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Abstract

Most existing researches about task allocation in mobile crowdsensing mainly focus
on requester-centric mobile crowdsensing (RCMCS), where the requester assigns
tasks to workers to maximize his/her benefits. A worker in RCMCS might suffer
benefit damage because the tasks assigned to him/her may not maximize his/her
benefit. Contrarily, worker-centric mobile crowdsensing (WCMCS), where work-
ers autonomously select tasks to accomplish to maximize their benefits, does not
receive enough attention. The workers in WCMCS can maximize their benefits, but
the requester in WCMCS will suffer benefit damage (cannot maximize the number
of expected completed tasks). It is hard to maximize the number of expected com-
pleted tasks in WCMCS, because some tasks may be selected by no workers, while
others may be selected by many workers. In this paper, we apply task bundling to
address this issue, and we formulate a novel task bundling problem in WCMCS with
the objective of maximizing the number of expected completed tasks. To solve this
problem, we design an algorithm named LocTrajBundling which bundles tasks based
on the location of tasks and the trajectories of workers. Experimental results show
that, comparedwith other algorithms, our algorithm can achieve a better performance
in maximizing the number of expected completed tasks.
KEYWORDS:
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1 INTRODUCTION

In recent years, the proliferation of sensor-rich mobile devices (e.g., smart phones) has stimulated the development of mobile
crowdsensing (MCS)1 2 3 4, an effective and efficient sensing paradigm which exploits a large number of workers with intelligent
mobile devices to perform numerous sensing tasks in real world. Compared with traditional urban sensing paradigm, mobile
crowdsensing avoids the deployment of expensive static infrastructure (e.g., traffic monitoring system, air condition monitoring
stations); it utilizes themobility of workers and the sensors (e.g., GPS, camera) embedded in intelligent mobile devices to achieve
higher flexibility, lower cost and wider sensing coverage. The advantages of mobile crowdsensing make it widely used in various
fields such as air quality monitoring5 6, target tracking7, traffic monitoring8 9, digital map updating10, and many crowdsensing
systems have been constructed and applied in real life11 12 13 14 15 16.
There are two basic components in a typical mobile crowdsensing system: one or more requesters and a number of workers.

Requesters have some tasks to be completed, and they will publish the tasks to numerous workers; workers get rewards by
completing the tasks published by requesters and uploading the data they collect. For requesters, they want as many tasks to
be completed as possible, while for workers, they want to maximize their benefits at acceptable costs. As an example, in the
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FIGURE 1 Task bundling is conducive to increase the number of expected completed tasks. There are two workersw1,w2, and
four tasks t1, t2, t3, t4 with rewards 10, 6, 5, 1, respectively. Suppose thatw1 is able to complete t1, t2 andw2 is able to complete
t2, t3 or t3, t4 due to some limitations. In WCMCS, without bundling, only three tasks of the four tasks will be completed due
to the individual rationality. Specifically, to maximize their profits, w1 will select task t1 and t2, and w2 will select task t2 and
t3, while t4 will not be completed. After we bundle t1 and t2 as bundle 1 and bundle t3 and t4 as bundle 2, w1 will select bundle
1 to complete t1 and t2, w2 will select bundle 2 to complete t3 and t4, so that all the four tasks will be completed.

scenario where workers have their own trajectories and tasks are location-dependent, in order to complete a task, a worker needs
to detour to the location of this task, which will cause detour cost. As a result, in situations where tasks are nearly homogeneous,
a worker is more willing to perform tasks nearby his/her trajectory.
A key issue in mobile crowdsensing is task assignment. According to the different ways of task assignment, mobile crowd-

sensing can be divided into two categories: requester-centric mobile crowdsensing (RCMCS) and worker-centric mobile
crowdsensing (WCMCS). In RCMCS, the requester formulates a task assignment plan to determine what tasks each worker
needs to accomplish, and he/she assigns tasks to each worker based on the task assignment plan made by itself. On the contrary,
inWCMCS, each worker autonomously decides what tasks he/she will accomplish, and the requester does not have the authority
to formulate and interfere with each worker’s task assignment plan. In other words, each worker assigns tasks to itself.
There have been several studies that focus on the task assignment in mobile crowdsensing17 18 19 20 21. However, most studies

in terms of task assignment in mobile crowdsensing mainly concentrate on the RCMCS scenario, in which the requesters’ benefit
can be maximized, but the workers might suffer benefit damage. For instance, in Fig. 1 , there is a requesterQ, two workersw1,
w2, and four tasks t1, t2, t3, t4 with rewards 10, 6, 5, 1, respectively.w1 is able to complete t1, t2, andw2 is able to complete t2, t3
or t3, t4. In RCMCS, the requester Q will assign t1, t2 to w1, and assign t3, t4 to w2 so that all the tasks can be completed under
the worker ability constraint. This task execution plan is optimal for the requester, but not for the workers. It can be seen that,
for w2, completing task t2 and t3 can get a total reward of 11, which can maximize his/her profit; however, he/she was finally
assigned task t3 and t4 to get a total reward of 6, which results in the loss of w2’s benefit.
The limitation of traditional RCMCSmakes it need to be complemented byWCMCS, which draws little attention nowadays22.

Compared with RCMCS, it can be seen that workers enjoy full autonomy in making task execution plan in WCMCS. However,
due to the individual rationality of workers, each worker is more likely to select the tasks that are nearer to his/her trajectory
or with higher rewards. It will lead to the fact that some tasks may be selected by numerous workers while some tasks may
be selected by no workers and the requesters will suffer benefit damage, so that it is hard to maximize the number of expected
completed tasks in WCMCS.
In this paper, we focus on the problem of maximizing the number of expected completed tasks in worker-centric mobile

crowdsensing to maximize the benefit of requesters, and we apply task bundling mechanism to solve this problem. The basic
idea of task bundling is to bundle all the independent tasks as several task bundles according to some attributes, such as the
location of tasks, the trajectory of each worker, and the reward of each task; each task bundle consists of several independent
tasks. For a task bundle, each worker has two choices: to complete all the tasks in the bundle and get rewards, or not to complete
any tasks in the bundle. We argue that task bundling is a helpful way to maximize the number of expected completed tasks as
possible. The reason for this phenomenon is twofold. First, some unpopular tasks (selected by few workers) are more likely to be
completed if they are bundled with popular tasks (selected by many workers), because workers cannot just complete the popular
tasks in a task bundle. Second, the reward of a task bundle is higher than any independent task in this task. Therefore, compared
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FIGURE 2 It is challenging to balance the trade-off between the number of bundles and the size of each bundle to find the
optimal task bundling plan. If we bundle all the four tasks as a bundle, there will be only one bundle, and no tasks will be
completed. If we bundle each task as a bundle with only one task, there will be four task bundles, and only three tasks will be
completed. Neither of these two task bundling plans is the optimal task bundling plan.

with completing an independent task, workers are more willing to complete a task bundle and get higher rewards. Third, in some
scenario where workers have some specific kinds of cost, we can use task bundling to induce workers to complete unpopular
tasks instead of popular tasks.
For example, in Fig. 1 , w1 is able to complete t1, t2, and w2 is able to complete t2, t3 or t3, t4 due to some limitations. On

condition that the scenario is WCMCS,w1 will select task t1 and t2, andw2 will select task t2 and t3; thus, t4 will not be selected
by any worker. With task bundling, we can bundle t1 and t2 as bundle 1 and bundle t3 and t4 as bundle 2. In that way, w1 will
select bundle 1 to complete t1 and t2; w2 will select bundle 2 to complete t3 and t4.
It is quite challenging to find the optimal task bundling plan which can maximize the number of expected completed tasks in

WCMCS due to the following reasons. First, to some extent, moderate task bundling helps to improve the number of expected
completed tasks. However, a task bundling plan which includes fewer and bigger task bundles does not mean a better plan, nor
does the task bundling plan which includes more and smaller task bundles. For example, in Fig. 2 , if we bundle all the four
tasks as a bundle, no tasks will be completed. If we bundle each task as a bundle with only one task, only three tasks will be
completed. From Fig. 1 , we know that the best task bundling plan is to bundle t1 and t2 as bundle 1 and bundle t3 and t4 as
bundle 2; neither of the two task bundling plans in Fig. 2 is the optimal task bundling plan. Thus, how to balance the trade-off
between the number of bundles and the size of each bundle is the first challenge. Second, when making the task packing plan,
we should not only consider the relevant attributes of the tasks, but also consider the workers’ trajectories. This makes it more
difficult for us to find the optimal task bundling plan, which is the second challenge.
The motivation for us to write this article is to find an optimal task bundling plan which can maximize the number of expected

completed tasks in WCMCS to maximize the benefit of requesters, while few researches take note of this kind of problem nowa-
days. We mathematically formulate a task bundling problem which focuses on maximizing the number of expected completed
tasks in WCMCS. Then we prove that this problem is NP-Hard. To solve this problem, we propose a heuristic algorithm named
LocTrajBundling which includes two phases: initial solution construction phase that constructs an initial solution by greedy
algorithm, simulated annealing optimization phase that optimizes the initial solution by running simulated annealing algorithm
iteratively. We obtain a real-world dataset which is used for our real-world dataset experiments by using BaiduMap API, and
this dataset includes the location of 400 hotels and the minimum walking distance between each pair of hotels. The experimen-
tal results reveal that our algorithm has a better performance than the other contrast algorithms in maximizing the number of
expected completed tasks in WCMCS. Briefly speaking, we have made the following contributions:

• We argue that task bundling is a feasible way to find an optimal task bundling plan in worker-centric mobile crowdsensing.
Then we formulate a novel task bundling problem inWCMCSwhich aims to maximize the number of expected completed
tasks. As far as we know, it is the first work that focuses on maximizing the number of expected completed tasks in
worker-centric mobile crowdsensing.

• We prove the NP-Hardness of this problem and propose a heuristic algorithm named LocTrajBundling to solve this
problem. This algorithm consists of two phases: initial solution construction phase and simulated annealing optimization
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phase. The first phase uses a greedy algorithm to generate an initial solution, and the second phase runs simulated anneal-
ing algorithm to optimize the initial solution. In order to optimize the solution obtained by the second phase, this algorithm
will repeat the second phase for many times until the increase of the number of expected completed tasks approaches zero.

• A real-world dataset obtained from BaiduMap API and a synthetic dataset are tested in our experiments, and the exper-
imental results show that, in both the real-world dataset experiments and the synthetic dataset experiments, the task
bundling plan provided by our algorithm can achieve a better performance in maximizing the number of expected
completed tasks than other contrast algorithms.

The rest of the paper is organized as follows. We introduce the related work in Section II. Some basic preliminaries are listed
in Section III and the worker behavior model is presented in Section IV. In Section V, we mathematically formulate the task
bundling problem that focuses on maximizing the number of expected completed tasks in WCMCS. Then, in Section VI, we
provide our heuristic algorithm named LocTrajBundling for solving the task bundling problem. We do several experiments to
evaluate the performance of our algorithm and show the results in Section VII. Finally, we conclude this paper in Section VIII.

2 RELATEDWORK

2.1 Task assignment in mobile crowdsensing
Task assignment is a crucial problem in mobile crowdsensing and has been studied for many years23 24 25 26 27. So far, most
researches mainly have focused on the task assignment problem in requester-centric mobile crowdsensing, in which requesters
determine what tasks each worker must complete, and workers passively complete the tasks assigned by requesters. Essentially
speaking, task assignment problems in MCS are almost the mathematical optimization problems with various goals and con-
straints, such as sensing quality28 29 30 31, incentive cost32 33, location privacy34 35 36 37 38 39, and social surplus40. For example,32
focused on the problem in task assignment which aimed to minimize the incentive cost under the minimum level of sensing
quality constraint. In terms of different classification standards, the problem of task assignment in MCS can have different clas-
sification41. For instance, according to the number of objectives in the problem, we can classify the task assignment problem as
single-objective-oriented42 32 and multi-objective-oriented43 44. We can also classify the task assignment problem as offline42 40
and online45 based on the time when the task assignment plan is formulated. However, as we mentioned above, most current
works about task assignment in MCS mainly follow with interest the RCMCS scenario, and few researches pay attention to task
assignment problem in worker-centric mobile crowdsensing.

2.2 Task bundling in mobile crowdsourcing
Task bundling aims to bundle independent tasks as several task bundles, so that a worker who selects a bundle has to complete
all the tasks in this bundle to get reward, otherwise he/she will get no reward. Some researches have applied task bundling into
crowdsourcing46, which is a research field that is highly relevant to mobile crowdsensing. In47, the authors aimed to bundle tasks
according to the context of each worker, and then recommended task bundles to workers based on their context to maximize the
number of completed tasks and reduce task costs. However, the problem in47 is different from ours, because the workers in47
can only make decisions on the task bundles recommended to him/her, in other words, the workers cannot select and complete
the bundles that are not recommended to him/her. Beyond that, the workers can get paid even though they have completed only
a portion of the tasks in a task bundle, which is also different from our work. It is shown in48 that workers prefer bundled
tasks even though the reward of a task bundle is smaller than the sum of the reward of each independent task, and the average
completion rate of tasks has increased by 19% after task bundling. But the task bundling algorithm proposed by48 just bundles
the tasks on the same floor of a building, which is not suitable for the problem in our paper. In49, the authors presented a task
bundling incentive mechanism to address the participation unbalance problem in location dependent mobile crowdsourcing,
and the reward of a bundle is equal to the sum of the reward of each independent task. However, the algorithm in49 artificially
categorizes each task into a cold task or a hot task and ensures that each task bundle contains both hot tasks and cold tasks.
In other words, each cold task must be bundled with a hot task, thus a task bundle containing only cold tasks is not allowed.
By contrast, in this paper, although the probability of each task being completed is different, we do not classify each task into
hot task or cold task according to the probability of being completed, and any different tasks can be bundled into a bundle. In
addition, the algorithm in49 runs without knowing the location and trajectory of each worker, which is also different from our
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work. To summarize, all the aforementioned works are different from our work even if they concentrate on task bundling like
our work, which motivates us to write this paper.

3 PRELIMINARIES

In our problem, there are m workers denoted as W = {w1, w2,… , wm}; each worker has a starting point s, a destination d, a
travel distance budget bud, and a trajectory traj from its starting point to its destination. The trajectory of a worker represents
the shortest path from its starting point to its destination. The starting point set is S = {s1, s2,… , sm}. The destination set
is D = {d1, d2,… , dm}. The travel distance budget set is Bud = {bud1, bud2,… , budm}, and the trajectory set is T raj =
{traj1, traj2,… , trajm} (the definition of trajectory will be given in the following graphs). The requester has n tasks of the
same type (e.g., air pollution collection), and the n tasks are denoted as T = {t1, t2,… , tn}; each task has two properties: l
represents the location of the task, and r represents the reward of this task. The set which includes the location of each task is
L = {l1, l2,… , ln}, and the reward set is R = {r1, r2,… , rn}. The reward of an arbitrary task t is r(t).
The requester knows the information of all the workers and will make a task bundling plan according the information to

maximize the number of expected completed tasks. Each worker only knows the information of itself, and he/she will select
tasks to complete after the task bundling plan is made by the requester. To complete a task, a worker need to arrive at the location
of the task, collect data and upload the data to the requester. A task t can be completed by many workers, but each worker can
complete the task t only once. In order to improve the enthusiasm of workers and ensure the accuracy of data, we allow for data
redundancy, and everyone who completes the task t will get the same reward r(t).
Both S, D and L are parts of a traffic network, which is a complete directed graph G = (V ,E). V is the vertex set. A vertex

v in V represents a pair of coordinates (x, y) to show its spatial location, where x is the longitude coordinate of v and y is the
latitude coordinate of v. E is the edge set including |V |

2 elements since G is a complete directed graph. Each element e in E
represents the road length (defined below) between two specific vertices and the cost of a element e is c(e).
Definition 1 (Road Length).In a traffic network G = (V ,E), the road length between vertices i and j in set V , denoted as

rlij , is the minimal walking distance between the two vertices. In the real world, rlij is not equal to the linear distance between
i and j in most cases. In this paper, we calculate the minimal walking distance by aid of BaiduMap API. We take the latitude
and longitude coordinates of i and j as input, and get the calculation result through the calculation of BaiduMap API, denoted
as rlij , which represents the road length between vertex i and vertex j.
Definition 2 (Trajectory).The trajectory of workerwi, denoted as traji =< traji1, traji2,… , trajin >, is a sequence of vertices,

and each vertex is an element in V . Since G = (V ,E) is a complete directed graph, any two consecutive vertices v1, v2 are
directly connected by an edge e(v1, v2) that represents the road length between the two vertices. At first, each trajectory only
includes two vertices which represent the starting point and the destination of worker wi.
Definition 3 (Trajectory cost).Given a trajectory traji =< traji1, traji2,… , trajin >, the cost of the trajectory is the sum of

the costs of the edges in this trajectory, i.e.,

TC(traji) =
n−1
∑

j=1
c(e(trajij , traji(j+1))). (1)

It is obvious that TC(traji) ≤ budi.
Definition 4 (Task Bundling Plan).A task bundling plan is a set B = {b1, b2,… , bk} which is used to determine which tasks

are bundled in the same bundle; each element in the setB represents a task bundle that consists of at least one task. |bi| represents
the number of tasks in the bundle bi.
Definition 5 (Reward of a bundle). The reward of a bundle b is the sum of the rewards of the tasks in this bundle, i.e.,

RB(b) =
∑

t∈b
r(t). (2)
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4 WORKER BEHAVIOR MODEL

A worker can autonomously select a task bundle and complete the tasks in the bundle to get rewards, and he/she has to detour
from his/her original trajectory to complete the tasks in the bundle without changing his/her starting point and destination. We
use traji⨁ bk to represent the trajectory of a workerwi after he/she choose bundle bk. We simply use a greedy-based method to
determine the sequence of the vertices in the newly-generated trajectory: First, we add the starting point into the newly-generated
trajectory, and then we find the task t′ whose location is nearest to the starting point and add the location vertex v′ into the
trajectory, next we find the task t′′ whose location is nearest to v′ and add the location vertex v′′ into the trajectory, and so on.
Finally, we add the destination into the trajectory.
We assume that no task is on the trajectory of any worker. In this case, a worker must detour to complete a task, which will

cause detour cost. As noted earlier, each worker is more likely to select the tasks that are nearer to his/her trajectory or with
higher rewards due to the individual rationality of workers. To calculate the probability of a worker wi selecting a task bundle
bk, we give the following worker behavior model that formulates the probability:

P (wi, bk) =

⎧

⎪

⎨

⎪

⎩

TC(traji)
TC(traji

⨁

bk)
∗
RB(bk)
∑n
j=1 rj

∗

∑

t∈bk
TC(traji

⨁

t)

TC(traji
⨁

bk) ∗ |bk|
, TC(traji

⨁

bk) ≤ budi,

0, TC(traji
⨁

bk) > budi.

(3)

It can be seen that this formula includes three parts when TC(traji⨁ bk) ≤ budi. The first part shows that the smaller the
detour cost, the greater the probability ofwi completing the task bundle bk. The second part shows that workers are more willing
to select a task bundle with higher rewards. The third part shows that workers are more likely to select a task bundle whose tasks
are more centrally distributed. In particular, we have to explain the third part of this formula in detail. TC(traji⨁ t) represents
the cost for workerwi to complete one specific task t in this bundle. There are |bk| tasks in this bundle, and the numerator of the
third part represents the sum of the |bk| costs. The smaller value of the third part, the more sparsely distributed of the tasks in this
bundle. If the location of all the tasks are the same, then the value of the third part is 1, which is the maximum of the third part.
The probability of a task bundle bk to be completed is actually the probability of a task bundle to be completed by at least one

worker, so the probability can be formulated as follows:

P (bk) = 1 −
n

∏

i=1
(1 − P (wi, bk)). (4)

Consequently, the number of expected completed tasks of a task bundle is |bk| ∗ P (bk).
5 PROBLEM FORMULATION

Based on the above preliminaries and worker behavior model, we can formulate the task bundling problem as follows:
In a traffic network which is a complete directed graph G = (V ,E), given the locations and rewards of n tasks

T = {t1, t2,… , tn}, the trajectories of m workers W = {w1, w2,… , wm}, and the travel distance budget set Bud =
{bud1, bud2,… , budm}, the requester aims to find a task bundling plan B that can maximize the number of expected completed
tasks:

Maximize
∑

b∈B
(|b| ∗ P (b)) (5)

Subject to ∶
⋃

b∈B
b = T , (6)

⋂

b∈B
b = ∅, (7)

b ≠ ∅ ∀b ∈ B. (8)
Theorem 1. The task bundling problem is NP-Hard.
Apparently, if a special case of the task bundling problem is NP-hard, then the task bundling problem is NP-hard. We consider

a special case of the task bundling problem where all the tasks can only be bundled as at most two bundles, and we call this
problem “special task bundling problem”. Next, we formulate another problem named “binary task bundling problem” which is
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equivalent to the special task bundling problem. As we mentioned before, in binary task bundling problem, all the tasks can only
be bundled as at most two bundles, and we can use a n-dimensional vector < x1, x2,… , xn > to represent different task bundling
plan. The value of each x can only be 0 or 1. For example, < 1, 1, ...., 1 > and < 0, 0, ..., 0 > represent that all the tasks are
bundled as only one bundle, and there is no tasks in the other bundle. So the binary task bundling problem is defined as follows:
Find a feasible solution < x1, x2,… , xn > that:

Maximize
2
∑

k=1
(|bk| ∗ P (bk)) (9)

Subject to ∶ xi ∈ {0, 1} ∀i ∈ {1, 2,… , n}. (10)
The binary task bundling problem is equivalent to the special task bundling problem, and each solution of the binary task

bundling problem can be transformed to an equivalent solution of the special task bundling problem. The value of each vari-
able can only be 0 or 1, so the binary task bundling problem is an integer programming problem. The objective function
can be regarded as a function f (x1, x2,… , xn) with n inputs. According to the above formulas, we can see that this function
f (x1, x2,… , xn) is a nonlinear function. Therefore, it can be concluded that the binary task bundling problem is a nonlinear inte-
ger programming problem, which is proved to be a NP-Hard problem50. The special task bundling problem is equivalent to the
binary task bundling problem, so the special task bundling problem is NP-Hard, thus the task bundling problem is NP-Hard■.
Since the task bundling problem is NP-hard, the number of all possible bundling solutions increases sharply with the number

of tasks and workers increase. Actually, finding a task bundling plan is essentially dividing the task set into several non-empty
subsets so that every task is included in only one subset, and a task bundling plan is essentially “a partition of a set”. It is proved
that a set with n elements has Bn partitions, where Bn is the bell number51. The calculation of bell number is

Bn+1 =
n
∑

k=0

(

n
k

)

Bn. (11)
The first eleven bell numbers are 1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975. The fast growth of bell numbers and the

NP-Hardness of the task bundling problem make it impossible to find an optimal solution in polynomial time. Accordingly, a
heuristic algorithm is presented in this paper for solving the task bundling problem.
6 LOCTRAJBUNDLING: A HEURISTIC ALGORITHM

In this section, we present a heuristic algorithm named LocTrajBundling which includes two phases: initial solution construc-
tion phase and simulated annealing optimization phase. The initial solution generated in the first phase will be used as the input
of the second phase. First, we give a brief description and the pseudo-code of the two phases of our heuristic algorithm, then
we give the pseudo-code of LocTrajBundling.
6.1 Initial solution construction
It is hard to find a good initial solution because we need to face the following challenges: 1. how to determine the size of each
task bundle? If the size of a task bundle is too small, it will not be able to provide enough incentives for workers; however,
if a task bundle is too large, it will also reduce the willingness of workers to choose this task bundle. 2. how to make a task
bundle plan according to the trajectories of workers? After all, tasks will be completed by the workers. When formulating the
task bundling plan, we should not only consider the location of the tasks, but also consider the workers’ trajectories. Taking the
aforementioned challenges into account, we firstly construct a relatively good initial solution by a greedy-based algorithm to
provide an input for the simulated annealing optimization phase.
We firstly give the definition of ALOW probability before we introduce the initial solution construction algorithm.
Definition 6 (ALOW probability) The ALOW(at least one worker) probability of a task t is the probability that the task can

be completed by at least one worker.
It can be seen that, when we calculate the ALOW probability of a task, we need to use the location of this task, the reward of

this task, and the trajectory of all workers. As we mentioned before, the probability of a task bundle bk to be completed by at
least one worker is:
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FIGURE 3 There is one worker w1, and three tasks t1, t2, t3 with rewards 10, 8, 6, respectively. The worker’s travel distance
budget is 100. A and B are the starting point and the destination of the worker. The coordinates of A are (2.25, 6), and the
coordinates of B are (2.25, 0). The location of the three tasks t1, t2, t3 are C ,D, E. The coordinates of C ,D, E are (0, 3), (6.25,
3), (6.25, 0). Line AB intersects line CD at F , whose coordinates are (2.25, 3).

P (bk) = 1 −
n

∏

i=1
(1 − P (wi, bk)).

We can regard a single task t as a task bundle with only one task, so the ALOW probability of a task t is as follows:

ALOWt = P ({t}) = 1 −
n

∏

i=1
(1 − P (wi, {t})). (12)

Now we will introduce the initial solution construction algorithm, the main idea of the algorithm is as follows:
First, we sort the task set T to get a queue Q according to the value of ALOW probability from large to small.
Second, we get the first element of the queue (denoted as q′) and add q′ to an empty set S1, then we remove q′, the first

element of the queue. If the queue is empty after removing the first element of the queue, then we add S1 into the task bundling
set TBP , and the algorithm terminates; if not, the algorithm will go to the third step.
Third, we find out the element q′′ that can maximize the increase of the number of expected completed tasks if we bundle q′′

with S1. If the maximum value of the increase is greater or equal to 0, then we add the q′′ into S1, and remove q′′ from the queue
Q, and if Q is empty after removing q′′, then we add S1 into the task bundling plan set TBP , and the algorithm terminates.
Conversely, if the maximum value of the increase is less than 0, we clone S1 into S′

1 and add S′
1 into the task bundling plan setTBP, then we clear S1 to an empty set. We repeat the second step and the third step until there is no element in the queue. This

algorithm comprehensively considers the workers’ trajectories and location of tasks to construct an initial task bundling plan
due to the usage of ALOW probability, and it reasonably determines the size of each task bundle.
We use Fig. 3 to describe the initial solution construction algorithm more graphically. In Fig. 3 , if two points are connected

by an edge, it means that a worker can directly reach another point from one point. There is one worker with starting pointA and
destination B. The worker’s travel distance budget is 100 so that the trajectory cost will not exceed the travel distance budget
even if the worker selects all the three tasks. The coordinates of A are (2.25, 6), and the coordinates of B are (2.25, 0). There are
three tasks t1, t2, t3 with location C , D, E. The coordinates of C , D, E are (0, 3), (6.25, 3), (6.25, 0), and the rewards of t1, t2,
t3 are 10, 8, 6. Line AB intersects line CD at F , the coordinates of F are (2.25, 3).The task bundling plan set is empty at first.
We firstly sort the three tasks according to the value of ALOW probability from large to small. The ALOW probabilities of t1,
t2, t3 are 1

3
, 1
5
, 1
8
, respectively. Therefore, the task sequenceQ after sorting is t1, t2, t3, so the task queue is < t1, t2, t3 >. Without

bundling, the number of expected completed tasks is 1
3
* 1 + 1

5
* 1 + 1

8
* 1 = 79

120
. Now we get t1 which is the first element ofQ,

then we add t1 to an empty set S1 and remove t1 fromQ. NowQ is < t2, t3 >, and we have to find an element that can maximize
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the increase of the number of expected completed tasks from Q. If we choose t2, the value of the increase is ( 6
15
* 18
24
* 7
12

* 2) -
( 1
3
+ 1

5
) = - 11

60
; if we choose t3, the value of the increase is ( 6

15
* 16

24
* 13

24
* 2) - ( 1

3
+ 1

8
) = - 67

600
. So the maximum value of the

increase is - 67
600

<0, this means that neither task t2 nor task t3 is suitable to be bundled with task t1, so we clone S1 into S′
1 andadd S′

1 into the task bundling plan set, then we clear S1 to an empty set. Now the task queue Q is < t2, t3 >, the task bundling
plan set TBP is t1.
Next, we repeat the second step and the third step of this algorithm. We get t2 from Q and add t2 to S1, then we remove t2

from Q. Now there is only one element t3 in Q. We choose t3 to calculate the value of the increase of the number of expected
completed tasks after bundling, which is ( 6

12
* 14

24
* 11

12
* 2)-( 1

5
+ 1

8
)= 151

720
>0. Therefore, we add t3 to S1 and remove t3 from Q.

Q is empty after removing t3 from itself, so we add S1 into the task bundling set TBP , and the algorithm terminates. Finally,
the task queue Q becomes empty, and we get a task bundling plan set TBP = {{t1}, {t2, t3}}. That is to say, we will bundle
task t2 and task t3 as a task bundle, t1 is regarded as a task bundle in which there is only one tasks. The number of expected
completed tasks in this task bundling plan is ( 77

288
* 2) + 1

3
= 125

144
.

In fact, this task bundling plan is the best bundling plan in this scenario. There are 4 task bundling plans besides this bundling
plan. We name the four plans A, B, C ,D, respectively. In plan A, each task will be regarded as a bundle with only one task, and
the number of expected completed tasks in this bundle is 1

3
* 1 + 1

5
* 1 + 1

8
* 1 = 79

120
. In plan B, we will bundle all the three

tasks as a bundle and the number of expected completed task is 59
102

. In plan C , we will bundle task t1 and t2 as a bundle, then
the number of expected completed task is 19

40
. Finally, in planD, task t1 and task t3 will be bundled, and the number of expected

completed task is 41
75
.

With the number of workers increases, the number of expected completed tasks calculated by the initial solution construction
algorithm also increases and gradually approaches 3, which is the total number of all tasks.
Theorem 2: The time complexity of the initial solution construction algorithm is O(n2), where n is the number of tasks.
Proof: This algorithm includes three steps. The first step aims to sort the tasks based on the value of ALOW probability from

large to small. We use bubble sorting algorithm as the sorting algorithm and the time complexity of bubble sorting algorithm is
O(n2). The time complexity of the second step is O(1), and the time complexity of the third step is O(n). The second and third
steps will be repeated at most n times, so the time complexity of the second and third step executing for at most n times isO(n2).
As a result, the time complexity of the initial solution construction algorithm is O(n2), where n is the number of tasks.
The pseudo-code of the initial solution construction algorithm is shown in Algorithm 1, and we set “NECT” as the alias of

"the number of expected completed tasks" in the pseudo-code.

6.2 Simulated annealing optimization
Now we will use the simulated annealing optimization algorithm to optimize the initial solution obtained by the greedy based
algorithm. The simulated annealing algorithm is presented in Algorithm 2. As the name suggests, this algorithm is based on
simulated annealing. T0, T ∗, � represent the initial temperature, the final temperature and the cooling rate, respectively. The
main idea of the simulated annealing optimization algorithm is as follows: This algorithm runs to adjust the solution S0 until
T0 ≤ T ∗. We define a temporary variable S and assign it an initial value S0. Line 4 to line 26 is the main loop of the simulated
annealing. In each iteration of the main loop, we do the following operations. First, we randomly select a task bundle b1 from
the solution S and randomly remove a task t from b1. Second, we randomly select another task bundle b2 from S and insert the
task t into b2, so that we get a new solution S′. Then we calculate the number of expected completed tasks of S (denoted as n1)
and the number of expected completed tasks of S′ (denoted as n2). If n2 > n1, then we assign S′ to S. Otherwise, we randomly
generate a number R whose value ranges from 0 to 1, next we calculate e n2−n1T ∗ , if e n2−n1T ∗ > R, we will assign S′ to S. Thirdly,
we update the value of temperature from T0 to T0 ∗ �. We repeat the three steps until T0 is not greater than T ∗.

6.3 Repeatedly simulated annealing
In order to optimize the solution obtained by the second phase, we can repeat the second phase formany times until the increase of
the number of expected completed tasks approaches zero. Based on the initial solution construction algorithm and the simulated
annealing algorithm, we give the pseudo-code of LocTrajBundling in Algorithm 3.
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Algorithm 1 Initial solution construction
Require:
traffic network G = (V ,E),
worker setW ,
task set T

Ensure:
initial task bundling plan S0

1: Define two empty sets S0, S1;
2: Calculate the ALOW probability of each task;
3: sort the task set T to get a queue Q according to the value of ALOW probability from the largest to the smallest;
4: while Q is not empty do
5: q′ = the first element of Q;
6: S1 = S1

⋃

q′;
7: remove q′ from Q;
8: if Q is empty then
9: S0 = S0

⋃

{S1};
10: return S0;
11: end if
12: q′′ = the element that can maximize the increase ofNECT if we bundle this element with S1;
13: increase = the increase ofNECT if we bundle q′′ with S1;
14: if increase ≥ 0 then
15: S1 = S1

⋃

q′′;
16: remove q′′ from Q;
17: if Q is empty then
18: S0 = S0

⋃

{S1};
19: return S0;
20: end if
21: else
22: S′

1 = S1;
23: S1 = ∅;
24: S0 = S0

⋃

{S′
1};

25: end if
26: end while
27: return S0;

7 EVALUATION

To compare the performance of different algorithms, we give some definitions as follows:
Definition 7 (Task Bundling Performance Ratio(TBPR)). The task bundling performance result of an algorithm is that, for a

given case, the average of the number of expected completed tasks (NECT) in each experiment. The task bundling performance
ratio (TBPR) of an algorithm in a given case is the task bundling performance result of LocTrajBundling algorithm divided by
the task bundling performance result of this algorithm when using the same data and running the same time experiments. TBPR
is greater than 1 means that the task bundling plan produced by the algorithm can reach higher task bundling performance result
than our algorithm, and the larger the value of TBPR, the better the performance of this algorithm in producing task bundling
plan with higher task bundling performance result.
Definition 8 (Worker-Task Ratio (WTR)). The worker-task ratio is the ratio of the number of workers to the number of tasks.
Definition 9 (Task Completion Ratio (TCR)). Similar to TBPR, the task completion ratio of an algorithm is that, for a given

case, the average of the number of expected tasks to the number of all the tasks in each experiment. The higher TCR value of an
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Algorithm 2 Simulated annealing optimization
Require:
traffic network G = (V ,E),
worker setW ,
task set T ,
T0, T ∗, �,
initial task bundling plan S0

Ensure:
Improved task bundling plan S

1: S = S0;
2: while T0 ≥ T ∗ do
3: Stemp = S;
4: b1 = a randomly selected element of S;
5: S = S ⧵ {b1};
6: b2 = a randomly selected element of S;
7: S = S ⧵ {b2};
8: t = a randomly selected element of b1;
9: b1 = b1 ⧵ {t};
10: b2 = b2

⋃

{t};
11: S′ = S

⋃

b1
⋃

b2;
12: S = Stemp;
13: n1 = the number of expected completed tasks of S;
14: n2 = the number of expected completed tasks of S′;
15: if n2 > n1 then
16: S = S′;
17: else
18: R = a random number whose value ranges from 0(excluded) to 1(excluded);
19: if e

n2−n1
T ∗ > R then

20: S = S′;
21: end if
22: end if
23: T0 = T0 ∗ �;
24: end while
25: return S;

algorithm, the better the performance of this algorithm in producing task bundling plan with higher task bundling performance
result.
Definition 10 (Worker Efficiency Performance (WEP)). The worker efficiency of a worker is the expected reward of him/her

divided by the number of expected completed tasks of him/her. For workers, the higher worker efficiency, the greater the average
reward of completing a task. The worker efficiency performance of an algorithm in a given case is the average of the average
worker efficiency of all workers in each experiment.
We have done several experiments to test the performance of our algorithm in producing task bundling plan. Next, we will

introduce other algorithms we used to compare with our algorithm, and we will also introduce the datasets with their experiment
settings and the experimental results.
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Algorithm 3 LocTrajBundling
Input:
traffic network G = (V ,E),
worker setW ,
task set T ,
T0, T ∗, �

Output:
A final task bundling plan Sf

1: S0 = Initial solution construction(G,W , T );
2: increase = 1;
3: while increase > 0 do
4: previous = the number of expected completed tasks of S0;
5: S0 = Simulated annealing optimization (G,W , T , T0, T ∗, �, S0);
6: new = the number of expected completed tasks of S0;
7: increase = new − previous;
8: end while
9: Sf = S0;
10: return Sf ;

7.1 Algorithms used for comparing with our LocTrajBundling algorithm
We design two algorithms called NoBundle, and Initial. We also implement two algorithms which are designed for the task
assignment in requester-centric mobile crowdsensing (RCMCS) in26 and27, and we name the two algorithms LRBA and B-
DBA, respectively. As we all know, the output of a task assignment algorithm for RCMCS is several "worker-task bundle" pairs.
Therefore, we remove the information of workers from all the "work-task bundle" pairs and get a task bundling plan. We use the
four algorithms to compare with our algorithm. The brief descriptions of the four algorithms are as follows.
Initial: In this algorithm, we will use the output of the first phase of our LocTrajBundling algorithm as the task bundling plan.

The task bundling plan is S = Initial solution construction(G,W , T ).
NoBundle: In this algorithm, no task will be bundled. The task bundling plan is S = {{t1}, {t2},… , {tn}}.
LRBA: In26, the authors formulate a problem named (MRP) which aims to maximize the rewards of the platform in RCMCS,

where each worker has his/her own travel distance budget, and each task is location dependent. Then the authors design a task
assignment algorithm named LRBA to solve this problem. We change the optimization objective from "maximize the rewards
of the platform" to "maximize the number of expected completed tasks", and implement this algorithm.
B-DBA: In27, the authors study the task assignment problem whose objective is maximizing the total task quality in RCMCS

under the constraint of travel distance budget of mobile workers. The authors provide a Bio-inspired Travel-Distance-Balance-
based algorithm (B-DBA) which is based on Pareto Ant Colony Optimization. To implement this algorithm, the optimization
objective is changed from "maximize the total task quality" to "maximize the number of expected completed tasks".

7.2 Synthetic Dataset
In the synthetic dataset experiments, we have to ensure that the vertices which are randomly generated should be located in
Changchun city. For simplicity, in each time experiment, the latitude and longitude of each vertex are randomly generated in
specific ranges. The longitudes range from 125.1 to 125.5 and the latitudes range from 43.8 to 44.

7.3 Real-world Dataset
To do the real-world dataset experiments, we obtain the latitudes and longitudes of 400 hotels in Changchun as vertices and use
BaiduMap Web API to calculate the road length between all vertices as our traffic network. We will give a detailed introduction
about how we use BaiDuMap Web API to get these data.
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Step 1. Get the location of 400 hotels
In the real-world dataset experiments, we have to ensure that each vertex in the dataset corresponds to a real POI (Point of

Interest) in Changchun. So we use place API, which is used to find a specific kind of POI in a given region, to find 400 hotels
in Changchun. We randomly select the detailed information of two hotels in Changchun which will be used later. The detailed
information of hotels mainly includes name, location, and address.
We will use the location information of each hotel at the step 2: get the road length between each pair of hotels.
Step 2. Get the road length between each pair of hotels
We use Direction API to get the road length between each pair of hotels. The Direction API can search for qualified walking

route plan based on the coordinates of the starting point and end point. The returned message contains an attribute named
“distance”, which represents the walking distance in this plan. We regard the attribute “distance” as the road length between two
hotels. To use this API, we need to input the latitude and longitude of starting point A and end point B.
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(c) WTR is fixed as 0.5
FIGURE 4 TBPR comparisons in the real-world dataset experiments with three situations
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(c) WTR is fixed as 0.5
FIGURE 5 TCR comparisons in the real-world dataset experiments with three situations

In every experiment where the number of tasks and the number of workers are given, we randomly select some vertices to
formulate a set of tasks and a set of workers to do our experiment.

7.4 Experiment settings
Settings for testing our LocTrajBundling algorithm: In both the real-world dataset experiments and the synthetic dataset exper-
iments, we use three situations to test the performances of our algorithm. The first situation is that the number of workers is
fixed as 80; the number of tasks is variable in different cases. The second situation is that the number of tasks is fixed as 160;
the number of workers is variable in different cases. And in the third situation, the worker-task ratio is fixed as 0.5; the number
of tasks and the number of workers is variable in different cases.
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FIGURE 6 TBPR comparisons in the synthetic dataset experiments with three situations
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FIGURE 7 TCR comparisons in the synthetic dataset experiments with three situations

4 0 8 0 1 2 0 1 6 00 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

TC
R

N u m b e r  o f  T a s k s

 0 . 2 5   0 . 5   0 . 7 5   0 . 9 9

(a) the number of workers is fixed as 20

4 0 8 0 1 2 0 1 6 00 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

TC
R

N u m b e r  o f  T a s k s

 0 . 2 5   0 . 5   0 . 7 5   0 . 9 9

(b) the number of workers is fixed as 60

FIGURE 8 TCR comparisons in the real-world dataset
experiments with four cooling rates
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FIGURE 9 TCR comparisons in the synthetic dataset exper-
iments with four cooling rates

A situation includes several cases, for example, in the first situation we mentioned above, there are cases such as 80 workers
with 40 tasks, 80 workers with 80 tasks, and so on. In each case, we use different data and run 100000 times experiment, and
then we calculate the average TBPR and TCR.
In our LocTrajBundling algorithm, T0 is set as 10000, T ∗ is set as e−18, and � is set as 0.99 in all the situations of both the

real-world dataset experiments and the synthetic dataset experiments.
Settings for testing the impact of different parameters on our LocTrajBundling algorithm: There are totally 3 parameters in our

LocTrajBundling algorithm: T0 that represents the initial temperature, T ∗ that represents the final temperature, � that represents
the cooling rate. These three parameters jointly determine the number of iterations in the second phase of our LocTrajBundling
algorithm, and the change of each parameter will affect the number of iterations in the second phase.
Essentially, the impact of the three parameters on our LocTrajBundling algorithm is the impact of the number of iterations

in the second phase on our LocTrajBundling algorithm. For simplicity, we regard the change of the value of � as the change of
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(a) the cooling rate is fixed as 0.25
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(b) the cooling rate is fixed as 0.50
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(c) the cooling rate is fixed as 0.75
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(d) the cooling rate is fixed as 0.99
FIGURE 10 The execution frequency of the simulated annealing optimization algorithm in the real-world dataset experiments

��������������
	�
���
��
��
	�
���
���
���
���
�	�

�
��
��
��
	�
���
���
���
���

���
�
�
���
���
��

�
�


	
�
�
�
�
�
�
�
�
�
�


�
�


�
	
� ����
��������
��

(a) the cooling rate is fixed as 0.25

��������������
	�
���
��
��
	�
���
���
���
���
�	�

�

��

��

��

	�

���

���

���
�
�
���
���
��

�
�


	
�
�
�
�
�
�
�
�
�
�


�
�


�
	
� ����
��������
��

(b) the cooling rate is fixed as 0.50
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(c) the cooling rate is fixed as 0.75
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(d) the cooling rate is fixed as 0.99
FIGURE 11 The execution frequency of the simulated annealing optimization algorithm in the synthetic dataset experiments
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(b) The number of tasks is fixed as 160
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(c) WTR is fixed as 0.5
FIGURE 12 WEP comparisons in the real-world dataset experiments with three situations

the number of iterations in the second phase; we fix the value of T0 as 10000 and fix the value of T ∗ as e−18, and the value of �
ranges from 0.25 to 0.99.
We use four situations to test the impact of the number of iterations in the second phase on our LocTrajBundling algorithm,

the values of � in the four situations are 0.25, 0.5, 0.75, 0.99, respectively. In each situation, the number of workers ranges from
20 to 80, and the number of tasks ranges from 40 to 160. We use both the real-world dataset and the synthetic dataset to do
experiments, and we use different data and run 100000 times experiment in each case.

7.5 Results
Results about the TBPR of our LocTrajBundling algorithm: We show the experimental results of the real-world dataset experi-
ments about the performance of our LocTrajBundling algorithm in Fig. 4 -(a) to Fig. 4 -(c) and Fig. 5 -(a) to Fig. 5 -(c), and
we show the experimental results of the synthetic dataset experiments about the performance of our LocTrajBundling algorithm
in Fig. 6 -(a) to Fig. 6 -(c) and Fig. 7 -(a) to Fig. 7 -(c). The “Ra”, “No”, “Al” , “In” and ‘Lo”in Fig. 4 to Fig. 7 represent
the abbreviation of “LRBA”, “NoBundle”, “B-DBA” , “Initial” and “LocTrajBundling”, respectively. The error bars in Fig. 4
to Fig. 7 represent the value of standard deviation.
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(b) The number of tasks is fixed as 160
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(c) WTR is fixed as 0.5
FIGURE 13 WEP comparisons in the synthetic dataset experiments with three situations

As we can see, our algorithm can reach the highest TBPR among the five algorithms in all the six situations we mentioned
before in both the real-world dataset experiments and the synthetic dataset experiments. Initial has the second best TBPR in all
the three situations. In Fig. 4 -(a) and Fig. 6 -(a), the TBPR values of LRBA, NoBundle and B-DBA are closed to the TBPR
value of Initial at first, but decrease rapidly with the number of tasks increases. In Fig. 4 -(b) and Fig. 6 -(b), when the number
of tasks is fixed as 160, the TBPR values of the algorithms except our LocTrajBundling algorithm increase with the number of
workers increases. In Fig. 4 -(c) and Fig. 6 -(c), with the number of workers increases, the TBPR values of the five algorithms
remain stable as a whole when the WTR is fixed as 0.5.
Results about the TCR of our LocTrajBundling algorithm: As for TCR, we can see that our LocTrajBundling algorithm can

also reach the highest TCR value among all the five algorithms in the three situations. In Fig. 5 -(a) and Fig. 7 -(a), the TCR
value of our LocTrajBundling algorithm decreases with the increase of the number of tasks, but it is still higher than the TCR
values of other four algorithms; the TCR values of LRBA, NoBundle and B-DBA are closed to the TCR value of Initial at first,
but decrease rapidly with the number of tasks increases. In Fig. 5 -(b) and Fig. 7 -(b), when the number of tasks is fixed as 160,
the TCR values of all the five algorithms increase with the number of workers increases. In Fig. 5 -(c) and Fig. 7 -(c), when the
WTR is fixed as 0.5, the TCR value of our LocTrajBundling algorithm increases with the number of workers increases, while
the TCR values of the other four algorithms remain stable as a whole.
Results about the impact of different parameters on our LocTrajBundling algorithm: In Fig. 8 -(a) to Fig. 8 -(b) and Fig. 9 -

(a) to Fig. 9 -(b), we can see that, in both the real-world dataset experiments and the the synthetic dataset experiments, when the
number of tasks and the number of workers are fixed, the change of the value of cooling rate � has almost no impact on the TCR
performance of our LocTrajBundling algorithm. It is because that, in our LocTrajBundling algorithm, the simulated annealing
optimization algorithm will be repeatedly executed until the increase of the number of expected completed tasks approach zero,
so that the output of our LocTrajBundling algorithm will approach a specific value when the number of tasks and the number
of workers are fixed, no matter what the cooling rate. Therefore, it can be concluded that the change of the three parameters has
almost no impact on the TCR performance of our LocTrajBundling algorithm.
However, despite that the change of the three parameters will not affect the TCR performance of our LocTrajBundling

algorithm, it will affect the execution frequency of the simulated annealing optimization algorithm. The execution frequency of
the simulated annealing optimization algorithm represents the number of times the simulated annealing optimization algorithm
is executed. It is obvious that the performance of the simulated annealing optimization algorithm depends on the number of iter-
ations, and a higher number of iterations leads to the better performance of the simulated annealing optimization algorithm. The
better performance of the simulated annealing optimization algorithm, the less execution frequency of the simulated annealing
optimization algorithm. In Fig. 10 -(a) to Fig. 10 -(d) and Fig. 11 -(a) to Fig. 11 -(d), we can see that, the execution frequency
of the simulated annealing optimization algorithm decreases rapidly with the cooling rate � increases when the number of tasks,
and the number of workers are fixed in both the real-world dataset experiments and the synthetic dataset experiments.
Results about the WEP of our LocTrajBundling algorithm: From Fig. 12 -(a) to Fig. 12 -(c) and Fig. 13 -(a) to Fig. 13 -

(c), we can see that, in both the real-world dataset experiments and the the synthetic dataset experiments, our LocTrajBundling
algorithm can not reach the highest WEP value among all the five algorithms in the three situations. This is because our Loc-
TrajBundling algorithm aims to maximize the benefit of requester in WCMCS by task bundling. However, task bundling will
reduce the freedom of workers to select tasks, so that workers may have to complete some tasks they don’t want to complete
and suffer benefit damage. In all situations of both the real-world dataset experiments and the the synthetic dataset experiments,
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the experimental results show that NoBundle algorithm reaches higher WEP value than the other four algorithms because the
workers in NoBundle have complete freedom in selecting tasks.

8 CONCLUSION

MCS is a promising sensing paradigm and has developed rapidly in recent years. Task assignment is a crucial problem in
mobile crowdsensing and has been studied for many years. Most existing researches mainly concentrate on the task assignment
problem in requester-centric mobile crowdsensing (RCMCS), where the requester assigns tasks to workers, and workers pas-
sively complete the tasks assigned by the requester. Few researches focus on worker-centric mobile crowdsensing (WCMCS),
where workers can determine what tasks they will complete to maximize their benefits. In WCMCS, workers are more likely to
select the tasks which are nearer to their trajectories or the tasks with higher rewards due to the individual rationality, so that some
tasks may be selected by numerous workers while some tasks may be selected by no workers. Therefore, it is hard to achieve
global optimum (maximize the number of expected completed tasks) in WCMCS where we empower workers autonomously
select tasks to complete, so that the requester in WCMCS will suffer benefit damage because the requester wants to maximize
the number of expected tasks. In this paper, we apply task bundling to address this issue and formulate a novel task bundling
problem in worker-centric mobile crowdsensing with the objective of maximizing the number of expected completed tasks. In
order to solve this problem, we propose a heuristic algorithm named LocTrajBundling with two phases: initial solution construc-
tion and simulated annealing optimization. The LocTrajBundling algorithm bundles tasks according to the location of tasks and
the trajectories of workers. Compared with other algorithms, experimental results show that, in both the real-world dataset exper-
iments and the synthetic dataset experiments, our algorithm can reach the highest task bundling performance ratio in contrast
with other four algorithms named LRBA, NoBundle, B-DBA and Initial.
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