733 research outputs found

    Cyber-Physical Security Strategies

    Get PDF
    Cyber-physical security describes the protection of systems with close relationships between computational functions and physical ones and addresses the issue of vulnerability to attack through both cyber and physical avenues. This describes systems in a wide variety of functions, many crucial to the function of modern society, making their security of paramount importance. The development of secure system design and attack detection strategies for each potential avenue of attack is needed to combat malicious attacks. This thesis will provide an overview of the approaches to securing different aspect of cyber-physical systems. The cyber element can be designed to better prevent unauthorized entry and to be more robust to attack while its use is evaluated for signs of ongoing intrusion. Nodes in sensor networks can be evaluated by their claims to determine the likelihood of their honesty. Control systems can be designed to be robust in cases of the failure of one component and to detect signal insertion or replay attack. Through the application of these strategies, the safety and continued function of cyber-physical systems can be improved

    Security Analysis of the Internet of Things Using Digital Forensic and Penetration Testing Tools

    Get PDF
    We exist in a universe where everything is related to the internet or each other like smart TVs, smart telephones, smart thermostat, cars and more. Internet of Things has become one of the most talked about technologies across the world and its applications range from the control of home appliances in a smart home to the control of machines on the production floor of an industry that requires less human intervention in performing basic daily tasks. Internet of Things has rapidly developed without adequate attention given to the security and privacy goals involved in its design and implementation. This document contains three research projects all centered on how to improve user\u27s data privacy and security in the Internet of Things. The first research provides a detailed analysis of the Internet of Things architecture, some security vulnerabilities, and countermeasures. We went on to discuss some solutions to these issues and presented some available Internet of Things simulators that could be used to test Internet of Things systems. In the second research, we explored privacy and security challenges faced by consumers of smart devices in this case we used an Amazon Echo Dot as our case study. During this research, we were able to compare two different digital forensic tools to see which performed better at extracting information from the device and if the device observes best practices for user data privacy. In the third research project, we used a tool called GATTacker to exploit security vulnerabilities of a Bluetooth Low Energy device and provide security awareness to users

    Resource materials on technology-enabled crime

    Get PDF
    Designed to assist prosecutors and members of the judiciary faced with proceedings involving technology-enabled crime, the report will be a useful general guide to concepts and terms for other non-technical people

    Data analytics for stochastic control and prognostics in cyber-physical systems

    Get PDF
    In this dissertation, several novel cyber fault diagnosis and prognosis and defense methodologies for cyber-physical systems have been proposed. First, a novel routing scheme for wireless mesh network is proposed. An effective capacity estimation for P2P and E2E path is designed to guarantee the vital transmission safety. This scheme can ensure a high quality of service (QoS) under imperfect network condition, even cyber attacks. Then, the imperfection, uncertainties, and dynamics in the cyberspace are considered both in system model and controller design. A PDF identifier is proposed to capture the time-varying delays and its distribution. With the modification of traditional stochastic optimal control using PDF of delays, the assumption of full knowledge of network imperfection in priori is relaxed. This proposed controller is considered a novel resilience control strategy for cyber fault diagnosis and prognosis. After that, we turn to the development of a general framework for cyber fault diagnosis and prognosis schemes for CPSs wherein the cyberspace performance affect the physical system and vice versa. A novel cyber fault diagnosis scheme is proposed. It is capable of detecting cyber fault by monitoring the probability of delays. Also, the isolation of cyber and physical system fault is achieved with cooperating with the traditional observer based physical system fault detection. Next, a novel cyber fault prognosis scheme, which can detect and estimate cyber fault and its negative effects on system performance ahead of time, is proposed. Moreover, soft and hard cyber faults are isolated depending on whether potential threats on system stability is predicted. Finally, one-class SVM is employed to classify healthy and erroneous delays. Then, another cyber fault prognosis based on OCSVM is proposed --Abstract, page iv

    Navigating the IoT landscape: Unraveling forensics, security issues, applications, research challenges, and future

    Full text link
    Given the exponential expansion of the internet, the possibilities of security attacks and cybercrimes have increased accordingly. However, poorly implemented security mechanisms in the Internet of Things (IoT) devices make them susceptible to cyberattacks, which can directly affect users. IoT forensics is thus needed for investigating and mitigating such attacks. While many works have examined IoT applications and challenges, only a few have focused on both the forensic and security issues in IoT. Therefore, this paper reviews forensic and security issues associated with IoT in different fields. Future prospects and challenges in IoT research and development are also highlighted. As demonstrated in the literature, most IoT devices are vulnerable to attacks due to a lack of standardized security measures. Unauthorized users could get access, compromise data, and even benefit from control of critical infrastructure. To fulfil the security-conscious needs of consumers, IoT can be used to develop a smart home system by designing a FLIP-based system that is highly scalable and adaptable. Utilizing a blockchain-based authentication mechanism with a multi-chain structure can provide additional security protection between different trust domains. Deep learning can be utilized to develop a network forensics framework with a high-performing system for detecting and tracking cyberattack incidents. Moreover, researchers should consider limiting the amount of data created and delivered when using big data to develop IoT-based smart systems. The findings of this review will stimulate academics to seek potential solutions for the identified issues, thereby advancing the IoT field.Comment: 77 pages, 5 figures, 5 table

    Game-Theoretic Frameworks and Strategies for Defense Against Network Jamming and Collocation Attacks

    Get PDF
    Modern networks are becoming increasingly more complex, heterogeneous, and densely connected. While more diverse services are enabled to an ever-increasing number of users through ubiquitous networking and pervasive computing, several important challenges have emerged. For example, densely connected networks are prone to higher levels of interference, which makes them more vulnerable to jamming attacks. Also, the utilization of software-based protocols to perform routing, load balancing and power management functions in Software-Defined Networks gives rise to more vulnerabilities that could be exploited by malicious users and adversaries. Moreover, the increased reliance on cloud computing services due to a growing demand for communication and computation resources poses formidable security challenges due to the shared nature and virtualization of cloud computing. In this thesis, we study two types of attacks: jamming attacks on wireless networks and side-channel attacks on cloud computing servers. The former attacks disrupt the natural network operation by exploiting the static topology and dynamic channel assignment in wireless networks, while the latter attacks seek to gain access to unauthorized data by co-residing with target virtual machines (VMs) on the same physical node in a cloud server. In both attacks, the adversary faces a static attack surface and achieves her illegitimate goal by exploiting a stationary aspect of the network functionality. Hence, this dissertation proposes and develops counter approaches to both attacks using moving target defense strategies. We study the strategic interactions between the adversary and the network administrator within a game-theoretic framework. First, in the context of jamming attacks, we present and analyze a game-theoretic formulation between the adversary and the network defender. In this problem, the attack surface is the network connectivity (the static topology) as the adversary jams a subset of nodes to increase the level of interference in the network. On the other side, the defender makes judicious adjustments of the transmission footprint of the various nodes, thereby continuously adapting the underlying network topology to reduce the impact of the attack. The defender\u27s strategy is based on playing Nash equilibrium strategies securing a worst-case network utility. Moreover, scalable decomposition-based approaches are developed yielding a scalable defense strategy whose performance closely approaches that of the non-decomposed game for large-scale and dense networks. We study a class of games considering discrete as well as continuous power levels. In the second problem, we consider multi-tenant clouds, where a number of VMs are typically collocated on the same physical machine to optimize performance and power consumption and maximize profit. This increases the risk of a malicious virtual machine performing side-channel attacks and leaking sensitive information from neighboring VMs. The attack surface, in this case, is the static residency of VMs on a set of physical nodes, hence we develop a timed migration defense approach. Specifically, we analyze a timing game in which the cloud provider decides when to migrate a VM to a different physical machine to mitigate the risk of being compromised by a collocated malicious VM. The adversary decides the rate at which she launches new VMs to collocate with the victim VMs. Our formulation captures a data leakage model in which the cost incurred by the cloud provider depends on the duration of collocation with malicious VMs. It also captures costs incurred by the adversary in launching new VMs and by the defender in migrating VMs. We establish sufficient conditions for the existence of Nash equilibria for general cost functions, as well as for specific instantiations, and characterize the best response for both players. Furthermore, we extend our model to characterize its impact on the attacker\u27s payoff when the cloud utilizes intrusion detection systems that detect side-channel attacks. Our theoretical findings are corroborated with extensive numerical results in various settings as well as a proof-of-concept implementation in a realistic cloud setting

    Cyber physical security of avionic systems

    Get PDF
    “Cyber-physical security is a significant concern for critical infrastructures. The exponential growth of cyber-physical systems (CPSs) and the strong inter-dependency between the cyber and physical components introduces integrity issues such as vulnerability to injecting malicious data and projecting fake sensor measurements. Traditional security models partition the CPS from a security perspective into just two domains: high and low. However, this absolute partition is not adequate to address the challenges in the current CPSs as they are composed of multiple overlapping partitions. Information flow properties are one of the significant classes of cyber-physical security methods that model how inputs of a system affect its outputs across the security partition. Information flow supports traceability that helps in detecting vulnerabilities and anomalous sources, as well as helps in rendering mitigation measures. To address the challenges associated with securing CPSs, two novel approaches are introduced by representing a CPS in terms of a graph structure. The first approach is an automated graph-based information flow model introduced to identify information flow paths in the avionics system and partition them into security domains. This approach is applied to selected aspects of the avionic systems to identify the vulnerabilities in case of a system failure or an attack and provide possible mitigation measures. The second approach is based on graph neural networks (GNN) to classify the graphs into different security domains. Using these two approaches, successful partitioning of the CPS into different security domains is possible in addition to identifying their optimal coverage. These approaches enable designers and engineers to ensure the integrity of the CPS. The engineers and operators can use this process during design-time and in real-time to identify failures or attacks on the system”--Abstract, page iii

    Shining a Light on Policing of the Dark Web: An analysis of UK investigatory Powers

    Get PDF
    The dark web and the proliferation of criminals who have exploited its cryptographic protocols to commit crimes anonymously has created major challenges for law enforcement around the world. Traditional policing techniques have required amendment and new techniques have been developed to break the dark web’s use of encryption. As with all new technology, the law has been slow to catch up and police have historically needed to use legislation which was not designed with the available technology in mind. This paper discusses the tools and techniques police use to investigate and prosecute criminals operating on the dark web in the UK and the legal framework in which they are deployed. There are two specific areas which are examined in depth: the use of covert policing and hacking tools, known in the UK as equipment interference. The operation of these investigatory methods within the context of dark web investigations has not previously been considered in UK literature, although this has received greater analysis in the United States and Australia. The effectiveness of UK investigatory powers in the investigation of crimes committed on the dark web are analysed and recommendations are made in relation to both the law and the relevant Codes of Practice. The article concludes that whilst the UK has recently introduced legislation which adequately sets out the powers police can use during online covert operations and when hacking, the Codes of Practice need to specifically address the role these investigative tools play in dark web investigations. Highlighted as areas of particular concern are the risks of jurisdiction forum shopping and hacking overseas. Recommendations are made for reform of the Investigatory Powers Act 2016 to ensure clarity as to when equipment interference can be used to search equipment when the location of that equipment is unknown

    A Comprehensive Digital Forensic Investigation Model and Guidelines for Establishing Admissible Digital Evidence

    Get PDF
    Information technology systems are attacked by offenders using digital devices and networks to facilitate their crimes and hide their identities, creating new challenges for digital investigators. Malicious programs that exploit vulnerabilities also serve as threats to digital investigators. Since digital devices such as computers and networks are used by organisations and digital investigators, malicious programs and risky practices that may contaminate the integrity of digital evidence can lead to loss of evidence. For some reasons, digital investigators face a major challenge in preserving the integrity of digital evidence. Not only is there no definitive comprehensive model of digital forensic investigation for ensuring the reliability of digital evidence, but there has to date been no intensive research into methods of doing so. To address the issue of preserving the integrity of digital evidence, this research improves upon other digital forensic investigation model by creating a Comprehensive Digital Forensic Investigation Model (CDFIM), a model that results in an improvement in the investigation process, as well as security mechanism and guidelines during investigation. The improvement is also effected by implementing Proxy Mobile Internet Protocol version 6 (PMIPv6) with improved buffering based on Open Air Interface PIMIPv6 (OAI PMIPv6) implementation to provide reliable services during handover in Mobile Node (MN) and improve performance measures to minimize loss of data which this research identified as a factor affecting the integrity of digital evidence. The advantage of this is to present that the integrity of digital evidence can be preserved if loss of data is prevented. This research supports the integration of security mechanism and intelligent software in digital forensic investigation which assist in preserving the integrity of digital evidence by conducting experiments which carried out two different attack experiment to test CDFIM. It found that when CDFIM used security mechanism and guidelines with the investigation process, it was able to identify the attack and also ensured that the integrity of the digital evidence was preserved. It was also found that the security mechanism and guidelines incorporated in the digital investigative process are useless when the security guidelines are ignored by digital investigators, thus posing a threat to the integrity of digital evidence
    • …
    corecore