1,571 research outputs found

    Investigating the deployability of VoIP services over wireless interconnected micro aerial vehicles

    Get PDF
    Emerging technological devices, such as Unmanned Aircraft Vehicles (UAV) and Single Board Computers (SBC), are being increasingly employed in recent years, thanks to the advances in electronics and the wide variety of sensors that are endowed. This paper aims at analyzing the viability of deploying multimedia services, focusing on the voice scenario, over wireless interconnected Micro Air Vehicles (MAV), also known as drones. Toward this end, we assessed the performance both of the embedded wireless cards of current drones and also SBCs, which may be carried as payload in existing UAV solutions. Driven by the results obtained in these experiments, we then deployed an operational VoIP service over a network of commercial MAVs, to perform an experimental analysis on the resource capabilities of these devices and demonstrate that this type of service can certainly be used.This article has been partially supported by the European H2020 5GinFIRE project (grant agreement 732497) and the 5G‐City project (TEC2016‐76795‐C6‐3‐R) funded by the Spanish Ministry of Economy and Competitiveness

    Performance Evaluation of VoIP in Mobile WiMAX; Simulation and Emulation studies

    Get PDF
    Worldwide Interoperability for Microwave Access (WiMAX) is an acronym for IEEE 802.16 family which is a leading contemporary broadband wireless Access (BWA) technology. IEEE 802.16e is intended for mobile WiMAX, which supports vehicular mobility with the stringent quality of service (QoS) parameters for various data traffics. Voice over IP (VoIP) provides low cost, modern telephony which can become a better alternative for classical telephony; however there are some issues need to be addressed prior to the deployment of any new technology. Significance of simulation study results can be verified and assessed by emulation testbed results. It is expected that both the results should match closely with each other. This paper makes an effort to study the performance evaluation of VoIP for a mobile user and how the QoS parameters vary for different speeds. The simulation and emulation of a mobile WiMAX system using EXata 2.0.1 are performed. The effectiveness of the comparison of results is discussed

    Master of Science

    Get PDF
    thesisEmergency "911" service is a critical function provided in the Public Switched Telephone Network (PSTN), cellular and Voice over Internet Protocol (VoIP) networks. Wi-Fi, despite its growing importance, has no such service. In this thesis, we develop a 911-like service for Wi-Fi-capable devices, enabling them to send emergency messages through any available hotspot or access point. Our service makes use of existing 802.11 management frames and does not require the client device to associate or authenticate with the access point; this makes it available even on protected networks to which the client would not normally have access, even encrypted ones. This design ensures maximum potential reach and usability, and helps to increase public safety

    Secure and Reliable Wireless Communication through End-to-End-based Solution

    Get PDF
    In the past few decades, network architectures and protocols are often designed to achieve a high throughput and a low latency. Security was rarely considered during the initial design phases. As a result, many network systems are insecure by design. Once they are widely deployed, the inherent vulnerabilities may be difficult to eliminate due to the prohibitive update cost. In this dissertation, we examine such types of vulnerabilities in various networks and design end-to-end-based solutions that allow end systems to address such loopholes. The end-to-end argument was originally proposed to let end hosts implement application-specific functions rather than letting intermediate network nodes (i.e., routers) perform unneeded functions. In this dissertation, we apply the end-to-end principle to address three problems in wireless networks that are caused by design flaw with following reasons: either because integrating solutions into a large number of already deployed intermediate nodes is not a viable option or because end hosts are in a better position to cope with the problems. First, we study the problem of jamming in a multihop wireless network. Jamming attacks are possible because wireless networks communicate over a shared medium. It is easy to launch a jamming attack but is difficult to defend against it. To ensure the end-to-end packet delivery, we propose a jamming-resilient multipath routing algorithm that maximizes end-to-end availability based on the availability history between sources and destinations. Second, we investigate caller ID spoofing attacks in telephone networks in which an attacker can send a fake caller ID to a callee rather than her real one to impersonate as someone else. Such attacks are possible because there is no caller ID authentication mechanism in operator interconnection protocols. Modifying current protocols to verify caller ID between operators may be infeasible due to the scale of deployed systems. So, we propose two schemes to detect caller ID spoofing attacks based on end-to-end verification. Finally, we examine evil twin access point attacks in wireless hotspots. In such attacks, an adversary sets up a phishing access point that has the same Service Set IDentification (SSID) as the legitimate ones in the hotspot. Such attacks are easy to launch because of how 802.11 standards are designed. Existing solutions take away convenience from the user while providing security. Our aim is to detect evil twin access point attacks in wireless hotspots without modifying how access point works in hotspots and without additional infrastructure support. We propose an end-to-end-based mechanism that can effectively detect evil twin access point attacks in wireless hotspots

    Prototyping Telematic Services in a Wireless Vehicular Mesh Network Environment

    Get PDF
    International audienceNext generation telematic services are expected to play a key role in future automotive applications. In order to achieve strong integration between the services and the underlying network infrastructure there is a need for both simulation and emulation of the entire system. This paper presents a combined simulation and emulation approach for telematic services prototyping in an emulated wireless vehicular mesh networking environment. The ns-3 wireless mesh model, SUMO vehicular mobility model and different telematic services are integrated to demonstrate high scalability and flexibility of the proposed approach

    Improving the Performance of Wireless LANs

    Get PDF
    This book quantifies the key factors of WLAN performance and describes methods for improvement. It provides theoretical background and empirical results for the optimum planning and deployment of indoor WLAN systems, explaining the fundamentals while supplying guidelines for design, modeling, and performance evaluation. It discusses environmental effects on WLAN systems, protocol redesign for routing and MAC, and traffic distribution; examines emerging and future network technologies; and includes radio propagation and site measurements, simulations for various network design scenarios, numerous illustrations, practical examples, and learning aids

    Communications in emergency and crisis situations

    Get PDF
    In emergency and crisis situations (ECS) like earthquakes, tsunamis, terrorist attacks, it is very important that communication facilities are operative to provide services both to rescue teams and civilians. In ECS it is very common that communication premises are often unable to provide services, either due to physical damages or traffic overload. In such a case there is the need for rapid reestablishment of communication services. In this paper the communication services that can be exploited for ECS mitigation are discussed. The usage scenarios of such services are studied. Following that and looking from a network perspective view an ECS communication network architecture is presented. This architecture aims to provide seamless interoperability of varies communication technologies often present in ECS to provide an ECS communication solution. © 2014 Springer International Publishing Switzerland

    An emergency communication system based on software-defined radio

    Get PDF
    Wireless telecommunications represent an important asset for Public Protection and Disaster Relief (PPDR) organizations as they improve the coordination and the distribution of information among first responders in the field. In large international disaster scenarios, many different PPDR organizations may participate to the response phase of disaster management. In this context, PPDR organizations may use different wireless communication technologies; such diversity may create interoperability barriers and degrade the coordination among first time responders. In this paper, we present the design, system integration and testing of a demonstration system based on Software Defined Radio (SDR) technology and Software Communication Architecture (SCA) to support PPDR operations with special focus on the provision of satellite communications. This paper describes the main components of the demonstration system, the integration activities as well as the testing scenarios, which were used to evaluate the technical feasibility. The paper also describes the main technical challenges in the implementation and integration of the demonstration system. Finally future developments for this technology and potential deployment challenges are presented.JRC.G.6-Digital Citizen Securit
    • 

    corecore