618,910 research outputs found

    Application Of Fuzzy Mathematics Methods To Processing Geometric Parameters Of Degradation Of Building Structures

    Get PDF
    The aim of research is formalization of the expert experience, which is used in processing geometric parameters of building structure degradation, using fuzzy mathematics. Materials that are used to specify fuzzy models are contained in expert assessments and scientific and technical reports on the technical condition of buildings. The information contained in the reports and assessments is presented in text form and is accompanied by a large number of photographs and diagrams. Model specification methods, based on the analysis of such information on the technical state of structures with damages and defects of various types, primarily lead to difficulties associated with the presentation of knowledge and require the formalization of expert knowledge and experience in the form of fuzzy rules. Approbation and adaptation of the rules is carried out in the process of further research taking into account the influence of random loads and fields. The scientific novelty of the work is expanding of the knowledge base due to the geometric parameters of structural degradation, on the basis of which a fuzzy conclusion about their technical state in the systems of fuzzy product rules at different stages of the object's life cycle is realized. The results of the work are presented in the form of a formalized description of the geometric parameters of degradation. The knowledge presented in the work is intended for the development of technical documentation that is used at the pre-project stage of building reconstruction, but the gained experience is the source of information on the basis of which a constructive solution is selected in the design process of analogical objects. In addition, the knowledge gained from the analysis of expert assessments of the state of various designs is necessary for development of automated expert evaluation processing systems. The use of such evaluation systems will significantly reduce the risks of the human factor associated with the errors in the specification of models for predicting the processes of structural failure at various stages of ensuring the reliability and safety of buildings

    Possibilities of applying the E-government management concept in Serbian cities

    Get PDF
    Recent urban transformations worldwide consequentially lead to the numerous environmental problems that have to be solved by complex structure of social interest groups which have to be included in that process. This demands initiated requisitioning and modification of concepts and methodologies of planning and managing urban development. At this moment there are different models used in world wide practice, but main bases of new methods and techniques are the same. Leaving the idea of possibility of constituting the universal urban planning model lead to very productive results in developing the disciplinary methodologies. Process of transformation of traditional comprehensive urban planning model to integrated procedural pluralistic model (based on sustainable development principles) is something that can be underlined as a main characteristic of disciplinary development. The questions of decision making mechanisms and plans implementation are put in axes of conceptual and methodological considerations. Urban planning loses the classic form of making the multi level comprehensive urban plans with exact spatial and time horizon. It means, in general that planning and managing of urban development is aiming to be realistic, decentralized, strategic and problem oriented, arbitrary, not instructive, but understood as a efficient and effective process. Operational support to the this kind of approach are Decision Support IT tools, such as GIS - Geographical Information Systems or ES -Expert Systems. Usability of IT tools is based on their capability to perform fast and complicated processing of spatial data and on their flexibility towards specific real problems which are to be solved. In order to use maximum of capabilities of these tools in practice problem solving it is necessary to adjust their structure and usage to the: - actual conditions of socioeconomic of the context in which urban development planning and management is performed, - practical demands that managing of urban development has to fore fill, - all participants in urban management process, - institutional mechanisms and procedures

    Knowledge Author: Facilitating user-driven, Domain content development to support clinical information extraction

    Get PDF
    Background: Clinical Natural Language Processing (NLP) systems require a semantic schema comprised of domain-specific concepts, their lexical variants, and associated modifiers to accurately extract information from clinical texts. An NLP system leverages this schema to structure concepts and extract meaning from the free texts. In the clinical domain, creating a semantic schema typically requires input from both a domain expert, such as a clinician, and an NLP expert who will represent clinical concepts created from the clinician's domain expertise into a computable format usable by an NLP system. The goal of this work is to develop a web-based tool, Knowledge Author, that bridges the gap between the clinical domain expert and the NLP system development by facilitating the development of domain content represented in a semantic schema for extracting information from clinical free-text. Results: Knowledge Author is a web-based, recommendation system that supports users in developing domain content necessary for clinical NLP applications. Knowledge Author's schematic model leverages a set of semantic types derived from the Secondary Use Clinical Element Models and the Common Type System to allow the user to quickly create and modify domain-related concepts. Features such as collaborative development and providing domain content suggestions through the mapping of concepts to the Unified Medical Language System Metathesaurus database further supports the domain content creation process. Two proof of concept studies were performed to evaluate the system's performance. The first study evaluated Knowledge Author's flexibility to create a broad range of concepts. A dataset of 115 concepts was created of which 87 (76%) were able to be created using Knowledge Author. The second study evaluated the effectiveness of Knowledge Author's output in an NLP system by extracting concepts and associated modifiers representing a clinical element, carotid stenosis, from 34 clinical free-text radiology reports using Knowledge Author and an NLP system, pyConText. Knowledge Author's domain content produced high recall for concepts (targeted findings: 86%) and varied recall for modifiers (certainty: 91% sidedness: 80%, neurovascular anatomy: 46%). Conclusion: Knowledge Author can support clinical domain content development for information extraction by supporting semantic schema creation by domain experts

    Machine Learning Approaches in Agile Manufacturing with Recycled Materials for Sustainability

    Full text link
    It is important to develop sustainable processes in materials science and manufacturing that are environmentally friendly. AI can play a significant role in decision support here as evident from our earlier research leading to tools developed using our proposed machine learning based approaches. Such tools served the purpose of computational estimation and expert systems. This research addresses environmental sustainability in materials science via decision support in agile manufacturing using recycled and reclaimed materials. It is a safe and responsible way to turn a specific waste stream to value-added products. We propose to use data-driven methods in AI by applying machine learning models for predictive analysis to guide decision support in manufacturing. This includes harnessing artificial neural networks to study parameters affecting heat treatment of materials and impacts on their properties; deep learning via advances such as convolutional neural networks to explore grain size detection; and other classifiers such as Random Forests to analyze phrase fraction detection. Results with all these methods seem promising to embark on further work, e.g. ANN yields accuracy around 90\% for predicting micro-structure development as per quench tempering, a heat treatment process. Future work entails several challenges: investigating various computer vision models (VGG, ResNet etc.) to find optimal accuracy, efficiency and robustness adequate for sustainable processes; creating domain-specific tools using machine learning for decision support in agile manufacturing; and assessing impacts on sustainability with metrics incorporating the appropriate use of recycled materials as well as the effectiveness of developed products. Our work makes impacts on green technology for smart manufacturing, and is motivated by related work in the highly interesting realm of AI for materials science

    Organisational learning - a critical systems thinking discipline

    Get PDF
    Original Paper European Journal of Information Systems (2001) 10, 135–146; doi:10.1057/palgrave.ejis.3000394 Organisational learning—a critical systems thinking discipline P Panagiotidis1,3 and J S Edwards2,4 1Deloitte and Touche, Athens, Greece 2Aston Business School, Aston University, Aston Triangle, Birmingham, B4 7ET, UK Correspondence: Dr J S Edwards, Aston Business School, Aston University, Aston Triangle, Birmingham, B4 7ET, UK. E-mail: [email protected] 3Petros Panagiotidis is Manager responsible for the Process and Systems Integrity Services of Deloitte and Touche in Athens, Greece. He has a BSc in Business Administration and an MSc in Management Information Systems from Western International University, Phoenix, Arizona, USA; an MSc in Business Systems Analysis and Design from City University, London, UK; and a PhD degree from Aston University, Birmingham, UK. His doctorate was in Business Systems Analysis and Design. His principal interests now are in the ERP/DSS field, where he serves as project leader and project risk managment leader in the implementation of SAP and JD Edwards/Cognos in various major clients in the telecommunications and manufacturing sectors. In addition, he is responsible for the development and application of knowledge management systems and activity-based costing systems. 4John S Edwards is Senior Lecturer in Operational Research and Systems at Aston Business School, Birmingham, UK. He holds MA and PhD degrees (in mathematics and operational research respectively) from Cambridge University. His principal research interests are in knowledge management and decision support, especially methods and processes for system development. He has written more than 30 research papers on these topics, and two books, Building Knowledge-based Systems and Decision Making with Computers, both published by Pitman. Current research work includes the effect of scale of operations on knowledge management, interfacing expert systems with simulation models, process modelling in law and legal services, and a study of the use of artifical intelligence techniques in management accounting. Top of pageAbstract This paper deals with the application of critical systems thinking in the domain of organisational learning and knowledge management. Its viewpoint is that deep organisational learning only takes place when the business systems' stakeholders reflect on their actions and thus inquire about their purpose(s) in relation to the business system and the other stakeholders they perceive to exist. This is done by reflecting both on the sources of motivation and/or deception that are contained in their purpose, and also on the sources of collective motivation and/or deception that are contained in the business system's purpose. The development of an organisational information system that captures, manages and institutionalises meaningful information—a knowledge management system—cannot be separated from organisational learning practices, since it should be the result of these very practices. Although Senge's five disciplines provide a useful starting-point in looking at organisational learning, we argue for a critical systems approach, instead of an uncritical Systems Dynamics one that concentrates only on the organisational learning practices. We proceed to outline a methodology called Business Systems Purpose Analysis (BSPA) that offers a participatory structure for team and organisational learning, upon which the stakeholders can take legitimate action that is based on the force of the better argument. In addition, the organisational learning process in BSPA leads to the development of an intrinsically motivated information organisational system that allows for the institutionalisation of the learning process itself in the form of an organisational knowledge management system. This could be a specific application, or something as wide-ranging as an Enterprise Resource Planning (ERP) implementation. Examples of the use of BSPA in two ERP implementations are presented

    Specifications and Development of Interoperability Solution dedicated to Multiple Expertise Collaboration in a Design Framework

    Get PDF
    This paper describes the specifications of an interoperability platform based on the PPO (Product Process Organization) model developed by the French community IPPOP in the context of collaborative and innovative design. By using PPO model as a reference, this work aims to connect together heterogonous tools used by experts easing data and information exchanges. After underlining the growing needs of collaborative design process, this paper focuses on interoperability concept by describing current solutions and their limits. Then a solution based on the flexibility of the PPO model adapted to the philosophy of interoperability is proposed. To illustrate these concepts, several examples are more particularly described (robustness analysis, CAD and Product Lifecycle Management systems connections)

    Expert Elicitation for Reliable System Design

    Full text link
    This paper reviews the role of expert judgement to support reliability assessments within the systems engineering design process. Generic design processes are described to give the context and a discussion is given about the nature of the reliability assessments required in the different systems engineering phases. It is argued that, as far as meeting reliability requirements is concerned, the whole design process is more akin to a statistical control process than to a straightforward statistical problem of assessing an unknown distribution. This leads to features of the expert judgement problem in the design context which are substantially different from those seen, for example, in risk assessment. In particular, the role of experts in problem structuring and in developing failure mitigation options is much more prominent, and there is a need to take into account the reliability potential for future mitigation measures downstream in the system life cycle. An overview is given of the stakeholders typically involved in large scale systems engineering design projects, and this is used to argue the need for methods that expose potential judgemental biases in order to generate analyses that can be said to provide rational consensus about uncertainties. Finally, a number of key points are developed with the aim of moving toward a framework that provides a holistic method for tracking reliability assessment through the design process.Comment: This paper commented in: [arXiv:0708.0285], [arXiv:0708.0287], [arXiv:0708.0288]. Rejoinder in [arXiv:0708.0293]. Published at http://dx.doi.org/10.1214/088342306000000510 in the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org
    • 

    corecore