to integrate the human intent with local control laws of the robots. Previous studies have all used visual feedback through a computer interface to give the user the swarm state information. This study adapted swarm control algorithms to give the operator hap tic feedback as well as visual feedback. The study shows the benefits of the additional feedback in a target searching class. Researchers in multi-robot systems have shown benefits of hap tic feedback in obstacle navigation before, but this study is a novel method because of the decentralized formation of the robotic swarm. In most environments, operators were able to cover significantly more area, increasing the chance of finding more targets. The other environment found no significant difference, showing that the hap tic feedback does not degrade performance in any of the tested environments. This supports our hypothesis that hap tic feedback is useful in HSI and requires further research to maximize its potential

    Using haptic feedback in human swarm interaction

    Get PDF
    A swarm of robots is a large group of individual agents that autonomously coordinate via local control laws. Their emergent behavior allows simple robots to accomplish complex tasks. Since missions may have complex objectives that change dynamically due to environmental and mission changes, human control and influence over the swarm is needed. The field of Human Swarm Interaction (HSI) is young, with few user studies, and even fewer papers focusing on giving non-visual feedback to the operator. The authors will herein present a background of haptics in robotics and swarms and two studies that explore various conditions under which haptic feedback may be useful in HSI. The overall goal of the studies is to explore the effectiveness of haptic feedback in the presence of other visual stimuli about the swarm system. The findings show that giving feedback about nearby obstacles using a haptic device can improve performance, and that a combination of feedback from obstacle forces via the visual and haptic channels provide the best performance

    A wearable general-purpose solution for Human-Swarm Interaction

    Get PDF
    Swarms of robots will revolutionize many industrial applications, from targeted material delivery to precision farming. Controlling the motion and behavior of these swarms presents unique challenges for human operators, who cannot yet effectively convey their high-level intentions to a group of robots in application. This work proposes a new human-swarm interface based on novel wearable gesture-control and haptic-feedback devices. This work seeks to combine a wearable gesture recognition device that can detect high-level intentions, a portable device that can detect Cartesian information and finger movements, and a wearable advanced haptic device that can provide real-time feedback. This project is the first to envisage a wearable Human-Swarm Interaction (HSI) interface that separates the input and feedback components of the classical control loop (input, output, feedback), as well as being the first of its kind suitable for both indoor and outdoor environments

    Human Interaction with Robot Swarms: A Survey

    Get PDF
    Recent advances in technology are delivering robots of reduced size and cost. A natural outgrowth of these advances are systems comprised of large numbers of robots that collaborate autonomously in diverse applications. Research on effective autonomous control of such systems, commonly called swarms, has increased dramatically in recent years and received attention from many domains, such as bioinspired robotics and control theory. These kinds of distributed systems present novel challenges for the effective integration of human supervisors, operators, and teammates that are only beginning to be addressed. This paper is the first survey of human–swarm interaction (HSI) and identifies the core concepts needed to design a human–swarm system. We first present the basics of swarm robotics. Then, we introduce HSI from the perspective of a human operator by discussing the cognitive complexity of solving tasks with swarm systems. Next, we introduce the interface between swarm and operator and identify challenges and solutions relating to human–swarm communication, state estimation and visualization, and human control of swarms. For the latter, we develop a taxonomy of control methods that enable operators to control swarms effectively. Finally, we synthesize the results to highlight remaining challenges, unanswered questions, and open problems for HSI, as well as how to address them in future works

    A mechatronic shape display based on auxetic materials

    Get PDF
    Shape displays enable people to touch simulated surfaces. A common architecture of such devices uses a mechatronic pin-matrix. Besides their complexity and high cost, these matrix displays suffer from sharp edges due to the discreet representation which reduces their ability to render a large continuous surface when sliding the hand. We propose using an engineered auxetic material actuated by a smaller number of motors. The material bends in multiple directions, feeling smooth and rigid to touch. A prototype implementation uses nine actuators on a 220 mm square section of material. It can display a range of surface curvatures under the palm of a user without aliased edges. In this work we use an auxetic skeleton to provide rigidity on a soft material and demonstrate the potential of this class of surface through user experiments

    Cellulo: Tangible Haptic Swarm Robots for Learning

    Get PDF
    Robots are steadily becoming one of the significant 21st century learning technologies that aim to improve education within both formal and informal environments. Such robots, called Robots for Learning, have so far been utilized as constructionist tools or social agents that aided learning from distinct perspectives. This thesis presents a novel approach to Robots for Learning that aims to explore new added values by means of investigating uses for robots in educational scenarios beyond those that are commonly tackled: We develop a platform from scratch to be "as versatile as pen and paper", namely as composed of easy to use objects that feel like they belong in the learning ecosystem while being seamlessly usable across many activities that help teach a variety of subjects. Following this analogy, we design our platform as many low-cost, palm-sized tangible robots that operate on printed paper sheets, controlled by readily available mobile computers such as smartphones or tablets. From the learners' perspective, our robots are thus physical and manipulable points of hands-on interaction with learning activities where they play the role of both abstract and concrete objects that are otherwise not easily represented. We realize our novel platform in four incremental phases, each of which consists of a development stage and multiple subsequent validation stages. First, we develop accurately positioned tangibles, characterize their localization performance and test the learners' interaction with our tangibles in a playful activity. Second, we integrate mobility into our tangibles and make them full-blown robots, characterize their locomotion performance and test the emerging notion of moving vs. being moved in a learning activity. Third, we enable haptic feedback capability on our robots, measure their range of usability and test them within a complete lesson that highlights this newly developed affordance. Fourth, we develop the means of building swarms with our haptic-enabled tangible robots and test the final form of our platform in a lesson co-designed with a teacher. Our effort thus contains the participation of more than 370 child learners over the span of these phases, which leads to the initial insights into this novel Robots for Learning avenue. Besides its main contributions to education, this thesis further contributes to a range of research fields related to our technological developments, such as positioning systems, robotic mechanism design, haptic interfaces and swarm robotics

    Swarm Robotic interactions in an open and cluttered environment: a survey

    Get PDF
    Recent population migrations have led to numerous accidents and deaths. Little research has been done to help migrants in their journey. For this reason, a literature review of the latest research conducted in previous years is required to identify new research trends in human-swarm interaction. This article presents a review of techniques that can be used in a robots swarm to find, locate, protect and help migrants in hazardous environment such as militarized zone. The paper presents a swarm interaction taxonomy including a detailed study on the control of swarm with and without interaction. As the interaction mainly occurs in cluttered or crowded environment (with obstacles) the paper discussed the algorithms related to navigation that can be included with an interaction strategy. It focused on comparing algorithms and their advantages and disadvantages

    Advanced Knowledge Application in Practice

    Get PDF
    The integration and interdependency of the world economy leads towards the creation of a global market that offers more opportunities, but is also more complex and competitive than ever before. Therefore widespread research activity is necessary if one is to remain successful on the market. This book is the result of research and development activities from a number of researchers worldwide, covering concrete fields of research

    Effects of Control Device and Task Complexity on Performance and Task Shedding During a Robotic Arm Task

    Get PDF
    The use of robotic arms across domains is increasing, but the relationship between control features and performance is not fully understood. The goal of this research was to investigate the difference in task performance when using two different control devices at high and low task complexities when participants can shed tasks to automation. In this experiment, 40 undergraduates (24 females) used two control devices, a Leap Motion controller and an Xbox controller, to teleoperate a robotic arm in a high or low complexity peg placement task. Simultaneously, participants were tasked with scanning images for tanks. During the experiment, participants had the option to task shed the peg task to imperfect automation. Analyses indicated a significant main effect of control device on task completion rate and time to first grasp the peg, with completion rate higher and time lower when using the Leap. However, participants made significantly more errors with the Leap Motion controller than with the Xbox controller. Participants in both conditions task shed similarly with both control devices and task shed at similar times. The 2 x 2 mixed ANOVAs somewhat supported the proposed hypotheses. The results of this study indicate that control device impacts performance on a robotic arm task. The Leap Motion controller supports increased task completion rate and quicker peg grasps in high and low task complexity when compared with the Xbox controller. This supports the extension of Control Order Theory into three-dimensional space and suggests that the Leap Motion controller can be implemented in some domains. However, the criticality and frequency of errors should be carefully considered
    • …
    corecore