56 research outputs found

    Let Opportunistic Crowdsensors Work Together for Resource-efficient, Quality-aware Observations

    Get PDF
    International audienceOpportunistic crowdsensing empowers citizens carrying hand-held devices to sense physical phenomena of common interest at a large and fine-grained scale without requiring the citizens' active involvement. However, the resulting uncontrolled collection and upload of the massive amount of contributed raw data incur significant resource consumption, from the end device to the server, as well as challenge the quality of the collected observations. This paper tackles both challenges raised by opportunistic crowdsensing, that is, enabling the resource-efficient gathering of relevant observations. To achieve so, we introduce the BeTogether middleware fostering context-aware, collaborative crowdsensing at the edge so that co-located crowdsensors operating in the same context, group together to share the work load in a cost- and quality-effective way. We evaluate the proposed solution using an implementation-driven evaluation that leverages a dataset embedding nearly 1 million entries contributed by 550 crowdsensors over a year. Results show that BeTogether increases the quality of the collected data while reducing the overall resource cost compared to the cloud-centric approach

    Research on user recruitment algorithms based on user trajectory prediction with sparse mobile crowd sensing

    Get PDF
    Sparse mobile crowd sensing saves perception cost by recruiting a small number of users to perceive data from a small number of sub-regions, and then inferring data from the remaining sub-regions. The data collected by different people on their respective trajectories have different values, and we can select participants who can collect high-value data based on their trajectory predictions. In this paper, we study two aspects of user trajectory prediction and user recruitment. First, we propose an STGCN-GRU user trajectory prediction algorithm, which uses the STGCN algorithm to extract features related to temporal and spatial information from the trajectory map, and then inputs the feature sequences into GRU for trajectory prediction, and this algorithm improves the accuracy of user trajectory prediction. Second, an ADQN (action DQN) user recruitment algorithm is proposed.The ADQN algorithm improves the objective function in DQN on the idea of reinforcement learning. The action with the maximum input value is found from the Q network, and then the output value of the objective function of the corresponding action Q network is found. This reduces the overestimation problem that occurs in Q networks and improves the accuracy of user recruitment. The experimental results show that the evaluation metrics FDE and ADE of the STGCN-GRU algorithm proposed in this paper are better than other representative algorithms. And the experiments on two real datasets verify the effectiveness of the ADQN user selection algorithm, which can effectively improve the accuracy of data inference under budget constraints

    Task bundling in worker‐centric mobile crowdsensing

    Get PDF
    Most existing research about task allocation in mobile crowdsensing mainly focus on requester-centric mobile crowdsensing (RCMCS), where the requester assigns tasks to workers to maximize his/her benefits. A worker in RCMCS might suffer benefit damage because the tasks assigned to him/her may not maximize his/her benefit. Contrarily, worker-centric mobile crowdsensing (WCMCS), where workers autonomously select tasks to accomplish to maximize their benefits, does not receive enough attention. The workers in WCMCS can maximize their benefits, but the requester in WCMCS will suffer benefit damage (cannot maximize the number of expected completed tasks). It is hard to maximize the number of expected completed tasks in WCMCS, because some tasks may be selected by no workers, while others may be selected by many workers. In this paper, we apply task bundling to address this issue, and we formulate a novel task bundling problem in WCMCS with the objective of maximizing the number of expected completed tasks. To solve this problem, we design an algorithm named LocTrajBundling which bundles tasks based on the location of tasks and the trajectories of workers. Experimental results show that, compared with other algorithms, our algorithm can achieve a better performance in maximizing the number of expected completed tasks

    Vehicle as a Service (VaaS): Leverage Vehicles to Build Service Networks and Capabilities for Smart Cities

    Full text link
    Smart cities demand resources for rich immersive sensing, ubiquitous communications, powerful computing, large storage, and high intelligence (SCCSI) to support various kinds of applications, such as public safety, connected and autonomous driving, smart and connected health, and smart living. At the same time, it is widely recognized that vehicles such as autonomous cars, equipped with significantly powerful SCCSI capabilities, will become ubiquitous in future smart cities. By observing the convergence of these two trends, this article advocates the use of vehicles to build a cost-effective service network, called the Vehicle as a Service (VaaS) paradigm, where vehicles empowered with SCCSI capability form a web of mobile servers and communicators to provide SCCSI services in smart cities. Towards this direction, we first examine the potential use cases in smart cities and possible upgrades required for the transition from traditional vehicular ad hoc networks (VANETs) to VaaS. Then, we will introduce the system architecture of the VaaS paradigm and discuss how it can provide SCCSI services in future smart cities, respectively. At last, we identify the open problems of this paradigm and future research directions, including architectural design, service provisioning, incentive design, and security & privacy. We expect that this paper paves the way towards developing a cost-effective and sustainable approach for building smart cities.Comment: 32 pages, 11 figure

    A survey of spatial crowdsourcing

    Get PDF

    Edge Intelligence : Empowering Intelligence to the Edge of Network

    Get PDF
    Edge intelligence refers to a set of connected systems and devices for data collection, caching, processing, and analysis proximity to where data are captured based on artificial intelligence. Edge intelligence aims at enhancing data processing and protects the privacy and security of the data and users. Although recently emerged, spanning the period from 2011 to now, this field of research has shown explosive growth over the past five years. In this article, we present a thorough and comprehensive survey of the literature surrounding edge intelligence. We first identify four fundamental components of edge intelligence, i.e., edge caching, edge training, edge inference, and edge offloading based on theoretical and practical results pertaining to proposed and deployed systems. We then aim for a systematic classification of the state of the solutions by examining research results and observations for each of the four components and present a taxonomy that includes practical problems, adopted techniques, and application goals. For each category, we elaborate, compare, and analyze the literature from the perspectives of adopted techniques, objectives, performance, advantages and drawbacks, and so on. This article provides a comprehensive survey of edge intelligence and its application areas. In addition, we summarize the development of the emerging research fields and the current state of the art and discuss the important open issues and possible theoretical and technical directions.Peer reviewe

    Edge Intelligence : Empowering Intelligence to the Edge of Network

    Get PDF
    Edge intelligence refers to a set of connected systems and devices for data collection, caching, processing, and analysis proximity to where data are captured based on artificial intelligence. Edge intelligence aims at enhancing data processing and protects the privacy and security of the data and users. Although recently emerged, spanning the period from 2011 to now, this field of research has shown explosive growth over the past five years. In this article, we present a thorough and comprehensive survey of the literature surrounding edge intelligence. We first identify four fundamental components of edge intelligence, i.e., edge caching, edge training, edge inference, and edge offloading based on theoretical and practical results pertaining to proposed and deployed systems. We then aim for a systematic classification of the state of the solutions by examining research results and observations for each of the four components and present a taxonomy that includes practical problems, adopted techniques, and application goals. For each category, we elaborate, compare, and analyze the literature from the perspectives of adopted techniques, objectives, performance, advantages and drawbacks, and so on. This article provides a comprehensive survey of edge intelligence and its application areas. In addition, we summarize the development of the emerging research fields and the current state of the art and discuss the important open issues and possible theoretical and technical directions.Peer reviewe

    Federated Learning for 6G: Paradigms, Taxonomy, Recent Advances and Insights

    Full text link
    Artificial Intelligence (AI) is expected to play an instrumental role in the next generation of wireless systems, such as sixth-generation (6G) mobile network. However, massive data, energy consumption, training complexity, and sensitive data protection in wireless systems are all crucial challenges that must be addressed for training AI models and gathering intelligence and knowledge from distributed devices. Federated Learning (FL) is a recent framework that has emerged as a promising approach for multiple learning agents to build an accurate and robust machine learning models without sharing raw data. By allowing mobile handsets and devices to collaboratively learn a global model without explicit sharing of training data, FL exhibits high privacy and efficient spectrum utilization. While there are a lot of survey papers exploring FL paradigms and usability in 6G privacy, none of them has clearly addressed how FL can be used to improve the protocol stack and wireless operations. The main goal of this survey is to provide a comprehensive overview on FL usability to enhance mobile services and enable smart ecosystems to support novel use-cases. This paper examines the added-value of implementing FL throughout all levels of the protocol stack. Furthermore, it presents important FL applications, addresses hot topics, provides valuable insights and explicits guidance for future research and developments. Our concluding remarks aim to leverage the synergy between FL and future 6G, while highlighting FL's potential to revolutionize wireless industry and sustain the development of cutting-edge mobile services.Comment: 32 pages, 7 figures; 9 Table

    行動認識機械学習データセット収集のためのクラウドソーシングの研究

    Get PDF
    In this thesis, we propose novel methods to explore and improve crowdsourced data labeling for mobile activity recognition. This thesis concerns itself with the quality (i.e., the performance of a classification model), quantity (i.e., the number of data collected), and motivation (i.e., the process that initiates and maintains goal-oriented behaviors) of participant contributions in mobile activity data collection studies. We focus on achieving high-quality and consistent ground-truth labeling and, particularly, on user feedback’s impact under different conditions. Although prior works have used several techniques to improve activity recognition performance, differences to our approach exist in terms of the end goals, proposed method, and implementation. Many researchers commonly investigate post-data collection to increase activity recognition accuracy, such as implementing advanced machine learning algorithms to improve data quality or exploring several preprocessing ways to increase data quantity. However, utilizing post-data collection results is very difficult and time-consuming due to dirty data challenges for most real-world situations. Unlike those commonly used in other literature, in this thesis, we aim to motivate and sustain user engagement during their on-going-self-labeling task to optimize activity recognition accuracy. The outline of the thesis is as follows: In chapter 1 and 2, we briefly introduce the thesis work and literature review. In Chapter 3, we introduce novel gamified active learning and inaccuracy detection for crowdsourced data labeling for an activity recognition system (CrowdAct) using mobile sensing. We exploited active learning to address the lack of accurate information. We presented the integration of gamification into active learning to overcome the lack of motivation and sustained engagement. We introduced an inaccuracy detection algorithm to minimize inaccurate data. In Chapter 4, we introduce a novel method to exploit on-device deep learning inference using a long short-term memory (LSTM)-based approach to alleviate the labeling effort and ground truth data collection in activity recognition systems using smartphone sensors. The novel idea behind this is that estimated activities are used as feedback for motivating users to collect accurate activity labels. In Chapter 5, we introduce a novel on-device personalization for data labeling for an activity recognition system using mobile sensing. The key idea behind this system is that estimated activities personalized for a specific individual user can be used as feedback to motivate user contribution and improve data labeling quality. We exploited finetuning using a Deep Recurrent Neural Network (RNN) to address the lack of sufficient training data and minimize the need for training deep learning on mobile devices from scratch. We utilized a model pruning technique to reduce the computation cost of on-device personalization without affecting the accuracy. Finally, we built a robust activity data labeling system by integrating the two techniques outlined above, allowing the mobile application to create a personalized experience for the user. To demonstrate the proposed methods’ capability and feasibility in realistic settings, we developed and deployed the systems to real-world settings such as crowdsourcing. For the process of data labeling, we challenged online and self-labeling scenarios using inertial smartphone sensors, such as accelerometers. We recruited diverse participants and con- ducted the experiments both in a laboratory setting and in a semi-natural setting. We also applied both manual labeling and the assistance of semi-automated labeling. Addition- ally, we gathered massive labeled training data in activity recognition using smartphone sensors and other information such as user demographics and engagement. Chapter 6 offers a brief discussion of the thesis. In Chapter 7, we conclude the thesis with conclusion and some future work issues. We empirically evaluated these methods across various study goals such as machine learning and descriptive and inferential statistics. Our results indicated that this study enabled us to effectively collect crowdsourced activity data. Our work revealed clear opportunities and challenges in combining human and mobile phone-based sensing techniques for researchers interested in studying human behavior in situ. Researchers and practitioners can apply our findings to improve recognition accuracy and reduce unreliable labels by human users, increase the total number of collected responses, as well as enhance participant motivation for activity data collection.九州工業大学博士学位論文 学位記番号:工博甲第526号 学位授与年月日:令和3年6月28日1 Introduction|2 Related work|3 Achieving High-Quality Crowdsourced Datasets in Mobile Activity Recognition|4 On-Device Deep Learning Inference for Activity Data Collection|5 On-Device Deep Personalization for Activity Data Collection|6 Discussion|7 Conclusion九州工業大学令和3年
    corecore