
EMERGENCY SERVICE IN WI-FI NETWORKS

WITHOUT ACCESS POINT ASSOCIATION

by

Manav Seth

A thesis submitted to the faculty of
The University of Utah

in partial fulfillment of the requirements for the degree of

Master of Science

in

Computer Science

School of Computing

The University of Utah

August 2011

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276264593?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Copyright c© Manav Seth 2011

All Rights Reserved

T h e U n i v e r s i t y o f U t a h G r a d u a t e S c h o o l

STATEMENT OF THESIS APPROVAL

The thesis of

has been approved by the following supervisory committee members:

, Chair
Date Approved

, Member
Date Approved

, Member
Date Approved

and by , Chair of

the Department of

and by Charles A. Wight, Dean of The Graduate School.

Manav Seth

Sneha Kasera 6/17/2011

Robert Ricci 5/9/2011

Neal Patwari 5/9/2011

Alan Davis

School of Computing

ABSTRACT

Emergency “911” service is a critical function provided in the Public Switched Telephone

Network (PSTN), cellular and Voice over Internet Protocol (VoIP) networks. Wi-Fi, despite

its growing importance, has no such service. In this thesis, we develop a 911-like service for

Wi-Fi-capable devices, enabling them to send emergency messages through any available

hotspot or access point. Our service makes use of existing 802.11 management frames and

does not require the client device to associate or authenticate with the access point; this

makes it available even on protected networks to which the client would not normally have

access, even encrypted ones. This design ensures maximum potential reach and usability,

and helps to increase public safety.

CONTENTS

ABSTRACT . iii

LIST OF FIGURES . vi

LIST OF TABLES . vii

ACKNOWLEDGEMENTS . viii

CHAPTERS

1. INTRODUCTION . 1

1.1 Emergency Services: History and Importance . 1
1.2 Some Issues Facing Emergency Services . 1
1.3 Objectives of Research . 2
1.4 Contributions of This Thesis . 3
1.5 Highlights of Our Service . 3
1.6 Some Use Cases of Such a Service . 5
1.7 Outline of the Thesis . 5

2. BACKGROUND . 6

2.1 Related Work . 6
2.2 Guidelines for 911 in the United States . 7

3. RESEARCH . 9

3.1 Architecture of the Service . 9
3.2 IEEE 802.11 Framing in Detail . 10
3.3 Emergency Message Frames . 12
3.4 Implementation Details . 14
3.5 Implementation on USRP . 18
3.6 Current Limitations . 19
3.7 Evaluation of the Service . 20

4. SOFTWARE DEFINED RADIO . 26

4.1 Introduction . 26
4.2 Universal Software Radio Peripheral . 26

4.2.1 Motherboard . 27
4.2.2 Daughterboards . 27

4.3 GNURadio . 27
4.3.1 GNURadio Architecture . 28

4.4 GNURadio Signal Processing Block . 29
4.5 Developing the Complete GNURadio

Flow Graph . 30
4.6 Existing IEEE 802.11 SDR Implementations . 30

5. IEEE 802.11g IMPLEMENTATION ON USRP2 . 32

5.1 Approach . 33
5.2 Description of DSP Blocks . 35

5.2.1 CRC-32 . 35
5.2.2 Scrambler and Descrambler . 35
5.2.3 MAC and PLCP Header . 36
5.2.4 Convolutional Encoder and Decoder . 38
5.2.5 Interleaver . 38
5.2.6 Symbols Mapping . 39
5.2.7 Pilot Tone Insertion . 39
5.2.8 OFDM Modulation . 40

5.3 Some Results . 40

6. CONCLUSION . 43

6.1 Conclusion . 43
6.2 Future Work . 43

REFERENCES . 45

v

LIST OF FIGURES

3.1 Basic architecture of the service . 9

3.2 Generic 802.11 MAC frame . 11

3.3 Frame control field . 11

3.4 Role of the AP . 15

3.5 Selecting an AP . 16

3.6 Sending the message to an AP . 17

3.7 Effect of prioritizing emergency messages on time to receive e-mail at PSAP . 23

3.8 Histogram of RTT per bit for sending emergency message on USRP without
interfering traffic . 25

4.1 Typical GNURadio graph [1] . 28

4.2 GNURadio framework[1] . 29

5.1 OFDM blocks present in GNURadio core . 33

5.2 IEEE 802.11g near-commercial implementation . 34

5.3 IEEE 802.11g chain implemented in GNURadio . 35

5.4 IEEE 802.11g data scrambler . 36

5.5 IEEE 802.11g PPDU frame format . 37

5.6 Convolutional encoder K = 7 block operation . 38

5.7 Time delta between successive received frames . 41

LIST OF TABLES

3.1 Performance testing of various cases . 21

3.2 Results obtained when not sending acknowledgements 22

3.3 Performance improvement by sending acknowledgements 22

3.4 Time taken to send an emergency message to AP . 24

3.5 Time taken to send an emergency message to the receiver USRP2 25

5.1 Encoding details for different OFDM data rates . 39

5.2 Some statistics of 802.11g transmission using USRP2 . 41

5.3 Some statistics of 802.11g conventional transmission . 42

ACKNOWLEDGEMENTS

The past two years at the University of Utah has been an exciting and an awesome

journey for me. Apart from the technical knowledge I gained through regular coursework, I

got an exposure to different aspects of research through this thesis. This one page will not

be enough to thank and express my gratitude to my advisor, Dr. Sneha Kasera. He has

always encouraged and guided me since the time I met him. I clearly remember, and may

well remember the one line he spoke to me on that day, all my life: “You are my student

now. I will take care of you.” He gave me the full freedom to explore different domains

and come up with a research problem which excites me. I would also like to mention that

he has been very patient in improving my writing skills, and has given me so many tips

throughout this process.

I would also like to thank Dr. Rob Ricci and Dr. Neal Patwari for serving as my

committee members, and for providing valuable feedback and suggestions. Rob in particular

has been very cooperative and helpful by giving his thoughtful feedback at various phases

of this research. Thanks also to Ann and Karen who served as my graduate advisors and

helping me right through my graduate studies.

I would also like to thank my lab mates Arijit, Manas, Prathana, Saurav, Shobhit,

Suchit and Vaibhav for making our work space such a wonderful place to work! Lastly, I

will thank my parents for providing constant encouragement and motivation without having

a clue about what I was up to. I do not think that I would have been even close to complete

my graduate studies successfully without their blessings and support.

CHAPTER 1

INTRODUCTION

1.1 Emergency Services: History and Importance

Emergency “911” service is a critical function provided in the Public Switched Telephone

Network (PSTN), cellular and Voice over Internet Protocol (VoIP) networks [2, 3, 4, 5, 6].

In the U.S., the first 911 system was installed in 1968. Since then, the E-911 service

has undergone several improvements and has been deployed both for cellular and VoIP in

addition to the fixed line phones. The E-911 automatically associates a physical address

with the calling party’s telephone number, and routes the call to the most appropriate

Public Safety Answering Point (PSAP) for that address. PSAP is a call-center responsible

for answering calls to an emergency telephone number for police, firefighting, and ambulance

services. There are roughly 6100 primary and secondary PSAPs in the U.S. Currently, some

of the emergency services commonly available are:

• Enhanced 911 Service [7]

• Cellular Enhanced 911 [8]

• VoIP Enhanced 911 [9, 10]

• Automatic Wireless Fire and Smoke Alarms [11, 12]

Emergency services are available to help the public in different scenarios. Some agencies

like the ambulance and fire will mostly deal with ad-hoc emergencies and others can be

useful in many different scenarios like the police. These days, there have been many other

kinds of emergency services such as the coastguard, lifeboat, bomb disposal, emergency

road services, disaster relief services, etc. to name a few. These emergency services often

work together and usually maintain open lines of communication among them. Citizens

should also consider it a duty for themselves to help such services when required.

1.2 Some Issues Facing Emergency Services

As mentioned, Emergency “911” service is a critical service provided in the PSTN,

cellular and VoIP networks. The PSTN, though, is the phone network established and in

2

use for decades, and the way emergency services are offered on it also has largely remained

unchanged. However, in the nineties, with the introduction and advancement of cellular

phones, the implementation of emergency services and the nature of calls made to the

emergency number started to change. The fact that mobile phones were not limited to

a specific location made them far more useful than fixed lines in reporting emergencies,

since the phones accompanied the user, and were readily accessible whenever an emergency

occurred, either to the user or to someone else. The percentage of emergency calls being

made from mobile phones increased, until well over half the total calls were being made

from mobiles. But, there are still many places around the world including the United

States where there is no cellular network though there are Wi-Fi networks available.

In such places, the only way to communicate with an emergency center is to find a PSTN

phone or use a VoIP service, although VoIP is still evolving in terms of providing support

for emergency services and even coverage. Hence, there is a need to develop an emergency

service for Wi-Fi networks and we make an attempt to do so in this thesis.

1.3 Objectives of Research

Wi-Fi, despite its growing importance, has no E-911 type emergency service. Wi-Fi is

currently used by over 700 million people and there are close to 750,000 Wireless Hotspots

around the world [13]. In 2009, 800 million devices capable of accessing the Internet using

Wi-Fi were sold. Furthermore, the International Telecommunication Union (ITU) estimated

that mobile cellular subscriptions worldwide will reach approximately 5.3 billion by the

end of 2010 [14]. Of these, nearly 1 billion will be equipped with high-speed mobile web

access. Hence, since more and more people are choosing Wi-Fi as their main means of

communicating, it is imperative that there be an emergency service made for Wi-Fi. One

of the challenges in providing such a service for Wi-Fi networks arises from the fact that

more and more Wi-Fi networks are now secure. This security requires Wi-Fi users (mobile

devices) to be authenticated by Wi-Fi access points before any data, even emergency data,

can be sent or received.

In this work, we build an emergency service in Wi-Fi networks that does not require any

access point association or authentication. Using our service, Wi-Fi enabled mobile devices

will be able to use any nearby access point or hotspot, secure or not, to send an emergency

message, without going through any authentication or the association phases of the IEEE

802.11a/b/g/n protocols. At the same time, malicious users will not be able to misuse this

service to access the Internet since this service will only allow a user to send an emergency

3

message to an appropriate destination, which will be decided by the service itself.

1.4 Contributions of This Thesis

Our thesis has the following contributions:

• Build a new service: This research shall enable any device equipped with a Wireless

Interface Card to send an emergency or a distress message at any time to a Public-

Safety Answering Point (PSAP) using any available 802.11 Wireless Access Point

or a commercial hotspot having Internet access. The user will not be required to

authenticate or associate with the access point and hence makes it possible to use

even a protected or encrypted network to which the client would not normally have

access, only for the purpose of sending an emergency message.

• We design, implement and evaluate the service on two platforms:

1. PC-based access point: A PC with a conventional wireless interface card is

used as an Access Point. We then implement our service on this access point.

2. Universal Software Radio Peripheral (USRP): The PC-based implemen-

tation does suffer from a few limitations, which are highlighted in Section 3.6.

Also, initially, while developing the prototype, we faced a few issues implementing

the service on a PC-based access point primarily due to the closed-source nature

of the wireless card firmware and drivers. Further, we wanted to have complete

control over the MAC layer of the IEEE 802.11 protocol, which we could not

achieve using conventional wireless interface cards. Hence, as a counter-measure,

to solve these issues, we decided to use the open-source software defined radio,

the USRP, to implement our service.

1.5 Highlights of Our Service

The main highlights of our design of the Wi-Fi emergency service are as follows:

• We minimize the time to send the emergency message, especially in the presence of

high load in the Wi-Fi network. Our system chooses an access point for emergency

message transmission based on the following factors - strength of the signal received

(RSS) from the access points, the number of current associations at the access points,

and the past history of failures of access points in transmitting the emergency message.

4

• We build simple reliability by requiring the access points to acknowledge, positively

or negatively, the transmission of an emergency message from a mobile device to the

PSAP.

• The mobile device wanting to send an emergency message is able to check if the access

point indeed has Internet connectivity before attempting to send the message.

• Our service also supports sending text messages and attachments to the nearest PSAP.

• Our service is also capable of finding the approximate location of the user and reports

it to the PSAP along with details like the MAC address and type of device used by

the sender.

• To aid our implementation on the USRP, we also build an IEEE 802.11g compli-

ant transmitter. Further, we have also built a partial receiver and are working on

completing it as part of our future work.

We implement our emergency service on the Ubuntu Linux platform. We use laptops for

mobile devices and desktops for access points. Our service requires us to inject modified

management frames into the Wi-Fi network. Therefore, we require the wireless cards

on the mobile devices to support the monitor mode1. We require the wireless card on

the access points to support the master mode. In order to obtain a tighter control over

our implementation, we also implement our emergency services on the Universal Software

Radio Peripheral (USRP). To achieve this, we implemented an IEEE 802.11g compliant

transmitter and also attempted to build the corresponding receiver for the USRP version

2. We also built a fully functional prototype of our service for the USRP2 based on BBN

802.11g code [15] modified to incorporate our service. Using our implementation, we run

a variety of experiments under different settings. We find that our system can deliver

an emergency message from a mobile device to a PSAP in 1.8 - 2.4 seconds, depending

on the load on the selected access point and traffic in the network. We also conduct

experiments in various settings using the USRPs and find that with no interfering traffic,

we can achieve a Round-Trip-Time (RTT, total time to send an emergency message and

receive its acknowledgement) of ≈ 2.5 seconds. We also compare the results of our service

with the web-based Short Message Service (SMS) and find that, on average, we take far less

time in delivering a message than the SMS service. Thus, our experiments indicate that

our emergency service can be used in real settings.

1Monitor mode, or RFMON (Radio Frequency Monitor) mode, allows a computer with a wireless network
interface card (NIC) to monitor all traffic received from the wireless network, as well as inject MAC frames
in the wireless network.

5

1.6 Some Use Cases of Such a Service

An emergency service which could be used by the general public using any available

wireless access point will have a lot of potential. Such a service will be useful when:

• Sending an emergency message at a crowded place, without the need of specialized

emergency kiosks (e.g., at Airports).

• Sending an emergency message when there are no cellular signals (e.g., Movie theatres,

underground rooms).

• This service can indeed be one of the fastest ways to send an emergency message or

a distress signal.

• Can be used by handicapped people who are unable to communicate or call an

emergency service.

• Also useful when the user has access to devices that are capable of Wi-Fi, but not

other wireless (e.g., cellular) communication.

1.7 Outline of the Thesis

The rest of the thesis is organized as follows:

Chapter 2 describes related work and some proposed standards for Emergency Telecom-

munications Services.

Chapter 3 describes the research conducted and the work done to implement the pro-

posed Emergency Service and also some results we got from conducting experiments.

Chapter 4 discusses the emerging technology of Software Defined Radios and specifically

about the USRP since we develop an IEEE 802.11g transmitter and receiver using an open

source SDR: the Universal Software Radio Peripheral (USRP2).

Chapter 5 discusses the work done to implement a 802.11g transmitter and receiver on

the USRP2 and GNURadio platform as a part of this thesis.

CHAPTER 2

BACKGROUND

2.1 Related Work

There have been many research studies in the past which aim at providing emergency

services to users. The first 911 system was installed in Haleyville, Alabama in February

1968 as a way to quickly connect a subscriber to the local police station. This system

did not identify the caller but did provide a means to access emergency services that had

not previously been available. This system was quickly adapted and improved by other

telephone companies to become the E911 system which provides both caller location and

identification. A pioneering system was in place in Chicago by the mid-1970s, providing

both police and fire departments access to the source location of emergency calls. Enhanced

911 is currently deployed in most metropolitan areas in the United States and Canada. In

addition, Wireless Enhanced 911 and VIOP enhanced 911 have also been developed to

provide the service to the cellular and VoIP users.

Currently, some of the emergency services commonly available are:

• Enhanced 911 Service [7]

• Cellular Enhanced 911 [8]

• VoIP Enhanced 911 [9, 10]

• Automatic Wireless Fire and Smoke Alarms [11, 12]

In cellular networks, most GSM mobile phones can dial emergency calls even when the

phone keyboard is locked, the phone is without a SIM card, or an emergency number is

entered instead of the PIN of the SIM card. Our service can be thought as analogous to

this service. In our emergency scheme also, a user can send an emergency message across

to a PSAP using an available access point even if the wireless device is not associated with

that AP.

Furthermore, the FCC has advertised that it will update the current E-911 service and

enable citizens to report crimes through text messages, and even allow users to send video

streams from their mobile phones to emergency centers [16].

7

Other systems such as cellular ad-hoc relay for emergencies (CARE) [17] has been

proposed which adds a functionality to relay an emergency call arising from a user outside

the cellular coverage area via another user within the range of the network. There have

been works like the WIISARD project [18] which describes research that explores the design

of 802.11 networks enhanced to support data communications in disaster environments,

especially for medical uses. In CodeBlue [2], the authors develop a wireless infrastructure

for emergency purposes in medical care using low-power sensors. In a related work known

as CR MAC [19], the authors propose to use cognitive radio sensors and dynamic channel

assignment to come up with a mobile ad-hoc network for emergency purposes. In another

work, which presents an overview of highway cooperative collision avoidance (CCA), [20]

presents an idea of vehicle-to-vehicle cooperative communication protocol which aims at

enhancing traffic safety on busy highways. In a novel work, AMBULANCE, [21] the authors

have aimed at developing a portable device that allows telediagnosis and teleconsultation

of mobile healthcare providers by expert physicians. The vital bio signals and images are

transmitted from the emergency site to the consultation site using the GSM mobile tele-

phony network. Another sensor network-based emergency service [22] provides a distributed

navigation algorithm for emergency situations.

There are products like wireless smoke alarms [11], but they operate on RF and require

a separate receiver. In the past, there also have been products like Wi-Fi smoke detectors

and fire alarms [12] which are wire-free solutions for the traditional smoke and fire alarms.

But these devices have to be first associated with an access point for their operation. For

the same reason, they cannot operate as plug-and-play devices.

But almost all such systems either require new hardware support like sensor networks or

are not utilizing the power and availability of the 802.11 Wi-Fi protocols. The emergency

service should be easily deployable and easy to use. Also, the service should not require any

expensive setup and should be an ubiquitous service. The service we are proposing does not

require any additional hardware support and requires no association with an access point.

The service will be available at all times and can be operated at all places where wireless

Internet access is available.

2.2 Guidelines for 911 in the United States

As mentioned, 911 is the emergency telephone number for the United States. Since

its deployment in 1968, it has undergone several changes in its operation. New standards

such as the E-911 (Enhanced 911), Wireless enhanced 911 and recently 911 for Internet

8

telephony have been developed and deployed.

Since the emergency number 911 is very critical, the US government has defined certain

rules and metrics governing its operation. For instance, the current model for the 911

services in the United States specifies that [23]:

• The numbers should be touch-tone generated

• Incoming calls will be forwarded from the local or end switch to a PSAP (Public

Safety Answering Point) responsible for the callers location area

• The callers location should be transmitted automatically to the PSAP using available

resources, usually in a packet switched manner.

In addition to the above rules, the FCC also mandates certain rules specifically for the

Wireless enhanced 911. Some of these are [24]:

• All 911 calls must be relayed to a call center, regardless of whether the mobile phone

user is a customer of the network being used.

• 95% of a network operator’s in-service phones must be E911 compliant

• Wireless network operators must provide the latitude and longitude of callers with

accuracy of ±300 meters and within 6 minutes

Similarly, VoIP enhanced 911 also mandates that the VoIP providers should make sure that

the user of their service should be able to reach the local 911 call center from their VoIP

phone. The call should also be free of charge. There have been, though, several issues and

complicated technological problems with implementing E911 with VoIP. The providers are

still attempting to solve them [25].

In our research, we try to meet all these requirements set for an emergency service. The

message which is sent to the PSAP using our emergency service contains ”a near” accurate

location of the sender. The time to send the message, as we show later in our evaluation,

is also acceptable as per the requirements set.

CHAPTER 3

RESEARCH

3.1 Architecture of the Service

In this subsection, we outline the basic architecture of the emergency service.

Motivated by the E911 Service, our architecture consists of an end-user terminal or host

system which communicates with a Public Safety Answering Point (PSAP). The PSAP

takes responsibility for listening to or reading the emergency message, making a decision

based on the type of emergency, location, etc. and sending it along to the appropriate

emergency service, such as a police station, fire station, or ambulance service.

The user terminal can be any device having an 802.11 network interface card. The

method by which the user activates the system may differ by the type of mobile device.

On a laptop, this might mean pressing a predefined key sequence or running a particular

command. On a smartphone, it might mean running a special app or pressing a “panic”

button. Once activated, the user’s device begins sending a message, which is relayed to a

PSAP by an IEEE 802.11 compatible access point (AP) or router, as shown in Figure 3.1.

This relaying is done by using a novel mechanism that does not require the user device to

associate with the AP, and which is described in the remainder of this section.

Figure 3.1. Basic architecture of the service

10

3.2 IEEE 802.11 Framing in Detail

A primary design consideration for our system is that it should be universally available.

Many APs are configured to give access to a certain set of users by controlling which devices

are allowed to associate, requiring a password, or encrypting the network traffic. In order

to maximize the coverage of our system and its benefit to public safety, APs must be able

to offer this service even to people who would not normally be able to use the AP. Our

design should also make minimal changes to the 802.11 protocol, so that it is easy to add

to existing AP designs (in many cases without hardware modifications.)

To achieve these goals, the communication between the user’s mobile device and the

access point makes use of 802.11 management frames. These frames can be sent even by

client devices that are not associated with the AP, and they are always unencrypted. We

make use of parts of these frames that are unused in the current 802.11 specifications. We

give some background on the basics of 802.11 framing, and discuss how our design makes

use of its features for emergency message transmission.

In IEEE 802.11, there are three major frame types.

1. Data Frames are the most common 802.11 frames, transferring data packets from one

station to another.

2. Control Frames are used in parallel with the data frames to deliver data reliably from

station to station.

3. Management Frames perform supervisory functions; they are used to join and leave

wireless networks and assist in roaming of a station from one access point to another.

Data frames and control frames are only used after authentication and association with

an AP. Therefore, we make use of management frames: this allows APs to offer emergency

service to any user, without having to allow those users to authenticate and associate. To

explain our modifications to 802.11, we begin with the standard 802.11 frame format.

Figure 3.2 shows the generic 802.11 MAC frame.1 Each frame starts with a two-byte

Frame Control subfield, as shown in Figure 3.3. The components of the Frame Control

subfield relevant to our discussion are:

• Type and subtype fields: The type and subtype fields identify the type of frame used.

For example, management frames have type=00. Probe requests, one particular type

of management frame, have subtype=0100.

1All diagrams in this section follow the IEEE conventions in 802.11. Fields are transmitted from left to
right.

11

Frame
Control(2)

DURATION/
ID(4)

Address
1(6)

Address
2(6)

Address
3(6)

SEQ-
CTL(4)

Address
4(6)

Frame
body
(0-2,312)

FCS(4)

Figure 3.2. Generic 802.11 MAC frame

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Protocol Type Sub type TO DS
FROM

DS
MORE
FRAG.

RETRY
PWR

MGMT
MORE
DATA

PROT.
FRAME

ORDER

Figure 3.3. Frame control field

• More fragments bit : This bit functions much like the ”more fragments” bit in IP

• Protected frame bit : If the frame is protected by link layer security (LLS) protocols

like WEP, this bit is set to 1, and the frame changes slightly

• Order bit : Frames and fragments can be transmitted in order at the cost of additional

processing by both the transmitter and the receiver. When “strict ordering” delivery

is employed, this bit is set to 1.

The Duration/ID field follows the frame control field. Under some conditions (when

its 15th bit is set to 0), it can be used to represent the Network Allocation Vector (NAV).

This value represents the number of microseconds that the medium is expected to remain

busy for the transmission currently in progress; as described later, we use it to increase the

priority of emergency messages so that they will get through even on heavily-loaded APs.

Management frames are used for Association, Disassociation, Scanning, Authentication,

etc. Whenever a wireless station wants to determine which access points are in range,

it broadcasts a Probe request. All APs that receive this request respond with a Probe

Response frame, containing capability information, supported data rates, etc. to the station.

Hence, probe requests and probe response frames are used even when the wireless station is

not associated or intending to associate with an access point. Additionally, the frame body

for a probe request has very few mandatory elements and hence can be easily modified with

very little change to the existing protocol. Hence, for purpose of this research, we use the

probe requests and probe response management frames to transmit emergency messages.

Now let us look specifically at these two frames in detail. For both these management

frames, all bits of the Frame Control field other than the Sub type subfield are always set

to 0. Our design tweaks the Frame Control subfield for these two management frames.

Specifically, an emergency message of this service always has its Order bit set as 1. This

12

enables us to make the frames of this service distinguishable from the “normal” 802.11

traffic. This is because normal 802.11 management frames always set the Order bit, More

fragments bit and Protected frame bit to 0.

3.3 Emergency Message Frames

IEEE 802.11 Management frames are quite flexible. Most of the data contained in

the frame body use fixed-length fields called fixed fields and variable-length fields called

information elements. To embed the emergency service into the protocol, we use this

flexibility of the management frames. We use the frame body of the management frames

to store the emergency message, and set the Order bit to 1 to distinguish the emergency

frames from other 802.11 traffic.

Sending an emergency message is divided into 3 parts:

1. Selection of an AP

2. Forming and sending of the emergency packet by the mobile device

3. Processing of the received emergency packet by the AP

For the purpose of selecting an AP, a process running on the wireless station scans all

the available wireless networks and prioritizes them based on the signal strength values

and the number of connections the access point is serving. This is similar to standard AP

scanning performed by client devices. Because sending a message to the AP does no good if

the AP is not connected to the Internet (such as an ad-hoc wireless network, or one which

has experienced a temporary loss of connectivity) we have also added the ability to check

whether the chosen AP has Internet. For this purpose, the node sends a modified probe

request packet with the Protected frame bit and Order bit set to 1. When the AP receives

this probe request from a mobile device with these 2 bits set, it determines:

1. This is a frame part of the emergency service, so it should be forwarded to the daemon

managing this service.

2. The mobile device is requesting lookup of Internet connectivity.

The AP then responds with a modified probe response frame. If it has Internet connectivity

(i.e., is able to contact the PSAP), the same two bits are also set in the response. Otherwise,

the Protected frame bit is set to 0.

The process of selecting an AP is done at startup of the mobile device and after regular

intervals. This is done to minimize the time taken to send an emergency message; the

scanning process takes a nontrivial amount of time.

13

After the mobile device has selected an AP, it then can send an emergency message at

the appropriate time. To achieve this, the station sends a modified probe request frame to

its selected AP. To prepare this frame, the Order bit of the Frame Control field is set to 1.

The emergency message is put in the frame body of the packet.

The priority of the emergency message is increased by using an approach similar to

SpectraLink Voice Priority [26]. To support SVP-type mechanisms in the emergency service,

access points and nodes must transmit emergency frames with zero backoff. As mentioned

before, the Duration field in the Frame control field represents the number of microseconds

that the medium is expected to remain busy for the transmission currently in progress and

hence, the wireless station backoffs for this time. Hence, if we make this Duration field as

zero, even in the presence of contention for the wireless medium because of data traffic, the

emergency frames with zero backoff will certainly have a priority boost because data frames

are likely to have a positive backoff slot. Since the emergency message is a directed probe

request, setting the duration as 0 will also enable the frame not to be kept waiting in the

queue. But, in scenarios where multiple emergency messages are being sent at the same

time, this approach can lead to contention in the network and can lead to the constant

collision of the emergency frames. Hence, in case of retransmission of the emergency frame,

the 802.11 standard procedure of backing off will be followed. Hence, the emergency frame

will be backed off by DIFS2 amount of time. For IEEE 802.11g standard, the DIFS time is

either 28 or 50 µs.

The service also takes care of fragmenting the frame body if its length is more than 2312

bytes (the maximum allowable size). In this case, the More fragments bit in the Frame

Control is also set to 1, in accordance with the 802.11 protocol.

In order to find the location, the access point uses Skyhook’s [27] Wi-Fi Positioning

System (WPS). The Skyhook WPS relies on existing WLAN access points for finding the

location of devices that have 802.11 wireless interfaces. In WPS, the mobile device collects

information about all visible WLAN access points in its vicinity, sends this information

to the Skyhook location database which replies with a position estimate based on the

aggregated information. The position estimate can then be directly used by a mapping

application like Google maps or can be combined with other sources of location information,

such as those from GSM stations or GPS. Positioning systems by Mexens [28] and the

Fraunhofer institute [29] have a similar mode of operation. The access point also appends

2Distributed Interframe Spacing

14

the MAC address and type of device used by the user to the emergency message. Then it

forwards this message to the PSAP.

In our prototype, the communication from the AP to the PSAP is done via email, using

a fixed address. (A deployed implementation could use a different mechanism, such as one

that explicitly acknowledges receipt at the final destination.) After successfully sending

the email, the AP acknowledges this to the mobile device by sending a modified probe

response frame with the Order bit set to 1. If it fails to send the email, the AP does not

send an acknowledgement. A simple flowchart of this process can is shown in Figure 3.4.

The wireless mobile device, if it does not receive an acknowledgment, sends the emergency

message to all APs in range except the one already tried. In this way, the user can be sure

that the emergency message will be served by at least one AP. In order for the PSAP to

distinguish between multiple copies of the message that may reach it through different APs,

it has to keep track of the mobile devices served. Hence, the message also contains the

unique MAC address of the mobile device, so that PSAP can distinguish between unique

requests.

To summarize, for the purpose of this service, the following frames are used:

• Probe request frame with Order bit set: Used to send the emergency message to the

selected access point.

• Probe request frame with both the Order bit and More fragments bit set: Used to

send long emergency messages to the selected access point.

• Probe request frame with both the Order bit and Protected frame bit set: Used to

determine whether the chosen AP has Internet connectivity.

• Probe response frame with the Order bit set: Sent by an AP as an acknowledgment

of servicing the request successfully. Also sent by the AP in response to the request

of checking Internet connectivity if the AP does not have Internet access.

• Probe response frame with both the Order bit and Protected frame bit set: Sent by

an AP in response to a request checking if the AP has Internet connectivity.

3.4 Implementation Details

Our prototype is implemented using a Ubuntu Linux laptop with an 802.11 wireless

interface as the mobile device. Another Ubuntu Linux machine is configured to act as a

wireless access point (using hostap version 0.7.2).

To initiate the emergency message, we use a predefined key sequence (ctrl + E) on the

wireless device. The process can also be started by entering the command at the terminal.

15

Receive
emergency

packet

Decode
the packet

Find the
location

Form the
e-mail

Send the
e-mail to

PSAP

Send ack
back to

the sender

Figure 3.4. Role of the AP

The service can also be customized to the requirements of the user. For example, on a mobile

phone, the emergency message could be sent by pressing a dedicated “panic” button.

The first step of this service is to select an access point. The two parameters used to

quantify the value of an access point are received signal strength (RSS) and load on the AP.

To determine the RSSI value (signal strength), our prototypes uses the iwlist command

on Linux. To find the number of connections to an AP, the tcpdump tool is used to sniff the

network of all the packets and then group the capture into groups based on the destination

address.

As mentioned, the wireless station, after selecting the AP based on these two parameters,

can also check whether the selected AP has Internet connectivity or not. In order to

do so, it sends a modified probe request frame to the AP. The AP upon receiving this

frame initiates a different thread which does a ping to the PSAP Mail server, in our case,

www.gmail.com, 3 times. If it has Internet connectivity, the AP notifies the wireless station

by sending the appropriate packet. A deployed implementation could more explicitly check

16

for connectivity to the PSAP by contacting the PSAP directly with an application-level

ping. Another alternative implementation can be to provide this information in the beacon

frames broadcasted by the access point. We were not able to implement this due to the

inability to change the behavior of the Wireless card while in Managed mode and hence,

we were unable to parse the beacon frame and find whether the has Internet flag is set or

not.

The following flowchart (Figure 3.5) illustrates the AP selection process.

To send any frame for this service, the wireless node injects 802.11 compatible packets,

specifically the modified probe request packets. To achieve this, we put the wireless card in

Monitor Mode and then inject packets using pcap library by manually forming the required

Scan all
available

APs
(iwlist)

Find
number of
incoming
packets to
each AP

Sort the
APs using

these 2
metrics

For each
AP, ping

“www.google.com”
3 times

Save the
APs in
a file in
sorted
order

Figure 3.5. Selecting an AP

17

packets and use raw sockets3 to send them via the wireless card. In our prototype, the

emergency message is stored in a text file on the mobile device. The text file can be

modified appropriately to accommodate the message the user wants to send to the PSAP.

Further, the user has the option to attach an image with the emergency message. The

emergency message, along with any attachments, forms the frame body of the packet which

is injected. The entire process of sending the emergency packet can be illustrated using the

following flowchart (Figure 3.6).

3Raw sockets allow direct sending and receiving of network packets, bypassing all encapsulation in the
networking stack of the operating system.

Figure 3.6. Sending the message to an AP

18

On the machine set up as an AP, the hostapd daemon process sends the frames which

belong to the emergency service (probe requests having the Order bit set) to the emergency

service daemon process running on the same machine. This is achieved using POSIX

message passing APIs. The daemon process then extracts the emergency message, finds

the location, relays the message to the PSAP and then sends an acknowledgment back to

the host. The location, as mentioned, is found using the Skyhook WPS API. The response

of the API is then formatted to this form:

Approximate Location:

latitude: 40.768348, longitude: -111.845170

Accuracy+/-171m 1

speed: 0.0km/h bearing: 0

Approximate Street Address:

12 Central Campus Dr

Salt Lake City, UT 84112

The PSAP on receiving this message takes the necessary steps of forwarding it to the

appropriate destination like the police, fire department, medical hospital, etc.

The access point always creates a new thread to service an emergency request since this

process should not interfere with its role as an access point and also it should be capable

of servicing multiple emergency requests at the same time. To summarize, the service is

comprised of the following components:

• A program to select an access point based on signal quality and strength

• A program which puts the wireless card in Monitor mode, calls the daemon process

which makes sure the chosen AP has Internet connectivity.

• A program which puts the wireless card in Monitor mode, calls the daemon process

which prepares the emergency message and sends to the AP.

• hostapd running on a Ubuntu Linux machine simulating an AP and forwarding

emergency request packets to the daemon process.

• A daemon process running on both the mobile device and the AP which actually

creates the message and receives the acknowledgments.

3.5 Implementation on USRP

In order to test a hardware implementation of our service, we used a USRP. This has

been discussed in depth in Chapter 5.

19

The Universal Software Radio Peripheral, or USRP, is designed to allow general purpose

computers to function as high bandwidth software radios. In essence, it serves as a digital

baseband and IF section of a radio communication system. The USRP can be used for

reproducing and analyzing some widespread wireless protocols, such as IEEE 802.11. Open

source Software Defined Radios like the USRP can help researchers to avoid the closed

source firmwares/drivers of commercial chipsets, and provides fully customizable physical

and datalink layers.

We implemented our emergency service on two USRPs. Specifically, we use the second

generation of USRPs, the USRP2 which has a Gigabit Ethernet interface to connect to a

host machine. We use the XCVR2450, Dual-band Transceiver daughterboard which has a

100+mW output at 2.4-2.5 GHz and 50+mW output 4.9-5.85 GHz. We use this specific

daughterboard since it was the only one capable of operating in the frequency range of the

802.11 Wi-Fi protocols.

In our setup, one USRP2 acts as a transmitter (node) and the other as a receiver

(AP). There is a daemon process running for both the transmitter and the receiver on the

respective PCs. These processes form the emergency packet at the transmitter and receive

the packet on the receiver. Hence, as with our other implementation on PCs, the daemon

process on the host’s side forms an emergency packet by inserting a fixed predefined string at

the beginning of the payload of the packet. Then, the actual emergency message is appended

to the payload, with a fixed trailer text. The packet is then transmitted to the access point,

represented by the other USRP2. The second USRP2, upon receiving any packet, first

checks for the specific string in the payload of the packet. If it matches with the predefined

string for emergency service, it then extracts the emergency message out of the packet and

spawns a thread which sends an email to a PSAP with the extracted emergency text. Then,

it sends an acknowledgement back to the sender which is similar to the emergency message

frame but with a different payload. The protocol used between the two USRPs is IEEE

802.11b. The code for running IEEE 802.11b on the USRP was originally developed by BBN

technologies [15] for the USRP. We modified this implementation work on the USRP2, and

added a layer for transmitting and receiving emergency frames which adhere to the IEEE

802.11b protocol.

3.6 Current Limitations

Our implementation has a few limitations. The current implementation is not compatible

with the chipsets which do not support packet injection. Many older wireless NIC cards

20

available on laptops and desktops do not have this capability. Also, the wireless chips present

in smartphones also do not allow packet injection. As a result, our current implementation

could not be tested on such devices. To enable such an emergency service in these devices,

the vendor has to incorporate the changes in the wireless driver or the 802.11 subsystem

running on the devices. Our design, however, is specifically intended to make this easy,

since it requires very few modifications in the current implementation of the protocol. Also,

sometimes the wireless adapter is unable to transmit in monitor mode and is restricted

to a single wireless channel, though this is dependent on the wireless adapter’s driver, its

firmware, and its chipset’s features.

Our implementation will not run on any OS which does not have necessary APIs and

extensions for wireless monitor mode, for example, older versions of Windows (prior to

Windows Vista). For such operating systems, it will be necessary to develop or modify

the drivers of the wireless network interface to enable monitor mode or use an USB Wi-Fi

adaptor which supports monitor mode.

Another limitation of the prototype is the inability to determine whether the PSAP has

actually received the emergency email from the access point. The access point currently

acknowledges the sender as soon as it is successful in sending the email across to the PSAP.

This can be a problem since the sender will now not send another emergency message even

though the PSAP has not received the email. This can be resolved by using an alternate

protocol to contact the PSAP which explicitly acknowledges receipt of the message.

Our implementation on USRP2 using 802.11b protocol suffers from the limitation that

software radios are not always capable of correctly reproducing operations previously done

in the hardware domain. In our case, this is mainly because the current implementation

of 802.11b receiver for the USRP is only capable of decoding low rate 802.11 packets from

standard NICs over the air reliably at 1Mbps and partially at 2Mbps; it does not process

packets at higher data rates. However, the USRP2 implementation is merely used as a

proof of concept to show that our scheme can be implemented in hardware; it is unlikely

that USRP-based access points will be deployed in production.

3.7 Evaluation of the Service

We evaluate and test our emergency service for correctness and performance. We test

correctness by examining the e-mail the PSAP receives. This email should have the correct

information about the sender and its approximate location. For evaluating performance, we

run several experiments that measure the time taken until the PSAP receives the emergency

21

e-mail from the selected access point under different loads on the access points. We also

evaluate how access point prioritization and use of acknowledgment helps in dealing with

heavily loaded access points.

We use three laptops as mobile devices and two PCs running Ubuntu Linux 9.04 as access

points using the hostap program. The three laptops have wireless cards from different

manufacturers, namely Intel 5100, Atheros AR5413 and Intel 3945. All the laptops run

Ubuntu Linux 9.04. The APs have the Atheros AR5413 chipset. One of the two access

points is WPA2 protected with a random password.

We write the daemon processes, as we explain in Section 2, in C. We write the scripts,

also explained in Section 2, in Python and using Linux shell commands. We write the USRP

daemon processes in C++ and the front-end scripts to run the application in Python.

To send an emergency message, we use a specific key sequence ctrl + E on one of

the mobile devices. We then measure the time duration since pressing the ctrl + E key

sequence until the emergency e-mail is received by the PSAP. We summarize the time

duration measurement under different scenarios in Table 3.1.

We also verify every time the emergency service is used that the access point selected

to send the emergency message has indeed the highest signal strength.

Table 3.1. Performance testing of various cases
S.No. Scenario Time Remarks

taken

1 Sending the message to a preselected AP 1.2 s AP is not under heavy load

2 Sending the message to a preselected AP 1.8 s AP is under heavy load,
increasing priority of the
emergency message

3 Sending the message to a preselected AP 2.4 s AP is under heavy load,
not increasing priority of
the emergency message

4 Selecting an AP and then sending 3.8 s Scanning of APs take time
the message to an AP

5 Selecting an AP and then sending 4.3 s AP is under heavy load,
the message to an AP increasing priority of

the emergency message

6 Selecting an AP and then sending 5.1 s AP is under heavy load,
the message to an AP not increasing priority of the

emergency message

7 Sending the message to a preselected AP 1.9 s AP is not under heavy load,
testing the AP for Internet
connectivity (”ping” message)

22

We also perform an experiment to measure the percentage of emergency packets serviced

by the access point. To achieve this, we send packets at almost the same time from different

mobile devices and then count the number of received e-mails at the PSAP. For this purpose,

we create a script that sends emergency packets continuously. We then start the script at

the same time on all the three mobile devices in our experimental set up. Also to measure

the throughput of the service, we temporarily allow rapid sending of emergency packets by

the same mobile device. The results of the case when the access point does not send the

acknowledgement back to the mobile device are shown in Table 3.2.

The results for the case where we enable the acknowledgements, i.e., when a mobile

device retransmits the emergency message in case it does not receive an acknowledgment

in 2 seconds, are shown in Table 3.3.

Clearly, the use of acknowledgments improves performance while making the emergency

service more reliable.

Table 3.2. Results obtained when not sending acknowledgements
No. of Packets sent from No. of e-mails

received by PSAP from

1 Mobile device 1: 2 Mobile device 1: 2
Mobile device 2: 1 Mobile device 2: 0
Mobile device 3: 2 Mobile device 3: 2

2 Mobile device 1: 30 Mobile device 1: 24
Mobile device 2: 2 Mobile device 2: 0

3 Mobile device 1: 30 Mobile device 1: 26
Mobile device 2: 30 Mobile device 2: 22
Mobile device 3: 30 Mobile device 3: 19

4 Mobile device 1: 100 Mobile device 1: 81

Table 3.3. Performance improvement by sending acknowledgements
No. of Packets sent from No. of e-mails

received by PSAP from

1 Mobile device 1: 2 Mobile device 1: 2
Mobile device 2: 1 Mobile device 2: 1
Mobile device 3: 2 Mobile device 3: 2

2 Mobile device 1: 30 Mobile device 1: 30
Mobile device 2: 2 Mobile device 2: 2

3 Mobile device 1: 30 Mobile device 1: 30
Mobile device 2: 30 Mobile device 2: 29
Mobile device 3: 30 Mobile device 3: 29

4 Mobile device 1: 100 Mobile device 1: 97

23

We also perform experiments to show the benefits of increasing the priority of the

emergency messages. To implement this, a laptop is continuously sending traffic (802.11

probe requests) to a chosen access point. The other laptop acts as the sender of the

emergency requests. Results obtained are shown in Figure 3.7. The graph depicts the

time it takes to receive “x” emergency messages.

Clearly, an increase in the priority of the emergency messages reduces the time required

for the message to be serviced.

After running these experiments, we conclude that the acknowledgment of mobile de-

vices’ emergency messages by the access point and the prioritizing of emergency packets

on the wireless network improve the overall efficiency and speed of the service for practical

wireless setups.

We also conduct experiments to measure the time an emergency message takes to be

received by the wireless access point after being sent by the mobile device. We use the

gettimeofday API call to measure the time difference. The times at both the sender and

the receiver are synchronised. The results are tabulated in Table 3.4. The results again

show that increasing the priority of the emergency message does help in reducing the time

it takes in receiving the message at the access point, and ultimately will reduce the overall

time to be received by the PSAP.

We also conduct experiments comparing our emergency service with the Short Message

Service (SMS) provided by the mobile operators. Specifically, we use the Google Voice

[30] to send SMSs to an AT&T mobile phone. The Google voice uses the Internet to send

Figure 3.7. Effect of prioritizing emergency messages on time to receive e-mail at PSAP

24

Table 3.4. Time taken to send an emergency message to AP
S.No. Scenario Difference in Timestamps

1 Sending the message to a preselected AP 67.910(ms)
(without n/w traffic)

2 Sending the message to a preselected AP 452.613(ms)
(with n/w traffic,)
(increasing the priority)

3 Sending the message to a preselected AP 998.184(ms)
(with n/w traffic,)
(not increasing the priority)

the short message across to the destination phone number. In our results, the average

time an SMS took (we sent a total of 15 SMSs) to be delivered is around 9.8 sec. Our

implementation, as seen by the results in Table 3.1, took 4.3 sec on an average for the case

when we, before sending the message, scan the network for selecting the access point and

also the network is heavily loaded with traffic.

We also conduct experiments by running the emergency service on USRPs. Recall from

Section 2 that we want to run our service on hardware for which we have full control of the

physical and the MAC layer. This control allows us to set the channel of the transmitter and

receiver and various other parameters like sampling rate and the use of barker spreading4.

In this setup, we use 2 USRP2s, with one USRP2 being the transmitter and the other

being the receiver. The transmitter sends the emergency message by forming an IEEE

802.11b compatible packet with a modified payload. Like the experiment for the original

version, the metric we measure is the time taken by an emergency message to reach the

receiver from the transmitter. Again, we use the gettimeofday API call to measure the

time difference.

We also simulate a busy network scenario using 4 different USRP2s. In this scenario, two

USRP2s, both tuned to the same frequency channel, are constantly transmitting 802.11b

frames to generate traffic. The remaining two USRP2s act as the sender and receiver of

emergency messages. The combined results are shown in Table 3.5. The results clearly

show that interference causes a big delay in receiving the packet on a USRP2 using the

BBN 802.11b code. This is also due to the fact that no MAC layer is running on the

USRP2 for the IEEE 802.11 subsystem.

In the setup with USRP2s, another performance metric is Round Trip Time (RTT).

The average length of the emergency packet is ≈ 100 bytes. We also run the test with

4an autocorrelation sequence used for the 1 and 2 Mbit/sec rates in IEEE 802.11b

25

Table 3.5. Time taken to send an emergency message to the receiver USRP2
S.No. Scenario Difference in Timestamps

1 Sending the message to a preselected AP 734.169(ms)
(without n/w traffic)

2 Sending the message to a preselected AP 1521.613(ms)
(with n/w traffic)

a maximum packet length of 500 bytes. We measure RTT as the time that elapses from

the start of sending of an emergency frame from one USRP2 to another to the complete

reception of an acknowledgment frame, which is almost of the same size. The RTT results

are shown by a histogram in Figure 3.8. The mean RTT of 736 emergency frames is ≈ 3.13

ms per bit. Hence, for an average emergency packet, the RTT is ≈ 2.5 seconds.

Figure 3.8. Histogram of RTT per bit for sending emergency message on USRP without
interfering traffic

CHAPTER 4

SOFTWARE DEFINED RADIO

4.1 Introduction

The term ”Software Radio” was coined by a team of researchers at Garland Texas

Division of E-Systems Inc. (now Raytheon) in the year 1984. A software defined radio

(SDR) is a radio communication system in which the digital components which generally are

implemented in hardware (for e.g., filters, modulator, etc.) are implemented using software

running on a personal computer or an embedded device. SDRs help in implementing and

integrate the software domain as close as possible to the antenna (hardware RF) in order to

guarantee a higher flexibility and reconfiguration. In addition to that, the main aim of SDR

is to turn hardware problems into software problems [31]. A system built using SDR will be

able to use different protocols and techniques with the press of a button! SDR technology

can be used to implement a variety of radio applications. A wide range of radio applications

like Bluetooth, GPS, Radar, WCDMA, GPRS, etc. can and have been implemented using

SDR technology.

Currently, there are several SDR solutions available in the market. For this work, we

opted for an open-source SDR platform that combines GNURadio (as software-defined

subsystem) and the Universal Software Radio Peripheral, USRP2, as hardware-defined

subsystem.

4.2 Universal Software Radio Peripheral

The Universal Software Radio Peripheral (USRP) was designed within the GNURadio

project [32] and is currently manufactured by Ettus Research [33]. In this thesis, we use

the USRP version 2 (we will refer it as USRP2). This version is a successor to the USRP1

and was primarily to overcome the low bandwidth and processing power of the USRP1. In

the following sections we briefly describe the main components present in the USRP2. We

have taken details from the USRP2 datasheet present in [34].

27

4.2.1 Motherboard

The main features of the motherboard are listed below:

• FPGA1, which contains a 32-bit RISC microprocessor

• Two 100 MS/s 14-bit analog to digital converters

• Two 400 MS/s 16-bit digital to analog converters

• Gigabit Ethernet Interface

4.2.2 Daughterboards

The name daughterboard signifies that they are usually meant to be an extension or

daughter of the motherboard. A daughterboard usually has plugs, pins or sockets which

differentiates it from a standard expansion chip such as PCI2. In the case for the USRP, the

daughterboards consists of an RF filter to discard the out band components, a LNA (Low

Noise Amplifier), a mixer to move the signal from the Radio frequency (RF) to Intermediate

Frequency (IF), an IF filter, and an IF amplifier[1]. The daughter board together with

the motherboard let us use the USRP2 as a complete RF transceiver system. A wide

variety of available daughterboards are available which allows using different frequencies for

a broad range of applications. We have chosen the XCVR-2450 daughterboard, which is a

transceiver board operating at 2.4-2.5 GHz and 4.9-5.9 GHz. Therefore, it is suitable for the

IEEE 802.11 family of standards. A detailed datasheet and specifications of the different

daughterboards available for the USRP2 is available at [35].

4.3 GNURadio

GNURadio is a free software platform and SDK licensed under the GPL for implementing

software defined radios. The GNURadio project was started in 2001 by Eric Blossom.

GNURadio is a signal processing package and aims to bring the software world as close

to the Radio Frequency world as possible. It allows developers to basically hack the radio

and electromagnetic spectrum. It is available for many flavors of Linux. Even precompiled

binaries for Win32 are now available.

GNURadio applications are primarily written using the Python programming language.

The supplied libraries, though, are written in C++ since they perform critical signal

processing blocks and require floating point extensions.

1Field-programmable gate array

2Peripheral Component Interconnect

28

In GNURadio, the basic building blocks for any application are flow graphs and blocks.

Many GNURadio applications contain only flow graphs, with the nodes of such a graph

called blocks, and the data flowing along the edges. Any actual signal processing is done by

these blocks. Blocks are usually written in C++, but they can be also written in Python.

The data flowing through these blocks can be of any kind. The most common data types

are complex and real short or long integers and floating point values. Figure 4.1 depicts a

simple GNURadio flow graph. Any graph must have at least a signal source block (in the

example the “Signal Generator” and the “Noise generator”) and a signal sink block (in the

example the “USRP2 Sink”). Additionally, the flow graph usually contains intermediate

signal processing blocks (in the example the “Adder” block).

The GNURadio package provides several digital processing blocks for signal and infor-

mation processing, as well as the framework to control the data flow between them. It also

provides support for various signal sources and sinks. More details are present in [36].

4.3.1 GNURadio Architecture

Figure 4.2 shows the general GNURadio framework structure. In most cases, Python

is used to create high level graphs. The signal processing blocks that are included natively

Figure 4.1. Typical GNURadio graph [1]

29

Figure 4.2. GNURadio framework[1]

are programmed in C++. To connect a Python script to a C++ library, SWIG3[37] is

used. Mostly this is done to make C++ functions available to the Python program. This

approach allows the developer to use the efficiency of C++ coding along with the simplicity

of Python.

Again, referring to Figure 4.1, the blocks, such as the signal generator, the noise

generator, the adder, and the USRP sink are written in C++ and they represent the body of

the graph. The edges, which are the connection between the blocks, are written in Python

and they represent a high level view of the graph. In other words, all the signal processing,

critical and real-time operations are written in a lower level language (C++), while the

interfaces among them are written in a higher level language (Python).

4.4 GNURadio Signal Processing Block

To develop an existing or a new protocol on the USRP2 using the GNURadio SDK,

the developer needs to write his own signal processing block. As mentioned before, all the

critical and real time operations are done in C++, with the interfacing between different

blocks done in Python. Hence, from a developer’s point of view, the GNURadio provides a

3Simplified Wrapper and Interface Generator

30

layer of abstraction to the python interface, when we are using GNURadio’s existing blocks.

We consulted the online tutorial available at [38] to write our own signal processing block.

The new block needs to be implemented as a shared library so that it may be imported into

Python using SWIG that acts as an interface between C++ and Python. Hence, writing a

new block will require at least 3 files: the .h and .cpp files that define our new block and

the .i file which defines the SWIG interface and generates the Python code which acts as

an interface to our block. All signal processing blocks should be derived from the gr block

class or any of its subclasses. GNURadio has defined many virtual functions, the main

being the general work which needs to be implemented by the new block we write. This

method is the core of our block. Again, more details can be found at [38, 39].

4.5 Developing the Complete GNURadio
Flow Graph

After the development of the signal processing blocks, we need to connect them to make

a working application. This is done using GNURadio flow graphs which are written in

Python. As mentioned before, writing a flow graph in Python does not require inner details

of the signal processing block to be used. The APIs exposed by the signal processing block

are available to the Python flow graph using the SWIG interface.

The first step is to import the signal processing block into the python script. Next, to

define our own graph, we need to define our own class (usually named as my top block)

which is essentially derived from a GNURadio class gr.top block. This class is basically

the container for our flow graph. By deriving from gr.top block, we shall get all the hooks

and functions needed to add the blocks and connect them. The blocks are simply connected

using the connect method. More details and a detailed tutorial, which we also referred,

are available at [40].

4.6 Existing IEEE 802.11 SDR Implementations

There have been several attempts to develop and implement the IEEE 802.11 standard

with GNURadio and USRP. Most of these implementations are designed on the USRP1.

The USRP1, as mentioned before, uses an USB connection instead of the Gigabit Ethernet

to interface with a PC and hence, the data transfer rate is limited to the USB bandwidth of

32MB/s. The IEEE 802.11b signal spectrum is 11 MHz; therefore, the minimum sampling

rate would be 22 Msamples/s. By using 16 bits samples (8 bits for each I and Q sample)

we would require a bandwidth of 2*22 Ms = 44 MB/s, which is above the USB limit [1].

There have been two successful implementations that try to avoid this bottleneck.

31

The first well-known implementation has been developed by BBN technologies, within

the ADROIT project funded by the DARPAs ACERT program[41]. In this implementation,

the signal bandwidth is reduced to 4 MHz before being sent to the USB controller. In this

way, the signal is basically subsampled. But due to this, the Signal to Noise Ratio (SNR)

degrades. But still, it is considered a very important development in making IEEE 802.11

work on the USRP.

Hamed Firooz[42] proposed another implementation. In his architecture, despreading

operation is performed in the FPGA 4 present in the USRP prior to the USB, rather than

in the host CPU. In this way, the data and hence the bandwidth to be transferred through

the USB connection is considerably reduced. To illustrate this, the IEEE 802.11 uses

Direct-Sequence Spread Spectrum (DS-SS), with a code sequence of 11 chips per symbol.

With this implementation, the signal is despreaded before the USB connection, and hence

the symbol rate is reduced to 1Msymbol per second, which is easily supported by the

USRP. When the signal arrives at the PC, the IEEE 802.11 demodulator and Physical

Layer Convergence Protocol (PLCP) from the ADROIT BBN project is used for decoding

the frame. Details on the implementation and the Verilog code for the Altera FPGA are

freely available in [42].

We, on the other hand, develop the transmitter and the receiver on the USRP2 which has

a Gigabit Ethernet interface with the PC and hence does not suffer from any bandwidth

limitations as the case is with the USRP1. We did take reference of the BBN code for

the IEEE 802.11b and also modified it to be able to run on the USRP2. It performs like

expected, though as mentioned, it only works for the 1 and 2Mbps rates for IEEE 802.11b.

4Field-programmable gate array

CHAPTER 5

IEEE 802.11g IMPLEMENTATION ON

USRP2

Our main goal to implement an IEEE 802.11g transmitter and receiver is to test our

Emergency Service on the USRP2 and GNURadio platform, which is an open source and

cost-effective hardware alternative to an access point. As a matter of fact, we faced some

difficulties in the beginning when we were trying to implement the service on conventional

wireless cards present in laptops and desktops. We then started the project to develop the

service on the USRP. As a part of this project, we also decided to implement a transmitter

and the corresponding receiver for the IEEE 802.11g protocol. This will enable us to

modify the PHY and the MAC layers of the protocol to support the emergency service in

the most efficient way. Since we are unable to develop the receiver completely, the aim to

fully implement the emergency service on the USRP has not been achieved. But, due to the

current lack of any open-source 802.11g chip sets available in the market, our implementation

can help the research community to conduct experiments to measure different metrics and

performance parameters of the 802.11g standard.

Implementing a wireless technology with GNURadio is a complex process. The reason

we chose to implement it and not use the existing implementations as mentioned in Section

4.6 is that the earlier implementations are not capable of transmitting at the full 11Mbps

for IEEE 802.11b, leave alone the 54Mbps for 802.11a/g protocols. This is primarily due

to the fact that those implementations were developed for the USRP1 which has a USB

bottleneck of 32Mbps.

Typically, the main steps involved in the development of the IEEE 802.11 transmitter

and receiver are:

• Understanding the physical layer of the standard

• Creating the required signal processing blocks or using the ones provided by the

GNURadio package

• Creating the flow graph to use the blocks in an application

33

5.1 Approach

To implement a IEEE 802.11g transmitter and receiver for USRP2, we needed to

implement several signal processing blocks present in the IEEE standard. Some of them were

present in the existing GNURadio repository. Figure 5.1 shows the available GNURadio

OFDM chain.

As we can see, the frame generation consists only of a symbol mapping, IFFT1, cyclic

prefix insertion and training sequence insertion. The blocks implemented in the GNURadio

are fundamental in nature and are far away from being IEEE standard compliant.

The full IEEE 802.11g transmitter/receiver block diagram is shown as in Figure 5.2.

In order to implement it on USRP and GNURadio, we need to implement the blocks

contained in it. We also took reference from an earlier research work done by Andrea

Constantini [43]. The corresponding GNURadio chain which we implement can be seen in

Figure 5.3. We implemented some of the blocks in Python, instead of C++, since its easier

to write code in Python than in C++ due to many data structures and their corresponding

operation available by default in Python. In particular, we used Python for all the blocks

that perform bit-operations (e.g., bit-shifts, bit-masks, etc.). The rest of the chain, from

symbols mapping to the last block before the transmission, has been done entirely in C++,

due to tight real-time constraints. In the following subsections, we describe the GNURadio

implementation of each block we implemented.

Figure 5.1. OFDM blocks present in GNURadio core

1Inverse Fast-Fourier Transform

3
4

Transmitter

Receiver

Packet

Forming

Logic

De-

scrambler

Convolution

decoder

De-

spread

Barker

De-

puncturer
De-

interleaver

Interleaver

RAM

CCK Decoder

Demodulator

(DBPSK/DQPSK

)

FFT and

demodulator

(BPSK/QPSK/

QAM)

Remove

Guard

Interval A/D

Filter

PLL/Clock gen. Tracking

Correlator

Packet

Forming

Logic

Scrambler

Convolution

Encoder

Barker

Spread

Puncturer Interleaver

Interleaver

RAM

CCK Encoder
Modulator

(DBPSK/DQPSK)

IFFT and

Modulator

(BPSK/QPSK

/QAM)

Shaping

/ Guard

Interval D/A

Filter

Figure 5.2. IEEE 802.11g near-commercial implementation

--
I
I

, I
f-+

I
I
I -L I I I
I
I r-. f+ I I
I
I r---------------------------------------
I

I ~ I •
, I

...
4-

I T I
I H I
I I

T I
...

I
... ~ ~ ... I I

I ------------------------------------ - r--

I I

35

Figure 5.3. IEEE 802.11g chain implemented in GNURadio

5.2 Description of DSP Blocks

5.2.1 CRC-32

The cyclic redundancy check (CRC) is used by the receiver of the frame to check if

there is an error in the received sequence of bits contained in the frame. In our system,

the CRC-32 is calculated according to the algorithm in [44]. The code available in the

GNURadio repository did not produce a standard compliant CRC and caused the receiver

(we use Wireshark [45]) to reject the frame. We write the IEEE 802.11 compliant version

of the CRC-32 code in C++, with a wrapper in Python.

5.2.2 Scrambler and Descrambler

The data are scrambled before they are modulated and transmitted. This is done to

remove long sequences of 1s or 0s in the frame. The first 6 bits of the Service bits in the

Signal field in the OFDM PLCP frame is used to initiate the scrambler. The scrambling is

performed in Python. To implement the scrambler, the DATA field, composed of SERVICE,

PSDU, tail and padding bits is XORed with the scrambler sequence, stored as a sequence

36

of bits in the Python script. The SIGNAL field is instead not scrambled. Also, unlike the

802.11g standard, in which the seed is randomized each time a frame is transmitted, we

use the same stored seed for all transmissions. The polynomial G(z) = z7 + z4 + 1 is used

to scramble all bits transmitted by the PHY layer. The corresponding block diagram in

accordance with the IEEE 802.11g standard is shown in Figure 5.4.

The descrambler is easily implemented by calling the scrambler function on the descram-

bled input as the configuration of the scrambler and descrambler is self-synchronizing.

5.2.3 MAC and PLCP Header

The first step in the transmitter chain is the encapsulation of the payload into the MAC

and PLCP headers. In Figure 5.5, the format of the PPDU, including the OFDM PLCP

preamble, is shown. The preamble in the PLCP consists of a synchronization field followed

by a start of frame delimiter. It may be either the long preamble of 144 bits or the short

preamble of 72 bits. In either case, the preamble is transmitted at 1 Mbps using DBPSK

modulation. Before modulation, the data are scrambled. We implemented this module such

that the PLCP preamble is added from a static table. We programmed this module using

the Python programming language. More details about each single field can be found in

[46]. The signal field is properly set since it is used by the receiver to properly demodulate

the frame using the appropriate demodulation scheme. The value of this field is, as of

now, determined by a command line argument to both the transmitter and receiver. The

command line argument determines the rate of transmission and in turn the modulation

scheme to be used.

The receive PLCP is invoked upon detecting a portion of the preamble sync pattern

followed by a valid SFD and PLCP header. The PLCP header also contains the SERVICE

filed. It contains the control bits which help the receiver to decode the received frame.

Figure 5.4. IEEE 802.11g data scrambler

37

Figure 5.5. IEEE 802.11g PPDU frame format

Bits 0, 1, and 4 are reserved and are set to zero. In all 802.11g receivers, the transmit and

symbol clocks are locked, so bit 2 is always set to 1. Value of bit 3, as the name suggests,

is dependent on the modulation scheme. It is set when the frame body is modulated with

Packet Binary Convolutional Code(PBCC), and set to zero for DSSS, CCK, and DSSS-

OFDM modulations. The last three extension bits are used to assist receivers in determining

the frame length in bytes from the Length field, which is expressed in terms of the number

of microseconds required for transmission. In our implementation, though, the receiver

determines the rate of the transmission using a command line argument since we are unable

to develop a rate detector at the receiver USRP2. Hence, we just set these 3 bits to 0s.

Also, the formation of the PLCP frame involves correctly padding the data bits. The

number of bits required for padding is calculated using:

NSYM = Ceil((16 + 8 ∗ LENGTH + 6)/NDBPS)

where NDBPS is the number of data bits per OFDM symbol

NDATA = NSYM ∗NDBPS

Now,

NPAD = NDATA − (16 + 8 ∗ LENGTH + 6)

where NPAD are the number of padding bits required.

38

5.2.4 Convolutional Encoder and Decoder

The convolutional encoder was developed in Python as well. In accordance with the

IEEE 802.11g standard, it uses the generator coefficients as g0 = 1338, which is 1011011

in binary and g1 = 1718 (1111001 in binary) with rate R = 1/2 and k = 7, as shown in

Figure 5.6. Higher rates, i.e., for R = 2/3 or 3/4, are obtained by means of the puncturing

operation. The Puncture block is implemented such that it does not transmit some of the

encoded bits (also called stealing). At the receiver, these bits are inserted with a dummy

zero value. An example of puncturing operation and further details are contained in [46].

At the receiver, Viterbi Convolution decoder is used. This has been implemented in

Python and we referred the tutorial given in [47].

5.2.5 Interleaver

We implemented the interleaver in Python. The interleaver, as defined by the standard,

is a two-permutation process onto the coded bits of a single OFDM block, containing a

number NCBPS of bits that are modulation-dependent. The first permutation ensures

that adjacent bits are mapped onto nonadjacent subcarriers. The second one ensures

that adjacent coded bits are mapped alternately onto less and more significant bits of

the constellation. If we denote k as the position index of the coded bits before permutation,

i as the position index after the first permutation and j the position index after the second

permutation and prior to mapping, then the first permutation is as follows [48]:

i = (NCBPS/16) · (kmod16) + floor(k/16)

Figure 5.6. Convolutional encoder K = 7 block operation

39

where k = 0,1,....,NCBPS and the function floor denotes the largest integer not exceeding

the argument. The second permutation is given by the formula [48]:

j = s · floor(i/s) + (i+NCBPS − floor(16 · i/NCBPS))mods

where i = 0,1,....,NCBPS The value of s is determined by:

s = max(NBPSC/2, 1)

where NBPSC is the number of coded bits per subcarrier. The permutation tables are given

in the IEEE 802.11g standard document [48].

5.2.6 Symbols Mapping

The symbols mapping block divides the bits stream coming from the interleaver into

groups of NCBPS bits. In the standard 802.11g the OFDM subcarriers are modulated

by using BPSK, QPSK, 16-QAM, or 64-QAM, depending on the RATE requested. The

encoded and interleaved binary serial input data shall be divided into groups of NBPSC (1,

2, 4, or 6) bits and converted into complex numbers representing BPSK, QPSK, 16-QAM,

or 64-QAM constellation points as per the Table 5.1. We write the code for this block in

C++ but we make use of static tables for storing the Grey-coded constellation mappings.

The same technique is illustrated in the IEEE 802.11g standards document [48].

5.2.7 Pilot Tone Insertion

In each OFDM symbol, out of the 52 subcarriers, carriers -21, -7, 7 and 21 are reserved

to the pilot signals. These pilots will be BPSK modulated. We write the code to insert the

2Coded bits per subchannel is a function of the modulation (BPSK, QPSK, 16-QAM, or 64-QAM).

3The data bits per symbol is a function of the rate of the convolutional code

Table 5.1. Encoding details for different OFDM data rates
Speed (Mbps) Modulation and Coding Rate (R) NCBPC

2 NCBPS NDBPS
3

6 BPSK, R=1/2 1 48 24

9 BPSK, R=3/2 1 48 36

12 QPSK, R=1/2 2 96 48

18 QPSK, R=3/4 2 96 72

24 16-QAM, R=1/2 4 192 96

36 16-QAM, R=3/4 4 192 144

48 64-QAM, R=2/3 6 288 192

54 64-QAM, R=3/4 6 288 216

40

pilot symbols in C++. To do so, we run a for loop to insert the pilot signals at the correct

indexes.

5.2.8 OFDM Modulation

After the pilots are inserted and mapped, the OFDM modulation function is called.

This is an inbuilt function in the GNURadio. However, we have to define the contribution

of the pilot subcarriers which is given by the Inverse Fourier Transform, also provided by

GNURadio. The polarity of the pilot subcarriers is controlled by a sequence, as defined by

the IEEE 802.11g standard [48], which is a cyclic sequence of scrambled bits. We store this

sequence in a static array in C++ and use it to find the polarity of the pilot signals during

the pilot insertion phase.

5.3 Some Results

We set up the system to verify the behavior of the IEEE 802.11g transmitter. We compile

and install our code into a PC equipped with an Intel(R) Core(TM)2 CPU 6600 @ 2.40GHz,

2 GB of RAM, and an integrated Intel Gigabit Ethernet interface. The operating system

environment is GNU/Linux (Ubuntu 9.04), with Python 2.6.2 and the GNURadio stable

release 3.2.2. The Intel Corporation 82571EB Gigabit Ethernet Controller is connected to

a USRP2 equipped with the daughter board XCVR2450 and an antenna with 5dBi gain.

At the receiver side we use:

• An additional USRP2 connected to the same PC, used to analyse the received spec-

trum and also act as an 802.11g partial receiver

• An Atheros Communications Inc. AR5413 802.11abg NIC card in a PC to decode the

transmitted frames

We use Wireshark [45] to decode the transmitted frames using the Atheros NIC card. We

start transmitting the frames repeatedly. We run experiments with different frame lengths

and rates.

An example run of sending 100 IEEE 802.11g frames with Rate = 6 Mbps and length of

packet as 97 bytes. One of the metrics we analyse is the time difference between successive

frames received at the receiver, in our case Wireshark running on an Ubuntu PC. The

results are shown in Figure 5.7.

Also, some other statistics are shown in Table 5.2.

We then conduct some experiments to measure these metrics for the conventional 802.11

chipsets available in our laptops. The laptop on which we test has an Intel 5100 NIC card.

41

Figure 5.7. Time delta between successive received frames

Table 5.2. Some statistics of 802.11g transmission using USRP2
S.No Metric Value

1 Average transmission time for each packet 0.335739408(s)

2 Average delta between successive packets 0.529909 (ms)

3 Total transmission time 0.388273947 (s)

This laptop is the transmitter of 802.11g frames. The receiver is again an Ubuntu PC having

an Atheros AR5413 NIC card. The results obtained are shown in Table 5.3. Please note

that both the setups are identical. Both use burst transmission and also the placements of

both the transmitter and the receiver are identical in both the setups. However, also note

that the conventional protocol running on the Ubuntu PC and the laptop is also having the

802.11 MAC layer and hence, every packet will be backed off by a fixed (or a random in

case of medium being busy) amount of time before being transmitted. However, the value

of this back off time is usually of the order of ≈ 50 µs.

As seen by these results, our 802.11g implementation on the USRP2 performs very close

to the industry standard though still some work needs to be done to support features like

supporting different types of preambles, Super G mode and most importantly, the complete

implementation of a corresponding receiver.

42

Table 5.3. Some statistics of 802.11g conventional transmission
S.No Metric Value

1 Average transmission time for each packet 0.173428(s)

2 Average delta between successive packets 0.227615 (ms)

3 Total transmission time 0.189628452 (s)

CHAPTER 6

CONCLUSION

6.1 Conclusion

Our system enables any users to send an emergency or a distress message to a Public-

Safety Answering Point (PSAP) using any available 802.11 wireless access point or a

commercial hotspot having Internet connectivity. The user is not required to authenticate

or associate with the access point. The service is designed such that the emergency message

can be given a higher priority than the existing 802.11 packets in the network. Further,

the service provides an approximate location of the user to the PSAP. Hence, the service is

fully capable of being a full-fledged public emergency service and can be employed in highly

populated places having wireless Internet access such as airports, shopping complexes,

commercial buildings, etc. Our emergency service requires minimal changes to the existing

access points and can be made to work using almost any available wireless NIC cards on

PCs, laptops, and mobile phones.

We have also developed and implemented an IEEE 802.11g transmitter and a partial

receiver for the USRP using the GNURadio platform. This enables us to verify and test our

service on a real hardware device. This also gave us the flexibility to modify the protocol

to make the service more efficient.

Based on our evaluation, our service delivers the emergency message consistently in less

than 5 seconds to the PSAP, which in our case, is an e-mail address.

6.2 Future Work

An emergency service must be robust against common security threats. As we point out

in Section 2.6, our emergency service is vulnerable to a denial-of-service attack in which

an attacker can keep on sending emergency packets to an access point while also changing

the source MAC address. Genuine users cannot obtain the emergency service while this

attack is going on. One of our important future goals is to address this security threat.

Furthermore, we plan to deal with the problem of rogue or fake access points disrupting

44

the service. We will work towards a solution to this problem along the line of the research

done by Jana et al. [49].

Another feature we plan to add to our emergency service is to have a provision for the

PSAP to communicate with the sender of the emergency message. This can be done if the

AP allows the PSAP to connect to the sender by allowing limited data connectivity for a

short duration. The sender is allowed to communicate only with the PSAP and no other

network nodes. However, this solution must also address the authentication of the sender

and the PSAP. It must also prevent misuse of such a service.

We are currently working on completing the receiver capable of receiving and properly

decoding IEEE 802.11g packets. Next, we plan to implement the access point functionality

on the USRP2 so that it can act as a full-fledged access point capable of serving multiple

users at the same time. This implementation will be helpful in collecting various measure-

ments and benchmarks for the emergency service in Wi-Fi networks under different traffic

and access point usage scenarios.

REFERENCES

[1] “Open source software-defined radio: A survey on gnuradio and its applications,” http:
//userver.ftw.at/∼valerio/files/sdrreport.pdf.

[2] D. Malan, T. Fulford-jones, M. Welsh, and S. Moulton, “Codeblue: An ad hoc sensor
network infrastructure for emergency medical care,” in In International Workshop on
Wearable and Implantable Body Sensor Networks, 2004.

[3] D. R. Oran and S. Gai, “System for discovering and maintaining geographic location
information in a computer network to enable emergency services,” Patent, 03, 2007.

[4] K. Lorincz, D. Malan, T. Fulford-Jones, A. Nawoj, A. Clavel, V. Shnayder, G. Main-
land, M. Welsh, and S. Moulton, “Sensor networks for emergency response: challenges
and opportunities,” Pervasive Computing, IEEE, vol. 3, no. 4, pp. 16 – 23, oct.-dec.
2004.

[5] J. J. Lichter, M. J. Meyer, and T. Moulos, “Enhanced emergency service for isdn based
emergency services in a wireless telecommunications system,” Patent, 07, 2001.

[6] S. N. Zellner, M. J. Enzmann, and R. T. M. Jr., “Multimedia emergency services,”
Patent, 11, 2009.

[7] “http://www.fcc.gov/pshs/services/911-services/enhanced911/Welcome.html.”

[8] “http://www.fcc.gov/cgb/consumerfacts/wireless911srvc.html.”

[9] A. S. Mintz-Habib, M.; Rawat and X. H., Wu, “A voip emergency services architec-
ture and prototype,” Computer Communications and Networks, 2005. ICCCN 2005.
Proceedings. 14th International Conference, pp. 523–528, 2005.

[10] J. Y. Kim, W. Song, and H. Schulzrinne, “Kim et al. an enhanced voip emergency
services prototype an enhanced voip emergency services prototype abstract.”

[11] “Commercial wireless systems international llc,” http://wirelessfirealarm.com/.

[12] “http://www.fireangel.co.uk/Fire-Safety-Products.aspx.”

[13] “http://en.wikipedia.org/wiki/Wi-Fi.”

[14] “http://www.itu.int/ITU-D/ict/material/FactsFigures2010.pdf.”

[15] “Bbn technology - acert savane server: http://acert.ir.bbn.com/projects/
adroitgrdevel/.”

[16] “http://www.wired.com/epicenter/2010/11/fcc-911-texting/.”

http://userver.ftw.at/~valerio/files/sdrreport.pdf
http://userver.ftw.at/~valerio/files/sdrreport.pdf
http://www.fcc.gov/pshs/services/911-services/enhanced911/Welcome.html
http://www.fcc.gov/cgb/consumerfacts/wireless911srvc.html
http://wirelessfirealarm.com/
http://www.fireangel.co.uk/Fire-Safety-Products.aspx
http://en.wikipedia.org/wiki/Wi-Fi
http://www.itu.int/ITU-D/ict/material/FactsFigures2010.pdf
http://acert.ir.bbn.com/projects/adroitgrdevel/
http://acert.ir.bbn.com/projects/adroitgrdevel/
http://www.wired.com/epicenter/2010/11/fcc-911-texting/

46

[17] A. Janefalkar, K. Josiam, and D. Rajan, “Cellular ad-hoc relay for emergencies (care),”
in Vehicular Technology Conference, 2004. VTC2004-Fall. 2004 IEEE 60th, vol. 4, sept
2004, pp. 2873 – 2877 Vol. 4.

[18] M. R. Arisoylu M and L. L. Rao R, “802.11 wireless infrastructure to enhance medical
response to disasters,” 2005.

[19] P. Pawelczak, R. Venkatesha Prasad, L. Xia, and I. Niemegeers, “Cognitive radio emer-
gency networks - requirements and design,” in New Frontiers in Dynamic Spectrum
Access Networks, 2005. DySPAN 2005. 2005 First IEEE International Symposium on,
nov. 2005, pp. 601 –606.

[20] S. Biswas, R. Tatchikou, and F. Dion, “Vehicle-to-vehicle wireless communication
protocols for enhancing highway traffic safety,” Communications Magazine, IEEE,
vol. 44, no. 1, pp. 74 – 82, jan 2006.

[21] S. Pavlopoulos, E. Kyriacou, A. Berler, S. Dembeyiotis, and D. Koutsouris, “A
novel emergency telemedicine system based on wireless communication technology-
ambulance,” Information Technology in Biomedicine, IEEE Transactions on, vol. 2,
no. 4, pp. 261 –267, dec. 1998.

[22] Y.-C. Tseng, M.-S. Pan, and Y.-Y. Tsai, “Wireless sensor networks for emergency
navigation,” Computer, vol. 39, no. 7, pp. 55 –62, july 2006.

[23] “Design of a network independent emergency service,” http://wiredspace.wits.ac.za/
bitstream/handle/10539/2151/Goli%20Thesis.pdf.

[24] Consumer and Governmental Affairs Bureau, “Wireless 911 services,” http://www.fcc.
gov/cgb/consumerfacts/wireless911srvc.html.

[25] “VoIP :: 911 :: Regulation,” http://www.cybertelecom.org/voip/911reg.htm.

[26] “Spectralink inc.: spectralink voice priority,” 2005. [Online]. Available: http:
//www.spectralink.com/files/literature/SVPwhitepaper.pdf

[27] “Skyhook, inc.” http://www.skyhookwireless.com.

[28] “Mexens llc navizon virtual gps service,” http://www.navizon.com.

[29] “Fraunhofer iis autonomous wlan positioning system.”

[30] “Google voice.” [Online]. Available: https://www.google.com/voice

[31] E. Blossom, “Gnu radio: tools for exploring the radio frequency spectrum,” Linux J.,
vol. 2004, pp. 4–, June 2004. [Online]. Available: http://portal.acm.org/citation.cfm?
id=993247.993251

[32] “Gnuradio - the gnu software radio.” [Online]. Available: http://www.gnuradio.org

[33] “Universal software radio peripheral (usrp) m ettus: Ettus research llc.” [Online].
Available: http://www.ettus.com

[34] “Usrp2.” [Online]. Available: http://www.ettus.com/downloads/ettus ds usrp2 v5.pdf

[35] “Tx and rx daughterboards,” http://www.ettus.com/downloads/ettus
daughterboards.pdf.

http://wiredspace.wits.ac.za/bitstream/handle/10539/2151/Goli%20Thesis.pdf
http://wiredspace.wits.ac.za/bitstream/handle/10539/2151/Goli%20Thesis.pdf
http://www.fcc.gov/cgb/consumerfacts/wireless911srvc.html
http://www.fcc.gov/cgb/consumerfacts/wireless911srvc.html
http://www.cybertelecom.org/voip/911reg.htm
http://www.spectralink.com/files/literature/SVP white paper.pdf
http://www.spectralink.com/files/literature/SVP white paper.pdf
http://www.skyhookwireless.com
http://www.navizon.com
https://www.google.com/voice
http://portal.acm.org/citation.cfm?id=993247.993251
http://portal.acm.org/citation.cfm?id=993247.993251
http://www.gnuradio.org
http://www.ettus.com
http://www.ettus.com/downloads/ettus_ds_usrp2_v5.pdf
http://www.ettus.com/downloads/ettus_daughterboards.pdf
http://www.ettus.com/downloads/ettus_daughterboards.pdf

47

[36] “Gnuradio modules,” http://gnuradio.org/doc/doxygen/modules.html.

[37] “Simplified wrapper and interface generator http://www.swig.org/.”

[38] “Eric blossom - how to write a signal processing block http://www.gnu.org/software/
gnuradio/doc/howto-write-a-block.html.”

[39] Dawei Shen, “Tutorial 10: Writing a signal processing block for gnu radio part i,” 2005.
[Online]. Available: http://www.snowymtn.ca/GNURadio/GNURAdioDoc-10.pdf

[40] “Eric blossom - how to write a gnuradio python application block http://gnuradio.org/
trac/wiki/Tutorials/WritePythonApplications.”

[41] “Bbn technology - acert savane server. http://acert.ir.bbn.com/.”

[42] “Hamed firooz, implementation of full-bandwidth 802.11b receiver:
http://span.ece.utah.edu/pmwiki/pmwiki.php?n=main.80211breceiver.”

[43] “Implementation of an ieee 802.11p transmitter in open-source software defined radio,”
http://userver.ftw.at/∼valerio/files/Costantini masterthesis.pdf.

[44] “Cyclic redundancy check. http://www.hackersdelight.org/crc.pdf.”

[45] “Wireshark,” http://www.wireshark.org/.

[46] “Part11: Wireless lan medium access control and physical layer specifications.
high-speed physical layer in the 5ghz band.” [Online]. Available: http://standards.
ieee.org/getieee802/

[47] “A tutorial on convolutional coding with viterbi decoding,” http://home.netcom.com/
∼chip.f/viterbi/tutorial.html.

[48] “http://standards.ieee.org/getieee802/download/802.11g-2003.pdf.”

[49] S. Jana and S. K. Kasera, “On fast and accurate detection of unauthorized wireless
access points using clock skews,” 2008.

http://gnuradio.org/doc/doxygen/modules.html
http://www.swig.org/
http://www.gnu.org/software/gnuradio/doc/howto-write-a-block.html
http://www.gnu.org/software/gnuradio/doc/howto-write-a-block.html
http://www.snowymtn.ca/GNURadio/GNURAdioDoc-10.pdf
http://gnuradio.org/trac/wiki/Tutorials/WritePythonApplications
http://gnuradio.org/trac/wiki/Tutorials/WritePythonApplications
http://acert.ir.bbn.com/
http://userver.ftw.at/~valerio/files/Costantini_masterthesis.pdf
http://www.hackersdelight.org/crc.pdf
http://www.wireshark.org/
http://standards.ieee.org/getieee802/
http://standards.ieee.org/getieee802/
http://home.netcom.com/~chip.f/viterbi/tutorial.html
http://home.netcom.com/~chip.f/viterbi/tutorial.html
http://standards.ieee.org/getieee802/download/802.11g-2003.pdf

