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Summary  

Age at death estimation of human skeletal remains is one of the key issues in constructing a 

biological profile both in forensic and archaeological contexts. The traditional adult osteological 

methods evaluate macroscopically the morphological changes that occur with increasing age of 

specific skeletal indicators, such as the cranial sutures, the pubic bone, the auricular surface of the 

ilium and the sternal end of the ribs. Technologies such as CT and laser scanning are becoming 

more widely used in anthropology, and several new methods have been developed. This review 

focuses on how the osteological age-related changes have been evaluated in digital data. Firstly, the 

3D virtual copies of the bones have been used to mimic the appearance of the dry bones and the 

application of the traditional methods. Secondly, the information directly extrapolated from CT scan 

has been used to qualitatively or quantitatively assess the changes of the trabecular bones, the 

thickness of the cortical bones, and to perform morphometric analyses. Lastly, the most innovative 

approach has been the mathematical quantification of the changes of the pelvic joints, calculating 

the complexity of the surface. The importance of new updated reference datasets, created thanks to 

the use of CT scanning in forensic settings, is also discussed.  
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Introduction  

The last decades have seen the introduction of 3D technologies to the field of biological and 

forensic anthropology. Surface scanners (laser or structured light scanners) have been introduced in 

many laboratories and computed tomography (CT) scanners, even micro-CT scanners, have started 

to be used for anthropological analysis. These 3D technologies play an important role in permanent 

documentation of bones, creating virtual copies always accessible even when the actual specimen 

can no longer be analysed for reasons such as repatriation or reburial. Moreover, virtual osteological 

collections allow easier and faster sharing of data among researchers around the world, thus 

promoting comparative studies. Another valid reason for scanning skeletal collections is to preserve 

bones from further damage and, at the same time, to make those unique and fragile specimens 

usable for teaching again. Some remarkable examples of digital collections are the “3D collection” 

of the Smithsonian Institution (humanorigins.si.edu/evidence/3d-collection), “Digitised Diseases” 

(www.digitiseddiseases.org) and “From Cemetery to Clinic” 

(www.barc.brad.ac.uk/FromCemeterytoClinic/index.php) of the University of Bradford. There are 

digital databases also for mummies: e.g., the IMPACT Radiological Mummy Database, designed by 

Nelson and Wade (www.impactdb.uwo.ca). Lastly, it should be mentioned that many forensic 

institutes routinely perform CT scanning before autopsy; this generates huge updated datasets of 

modern populations (Thali et al. 2003; Poulsen and Simonsen 2007). 

Digital data have also become increasingly important in dealing with anthropological issues in 

forensic, biological and archaeological contexts. For examples, CT scans are often used for forensic 

identification: to compare ante- and post-mortem information, to reconstruct biological profiles, and 

to evaluate lesions and diseases (for more details see Dedouit et. al 2014)  . In the same context, 

laser scanners have been utilised for facial identification (Lynnerup et al. 2009; Cattaneo et al. 

2012), for assessing sexual dimorphism, population and ancestry variation (Sholts et al. 2011; Ruiz 

Mediavilla et al. 2012; Shearer et al. 2012; Sholts and Warmlander 2012). CT has also been 

recognized as an efficient tool for non-destructive study of archaeological samples, such as 

mummies and bog bodies (Rühli et al. 2004; Adams and Alsop 2008; Lynnerup 2008), skeletons 

(Knusel et al. 2013), and even for cremated remains (Minozzi et al. 2010; Harvig et al. 2012). In 

addition, 3D models created using such technologies facilitate morphometric analysis allowing an 

objective evaluation of 3D morphological variations of the bones in modern humans, their 

ancestors, and their closest relatives (Zollikofer and Ponce de Leon 2005; Weber and Bookstein 

2011; Weber 2015). 
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This review will focus on how the morphological skeletal characteristics commonly used in 

adult age estimation methods have been evaluated from digital data (odontological methods will not 

be reviewed in this paper).  Essentially three approaches have been explored: 1) the use of 3D 

segmentation to mimic dry bone and the application of traditional methods; 2) the direct assessment 

of CT image information, looking at the trabecular structure, the thickness of the cortical bones, 

and/or 2D morphometric analysis; 3) the application of mathematical methods on 3D models, e.g. 

for quantifying the roughness of the surface.  The importance of new updated reference datasets, 

created thanks to the use of CT scanning in forensic settings, will also be highlighted.  

 

I- the use of 3D segmentation to mimic the appearance of dry bone 

Most methods for age estimation in adults focus on the macroscopic and 

morphological changes of the joint surfaces, such as the pubic symphyseal face (Brooks and Suchey 

1990), the auricular surface of the ilium (Lovejoy et al. 1985; Buckberry and Chamberlain 2002), 

the sternal end of the ribs (İşcan et al. 1984) and cranial sutures (Meindl and Lovejoy 1985). 3D 

visualisation of bones can be generated from CT images using post-processing software such as 3D 

slicer, Mimics, Osirix or Amira. The obtained 3D virtual bones have been used to mimic dry bone 

and the application of traditional methods. First examples of this application can be seen in mummy 

studies (Lynnerup et al. 2007; Dedouit et al. 2010; Villa et al. 2011); in these specimens, the actual 

bones cannot be directly assessed but 3D visualizations of the bones can be easily created and used 

for biological anthropological analyses. However, the performance of the unmodified traditional 

age estimation methods on 3D models is unclear, since the results of several studies are 

contradictory.  

The method of Suchey-Brooks has been tested on 3D visualizations of dry bones, 

cadavers and living subjects. Firstly, Telmon et al. (2005) tested the method on a mix sample of dry 

bones and pubic bones with soft tissues. Their results, albeit based on only two observers, were very 

promising; they obtained high intra and inter-observer agreement. Dedouit and colleagues also did 

not report any problems in two forensic cases (Dedouit et al. 2007a; Dedouit et al. 2007b). 

Conversely, Grabherr et al. (2009), Villa et al. (2013a), Wink (2014) found some difficulty in 

applying the method of Suchey-Brooks unmodified. Only few diagnostic features could be 

evaluated in 3D visualization: for instance, the billowing – useful for determination among the first 

phases – could not clearly seen in 3D of the living, because the visualisation software was not able 

to remove all of the soft tissues (Wink 2014); ventral rampart and depth of depression could not be 
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consistently assessed (Villa et al. 2013a). Wink (2014) created a table of features useful to discern 

among the phases, listing very few of the diagnostic features of the original method. Further, 

Grabherr et al. (2009) and Villa et al. (2013a) highlighted the importance of the experience in 

evaluating digital images and the  importance  of  using  correct  scanning  parameters  for  

obtaining  an  accurate 3D  model. Finally, the studies (Villa et al. 2013a; Wink 2014) also reported 

a greater variability among the observers than those found in Telmon and colleagues’ study. 

The evaluation of the 3D auricular surface seems a more difficult task with the 

traditional methods. Neither the methods of Lovejoy et al. (1985) nor Buckberry and Chamberlain 

(2002) could be applied unmodified (Barrier et al. 2009; Villa et al. 2013a). The observers of both 

studies were unable to properly evaluate microporosity and texture. Even macroporosity, transverse 

organization, apical changes were problematic features and could not be consistently scored. The 

CT-scanner settings are important here even more because slice thickness, slice increment and pitch 

can influence the visualization in 3D of the small holes and artefacts can hide the transverse 

organization (Fig.1). Above all, this surface cannot be easily isolated when soft tissues are present 

at the time of the CT scanning.  

The method of Işcan and Loth (1984) used for evaluating the sternal end of the 4
th

 rib 

was tested once and excellent agreement between bones and 3D models was found (Dedouit et al. 

2008). The sample was composed of ‘ribs with soft tissues’. As reported by the authors, one of the 

main advantages of using 3D visualization was the possibility of assessing fragile calcifications and 

osteophytes that could be damaged during the maceration process. However, other studies are 

necessary to yield more confidence in the applicability of this method.  

The method of Meindl and Lovejoy (1985) has not been applied unmodified. In many 

cases, the resolution of the CT scans does not allow proper evaluation of the degree of closure of 

the sutures on 3D visualisations (Fig. 2); however, CT images permit the evaluation of the degree of 

closure of the suture in its entirety, looking at both ectocranial and endocranial sutures, as shown by 

Harth et al. (2010), Chiba et al. (2013), and Boyd et al. (2015).  

One study tested two traditional methods (Suchey-Brooks and Buckberry-

Chamberlain), applied to 3D models of bones created from laser scans (Villa et al. 2013a) .  The 

morphological features of the bone surface were better replicated in laser scans than in CT scans 

(Fig. 3), however, the problems and results did not differ from those found for 3D models created 

from CT scans. 
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Traditional methods of age estimation were developed and calibrated on dry bones, 

thus it is not surprising that they did not perform particularly well on virtual bones. Digital data 

have different potential: CT scans should be used to explore the sub surface features, e.g. trabecular 

bone; 3D models generated from surface scans could be analysed using mathematical approaches, 

for example, analysing the curvature of the surface.  These new approaches and methods will be 

presented in the next paragraphs.  

 

II. the direct assessment of CT image information  

CT data allow evaluation of more information than just the visualization of 

macroscopic bone surfaces. It is possible to look at what happens below the surface, e.g. to 

trabecular bone, and to perform morphometric analysis.  

It has been shown using X-rays that the bone density decreases with increasing age, 

the trabecular structures lose their interconnection until they disappear and the medullar space 

increases. The pubic bone was analysed by Todd (1930), humerus and femur by Schranz (1959), 

Singh et al. (1970), and Acsádi and Nemeskéri (1970), and the clavicle and calcaneus by Walker 

and Lovejoy (1985). The changes of the trabecular bone of living subjects were also evaluated using 

femora with good results (Lynnerup et al. 1990). CT scanning was used for the first time with the 

same purpose by Pasquier et al. in 1999 to assess the trabecular architecture of the pubic bone. Ten 

years later other researchers proposed similar approaches using the pubic bone (Wade et al. 2011; 

Villa et al. 2013b; Lottering et al. 2014; Lopez-Alcaraz et al. 2015) and on other bones. The 

auricular surface was investigated by Barrier et al. (2009) and Villa et al. (2013b), and the proximal 

epiphysis of the humerus and the femur by de Froidmont et al. (2013). All the studies demonstrated 

the effectiveness of CT scans for evaluating trabecular bone changes, but the results are difficult to 

compare, since different types of sample were used and different methodologies were applied. Most 

investigators evaluated the changes of trabecular architecture in bones; only Villa et al (2013b) and 

Lopez-Alcaraz et al. (2015) used CT scan of bodies, dead and living, respectively. It should be 

considered that the appearance of trabecular bone is different in post-mortem or clinical CT scans 

when the soft tissues are still in place in comparison with bones: the fine trabecular structure cannot 

be seen clearly and many of the features measured in CT-scanned bones cannot be evaluated. In 

addition, the visualisation of the trabecular structures depends on the acquisition protocols (Fig. 4).  

Not all the authors took advantage of the digital nature of the CT data. Barrier et al. (2009), Villa et 

al (2013), and de Froidmont et al. (2013) applied only qualitative, visual methodologies, recording 
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stages of trabecular bone changes. However, very good results were obtained, demonstrating the 

superiority of CT versus X-rays (de Froidmont et al. 2013) and achieving very high correlation 

between age at death and trabecular changes (Villa et al. 2013). Quantitative analysis was carried 

out by Wade et al. (2011), who did not improve the precision of age estimation, but in some way 

demonstrated that it is possible to reduce the subjectivity of the operator.  Image analysis was 

performed by Pasquier et al. in (1999) and, more recently, by Lopez-Alcaraz et al. (2015), 

quantifying the change of the grey-level distribution of trabecular bone. Although evaluated in only 

one study (Lottering et al. 2014), there seems to be great potential in looking at cortical width, 

especially in males.   

Another way to quantify age-related changes in bone is through morphometric 

analysis. Ferrant (2009), Lottering et al. (2014) and Chiba et al. (2014) measured angles, area, 

circumference, distance, height and width in both 3D models and CT images. Once again, the object 

of the research was the pelvic bone. Ferrant et al. (2009) considered angle, height and length in 

acetabulum, symphyseal and auricular surfaces but the correlation of their variables with age was 

very low. Lottering and colleagues (2014) found that the overall dimensions of the pubic bone 

increased with age, and circumference, surface area, height and width were significantly greater 

over 55 years.  Moderate correlations were found by Chiba et al. (2014) for some of the 10 

measurements assessed on the pubic symphysis but from their scatterplots highly individual 

variation is evident, particularly after 20-30 years. However, these studies are important because 

they have again shown the possibility of using repeatable variables and quantitative methods for age 

estimation, reducing the operator subjectivity.  

 

III. the application of mathematical methods on 3D models 

3D morphological variations of the pelvic bones have been explored using 

mathematical approaches. Only a few studies can be cited:  Biwasaka et al. (2013), Villa et al. 

(2015a), Slice and Algee-Hewitt (2015),and Stoyanova et al. (2015) . 

The first two studies - Biwasaka et al. (2013) and Villa et al. (2015a) - 

mathematically quantified the observable morphological changes used for age estimation of the 

pubic bone (both studies) and the auricular surface (only Villa et al. 2015a), calculating the 

curvature of the surface. In this context, the curvature can be defined as the variation of the surface 

from being flat; concavity results in negative values of curvature, convexity in positive ones. The 

pelvic joint surfaces are subject to morphological and degenerative changes with increasing age; the 
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surface is initially dominated by high ridges and well-marked grooves, or by marked transverse 

organisation; as age progresses, the surface becomes smoother and flatter, evolving, finally, to an 

irregular surface with increasing porosity and depressions. Mathematically, this means the surface is 

strongly convex and concave, with high positive and negative curvature values in the first stages / 

phases, changing to a flat surface in middle age with lower and more homogenous curvature values; 

lastly, the old irregular surface corresponds to less homogenous curvature values with, primarily, 

negative values due to concavities. It has been shown that curvature analysis applied on recording 

kits (Suchey-Brooks pubic bone casts (Fig. 5) and the “auricular surface recording kit” for the 

Buckberry–Chamberlain method) resulted in highly significant correlations between age and 

curvature (Villa et al. 2015a), while the same approach on bones from Terry Collection (Villa et al. 

2015a) or contemporary Japanese sample (Biwasaka et al., 2013) gave less clear signals. 

Concerning the pubic bones, the curvatures of phases I and II could be well differentiated from 

those of the other phases, but after phase III the curvature signals became indistinct for all age / 

phases.  Lower correlations associated with large individuals were found for the auricular surface. 

These two papers certainly do not provide a perfect solution to estimate age at death, but provide 

the base for future developments; the authors have just started dealing with a very small part of 

differential geometry. As claimed by Villa et al. (2015a), further surface properties such as spatial 

frequency and directional orientation should be investigated 

Slice and colleagues (Slice and Algee-Hewitt 2015 and Stoyanova et al. 2015) 

applied morphological approaches to study the variation of the surface of the pubic symphysis 

obtained from laser scanning. The two studies are part of the same larger project that aims to 

develop fully quantitative methods for age-at-death- estimation standardizing the procedures. Pubic 

bones of white males from the W.M. Bass Skeletal collection were laser scanned and used in the 

studies. 3D coordinates of the 3D models were transformed using spatial principal component 

analysis (PCA) such as the first principal component  and second principal component accounting 

for the most variance approximated the plane of the pubic symphysis (x and y-axes) with its 

associated surface irregularity aligned with the third principal component   (z-axis).  The third 

principal component was used as a quantitative indicator of the complexity of the surface. Slice and 

Algee-Hewitt (2015) evaluated the complexity of the surface using a variance-based score, while 

Stoyanova et al. (2015) used thin plate spline algorithm. Similar to the results reported for the 

curvature, better discrimination could be obtained in the first phases (Suchey- Brooks phases 1-3); 

shape variations in the older surface (Suchey- Brooks phases 4-6) were more difficult to evaluate.  
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These four papers have explored the possibility of a objective quantitative approach 

rather than the more traditional subjective / visual way, demonstrating that comparable, if not better, 

result can be obtained. However, we should not forget that reproducibility of the quantitative 

analysis among instruments should be tested, since the performance parameters of each laser 

scanner and the scanning setting of the CT scanner may influence the mathematical outcome of the 

3D models (Villa et al. 2015b; Algee-Hewitt and Wheat 2016). 

 

Reference Datasets   

Adjunct to the much wider application of CT scanning in forensic anthropology is the 

noteworthy fact that this may also be a basis for obtaining more reference data. Most of the existing 

age estimation methods were developed using the Terry Collection (Smithsonian Institution) or 

W.M. Bass Skeletal Collection (University of Tennessee). CT scanning before autopsy has been 

become routinely in many forensic departments (Thali et al. 2003; Leth 2007; Poulsen and 

Simonsen 2007; Rutty et al. 2008) with the great advantage of creating modern, up-to-date virtual 

collections. An example is the “Skeletal Biology and Forensic Anthropology Virtual Osteological 

Database” housed at the Queensland University of Technology, a CT-scan dataset of modern 

Australian male and female individuals aged birth to 75 years (Lottering et al. 2014).These virtual 

anthropological collections can be used to test and improve the traditional methods, and to develop 

and calibrate new methodologies. In addition, the existence of comparative skeletal collections is 

important, not least as access to larger samples may, for example, result in more data on age-related 

change, which may give a better so-called “coverage” of a given method (see, e.g., Konigsberg et 

al., 2008). Most often, the dry-bone methods discussed above were developed on specific 

anatomical collections creating the well-known problem of ‘age mimicry’, (Bocquet-Appel and 

Masset 1982). Also, the collections often reflect bony changes in humans living more than 100 

years ago, raising the question of whether they are completely applicable to modern forensic cases. 

A recent estimation procedure that accounts for these problems is the Transition Analysis: it is a 

Bayesian statistical approach that allows combining likelihood curves for different skeletal 

indicators (a range of features of the cranial sutures, pubic bone and auricular surface) to obtain an 

overall age estimation (Boldsen et al. 2002) using a prior distribution. This method enables age 

estimates even in case of fragmentary information, and age interval and maximum likelihood 

estimated are calculated ad hoc, i.e. they are based on the specific information available and they 

change from one skeleton to the next. It could be worth integrating the results of new methods 
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developed using digital data in the statistical procedure of transition analysis or other Bayesian 

approaches, so that an age estimates including appropriate 95% prediction intervals could be 

calculated. Moreover, the digital information extracted from CT and laser scanning data may allow 

testing different mathematical and statistical metric models to better assess the relation among the 

different traits and to help in making anthropological methods more uniform in their application. 

 

Concluding remarks and future directions 

Age estimation of human skeletal remains is one of the most important steps in constructing a 

biological profile both in archaeological and forensic contexts. The traditional adult osteological 

methods are based on the macroscopic evaluation of the changes of surface features that occur with 

increasing age of specific skeletal indicators, such as the cranial suture, the pubic bone, the auricular 

surface of the ilium and the sternal end of the ribs. Since technologies such as CT and laser 

scanning are becoming more widely used in anthropology, a review of how the osteological age-

related changes have been evaluated in digital data is opportune.  

Initially, 3D virtual copies of bones have been used to apply the traditional adult age 

estimation methods. However, most of the osteological features, such as texture or porosity, could 

not be assessed properly. The methods developed and calibrated on dry bones do not perform 

equally well on digital bones; their accuracy decreases and not only the experience of the observer 

but also the CT / laser scanner setting have an influence on how the diagnostic features can be seen. 

The next step has been to take advantage of the digital nature of the data of CT and surface 

scanning: new skeletal indicators have been considered and new quantitative methodologies have 

been applied. Trabecular bone changes and cortical bone width, as assessed from CT images, have 

been demonstrated to be useful anatomical structures for age estimation. However, their changes 

have been expressed only in a qualitative way, as seen for traditional methods. Only two studies 

have quantitatively analysed the changes using the grey-scale variation of the CT images. 

Trabecular bone changes could be also investigated using the variation of the Hounsfield Units, and 

cortical thickness could be mathematically quantified: for instance, femoral cortical thickness has 

been quantified to evaluate the risk of hip fracture in patients with osteoporosis (Poole et al. 2012; 

Treece et al. 2012). Similar procedures could be applied to assess the thickness variation associated 

with increasing age. 



11 
 

A step forward towards quantitative methods is the mathematical analysis of 3D models from 

CT and laser scanning. The most innovative approach has been the geometrical quantification of the 

changes of the pelvic joints, calculating the curvature of the surface or applying thin plate spline 

algorithm. The results are interesting and there is clearly room for improvement. To further develop 

these methods, a close collaboration between anthropologists, mathematicians, statisticians and 

computer engineers will be beneficial. Another possibility may be the application of landmark-

based geometric morphometrics. This approach has been extensively used in anthropology to assess 

sexual dimorphism on 3D models of crania, coxal bones and femora (Hennessy et al. 2005; Bilfeld 

et al. 2012; Franklin et al. 2012; Bilfeld et al. 2013; Morgan et al. 2013; Cho et al. 2015; Cavaignac 

et al. 2016; Chovalopoulou et al. 2016; Duquesnel Mana et al. 2016), to investigate population 

variation (Hennessy and Stringer 2002; Cho et al. 2015; Galland and Friess 2016; Lesciotto et al. 

2016) but not yet to estimate age-at-death.  

As for traditional methods, studies have primarily focused on the pelvic bone. A much wider 

array of skeletal bones and features should be taken into consideration. Indeed, many 

anthropologists suggest that the combination of as many skeletal indicators as possible would 

improve the accuracy of age estimation, since each skeletal trait may be subjected to different 

influences and expresses biological age differently (Ubelaker 2000). All skeletal features, even 

those that are normally overlooked such as the entheseal changes of all the bones (Nolte and 

Wilczak 2013), and the alteration of the vertebrae and of the sacrum (Rühli et al. 2005; Belcastro et 

al. 2008), can contribute to reach an accurate age estimation. Milner and Boldsen (2012) were able 

to estimate ages at death more accurately by just looking at features of the entire skeleton than was 

achievable using any of the traditional methods. 

Another digital technology that should be considered for estimating age in adults is the 

magnetic resonance (MR). Combination of the information of CT and MR may help to narrow age 

estimation intervals that are very wide especially in older individuals. Traditional methods consider 

the morphological changes of the bones surfaces; using MR it would be possible to look at the 

cartilage. For example, cranial sutures have been assessed using MR images (Cotton et al. 2005). 

However, at present this technology is time consuming and its availability is  limited; only few 

forensic institutes own one, such as in Copenhagen or in Zurich.  

In conclusion, modern reference collections should be used to calibrate existing and future 

methods, to develop quantitative unbiased age estimation methods, avoiding the well-known 
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problem of ‘age mimicry’. Furthermore, use of 3D models obtained from these reference collections 

can be used to 3D print population-specific casts.   
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Fig.1 3D segmentation of an auricular surface generated from CT scan with 

horizontal lines artefacts. CT scans were performed using a Siemens Somatom Sensation 4, 120kV, 

200mAs, 1mm slice thickness and 0.3 mm slice increment. 
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Fig. 2 3D segmentation of the skull of a 24- year-old female generated from CT scans 

performed with a Siemens Somatom Sensation 4, 120kV, 200mAs, 3mm slice thickness and 2.5 mm 

slice increment.  
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Fig 3. Photograph (a), 3D model from CT scans (b), 3D model from laser scan (c) of the same 

auricular surface. CT scans were performed using Siemens Somatom Sensation 4 at 120 kV,110 
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mAs, 0.75 mm slice thickness and 0.3 mm slice increment interval. Laser scanning were obtained 

using a custom laser scanner with a resolution of 0.1 mm (for more details see Villa et al. 2013) 

 

 

 

Fig. 4.  Visualisation of the trabecular structures in CT images of different specimens and 

performed with different CT-scanner settings: dry bone scanned with 0.63 mm slice thickness, 

0.2mm slice increment and hard reconstruction algorithm (a); cadavers scanned with 3 mm slice 

thickness, 3mm slice increment and hard reconstruction algorithm (b); and cadavers scanned with 

3 mm slice thickness, 3mm slice increment and soft reconstruction (c). CT scans were performed 

using a Siemens Somatom Sensation 4 CT scanner. 
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Fig. 5: Colour coded images of the results of the curvature analysis on the female Suchey-Brooks 

pubic bone casts. In the bar, blue, red and green represent concave, convex and flat surfaces, 

respectively. The cast was CT scanned with Siemens Somatom Emotion 6 at 130 kV, 90 mAs with 

0.63 mm slice thickness and 0.2 mm slice increment. 
 

 

 

 

 

 

 


