134 research outputs found

    Improved POLSAR Image Classification by the Use of Multi-Feature Combination

    Get PDF
    Polarimetric SAR (POLSAR) provides a rich set of information about objects on land surfaces. However, not all information works on land surface classification. This study proposes a new, integrated algorithm for optimal urban classification using POLSAR data. Both polarimetric decomposition and time-frequency (TF) decomposition were used to mine the hidden information of objects in POLSAR data, which was then applied in the C5.0 decision tree algorithm for optimal feature selection and classification. Using a NASA/JPL AIRSAR POLSAR scene as an example, the overall accuracy and kappa coefficient of the proposed method reached 91.17% and 0.90 in the L-band, much higher than those achieved by the commonly applied Wishart supervised classification that were 45.65% and 0.41. Meantime, the overall accuracy of the proposed method performed well in both C- and P-bands. Polarimetric decomposition and TF decomposition all proved useful in the process. TF information played a great role in delineation between urban/built-up areas and vegetation. Three polarimetric features (entropy, Shannon entropy, T11 Coherency Matrix element) and one TF feature (HH intensity of coherence) were found most helpful in urban areas classification. This study indicates that the integrated use of polarimetric decomposition and TF decomposition of POLSAR data may provide improved feature extraction in heterogeneous urban areas

    Classification of Polarimetric SAR Images Using Compact Convolutional Neural Networks

    Get PDF
    Classification of polarimetric synthetic aperture radar (PolSAR) images is an active research area with a major role in environmental applications. The traditional Machine Learning (ML) methods proposed in this domain generally focus on utilizing highly discriminative features to improve the classification performance, but this task is complicated by the well-known "curse of dimensionality" phenomena. Other approaches based on deep Convolutional Neural Networks (CNNs) have certain limitations and drawbacks, such as high computational complexity, an unfeasibly large training set with ground-truth labels, and special hardware requirements. In this work, to address the limitations of traditional ML and deep CNN based methods, a novel and systematic classification framework is proposed for the classification of PolSAR images, based on a compact and adaptive implementation of CNNs using a sliding-window classification approach. The proposed approach has three advantages. First, there is no requirement for an extensive feature extraction process. Second, it is computationally efficient due to utilized compact configurations. In particular, the proposed compact and adaptive CNN model is designed to achieve the maximum classification accuracy with minimum training and computational complexity. This is of considerable importance considering the high costs involved in labelling in PolSAR classification. Finally, the proposed approach can perform classification using smaller window sizes than deep CNNs. Experimental evaluations have been performed over the most commonly-used four benchmark PolSAR images: AIRSAR L-Band and RADARSAT-2 C-Band data of San Francisco Bay and Flevoland areas. Accordingly, the best obtained overall accuracies range between 92.33 - 99.39% for these benchmark study sites

    Levee Slide Detection using Synthetic Aperture Radar Magnitude and Phase

    Get PDF
    The objectives of this research are to support the development of state-of-the-art methods using remotely sensed data to detect slides or anomalies in an efficient and cost-effective manner based on the use of SAR technology. Slough or slump slides are slope failures along a levee, which leave areas of the levee vulnerable to seepage and failure during high water events. This work investigates the facility of detecting the slough slides on an earthen levee with different types of polarimetric Synthetic Aperture Radar (polSAR) imagery. The source SAR imagery is fully quad-polarimetric L-band data from the NASA Jet Propulsion Laboratory’s (JPL’s) Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR). The study area encompasses a portion of the levees of the lower Mississippi river, located in Mississippi, United States. The obtained classification results reveal that the polSAR data unsupervised classification with features extraction produces more appropriate results than the unsupervised classification with no features extraction. Obviously, supervised classification methods provide better classification results compared to the unsupervised methods. The anomaly identification is good with these results and was improved with the use of a majority filter. The classification accuracy is further improved with a morphology filter. The classification accuracy is significantly improved with the use of GLCM features. The classification results obtained for all three cases (magnitude, phase, and complex data), with classification accuracies for the complex data being higher, indicate that the use of synthetic aperture radar in combination with remote sensing imagery can effectively detect anomalies or slides on an earthen levee. For all the three samples it consistently shows that the accuracies for the complex data are higher when compared to those from the magnitude and phase data alone. The tests comparing complex data features to magnitude and phase data alone, and full complex data, and use of post-processing filter, all had very high accuracy. Hence we included more test samples to validate and distinguish results

    Advanced techniques for classification of polarimetric synthetic aperture radar data

    Get PDF
    With various remote sensing technologies to aid Earth Observation, radar-based imaging is one of them gaining major interests due to advances in its imaging techniques in form of syn-thetic aperture radar (SAR) and polarimetry. The majority of radar applications focus on mon-itoring, detecting, and classifying local or global areas of interests to support humans within their efforts of decision-making, analysis, and interpretation of Earth’s environment. This thesis focuses on improving the classification performance and process particularly concerning the application of land use and land cover over polarimetric SAR (PolSAR) data. To achieve this, three contributions are studied related to superior feature description and ad-vanced machine-learning techniques including classifiers, principles, and data exploitation. First, this thesis investigates the application of color features within PolSAR image classi-fication to provide additional discrimination on top of the conventional scattering information and texture features. The color features are extracted over the visual presentation of fully and partially polarimetric SAR data by generation of pseudo color images. Within the experiments, the obtained results demonstrated that with the addition of the considered color features, the achieved classification performances outperformed results with common PolSAR features alone as well as achieved higher classification accuracies compared to the traditional combination of PolSAR and texture features. Second, to address the large-scale learning challenge in PolSAR image classification with the utmost efficiency, this thesis introduces the application of an adaptive and data-driven supervised classification topology called Collective Network of Binary Classifiers, CNBC. This topology incorporates active learning to support human users with the analysis and interpretation of PolSAR data focusing on collections of images, where changes or updates to the existing classifier might be required frequently due to surface, terrain, and object changes as well as certain variations in capturing time and position. Evaluations demonstrated the capabilities of CNBC over an extensive set of experimental results regarding the adaptation and data-driven classification of single as well as collections of PolSAR images. The experimental results verified that the evolutionary classification topology, CNBC, did provide an efficient solution for the problems of scalability and dynamic adaptability allowing both feature space dimensions and the number of terrain classes in PolSAR image collections to vary dynamically. Third, most PolSAR classification problems are undertaken by supervised machine learn-ing, which require manually labeled ground truth data available. To reduce the manual labeling efforts, supervised and unsupervised learning approaches are combined into semi-supervised learning to utilize the huge amount of unlabeled data. The application of semi-supervised learning in this thesis is motivated by ill-posed classification tasks related to the small training size problem. Therefore, this thesis investigates how much ground truth is actually necessary for certain classification problems to achieve satisfactory results in a supervised and semi-supervised learning scenario. To address this, two semi-supervised approaches are proposed by unsupervised extension of the training data and ensemble-based self-training. The evaluations showed that significant speed-ups and improvements in classification performance are achieved. In particular, for a remote sensing application such as PolSAR image classification, it is advantageous to exploit the location-based information from the labeled training data. Each of the developed techniques provides its stand-alone contribution from different viewpoints to improve land use and land cover classification. The introduction of a new fea-ture for better discrimination is independent of the underlying classification algorithms used. The application of the CNBC topology is applicable to various classification problems no matter how the underlying data have been acquired, for example in case of remote sensing data. Moreover, the semi-supervised learning approach tackles the challenge of utilizing the unlabeled data. By combining these techniques for superior feature description and advanced machine-learning techniques exploiting classifier topologies and data, further contributions to polarimetric SAR image classification are made. According to the performance evaluations conducted including visual and numerical assessments, the proposed and investigated tech-niques showed valuable improvements and are able to aid the analysis and interpretation of PolSAR image data. Due to the generic nature of the developed techniques, their applications to other remote sensing data will require only minor adjustments

    Fuzzy Superpixels based Semi-supervised Similarity-constrained CNN for PolSAR Image Classification

    Get PDF
    Recently, deep learning has been highly successful in image classification. Labeling the PolSAR data, however, is time-consuming and laborious and in response semi-supervised deep learning has been increasingly investigated in PolSAR image classification. Semi-supervised deep learning methods for PolSAR image classification can be broadly divided into two categories, namely pixels-based methods and superpixels-based methods. Pixels-based semi-supervised methods are liable to be affected by speckle noises and have a relatively high computational complexity. Superpixels-based methods focus on the superpixels and ignore tiny detail-preserving represented by pixels. In this paper, a Fuzzy superpixels based Semi-supervised Similarity-constrained CNN (FS-SCNN) is proposed. To reduce the effect of speckle noises and preserve the details, FS-SCNN uses a fuzzy superpixels algorithm to segment an image into two parts, superpixels and undetermined pixels. Moreover, the fuzzy superpixels algorithm can also reduce the number of mixed superpixels and improve classification performance. To exploit unlabeled data effectively, we also propose a Similarity-constrained Convolutional Neural Network (SCNN) model to assign pseudo labels to unlabeled data. The final training set consists of the initial labeled data and these pseudo labeled data. Three PolSAR images are used to demonstrate the excellent classification performance of the FS-SCNN method with data of limited labels

    Deep learning in remote sensing: a review

    Get PDF
    Standing at the paradigm shift towards data-intensive science, machine learning techniques are becoming increasingly important. In particular, as a major breakthrough in the field, deep learning has proven as an extremely powerful tool in many fields. Shall we embrace deep learning as the key to all? Or, should we resist a 'black-box' solution? There are controversial opinions in the remote sensing community. In this article, we analyze the challenges of using deep learning for remote sensing data analysis, review the recent advances, and provide resources to make deep learning in remote sensing ridiculously simple to start with. More importantly, we advocate remote sensing scientists to bring their expertise into deep learning, and use it as an implicit general model to tackle unprecedented large-scale influential challenges, such as climate change and urbanization.Comment: Accepted for publication IEEE Geoscience and Remote Sensing Magazin
    • …
    corecore