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ABSTRACT 
 
A swarm of robots is a large group of individual agents that autonomously coordinate via local 
control laws. Their emergent behavior allows simple robots to accomplish complex tasks. Since 
missions may have complex objectives that change dynamically due to environmental and 
mission changes, human control and influence over the swarm is needed. The field of Human 
Swarm Interaction (HSI) is young, with few user studies, and even fewer papers focusing on 
giving non-visual feedback to the operator. The authors will herein present a background of 
haptics in robotics and swarms and two studies that explore various conditions under which 
haptic feedback may be useful in HSI. The overall goal of the studies is to explore the 
effectiveness of haptic feedback in the presence of other visual stimuli about the swarm system. 
The findings show that giving feedback about nearby obstacles using a haptic device can 
improve performance, and that a combination of feedback from obstacle forces via the visual and 
haptic channels provide the best performance. 
 
Keywords: Robotics, Experiments, Haptics, Swarms, Human-Robot Interaction, Human-Swarm 
Interaction 
 
INTRODUCTION 
 
A robotic swarm consists of a large collection of simple robots with limited sensing, 
communication, actuation, and computational capabilities. Individual robots act according to 
simple local rules and exhibit a wide range of behaviors, such as flocking (Reynolds, 1987; 
Couzin, Krause, James, Ruxton, & Franks, 2002; Spears & Spears, 2012; Bruemmer, 2002) 
without any centralized controller. However, for performing complex tasks like search and 
exploration in obstacle-filled environments, it is usually difficult to design local control laws for 
individual swarms that guarantee good performance of the overall system. To use swarm robotic 
systems in a complex mission, the presence of human operators are required to guide the 
behaviors of the swarm towards accomplishing mission goals. A key aspect of using a human to 
control a swarm is the transfer of information between the human and the swarm. The human has 
to obtain information about the state of the swarm in order to control it. In the extant literature, 
experimental studies in human swarm interaction have primarily explored the use of the visual 
channel of the human to transfer information about the swarm state. However, the use of the 
haptic channel has not been studied adequately in HSI, except for formation control tasks and 
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with small multi-robot systems (fewer than 10 robots). Therefore, along with background 
literature, this chapter will present experiments to explore the benefits of using a haptic device to 
control swarm robots (in addition to the visual channel), using large numbers of robots to 
demonstrate scalability. 

A key aspect of using a haptic device to feed information back about the robot state is to 
decide on the information (or cue) that should be fed back from the robots to the human. In many 
swarm robotic algorithms, potential field based methods (LaValle, 2006) are used for avoiding 
obstacles. Roughly speaking, when a robot is near an obstacle, the robot controller computes a 
virtual force from the obstacle that is inversely proportional to the distance (or some superlinear 
function of the distance) between the robot and the obstacle. Thus, the nearer a robot is to an 
obstacle, the greater the force it “experiences” that makes it move away from the obstacle. 
Therefore, one cue that can be fed back to the human is the net obstacle forces experienced by 
the robots. 

In formation control tasks, since the robots have to usually maintain a rigid formation as 
they move, each robot has to track a path in order to maintain a formation. Thus, a natural cue in 
formation control is the tracking error of the robots in following their paths. The use of net forces 
from the obstacles along with tracking errors has been explored in the context of formation 
control (Son et al., 2011). In many applications of swarm systems, especially in obstacle-filled 
environments, it is not always desirable to move the robots in a formation. In these cases, there is 
no natural notion of tracking error, so the force cue from the obstacles can be fed back to the 
humans through the haptic device instead. 

Although feeding back the obstacles forces is conceptually intuitive and computationally 
simple, it is not clear a priori whether such information is helpful in improving the performance 
of the human controller. This is because the force fed back is the (vector) sum of the forces 
acting on all the robots from all the obstacles. Thus, in some cases like moving from a room to 
another room through a doorway, one should keep pushing in the direction in which the 
resistance from the haptic device increases (since the resistance would increase initially and then 
drop as the robots start moving through the doorway). This is not the intuitive form in which 
haptics is usually used in human robot interaction. The usual intuition in using haptic feedback 
from obstacles is that one should not try to push in the direction in which the haptic resistance is 
increasing. Furthermore, since the force fed back to the human is an average of the forces from 
all the obstacles it is not clear whether it is necessary to use a haptic device to feed back the force 
or whether a visual representation of this force is enough. In other words, it is unclear whether 
having redundant information in two channels (haptic and visual) will help or hurt the 
performance since attending to redundant information may increase operator workload or cause 
confusion. Therefore, there are a few basic research questions that arise: (a) Does net obstacle 
force cue fed back through the haptic device help or hurt the performance of the human-swarm 
system? (b) Can only the visual channel be used to feed back the net obstacle force cue to the 
human or is a combination of both haptic and visual feedback needed for the obstacle force cue? 

The latter half of this chapter will consist primarily of two user experiments conducted to 
answer the above questions in the context of using haptic feedback for tasks where the robots do 
not move in formation. These studies use a target searching task in which the human operators 
have to control a swarm of robots to find hidden targets in obstacle-filled environments. A 
between-subjects design is used, where there are four different conditions under which the 
participants perform the target finding task. There are two general findings from the studies: 1) 



obstacle forces felt by the operator can improve performance and 2) the combination of the 
feedback of the obstacle forces in the visual and haptic channels provide the best performance. 

 
BACKGROUND 
 
The topic of this chapter is at the intersection of research in human interaction with swarm 
robotic systems, and the use of haptic feedback in robotic systems. A key component in the 
human interaction with swarms is the distributed control laws used by the robots. The extant 
literature on designing distributed control laws for swarms as well as the use of haptic feedback 
in robotic systems is quite large. Therefore, the focus will be on the literature on human-swarm 
interaction, swarm control laws/mechanisms used in the context of human supervised control of 
swarms, and haptic interaction with multi-robot systems. 

Human Swarm Interaction (HSI) is a relatively new field of study with a small but 
growing body of literature, and only a small portion of this literature explores using additional 
sensory channels to convey swarm state information to the operator. HSI has been studied for a 
variety of applications including discovering radiation sources (Bashyal & Venayagamoorthy, 
2008), aiding firefighters in environments with low visibility (Naghsh, Gancet, Tanoto, & Roast, 
2008), tracking a military convoy and surveying areas of interest (Fields, Haas, Hill, Stachowiak, 
& Barnes, 2009), and focusing the direction of a flock (Klarer, 1998). These works show the 
utility of HSI for these specific tasks, but only use the operator’s vision to give feedback about 
the swarm. 

Designing local control laws for individual robots that result in a global behavior for the 
whole swarm system has been extensively studied in the context of computer graphics 
(Reynolds, 1987) and robotic applications (Bullo, Cortés, & Martínez, 2009). In the context of 
HSI, potential field based methods (Olfati-Saber, 2006), physicomimetic methods (Spears & 
Spears, 2012), and bioinspired methods (Couzin et al., 2002) for controlling swarms have been 
used. Others have taken less direct approaches by using evolved controllers (Dorigo et al., 2004; 
Trianni et al., 2003), or amorphous computing (Bachrach, McLurkin, & Grue, 2008; Bachrach & 
Beal, 2006).  

In (Kira & Potter, 2009), the authors use physicommimetics, and allowed operators to 
add forces to direct the swarm. In physicommimetics, individual agents in the swarm are viewed 
as physical particles, and the interactions between these agents are based on physical laws, and 
the final configuration of the particles is one that minimizes the overall potential energy of the 
system (Spears & Spears, 2012). Even though the forces might include additional knowledge 
about the swarm and the environment, the interface only showed each robot’s position and 
heading. 

The work on bio-inspired swarm control is influenced from work in collective animal 
behavior in nature (Couzin et al., 2002). In (Couzin et al., 2002), the authors use a flocking 
model similar to the original flocking proposed by (Reynolds, 1987) to achieve switching 
behaviors in schools of fish. This is followed by (Couzin, Krause, Franks, & Levin, 2005), 
whereby the authors introduce leaders into the swarm, and demonstrate their viability in swarm 
control. In (Goodrich, Pendleton, Sujit, & Pinto, 2011), the authors use the biologically-inspired 
swarm model in (Couzin et al., 2002) in the context of HSI, and show that switching the swarm 
between two topologies (i.e. a torus to a flock) was possible by adjusting the control parameters. 
These authors also make use of swarm “leaders” and “predators” which can pull and push other 
members of the swarm, respectively. Although the authors found the leaders more effective, 



there are still use cases where predators can be beneficial, such as scenarios where it is necessary 
to break up the swarm into separate smaller groups. Apart from adjusting control parameters, 
different control algorithm selection was also studied for controlling swarms by humans. Kolling 
et al. (2012) examines different selection techniques using virtual beacons for switching modes 
of swarm members between differing consensus-driven goals (i.e. rendezvous and deployment). 
Here again, the position and orientation information of all members of the swarm are available to 
the human. 

Using neural networks and other learning algorithms to develop optimal control laws has 
also received attention from the HSI community. The evolved controller in (Dorigo, et al., 2004) 
is able to robustly exhibit both aggregation and coordinated motion—two common tasks in 
swarm robotics. Furthermore, their controller was also successfully ported to a real robots. 
Similarly, in (Trianni, et al., 2003), the researchers evolve controllers for swarm aggregation 
using a variety of parameters and initial conditions, showing that the evolutionary method can be 
robust to changes in these features. In terms of amorphous computing, in (Bachrach, McLurkin, 
& Grue, 2008; Bachrach & Beal, 2006), the authors introduce protoswarm—an amorphous 
computing language for controlling a swarm as a spatial computer. This work is extended in 
(Bachrach, Beal, & McLurkin, 2010) to show that such a framework could be used in real 
robotic swarms in a laboratory setting to achieve swarm-like behaviors, such as flocking, 
clustering, and tracking. 

Although the different control laws mentioned above that have been used in the context 
of HSI aim to keep the swarm connected, there is no guarantee that the swarm will remain 
connected, especially in environments with obstacles. In (Giordano, Franchi, Secchi, & Bülthoff, 
2013), the authors present a method of connectivity maintenance using the second smallest 
eigenvalue of the Laplacian matrix of the communication graph (the Fiedler number). This 
approach is robust and scalable, and allows for control of global objectives of the group (like 
formation control) with a human supervisor. The authors demonstrate their approach both in 
large numbers in simulation, and in groups of four in real-world case studies with a human 
controlling the robots through a 3-DoF haptic device. 

There is also some work that does not assume that perfect state information of the robot 
swarm is available to the human. Communication bandwidth limitations or latency in data 
transmission from the swarm to the human along with imperfect localization capability of robots 
may be responsible for noisy state estimates in many situations. Summary displays, which 
display aggregate information about the swarm (e.g. a bounding ellipse) can be used in situations 
with limited bandwidth limitations, and predictive displays, which estimate future states of the 
swarm, can be used when latency is present. These have been used in Nunnally et al. (2012) and 
Walker et al. (2012) to maximize the operator’s situational awareness despite limited information 
returned from the swarm. In (Nunnally et al., 2012), the authors performed experiments with 
bandwidth limitations on the information returned from the swarm to the operator. It was shown 
that a summary display (using the centroid of the swarm and the variance in positions) instead of 
individual state information about each robot, was enough for the subjects to successfully control 
the swarm in spite of the bandwidth limitations. In (Walker et al., 2012), the authors similarly 
placed significant latency in the human-swarm communication channel, and then used a 
predictive display to show that this could help overcome the lack of current information available 
to the operator. These studies either focus on the various features of the control to make the 
swarms goal-directed, or focus on the various visual feedback techniques to give the operator 



more information about the swarm’s state. There are few similar studies which implement a 
second sensory channel, namely haptic feedback, in HSI. These will be reviewed now. 
 
Haptics in Human-Robot Interaction 
 

In the extant literature, haptic feedback in multirobot systems has been explored mostly 
in the context of formation control. Researchers in Franchi, Giordano, Secchi, Son, & Bülthoff 
(2011) and P. Giordano, Franchi, Secchi, & Bülthoff (2011) have developed a control interface 
giving operators haptic feedback about obstacle avoidance of a small group of robots in path 
following tasks. The group of robots maintain a rigid formation using a decentralized spring 
force control, while the operator controls the centroid of the agents to follow a predefined path 
around obstacles. Later work (Franchi, Secchi, Son, Bülthoff, & Giordano, 2012; P. R. Giordano 
et al., 2013) removed the rigid formation assumption and allowed for a looser formation control 
with links between robots allowed to be broken or established. This formation control was 
coupled with autonomous decisions to split and join around obstacles in the path of the robots. 
Further publications showed that this control technique was successful with latency, and results 
were demonstrated both in simulation and with real hardware in three dimensions (Lee, Franchi, 
Giordano, Son, & Bülthoff, 2011; Secchi, Franchi, Bülthoff, & Giordano, 2012; Franchi, Secchi, 
Son, et al., 2012; P. R. Giordano et al., 2013; Franchi, Secchi, Ryll, Bülthoff, & Giordano, 2012; 
Franchi, Masone, et al., 2012; Lee, Franchi, Son, Bülthoff, & Giordano, 2013). 

In (Franchi, Secchi, Son, et al., 2012), the authors propose a bilateral teleoperation 
system with haptic feedback to allow a human operator to control a heterogeneous team of robots 
in a variety of settings. The authors use a leader-follower paradigm and demonstrate their results 
with a single leader controlling up to eight robots. In (Lee et al., 2013), the authors give a general 
architecture for multi-robot teleoperation with multiple leaders. While the use of a leader is not 
necessarily a detriment, the approach of the studies in this chapter use a broadcast method to 
communicate with all robots, and there are no designated leader robots. This choice was made, 
since (arguably) not having special leader robots is in spirit with the swarm robotics literature of 
being robust to failure of individual swarm members. 

Another key distinction of the studies herein from the extant literature is in terms of the 
metric used for evaluating the performance of the swarm. The basic metric for evaluation in 
human supervisory haptic control of multi-robot systems is the position tracking error (of the 
centroid of the swarm to a desired path) which is a sensible metric for formation control tasks 
where paths have to be followed while maintaining connectivity of the robots. Other metrics of 
human performance that are more relevant to swarm robotic systems: namely, maneuverability 
and perceptual sensitivity, have been studied in (Son et al., 2013). Their experimental results 
show that haptic feedback is not always beneficial in all performance measures—specifically, the 
perceptual sensitivity measure used therein. This means that haptic feedback might be better 
suited toward maneuverability and control of the swarm overall, whereas visual feedback may be 
better for giving the operator awareness of the environment surrounding the swarm. 

In (Son et al., 2011; Son et al., 2013), the authors also compared the following different 
sources for haptic feedback as an operator directs a group of robots to follow a path: 1) repelling 
forces from obstacles, 2) forces matching the robots’ inertia, 3) a combination of the previous 
two. The results showed that haptic feedback should be closely tied to environmental information 
which relates to the given task and not internal swarm state information. The studies herein 
replace the path following task with an environment exploration task, but the results of Son et al 



(2011) still apply, since haptic feedback based on obstacle avoidance is environmental 
information that can improve performance of the task. Other researchers have shown similar 
findings with small groups of robots and were also able to prove no collisions and stability with 
control theory (Rodríguez-Seda et al., 2010). However, as stated before all the studies above 
were done in the context of path following tasks, an important class of tasks in robotics, but by 
no means the only one. Furthermore, much of the focus in the previous literature was also on 
designing haptic feedback laws with passivity property so that theoretical guarantees on stability 
of tracking are possible. Although these contributions are quite novel and useful for HSI, the 
following studies are geared toward environment exploration applications where the robots are 
not necessarily following a planned path, but are being driven by the human to explore different 
regions of the environment. Therefore, the metrics of performance are quite different from those 
existing in the literature, and the main focus is on the usefulness of haptic feedback when there is 
no task-performance related error (e.g., position tracking error) to be fed back to the human via 
the haptic channel. Thus, the belief is that the contributions of these studies is complementary to 
the existing literature on haptics in robotic control, and will supplement the existing discussion. 

The specific hypothesis for each user study will be discussed in their corresponding 
sections; however, in general our hypothesis is that adding haptic feedback cues about 
environment obstacles, in addition to visual feedback of the swarm’s position within the 
environment, will increase the performance of operators in terms of exploration related coverage 
metrics (like number of targets found, area covered etc.) in obstacle-filled environments more so 
than either one alone. 
 
USER STUDIES 
 
There are two studies presented that explore the utility of haptic feedback in HSI, see Table 1A. 
Because the two studies are similar, this section will present the overall design and 
characteristics of both, with specific differences discussed in each corresponding study section. 
 The participants in each study are asked to apply virtual forces to the robots in order to 
influence the swarm towards unexplored areas of environments in search of targets. Each study 
compares the differences of conditions via a between-subject design. The forces from the 
obstacles on the robots are fed back to the operator in two different ways: 1) via a haptic device 
(haptic feedback) and 2) via visual feedback on the interface in a side panel (Force Feedback 
panel), shown in Table 1B as the Haptic and Visual rows, respectively. The forces felt in the 
haptic feedback and shown in the Force Feedback panel are exactly the same, but the conditions 
differ in whether or not they are felt in the input device or shown on the display. 

There are two groups in Study I. The first group sees the Force Feedback panel and feels 
the haptic feedback (labeled as haptics condition in Table 1B). The second group see the Force 
Feedback panel but does not feel the haptic feedback (labeled as control condition in Table 1B). 

In Study II, the participants are divided into four groups. One group feels haptic feedback 
and sees the Force Feedback panel (labeled as HV condition in Table 1). The second group 
receives haptic feedback without the Force Feedback panel (labeled as HO condition in Table 1). 
Another group sees the Force Feedback panel but does not have haptic feedback (labeled as CV 
condition in Table 1). The final group does not see the Force Feedback panel or feel the haptic 
feedback (labeled as CO in Table 1). Note that the haptics condition from Study I corresponds to 
the HV condition of Study II and the control condition from Study I corresponds to the CV 
condition of Study II. The comparisons between conditions in both studies are based on three 



metrics: 1) number of targets found, 2) environment coverage percentage, and 3) swarm 
cohesion. These three metrics help explore the effects of haptic feedback with and without a 
visual representation of the force. 

The participants are presented with the same environments in random order within each 
study. The environments have four variables: 1) environment type, 2) clutter, 3) hidden 
obstacles, and 4) distractions. Both studies have one environment with hidden obstacles. The 
only difference between the environments with hidden obstacles and all others is that the 
obstacles are not displayed to the operator in the main map panel. Study I’s hidden obstacle 
environment is a cluttered hallway (labeled as C in Table 1) while Study II’s hidden obstacle 
environment is a cluttered office (labeled as D in Table 1). Study II has one environment with 
distractions where single digit addition problems block the main map panel in order to distract 
the operator (labeled as A in Table 1). This environment is a cluttered hallway. The only 
difference between all other environments in the studies is the features with in the environment, 
like doorways, hallways, and clutter. The following subsections will present the setup and 
characteristics common to both studies. 

 
Robot Control 
 
These experimental studies use a control algorithm for the robots based on the autonomous 
potential field swarm control algorithm, which uses repulsive forces from obstacles and both 
repulsive and attractive forces from other robots in order to deploy robots and cover as much 
area as possible (LaValle, 2006). Human input is allowed in order to explore other parts of the 
map. The virtual force, which can be mapped to the robot’s goal velocity and heading is given by 
the following: 

𝐹 = 𝐹𝑜 + 𝐹𝑟 + 𝐹ℎ 
𝐹 is the force applied to each robot, 𝐹𝑜 is the force vector due to obstacle interactions, 𝐹𝑟 is the 
force vector due to neighboring robot interactions, and 𝐹ℎ is the force vector due to human 
interactions. 𝐹 determines the heading and speed, up to a maximum possible speed, for each 
robot using its own sensed data from the environment and the broadcast information from the 
operator. 

More precisely, for a given robot located at 𝑞𝑖, let 𝑂 = {𝑜0, 𝑜1, … , 𝑜𝑛} be the set of 
obstacles in range 𝑟𝑖 of the robot. Thus, let 𝑑𝑖 = |𝑞𝑜 − 𝑞𝑖| is the distance between the obstacle 
and the robot, and 𝒇𝑜 = 𝑞𝑜 − 𝑞𝑖 be the vector from the obstacle to the robot, and 𝑘𝑜 be the gain 
parameter for 𝐹𝑜, then: 

𝐹𝑜 = 𝑘𝑜�
𝒇𝑜
𝑑𝑖2𝑜∈𝑂

 

 𝐹𝑜 forces the robots to spread around the environment, avoiding obstacle collisions and 
overly redundant coverage of the area around obstacles. The average 𝐹𝑜 across all robots is 
shown in the feedback panel on the right side of Figure 1 and felt in the haptic device if the 
participant is in the haptics condition. 

Similarly, let 𝑁 = {𝑛0, 𝑛1, … ,𝑛𝑛} be all robots in range 𝑟𝑖 of the robot located at 𝑞𝑖 (the 
set of neighbors); 𝑑𝑖 = |𝑞𝑛 − 𝑞𝑖| be the Euclidean distance between the neighboring robot and 
the robot at 𝑞𝑖; 𝒇𝑛 = 𝑞𝑛 − 𝑞𝑖 = be the vector from the neighbor to the robot; and 𝑧𝑏 and 𝑧𝑒 be the 
inner and outer radii of the neutral zone, respectively. Finally, let 𝑘𝑟 be the gain parameter for 𝐹𝑟, 
then: 
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The competing forces are used to disperse the robots in a controlled manner for coverage, 

while the attraction force keeps the swarm from breaking apart. This attractive force is an 
addition to the deployment algorithm of Howard et. al. (2002) to overcome the limited sensing 
range, 𝑟𝑖 which is 4 meters in these studies, see Figure 3. While the attraction does not guarantee 
that the swarm remains one cohesive unit, it gives the operator the opportunity keep most of the 
swarm in one large group that has the ability to sense target with the redundancy threshold 
required to mark targets. 

Finally, to describe the human input component, let 𝒉 be the input force vector from the 
haptic device; 𝑟ℎ = |ℎ| be the magnitude of this vector; ℎ𝑚𝑚𝑚 be the maximum allowable value 
of 𝑟ℎ; and 𝑘ℎ be the gain parameter for 𝐹ℎ, then: 
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𝒉
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This force moves the robot in the general direction that the operator applies. Each robot 

determines its own F, then uses this vector as its motion vector. If the magnitude of F is greater 
than the robot’s maximum speed, which is different for each study, then the magnitude of this 
vector is reduced to that maximum. 
 
Experimental Setup 
 
The following studies use the same user interface. The environment, targets, and swarm 
consisting of 30 differential drive P2AT robots is simulated in Stage v. 3.2.2 (Gerkey, Vaughan, 
& Howard, 2003). The graphical interface and robot control laws are implemented using the 
Robot Operating System (ROS) (Quigley et al., 2009), see Figure 1. The main map panel is on 
the left of Figure 1. The robots’ positions within the environment are given by a gray circle with 
a line pointing in the direction of their heading. There are different colored targets that are 
hidden from the operator and randomly distributed around the environments. When a robot 
senses a target, it will turn that color in the interface so the operator knows the robot is reporting 
a target. The sensors exhibit false alarms and misses, so a target is only marked on the interface 
and considered found when a threshold of five robots sense the target simultaneously. This 
feature was implemented to represent the error inherent in real-world sensors due to 
environmental or hardware conditions. The necessary redundant coverage creates a secondary 
goal for the users to maintain a cohesive swarm to accomplish the task of marking targets. Once 
a target is marked, a square of that target’s color will appear over the position of the target in the 
interface. 

The robots’ target sensors are faulty and miss at a rate of 𝑝𝑛 in all conditions, where: 
 

𝑝𝑛 = �1 − (𝑟 − 𝑑)�
𝛼

 
 



Here, 𝑑 is the distance to the target, 𝑟 is the maximum range of the sensor, and 𝛼 is the decay 
rate set to 4.0 for these studies. The sensors also generated false positives, where an imaginary 
target was reported at a randomly chosen position at the edge of the target sensor’s range. The 
false positive interval 𝑡𝑟 is set to some randomly sampled value between 6 and 10 seconds for 
each of the 30 robots in the studies presented. The automated target marking system only marks 
a target when a threshold of five robots could sense the same target, using redundancy to 
eliminate the faulty sensor error. 

Traversable areas are represented by white space and obstacles are represented by black, 
except for the hidden environments where the area of operation is all white and the operator does 
not see the obstacles. Operators can scroll and zoom the main map panel using a mouse as 
needed to complete the task. The keyboard is used in one environment in Study II to respond to a 
mathematical question, which provides the operator a distraction. 

A Phantom Omni device is used as the input and haptic feedback output device as shown 
in the operator’s left hand in Figure 2. The device’s coordinate frame is centered on a circle on 
the desktop. The operator moves the end effector within this circle to create a persistent force 
vector 𝐹ℎ that is broadcast to the members of the swarm. On the screen, the input force panel 
shows 𝐹ℎ next to the main map panel so that operators do not have to look down at the input 
device to determine their influence, as shown on the right side of Figure 1. The force feedback 
panel, above the Input Force panel, shows the average force from the obstacle on the robots 
(average of 𝐹𝑜, described in the previous section). Note that for both the force feedback panel and 
the input force panel, the magnitude of the force is given by the length of the line within the 
circle. In Figure 1, the input force and the force feedback is identical, because it shows a scenario 
where the robots are being pushed against the obstacles and they cannot move in the direction of 
input force. The same force displayed in the Force Feedback panel is mapped to the haptic 
device and felt by the operators in a haptics condition. The input forces, robot positioning data, 
and marked targets were logged every second for data analysis purposes. 
 
Experimental Design 
 
These user studies have a between-subjects design. Each study divided the participants into 
different groups for the different conditions. Half of the participants in each study received 
physical force feedback in the Phantom device as described above, hereafter referred to as the 
haptics condition. The other half received only visual feedback, hereafter called the control 
condition. All other variables remained constant. 

Participants were first given explanations of the robot control, the interface, the 
importance of a cohesive swarm due to the coverage redundancy required to mark targets. They 
were then given ten minutes of practice to gain experience and ask questions. In each condition, 
the environments were presented in random order. 
 
Study I 
 
The first study is considered a pilot to explore the utility of haptic feedback in HSI in searching 
targets with different features. 
 
Study Parameters 
 



This study had 20 participants, with 10 users in the control condition (visual feedback only) and 
10 in the haptics condition (haptic and visual feedback). Preliminary experimentation showed 
that the following parameters were acceptable to accomplish the task: 𝑘𝑜 = 4, 𝑘𝑟 = 2, 𝑘ℎ = 5, 
𝑛𝑏 = 2.0, 𝑛𝑒 = 2.5, ℎ𝑚𝑚𝑚 = 4. These gains make 𝐹ℎ stronger than 𝐹𝑜, which in turn is twice as 
strong as 𝐹𝑟. The swarm is able to maintain enough cohesion to mark targets and follow the 
operator’s influence to explore the environments without collisions with the obstacles. Each 
robot’s maximum speed is 0.5 m/s. The robot senses neighboring robots and obstacles with a 360 
degree field of view and 4 degree resolution. Participants were given ten minutes to explore each 
environment described below to find as many targets as possible. 
 
Environments 
 
The participants attempted to find as many objects as possible in four different obstacle filled 
environments. The order of the environments are randomized and the starting position of the 
robots was in the bottom right corner. All environments contained 50 targets. 

The first environment is a corridor maze called the Hallway environment, see Figure 
4(A). The width of the halls was such that the robots could mark all targets in the corridor if the 
swarm traveled down the center. Drift of the swarm’s centroid from the hallway center, however, 
might cause the participant to miss targets along the edges. 

The second environment is a structured environment with rooms and narrow doorways 
between them, called the Doors environment, see Figure 4(B). The open rooms were intended to 
be simple to explore, while the doorways could cause problems, allowing only a few robots 
through at a time. These choke points cause the exploration to slow and possibly break robots 
away from the swarm, creating smaller groups less likely to mark targets. 

The third environment is a corridor maze type environment with funnel points and traps, 
see Figure 4(C). The participants did not see the environments but had to navigate the robotic 
swarm using only the haptic feedback, the Force Feedback panel, and the behavior of the robots. 
The shape and hazard types of the environment were explained to the participants before each 
corresponding condition. 

The final environment is structured with obstacles that have numerous edges and concave 
corners requiring exploration, see Figure 4(D). This environment explores the ability for the 
operator to traverse doorways and explore interior corners of various obstacle to find targets. 
 
Hypotheses 
 
The hypotheses are that the haptic condition will perform better than the control condition in 
each of the environments: 

• Hallway environment (hypothesis A) 
• Doors environment (B) 
• Hidden Halls environment (C) 
• Complex environment (D) 

Support for hypothesis A could show that haptic feedback aided the operators in traversing the 
center of the hallway. Support for hypothesis B could show that haptic feedback helped guide the 
operators through the center of the doorways to allow more robots through at a time, increasing 
exploration efficiency and swarm cohesion. The Hidden Halls environment is difficult, but the 
haptic condition may receive intuitive obstacle force information through haptic feedback to 



allow for better environment understanding, hence hypothesis C. Support for hypothesis D could 
show that haptic feedback traverses doorways and complex obstacles more efficiently by 
inducing the best strategy. 
 
Results 
 
All ANOVA results where p < .05 are considered significant for this study. Any p-values 
between .05 and .15 gives potential trends indicating possible areas for future research to clarify. 
All mean comparisons between conditions are shown as box plots and the dots show outliers in 
the data as defined by Tukey tests, while relations between variables are shown with linear 
regression on scatter plots. Below, three performance metrics are presented: 1) number of targets 
found, 2) environment coverage percentage, and 3) swarm cohesion. 
 

Targets Found 
 
There are no significant benefits observed from haptic feedback in this performance metric. 
However, haptic feedback shows marginally significant improvements over the control condition 
in the Doors (F = 3.25, p = .088) and Complex (F = 2.38, p = .140) environments, see Figure 5. 
Therefore, Hypotheses B and D only have marginally statistically significant support and will be 
more closely examined in the second study. 
 

Environment Coverage 
 
It is possible that comparing marked targets does not best represent performance due to the 
effects of random distribution of the targets. Instead, the percentage of the environment covered 
by five robots simultaneously throughout the trial may better show the operator’s ability to 
explore the environment given the task parameters. Results show significant improvement for 
haptics in the Complex environment (F = 6.24, p = .022), which supports hypothesis D. 
Furthermore, Figure 6 shows the correlation between this coverage percentage and the number of 
targets found (p < .001), indicating that the two measures may bear more similarity in longer or 
more in depth studies. 
 

Swarm Cohesion 
 
Swarm cohesion is also an important metric depending on the task. In this instance, operators are 
required to overcome faulty sensors and accomplish the goal of marking targets using redundant 
coverage. In other tasks, it might be better to break up the swarm to cover more area. In either 
case, it is always important to understand the effects on swarm cohesion, so the average number 
of connected components throughout trials is used to compare the user’s ability to maintain a 
cohesive swarm. 

The haptics condition shows significant increases in the number of connected 
components in the Complex environment (F = 4.91, p = .040). Hypothesis D, therefore, is not 
supported by investigating swarm cohesion because operators in the haptics condition broke up 
the swarm into more groups than the control condition. 
 
Study II 
 



The results of Study I showed promise, but the data did not support conclusions that haptic 
feedback would help users improve the operator’s performance in all of environments. This 
study sought to outline the strengths of the haptics condition by overloading the operator’s visual 
channel, which can loosely model situations in which swarm operators must deal with multiple 
streams of information at once, sometimes even for different tasks. The environments explained 
below were built to distract, increase workloads, and extend environmental features used in 
Study I. 
 
Study Parameters 
 
This study had 64 participants, so there were 16 users in the control condition with visual force 
feedback cues named the control-visual (CV) condition, 16 in the haptics condition with visual 
force feedback cues named the haptic-visual (HV) condition, 16 in the control condition without 
visual force feedback cues named the control-only (CO) condition, and 16 in the haptics 
condition without visual force feedback cues named the haptic-only (HO) condition. There were 
fifteen repeat participants from the first study who were randomly placed in a condition and 
environment order, without regards to their previous participation in Study I. Nine were placed in 
the HV (of which six were in the haptics condition in Study I) and six in the CV condition (of 
which one was in the control condition in Study I). The participants in Study II had a similar 
setup of hardware as in Study I, see Figure 2, except the Phantom was moved to be used by the 
right hand and the keyboard was moved within reach to respond to math problems in one of the 
environments. For this study, the values assigned to them were changed from Study I to increase 
the robot speed, which requires the operator to increase focus on the main map panel. The 
parameters were adjusted based on this speed increase to maintain similar controllability as in 
Study I: 𝑘𝑜 = 5, 𝑘𝑟 = 3, 𝑘ℎ = 7, 𝑛𝑏 = 2.5, 𝑛𝑒 = 3, ℎ𝑚𝑚𝑚. The robots’ max speed is 0.6 m/s. 
The robot senses other robots and obstacles with a 360 degree field of view and 4 degree 
resolution. All environments share these constraints except for the Speed environment, which is 
explained in the next section. Participants were given 15 minutes to explore each environment 
described below to find as many targets as possible. 
 
Environments 
 
The participants worked to find as many targets as possible in four different obstacle filled 
environments. The starting position of the robots was again in the bottom right corner, and all 
environments contained 60 targets. 

The Math environment is a corridor maze, see Figure 7(A). The width of the halls was 
such that the robots could mark targets along both of the walls if the swarm traveled down the 
center, but there were choke points and traps which slowed the participant down. Each 
participant was instructed that the optimal strategy is to avoid the traps. Single digit addition 
problems blocked the main map panel randomly every ten to fifteen seconds until a correct 
answer was given, leaving only the side panel with the Force Feedback and Input vectors visible. 
The participant received math problems in the 10 minute training period as well, at a random 
interval between 30 and 60 seconds, in order to get familiar with the math interface. The robots 
continue to receive input and the interface still gives both visual and haptic representations of the 
force feedback, if the condition allows, to the operator while the math problem is blocking the 



main map panel. This condition corresponds to a scenario where navigation is a secondary task 
and an infrequent primary task requires full visual attention (i.e. checking video surveillance). 

The Speed environment and parameters are structured to increase focus on the main map 
panel, see Figure 7(B). The dead ends and intersections require focus and decision-making for 
operators to determine the best path to explore as much area as possible in the allotted time. The 
distinctive feature of this environment is greater speed to increase the operator’s focus on the 
main map panel, which required changes in the parameters to avoid obstacle collisions. The 
speed was set to 1.0 m/s and the force gains were set to 𝑘𝑜 = 10, 𝑘𝑟 = 4, 𝑘ℎ = 5. All other 
constants remained the same. This increase in speed created a volatile swarm requiring more 
focus which was more likely to break up around obstacles. The participants were warned of this. 

The Doors2 environment is the Doors environment from Study I rotated. This will help 
compare the results of the new swarm parameters to those found in Study I across all three 
metrics. The participants were informed that the best strategy was to explore each room 
thoroughly before moving through the doorway to the next room because the swarm took more 
time when traversing the doorways. 

The Hidden Complex environment is structured with obstacles that have numerous edges 
and concave corners requiring exploration, see Figure 7(D). The obstacles in this environment 
are hidden from the interface so the operators had to blindly explore the area using the swarm’s 
behavior, side panel information (if given visual force feedback cues), and haptic feedback (if in 
a haptic condition). The participants were told it was an office structure with obstacles in the 
room, and that the best strategy was to sweep the rooms avoiding a lot of force from the walls 
and then finding the exit, similar to the strategy in the Doors2 environment. They were also 
instructed to use marked targets as landmarks when doorways were thought to be found in case 
the new room had no other exits. 

 
Hypotheses 
 
To discuss the hypothesis in this study with the hypotheses in Study I, hypotheses from Study I 
will have a 1 followed by the character (i.e. 1A, 1B, etc) and these hypothesis will have a 2 
followed by the character (i.e. 2A, 2B, etc). It is expected that haptic feedback (conditions HV 
and HO) will improve performance over the corresponding conditions without haptic feedback 
(conditions CV and CO) respectively in all environments: 

• Math environment (hypothesis 2A) 
• Speed environment (2B) 
• Doors2 environment (2C) 
• Hidden Complex environment (2D) 

Support for hypothesis 2A will show that operator’s with haptic feedback have better control 
when distracted with math problems. The operators with haptic feedback may also have better 
control and keep the robots away from obstacle forces that might break up the volatile swarm in 
the Speed environment, hence hypothesis 2B. Because there was support for hypothesis 1B, 
hypothesis 2C should hold since the Doors2 environment is similar to the Doors environment. 
Support for hypothesis 2D would show that haptic feedback can help operators interpret the 
hidden obstacles in the Hidden Complex environment and explore more of the environment. 

This study further explores the need of the Force Feedback panel displayed visually. For 
hypothesis 2E, it is expected that the performance between conditions HV and HO will not be 
different throughout the environments. Support of this hypothesis would show that the visual 



force cues do not increase the operator’s performance and if hypotheses 2A - 2D hold, then 
haptic feedback is the only contributing factor. The CO condition should obviously perform 
worse in all environments because of the lack of information the user receives (hypothesis 2F). 
 
Results 
 
The greater number of participants in each condition allows the results to have increased 
statistical significance, so only ANOVA results where p < .010 are considered, where p < .005 is 
considered significant and p < .010 marginally significant, and an avenue for future 
investigation. Below, three metrics are presented: 1) number of targets found, 2) environment 
coverage percentage, and 3) swarm cohesion. 
 

Targets Found 
 
Preliminary analysis of the number of targets marked shows marginally significant improvement 
of condition HV over conditions HO (F = 3.32, p = .079) and CO (F = 3.61, p = .067) in the 
Doors2 environment and condition CO over condition HV (F = 3.31, p = .079) in the Hidden 
Complex environment (see Figure 8). Hypothesis 2C is supported by this result, but hypotheses 
2D and 2E are not supported. 
 

Environment Coverage 
 
Figure 9 shows the correlation between map coverage of five robots simultaneously and the 
number of targets found (p < .001). This confirms that there is a natural correlation between the 
coverage metric and the task, but this metric does not include the effects of the random 
distribution of targets. Table 2 shows the hypothesis testing, for environments with significant 
results, of the percentage of environment coverage by at least 5 robots simultaneously comparing 
all conditions against each other over all environments. As confirmed by the results of the first 
study, and Figure 8, the hidden environments are very difficult and create a different set of 
challenges for the operators. If the Hidden Complex environment is removed and all conditions 
compared, a significant improvement in performance is evident for condition HV over the two 
control conditions (p < .001 for CV, p < .005 for CO). This supports hypotheses 2A-2C and 2F 
since haptics can improve the operator’s ability to effectively explore different environments. 

The results do not support hypothesis 2E, however, as operators in condition HV shows 
significant improvement of environmental coverage when compared to condition HO (p < .002 
for HO). Hypotheses 2C and 2F are supported while hypothesis 2E is not supported, where 
condition HV shows significant improvement over conditions HO and CO and condition HV 
shows a marginally significant improvement over condition CV. The Speed environment shows 
marginal improvement of condition HV over CV, supporting hypothesis 2B. 
 
 

Swarm Cohesion 
 
The average number of connected components in each trial for all conditions is used as a 
measure of swarm cohesion, see Table 3. Figure 10 shows a significant decrease in connected 
components of conditions HV and CV and condition CO and a marginally significant decrease 
between conditions CV and HO. This result supports hypotheses 2A-2D and 2F, but does not 



support hypothesis 2E. Similar results are shown when the environments are split up where 
conditions HV and CV have significantly fewer connected components than conditions CO and 
HO for the Math environment, see Figure 11. The Hidden Complex environment also shows a 
significant decrease from conditions HV and CV and condition CO as well as marginal decreases 
from conditions HV and CV and condition HO. 
 
DISCUSSION 
 
The results support the hypotheses that haptic feedback can increase performance of HSI with 
the environment exploration task. Operators were better able to explore a variety of 
environments when haptic feedback was present than when it was not. Operators could traverse 
doorways and bottlenecks better and explore more area and mark more targets. Haptic feedback 
also allowed operators better performance when distracted and under stress of volatile swarms. 
Finally, haptic feedback allowed operators to find more targets and cover more area in most 
environments. 

Results from Study II did not, however, support the hypothesis that showing the Force 
Feedback panel was unnecessary for the operators who felt haptic feedback. The operators in the 
haptics-visual condition outperformed operators in the haptic-only condition showing the 
necessity for the Force Feedback panel. While haptic feedback can help operators explore 
environments better, it seems to only do so when there is a visual representation of that feedback. 
This visual representation could help aid the operator in interpreting the force they feel through 
the input device. Without the visual representation of the force, operators do not mark as many 
targets or explore as much of the environments. Evidence even exists that the visual force 
feedback may be even more important, since operators in the control-visual condition found 
more targets than the haptics-only condition in the Hidden Complex environment. 

The results of Study I conflict with findings from Study II concerning swarm cohesion. 
Study I found evidence that haptic feedback would split up the swarm more so than the control 
condition in the Complex environment, even though operators in the haptic condition covered 
more area in this environment. The best strategy was not as described in the directions, where a 
more cohesive swarm will cover more area and, therefore, mark more targets, but the haptic 
condition led operators to a better strategy by splitting up the swarm around the complex 
obstacles in the environment. Study II found that visual force feedback, with or without haptic 
feedback, could help operators maintain a more cohesive swarm. Unlike in Study I, this strategy 
often lead to better performance since the haptics-visual condition explored more area than any 
other condition in all environments except for the Hidden Complex environment. 
 
CONCLUSIONS AND FUTURE WORK 
 

The overall goal of the above studies was to explore the effectiveness of haptic feedback 
in the presence of other visual stimuli about the swarm system. It was found that providing 
haptic feedback of obstacles to the operator, with accompanying visual force information, was 
the most beneficial for the performance of the system. Operators with haptic feedback repeatedly 
outperformed operators without haptic feedback in numerous environments by discovering 
targets in unexplored areas of the environment. Some assumptions must be overcome (i.e. perfect 
localization of robots in the environment), but the results show that operators can quickly 
understand the control structure and convey their intent to accomplish their goal. The hidden 



environments seem to create difficulty for the haptic feedback, however. No evidence supports 
conclusions that haptic feedback would hinder the operator from exploring more of the 
environment if the placement of the obstacles are not known, as was the case in the hidden 
environments. 

These findings show the importance for continuing work with integrating haptic feedback 
to HSI. There are many other control parameters to consider for the operators, such as changing 
the radii of the attraction and repelling zones of the robots so that operators can increase or 
decrease their coverage. This would allow operators to expand the swarm in instances where 
larger coverage is needed, or control the swarm in instances involving tight spaces. The results 
also require further exploration of environments where the structural layout is not known, 
because the operator does not have previous information about the environment. 

Future work in using haptics in HSI should explore the utility of removing erroneous 
robot positions to see if haptic feedback can provide information to improve performance. This 
should be helpful because robots commonly have localization errors. Therefore, an experimental 
setup where only the static map of the environment is shown in the main map panel (see the left 
side of Figure 1) and starting area is known and the robots’ (wrong) positions are not shown so 
operators must “feel” their way around the environment to discover the number of targets in 
different rooms. This could relate to a real-world environment where robots can explore all 
rooms blindly and the operator will have to direct resources to rooms of more importance 
afterwards. Finally, haptic feedback techniques should be explored for different tasks (i.e. a 
swarm collectively moving a large object). The mission given to the operators in these studies 
lends itself to obstacle avoidance forces, but if the robots should be pushing an object, they 
would require a different control algorithm. A list of tasks must be examined to determine when 
haptic feedback techniques will need to be different or if they can even be helpful at all. Overall, 
the work presented in this chapter should demonstrate that the integration of haptic devices in 
HSI systems is promising, and further research should be directed toward this problem. 
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KEY TERMS AND DEFINITIONS 
 
Haptic Feedback: Information fed back from a system to a user that is tactile in nature. 
 
Human-Swarm Interaction: A system including a human operator in control of a semi-
autonomous swarm. In such a system, the human uses the information returned by the 
swarm about the environment and swarm itself to give new commands and inputs to the 
swarm. 
 
Flocking: A swarm behavior whereby all agents align their velocities and headings 
while maintaining some minimum distance from one another. 
 
Performance Metric: A quantifiable measurement pertaining the swarm’s operation 
that can be used to investigate the effects of some independent variable in the swarm 
system. 
 
Predictive Display: A graphical user interface that displays a prediction about a 
swarm’s future state, in addition to current information. 
 
Summary Display: A graphical user interface displaying summary information about 
the swarm state, such as a bounding centroid or average heading. 
 
Swarm: A robust, scalable system composed of numerous robots, which coordinate 
through local interaction only. 
 
FIGURES AND TABLES 
 
Table 1A 
 Participants 
 Study I Study II 
Number of participants 20 64 
Number of conditions 2 4 
Participants per condition 10 16 
Number of environments 4 4 



Minutes per environment 10 15 
Targets in environments 50 60 
Number of robots 30 30 
 
Table 1B 
 Conditions 
 Study I Study II 
 Haptics Control HV CV HO CO 
Haptics yes no yes no yes no 
Visual yes yes yes yes no no 
 
Table 1C 
 Environments 
 Study I Study II 
 A B C D A B C D 
Environment type halls office halls office halls halls office office 
Clutter no no yes yes yes no no yes 
Hidden obstacles no no yes no no no no yes 
Distraction no no no no yes no no no 
Table 1: A comparison of the studies. The top portion shows general differences between the two 
studies, the middle portion shows differences between the conditions, and the bottom portion 
shows differences between the environments. Here, HV and HO are the conditions where haptic 
feedback from obstacles is given either with or without corresponding visual feedback, 
respectively. CV and CO represent the conditions where operators received no haptic feedback, 
with either with or without visual feedback from obstacles. Note that participants always 
received visual feedback of the positions and movement of the swarm in the main viewport. The 
conditions and environments for each study are described further in section 7 for Study I and 
section 8 for Study II. 
 

Results for Environment Coverage 
 Over All Environments 
 CV HO CO 
HV 3.92 (.050) 3.49 (.064) 1.35 (.247) 
CO 0.72 (.399) 0.52 (.471)  
HO 0.02 (.896)   

 
 All Environments Except Hidden Complex 
 CV HO CO 
HV 7.51 (.007) 6.24 (.014) 4.32 (.040) 
CO 0.43 (.513) 0.08 (.777)  
HO 0.17 (.685)   

 
 Doors2 Environment 
 CV HO CO 
HV 3.31 (.079) 4.71 (.038) 4.75 (.037) 



CO 0.00 (.987) 0.00 (.959)  
HO 0.00 (.955)   

Table 2: Hypothesis testing on the percentage of the environment covered by 5 robots 
simultaneously comparing all conditions against each other. Only results for environments with 
significant results are shown. The format of each cell is the F-value followed by the p-value. 
 

Results for Swarm Cohesion 
 Over All Environments 
 CV HO CO 
HV 0.03 (.873) 2.62 (.108) 4.23 (.042) 
CO 4.81 (.030) 0.23 (.635)  
HO 3.11 (.080)   

 
 Math Environment 
 CV HO CO 
HV 0.03 (.869) 6.68 (.015) 13.32 (<.001) 
CO 9.22 (.005) 0.06 (.813)  
HO 5.04 (.032)   

 
 Hidden Complex Environment 
 CV HO CO 
HV 0.01 (.918) 3.37 (.077) 5.05 (.032) 
CO 5.26 (.029) 0.35 (.557)  
HO 3.58 (.068)   

Table 3: Hypothesis testing on the average number of connected components comparing all 
conditions against each other. Only environments with significant differences are shown. The 
format of each cell is the F-value followed by the p-value. 



 
Figure 1. The GUI used for every condition of the study. The left side shows the robots’ 
estimated positions, obstacles, and marked targets. The right side shows the Force Feedback 
panel calculated in equation 2, and the Input Force panel calculated in equation 4. 
 



 
Figure 2. Participants used an Omni Phantom device (left) and mouse to influence the swarm 
and control the interface 
 



 
Figure 3. Figure visualizing the different zones for the robot control algorithm. The closer the 
robots are, the stronger the repulsive force, the further the robots are, the strong the attractive 
force. The robots will naturally stabilize to the neutral zone without 𝐹𝑜 and 𝐹ℎ, the forces given 
by obstacles and human input, respectively. 
 



 
Figure 4. Four environments used in the study: (A) Hallway, (B) Doors, (C) Hidden Halls, and 
(D) Complex. The robots always began the condition in the bottom right corner. 
 



 
Figure 5. A box plot around the median number of targets found in each environment between 
each condition. Each box represents 10 trials. Dots outside the box plot represent outliers. 
 

 



Figure 6. The relationship between the number of targets found and the percentage of the 
traversable area of the map covered by at least five robots simultaneously in Study I. 
 

 
Figure 7. Four environments used in the study, the robots always started in the lower right 
corner: (A) Math, (B) Speed, (C) Doors2, and (D) Hidden Complex 
 



 
Figure 8. A box plot around the median number of targets found in each environment between 
each condition (HV is haptics-visual, CV is control-visual, HO is haptics-only, and CO is 
control-only). Each box represents 16 trials. 
 

 



Figure 9. The relationship between the number of targets found and the percentage of the 
traversable area of the map covered by at least five robots simultaneously in Study II 
 

 
Figure 10. Box plots around the median average connected components for all environments 
between conditions (HV is haptics-visual, CV is control-visual, HO is haptics-only, and CO is 
control-only). Each box represents 64 trials. 
 

 



Figure 11. Box plots around the median average connected components for the Math and 
Hidden Complex environments between conditions (HV is haptics-visual, CV is control-visual, 
HO is haptics-only, and CO is control-only). Each box represents 16 trials. 


