404 research outputs found

    An investigation to examine the most appropriate methodology to capture historical and modern preserved anatomical specimens for use in the digital age to improve access: a pilot study

    Get PDF
    Anatomico-pathological specimens constitute a valuable component of many medical museums or institutional collections but can be limited in their impact on account of both physical and intellectual inaccessibility. Further concerns relate to conservation as anatomical specimens may be subject to tissue deterioration, constraints imposed by spatial or financial limitations of the host institution, or accident-based destruction. In awareness of these issues, a simple and easily implementable methodology to increase accessibility, impact and conservation of anatomical specimens is proposed which combines photogrammetry, object virtual reality (object VR), and interactive portable document format (PDF) with supplementary historical and anatomical commentary. The methodology was developed using wet, dry, and plastinated specimens from the historical and modern collections in the Museum of Anatomy at the University of Glasgow. It was found that photogrammetry yielded excellent results for plastinated specimens and showed potential for dry specimens, while object VR produced excellent photorealistic virtual specimens for all materials visualised. Use of PDF as output format was found to allow for the addition of textual, visual, and interactive content, and as such supplemented the virtual specimen with multidisciplinary information adaptable to the needs of various audiences. The results of this small-scale pilot study indicate the beneficial nature of combining these established techniques into a methodology for the digitisation and utilisation of historical anatomical collections in particular, but also collections of material culture more broadly

    Considerations for Post-processing Parameters in Mixed-Method 3D Analyses: A Mesolithic Mandibular Case Study

    Get PDF
    The production of three-dimensional (3D) digital meshes of surface and computed tomographic (CT) data has become widespread in morphometric analyses of anthropological and archaeological data. Given that processing methods are not standardized, this leaves questions regarding the comparability of processed and digitally curated 3D datasets. The goal of this study was to identify those processing parameters that result in the most consistent fit between CT-derived meshes and a 3D surface model of the same human mandible. Eight meshes, each using unique thresholding and smoothing parameters, were compared to assess whole-object deviations, deviations along curves, and deviations between specific anatomical features on the surface model when compared with the CT scans using a suite of comparison points. Based on calculated gap distances, the mesh that thresholded at “0” with an applied smoothing technique was found to deviate least from the surface model, although it is not the most biologically accurate. Results have implications for aggregated studies that employ multimodal 3D datasets, and caution is recommended for studies that enlist 3D data from websites and digital repositories, particularly if processing parameters are unknown or derived for studies with different research foci. La producción de mallas digitales tridimensionales (3D) de superficie e información tomográfica computarizada (TC) se ha generalizado en los analisis morfométricos de datos antropológicos y arqueológicos. Dado que los métodos de procesamiento no están estandarizados quedan dudas sobre la comparabilidad de conjuntos de datos 3D procesados y curados digitalmente. El objetivo de este estudio fue identificar los parámetros de procesamiento que tienen la compatibilidad más consistente entre mallas derivadas de TC y un modelo de superficie 3D de la misma mandibula humana. Fueron comparadas ocho mallas cada una con parámetros únicos de umbralización y suavizado, para evaluar las desviaciones de todo el objeto, las desviaciones a lo largo de las curvas y las desviaciones entre características anatómicas específicas en el modelo de superficie, en comparación con cada una de las tomografías computarizadas utilizando un conjunto de puntos de comparación. Con base en las distancias de separación calculadas, aunque no las más precisas desde el punto de vista biológico, se encontró que la malla con umbral en “0” con una técnica de suavizado aplicada se desvía menos de la superficie modelo. Los resultados tienen implicaciones para los estudios agregados que emplean conjuntos de datos 3D multimodales y se recomienda precaución para los estudios que incluyen datos 3D de sitios web y repositorios digitales, especialmente si los parámetros de procesamiento son desconocidos o derivados de estudios con diferentes focos de investigación

    Three-dimensional image surface acquisition in vertebrate paleontology: A review of principal techniques

    Get PDF
    Three-dimensional (3D) surface scanning includes techniques of image acquisition and image processing. Among the former, hardware devices (e.g., portable and non-portable scanners, camera) capture images from the target, whereas image processing is conducted via specialized software, in which acquired images are processed to merge them into a single 3D surface model. Image surface scanning comprises a wide variety of devices which incorporate different image acquisition techniques, all of them with potential high standards results. We describe four different scanning devices and techniques commonly used in vertebrate paleontology in order to compare them in terms of pros and cons, considering different variables, such as scanning time, post-processing time, costs and image resolution. The decision on which device to choose will depend on the budget available, the portability as well as the nature of the fossil material being analyzed (e.g., size, weight, accessibility). In the light of this, photogrammetry constitutes the image surface technique which fulfills these requirements, having the best cost-benefit relationship

    Characterization of a Contact-Stylus Surface Digitization Method Using Collaborative Robots: Accuracy Evaluation in the Context of Shoulder Replacement or Resurfacing

    Get PDF
    Total shoulder arthroplasty (TSA) is the third most common joint replacement. While robot-assisted hip and knee replacement technologies have enjoyed extensive development, this has been limited in the upper limb. This work focused on quantifying the localization accuracy of a robotic system, and evaluating its efficacy in the context of TSA. A collaborative robot was fitted with a stylus tip to perform manual surface digitizations using the robot’s encoder output. In the first experiment, two precision-machined master cubes, representing the working volume around a glenoid structure, were used for system validation. Next, cadaveric glenoids were digitized and compared to a ‘gold standard’ laser scanner. Digitization errors were 0.37±0.27 mm, showing that collaborative robotics can be used for osseous anatomy digitization. This thesis presents two novel concepts: 1) use of collaborative robotics for manually operated surface digitizing, and 2) optical fiducial technique, allowing registration between a laser scanner and stylus digitizer

    THREE-DIMENSIONAL FACIAL ANTHROPOMETRY

    Get PDF
    The use of 3D surface technology is progressively increasing in health clinics and research centers. Methods of capturing 3D facial surface may obtain more imaging information providing a reliable and fast analysis. Stereophotogrammetry is a promising method of soft-tissue evaluation that allows reliable analysis of craniofacial deformities, providing fundamental parameters to plan and evaluate dental treatments and maxillofacial surgery, so improving the multi-disciplinary and multi-species studies of genotype\u2013phenotype correlations through simple and precise measurements. In the current study, photogrammetry/stereophotogrammetry systems were used to evaluate soft-tissue facial morphology and dental casts. Three-dimensional images were collected and rebuilt in 3D, using software for rendering images to establish, analyze and compare morphology features of craniofacial structures, and to assess the usage and limitations of these devices. The use and investigation of this system were divided in 4 studies: 1) A photographic system for the three-dimensional study of facial morphology; 2) Accuracy and reproducibility of a 3D stereophotogrammetry imaging system; 3) Digital dental cast placement in 3-dimensional, full-face reconstruction: A technical evaluation and 4) Unilateral Cleft Lip and Palate (UCLP): a 3D evaluation. The current studies found the used 3D image systems both accurate and repeatable. The 3D devices and the methods analyzed in these studies could therefore be usefully used for clinical analysis in maxillofacial, plastic and esthetic surgery, as well as in all dental fields. The 3D stereophotogrammetric systems have several advantages over direct anthropometry and gradually are becoming into more accessible cost, replacing classical methods to quantify surface topography

    Evaluating osteological ageing from digital data

    Get PDF
    YesAge at death estimation of human skeletal remains is one of the key issues in constructing a biological profile both in forensic and archaeological contexts. The traditional adult osteological methods evaluate macroscopically the morphological changes that occur with increasing age of specific skeletal indicators, such as the cranial sutures, the pubic bone, the auricular surface of the ilium and the sternal end of the ribs. Technologies such as CT and laser scanning are becoming more widely used in anthropology, and several new methods have been developed. This review focuses on how the osteological age-related changes have been evaluated in digital data. Firstly, the 3D virtual copies of the bones have been used to mimic the appearance of the dry bones and the application of the traditional methods. Secondly, the information directly extrapolated from CT scan has been used to qualitatively or quantitatively assess the changes of the trabecular bones, the thickness of the cortical bones, and to perform morphometric analyses. Lastly, the most innovative approach has been the mathematical quantification of the changes of the pelvic joints, calculating the complexity of the surface. The importance of new updated reference datasets, created thanks to the use of CT scanning in forensic settings, is also discussed.CV was supported from the Danish Council for Independent Research (DFF – 4005-00102B – FTP

    Three-dimensional image technology in forensic anthropology: assessing the validity of biological profiles derived from CT-3D images of the skeleton

    Full text link
    This project explores the reliability of building a biological profile for an unknown individual based on three-dimensional (3D) images of the individual's skeleton. 3D imaging technology has been widely researched for medical and engineering applications, and it is increasingly being used as a tool for anthropological inquiry. While the question of whether a biological profile can be derived from 3D images of a skeleton with the same accuracy as achieved when using dry bones has been explored, bigger sample sizes, a standardized scanning protocol and more interobserver error data are needed before 3D methods can become widely and confidently used in forensic anthropology. 3D images of Computed Tomography (CT) scans were obtained from 130 innominate bones from Boston University's skeletal collection (School of Medicine). For each bone, both 3D images and original bones were assessed using the Phenice and Suchey-Brooks methods. Statistical analysis was used to determine the agreement between 3D image assessment versus traditional assessment. A pool of six individuals with varying experience in the field of forensic anthropology scored a subsample (n = 20) to explore interobserver error. While a high agreement was found for age and sex estimation for specimens scored by the author, the interobserver study shows that observers found it difficult to apply standard methods to 3D images. Higher levels of experience did not result in higher agreement between observers, as would be expected. Thus, a need for training in 3D visualization before applying anthropological methods to 3D bones is suggested. Future research should explore interobserver error using a larger sample size in order to test the hypothesis that training in 3D visualization will result in a higher agreement between scores. The need for the development of a standard scanning protocol focusing on the optimization of 3D image resolution is highlighted. Applications for this research include the possibility of digitizing skeletal collections in order to expand their use and for deriving skeletal collections from living populations and creating population-specific standards. Further research for the development of a standard scanning and processing protocol is needed before 3D methods in forensic anthropology are considered as reliable tools for generating biological profiles

    Methodology To Capture Historical And Modern Preserved Anatomical Specimens For Use In The Digital Age To Improve Access - A Pilot Study

    Get PDF
    Anatomico-pathological specimens constitute a valuable component of many medical museums or institutional collections but can be limited in their impact on account of both physical and intellectual inaccessibility. Further concerns relate to conservation as anatomical specimens may be subject to tissue deterioration, constraints imposed by spatial or financial limitations of the host institution, or accident-based destruction. In awareness of these issues, a simple and easily implementable methodology to increase accessibility, impact and conservation of anatomical specimens is proposed which combines photogrammetry, object virtual reality (object VR), and interactive portable document format (PDF) with supplementary historical and anatomical commentary. The methodology was developed using wet, dry, and plastinated specimens from the historical and modern collections in the Museum of Anatomy at the University of Glasgow. It was found that photogrammetry yielded excellent results for plastinated specimens and showed potential for dry specimens, while object VR produced excellent photorealistic virtual specimens for all materials visualised. Use of PDF as output format was found to allow for the addition of textual, visual, and interactive content, and as such supplemented the virtual specimen with multidisciplinary information adaptable to the needs of various audiences. The results of this small-scale pilot study indicate the beneficial nature of combining these established techniques into a methodology for the digitisation and utilisation of historical anatomical collections in particular, but also collections of material culture more broadly

    Advanced cranial navigation

    Get PDF
    Neurosurgery is performed with extremely low margins of error. Surgical inaccuracy may have disastrous consequences. The overall aim of this thesis was to improve accuracy in cranial neurosurgical procedures by the application of new technical aids. Two technical methods were evaluated: augmented reality (AR) for surgical navigation (Papers I-II) and the optical technique of diffuse reflectance spectroscopy (DRS) for real-time tissue identification (Papers III-V). Minimally invasive skull-base endoscopy has several potential benefits compared to traditional craniotomy, but approaching the skull base through this route implies that at-risk organs and surgical targets are covered by bone and out of the surgeon’s direct line of sight. In Paper I, a new application for AR-navigated endoscopic skull-base surgery, based on an augmented-reality surgical navigation (ARSN) system, was developed. The accuracy of the system, defined by mean target registration error (TRE), was evaluated and found to be 0.55±0.24 mm, the lowest value reported error in the literature. As a first step toward the development of a cranial application for AR navigation, in Paper II this ARSN system was used to enable insertions of biopsy needles and external ventricular drainages (EVDs). The technical accuracy (i.e., deviation from the target or intended path) and efficacy (i.e., insertion time) were assessed on a 3D-printed realistic, anthropomorphic skull and brain phantom; Thirty cranial biopsies and 10 EVD insertions were performed. Accuracy for biopsy was 0.8±0.43 mm with a median insertion time of 149 (87-233) seconds, and for EVD accuracy was 2.9±0.8 mm at the tip with a median angular deviation of 0.7±0.5° and a median insertion time of 188 (135-400) seconds. Glial tumors grow diffusely in the brain, and patient survival is correlated with the extent of tumor removal. Tumor borders are often invisible. Resection beyond borders as defined by conventional methods may further improve a patient’s prognosis. In Paper III, DRS was evaluated for discrimination between glioma and normal brain tissue ex vivo. DRS spectra and histology were acquired from 22 tumor samples and 9 brain tissue samples retrieved from 30 patients. Sensitivity and specificity for the detection of low-grade gliomas were 82.0% and 82.7%, respectively, with an AUC of 0.91. Acute ischemic stroke caused by large vessel occlusion is treated with endovascular thrombectomy, but treatment failure can occur when clot composition and thrombectomy technique are mismatched. Intra-procedural knowledge of clot composition could guide the choice of treatment modality. In Paper IV, DRS, in vivo, was evaluated for intravascular clot characterization. Three types of clot analogs, red blood cell (RBC)-rich, fibrin-rich and mixed clots, were injected into the external carotids of a domestic pig. An intravascular DRS probe was used for in-situ measurements of clots, blood, and vessel walls, and the spectral data were analyzed. DRS could differentiate clot types, vessel walls, and blood in vivo (p<0,001). The sensitivity and specificity for detection were 73.8% and 98.8% for RBC clots, 100% and 100% for mixed clots, and 80.6% and 97.8% for fibrin clots, respectively. Paper V evaluated DRS for characterization of human clot composition ex vivo: 45 clot units were retrieved from 29 stroke patients and examined with DRS and histopathological evaluation. DRS parameters correlated with clot RBC fraction (R=81, p<0.001) and could be used for the classification of clot type with sensitivity and specificity rates for the detection of RBC-rich clots of 0.722 and 0.846, respectively. Applied in an intravascular probe, DRS may provide intra-procedural information on clot composition to improve endovascular thrombectomy efficiency
    corecore