783 research outputs found

    AI Solutions for MDS: Artificial Intelligence Techniques for Misuse Detection and Localisation in Telecommunication Environments

    Get PDF
    This report considers the application of Articial Intelligence (AI) techniques to the problem of misuse detection and misuse localisation within telecommunications environments. A broad survey of techniques is provided, that covers inter alia rule based systems, model-based systems, case based reasoning, pattern matching, clustering and feature extraction, articial neural networks, genetic algorithms, arti cial immune systems, agent based systems, data mining and a variety of hybrid approaches. The report then considers the central issue of event correlation, that is at the heart of many misuse detection and localisation systems. The notion of being able to infer misuse by the correlation of individual temporally distributed events within a multiple data stream environment is explored, and a range of techniques, covering model based approaches, `programmed' AI and machine learning paradigms. It is found that, in general, correlation is best achieved via rule based approaches, but that these suffer from a number of drawbacks, such as the difculty of developing and maintaining an appropriate knowledge base, and the lack of ability to generalise from known misuses to new unseen misuses. Two distinct approaches are evident. One attempts to encode knowledge of known misuses, typically within rules, and use this to screen events. This approach cannot generally detect misuses for which it has not been programmed, i.e. it is prone to issuing false negatives. The other attempts to `learn' the features of event patterns that constitute normal behaviour, and, by observing patterns that do not match expected behaviour, detect when a misuse has occurred. This approach is prone to issuing false positives, i.e. inferring misuse from innocent patterns of behaviour that the system was not trained to recognise. Contemporary approaches are seen to favour hybridisation, often combining detection or localisation mechanisms for both abnormal and normal behaviour, the former to capture known cases of misuse, the latter to capture unknown cases. In some systems, these mechanisms even work together to update each other to increase detection rates and lower false positive rates. It is concluded that hybridisation offers the most promising future direction, but that a rule or state based component is likely to remain, being the most natural approach to the correlation of complex events. The challenge, then, is to mitigate the weaknesses of canonical programmed systems such that learning, generalisation and adaptation are more readily facilitated

    Machine Learning in Wireless Sensor Networks: Algorithms, Strategies, and Applications

    Get PDF
    Wireless sensor networks monitor dynamic environments that change rapidly over time. This dynamic behavior is either caused by external factors or initiated by the system designers themselves. To adapt to such conditions, sensor networks often adopt machine learning techniques to eliminate the need for unnecessary redesign. Machine learning also inspires many practical solutions that maximize resource utilization and prolong the lifespan of the network. In this paper, we present an extensive literature review over the period 2002-2013 of machine learning methods that were used to address common issues in wireless sensor networks (WSNs). The advantages and disadvantages of each proposed algorithm are evaluated against the corresponding problem. We also provide a comparative guide to aid WSN designers in developing suitable machine learning solutions for their specific application challenges.Comment: Accepted for publication in IEEE Communications Surveys and Tutorial

    Smart hierarchical WiFi localization system for indoors

    Get PDF
    Premio Extraordinario de Doctorado de la UAH en el año académico 2013-2014En los últimos años, el número de aplicaciones para smartphones y tablets ha crecido rápidamente. Muchas de estas aplicaciones hacen uso de las capacidades de localización de estos dispositivos. Para poder proporcionar su localización, es necesario identificar la posición del usuario de forma robusta y en tiempo real. Tradicionalmente, esta localización se ha realizado mediante el uso del GPS que proporciona posicionamiento preciso en exteriores. Desafortunadamente, su baja precisión en interiores imposibilita su uso. Para proporcionar localización en interiores se utilizan diferentes tecnologías. Entre ellas, la tecnología WiFi es una de las más usadas debido a sus importantes ventajas tales como la disponibilidad de puntos de acceso WiFi en la mayoría de edificios y que medir la señal WiFi no tiene coste, incluso en redes privadas. Desafortunadamente, también tiene algunas desventajas, ya que en interiores la señal es altamente dependiente de la estructura del edificio por lo que aparecen otros efectos no deseados, como el efecto multicamino o las variaciones de pequeña escala. Además, las redes WiFi están instaladas para maximizar la conectividad sin tener en cuenta su posible uso para localización, por lo que los entornos suelen estar altamente poblados de puntos de acceso, aumentando las interferencias co-canal, que causan variaciones en el nivel de señal recibido. El objetivo de esta tesis es la localización de dispositivos móviles en interiores utilizando como única información el nivel de señal recibido de los puntos de acceso existentes en el entorno. La meta final es desarrollar un sistema de localización WiFi para dispositivos móviles, que pueda ser utilizado en cualquier entorno y por cualquier dispositivo, en tiempo real. Para alcanzar este objetivo, se propone un sistema de localización jerárquico basado en clasificadores borrosos que realizará la localización en entornos descritos topológicamente. Este sistema proporcionará una localización robusta en diferentes escenarios, prestando especial atención a los entornos grandes. Para ello, el sistema diseñado crea una partición jerárquica del entorno usando K-Means. Después, el sistema de localización se entrena utilizando diferentes algoritmos de clasificación supervisada para localizar las nuevas medidas WiFi. Finalmente, se ha diseñado un sistema probabilístico para seguir la posición del dispositivo en movimiento utilizando un filtro Bayesiano. Este sistema se ha probado en un entorno real, con varias plantas, obteniendo un error medio total por debajo de los 3 metros

    Indoor navigation systems based on data mining techniques in internet of things: a survey

    Full text link
    © 2018, Springer Science+Business Media, LLC, part of Springer Nature. Internet of Things (IoT) is turning into an essential part of daily life, and numerous IoT-based scenarios will be seen in future of modern cities ranging from small indoor situations to huge outdoor environments. In this era, navigation continues to be a crucial element in both outdoor and indoor environments, and many solutions have been provided in both cases. On the other side, recent smart objects have produced a substantial amount of various data which demands sophisticated data mining solutions to cope with them. This paper presents a detailed review of previous studies on using data mining techniques in indoor navigation systems for the loT scenarios. We aim to understand what type of navigation problems exist in different IoT scenarios with a focus on indoor environments and later on we investigate how data mining solutions can provide solutions on those challenges

    A fuzzy logic approach to localisation in wireless local area networks

    Get PDF
    This thesis examines the use and value of fuzzy sets, fuzzy logic and fuzzy inference in wireless positioning systems and solutions. Various fuzzy-related techniques and methodologies are reviewed and investigated, including a comprehensive review of fuzzy-based positioning and localisation systems. The thesis is aimed at the development of a novel positioning technique which enhances well-known multi-nearest-neighbour (kNN) and fingerprinting algorithms with received signal strength (RSS) measurements. A fuzzy inference system is put forward for the generation of weightings for selected nearest-neighbours and the elimination of outliers. In this study, Monte Carlo simulations of a proposed multivariable fuzzy localisation (MVFL) system showed a significant improvement in the root mean square error (RMSE) in position estimation, compared with well-known localisation algorithms. The simulation outcomes were confirmed empirically in laboratory tests under various scenarios. The proposed technique uses available indoor wireless local area network (WLAN) infrastructure and requires no additional hardware or modification to the network, nor any active user participation. The thesis aims to benefit practitioners and academic researchers of system positioning

    DATA DRIVEN INTELLIGENT AGENT NETWORKS FOR ADAPTIVE MONITORING AND CONTROL

    Get PDF
    To analyze the characteristics and predict the dynamic behaviors of complex systems over time, comprehensive research to enable the development of systems that can intelligently adapt to the evolving conditions and infer new knowledge with algorithms that are not predesigned is crucially needed. This dissertation research studies the integration of the techniques and methodologies resulted from the fields of pattern recognition, intelligent agents, artificial immune systems, and distributed computing platforms, to create technologies that can more accurately describe and control the dynamics of real-world complex systems. The need for such technologies is emerging in manufacturing, transportation, hazard mitigation, weather and climate prediction, homeland security, and emergency response. Motivated by the ability of mobile agents to dynamically incorporate additional computational and control algorithms into executing applications, mobile agent technology is employed in this research for the adaptive sensing and monitoring in a wireless sensor network. Mobile agents are software components that can travel from one computing platform to another in a network and carry programs and data states that are needed for performing the assigned tasks. To support the generation, migration, communication, and management of mobile monitoring agents, an embeddable mobile agent system (Mobile-C) is integrated with sensor nodes. Mobile monitoring agents visit distributed sensor nodes, read real-time sensor data, and perform anomaly detection using the equipped pattern recognition algorithms. The optimal control of agents is achieved by mimicking the adaptive immune response and the application of multi-objective optimization algorithms. The mobile agent approach provides potential to reduce the communication load and energy consumption in monitoring networks. The major research work of this dissertation project includes: (1) studying effective feature extraction methods for time series measurement data; (2) investigating the impact of the feature extraction methods and dissimilarity measures on the performance of pattern recognition; (3) researching the effects of environmental factors on the performance of pattern recognition; (4) integrating an embeddable mobile agent system with wireless sensor nodes; (5) optimizing agent generation and distribution using artificial immune system concept and multi-objective algorithms; (6) applying mobile agent technology and pattern recognition algorithms for adaptive structural health monitoring and driving cycle pattern recognition; (7) developing a web-based monitoring network to enable the visualization and analysis of real-time sensor data remotely. Techniques and algorithms developed in this dissertation project will contribute to research advances in networked distributed systems operating under changing environments

    Low-Cost Indoor Localisation Based on Inertial Sensors, Wi-Fi and Sound

    Get PDF
    The average life expectancy has been increasing in the last decades, creating the need for new technologies to improve the quality of life of the elderly. In the Ambient Assisted Living scope, indoor location systems emerged as a promising technology capable of sup porting the elderly, providing them a safer environment to live in, and promoting their autonomy. Current indoor location technologies are divided into two categories, depend ing on their need for additional infrastructure. Infrastructure-based solutions require expensive deployment and maintenance. On the other hand, most infrastructure-free systems rely on a single source of information, being highly dependent on its availability. Such systems will hardly be deployed in real-life scenarios, as they cannot handle the absence of their source of information. An efficient solution must, thus, guarantee the continuous indoor positioning of the elderly. This work proposes a new room-level low-cost indoor location algorithm. It relies on three information sources: inertial sensors, to reconstruct users’ trajectories; environ mental sound, to exploit the unique characteristics of each home division; and Wi-Fi, to estimate the distance to the Access Point in the neighbourhood. Two data collection protocols were designed to resemble a real living scenario, and a data processing stage was applied to the collected data. Then, each source was used to train individual Ma chine Learning (including Deep Learning) algorithms to identify room-level positions. As each source provides different information to the classification, the data were merged to produce a more robust localization. Three data fusion approaches (input-level, early, and late fusion) were implemented for this goal, providing a final output containing complementary contributions from all data sources. Experimental results show that the performance improved when more than one source was used, attaining a weighted F1-score of 81.8% in the localization between seven home divisions. In conclusion, the evaluation of the developed algorithm shows that it can achieve accurate room-level indoor localization, being, thus, suitable to be applied in Ambient Assisted Living scenarios.O aumento da esperança média de vida nas últimas décadas, criou a necessidade de desenvolvimento de tecnologias que permitam melhorar a qualidade de vida dos idosos. No âmbito da Assistência à Autonomia no Domicílio, sistemas de localização indoor têm emergido como uma tecnologia promissora capaz de acompanhar os idosos e as suas atividades, proporcionando-lhes um ambiente seguro e promovendo a sua autonomia. As tecnologias de localização indoor atuais podem ser divididas em duas categorias, aquelas que necessitam de infrastruturas adicionais e aquelas que não. Sistemas dependentes de infrastrutura necessitam de implementação e manutenção que são muitas vezes dispendiosas. Por outro lado, a maioria das soluções que não requerem infrastrutura, dependem de apenas uma fonte de informação, sendo crucial a sua disponibilidade. Um sistema que não consegue lidar com a falta de informação de um sensor dificilmente será implementado em cenários reais. Uma solução eficiente deverá assim garantir o acompanhamento contínuo dos idosos. A solução proposta consiste no desenvolvimento de um algoritmo de localização indoor de baixo custo, baseando-se nas seguintes fontes de informação: sensores inerciais, capazes de reconstruir a trajetória do utilizador; som, explorando as características dis tintas de cada divisão da casa; e Wi-Fi, responsável pela estimativa da distância entre o ponto de acesso e o smartphone. Cada fonte sensorial, extraída dos sensores incorpora dos no dispositivo, foi, numa primeira abordagem, individualmente otimizada através de algoritmos de Machine Learning (incluindo Deep Learning). Como os dados das diversas fontes contêm informação diferente acerca das mesmas características do sistema, a sua fusão torna a classificação mais informada e robusta. Com este objetivo, foram implementadas três abordagens de fusão de dados (input data, early and late fusion), fornecendo um resultado final derivado de contribuições complementares de todas as fontes de dados. Os resultados experimentais mostram que o desempenho do algoritmo desenvolvido melhorou com a inclusão de informação multi-sensor, alcançando um valor para F1- score de 81.8% na distinção entre sete divisões domésticas. Concluindo, o algoritmo de localização indoor, combinando informações de três fontes diferentes através de métodos de fusão de dados, alcançou uma localização room-level e está apto para ser aplicado num cenário de Assistência à Autonomia no Domicílio
    corecore