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The objectives of this research are to support the development of state-of-the-art 

methods using remotely sensed data to detect slides or anomalies in an efficient and cost-

effective manner based on the use of SAR technology. Slough or slump slides are slope 

failures along a levee, which leave areas of the levee vulnerable to seepage and failure 

during high water events. This work investigates the facility of detecting the slough slides 

on an earthen levee with different types of polarimetric Synthetic Aperture Radar 

(polSAR) imagery. The source SAR imagery is fully quad-polarimetric L-band data from 

the NASA Jet Propulsion Laboratory’s (JPL’s) Uninhabited Aerial Vehicle Synthetic 

Aperture Radar (UAVSAR). The study area encompasses a portion of the levees of the 

lower Mississippi river, located in Mississippi, United States. The obtained classification 

results reveal that the polSAR data unsupervised classification with features extraction 

produces more appropriate results than the unsupervised classification with no features 

extraction. Obviously, supervised classification methods provide better classification 

results compared to the unsupervised methods. The anomaly identification is good with 

these results and was improved with the use of a majority filter. The classification 

accuracy is further improved with a morphology filter. The classification accuracy is 



 

 

significantly improved with the use of GLCM features. The classification results obtained 

for all three cases (magnitude, phase, and complex data), with classification accuracies 

for the complex data being higher, indicate that the use of synthetic aperture radar in 

combination with remote sensing imagery can effectively detect anomalies or slides on an 

earthen levee. For all the three samples it consistently shows that the accuracies for the 

complex data are higher when compared to those from the magnitude and phase data 

alone. The tests comparing complex data features to magnitude and phase data alone, and 

full complex data, and use of post-processing filter, all had very high accuracy.  Hence 

we included more test samples to validate and distinguish results.  
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CHAPTER I 

INTRODUCTION 

1.1 Overview  

Earthen levees protect large areas of populated and cultivated land in the United 

States from flooding. The potential loss of life and property associated with the 

catastrophic failure of levees can be extremely large. Over the entire US, there are more 

than 150,000 kilometers of levee structures of varying designs and conditions. The recent 

catastrophe caused by Hurricane Katrina and Midwest flood emphasizes the importance 

of examination of levees to improve the condition of what that are prone to failure during 

floods, as shown in Figures 1.1-1.2. On-site inspection of levees is costly and time-

consuming, so there is a need to develop efficient techniques based on remote sensing 

technologies to identify levees that are more vulnerable to failure under flood loading. 

One type of problem that occurs along these levees which can lead to complete failure 

during a high water event is slough slides [1]. Slough or slump slides are slope failures 

along a levee, which leave areas of the levee vulnerable to seepage and failure during 

high water events. An illustration of levee terminology, unstable levee, levee failure, and 

slough slides on the levee, are shown in Figures 1.3-1.7. 
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Figure 1.1 Midwest flood in several Midwestern states of USA, 2008. 

 

 

Figure 1.2 Hurricane Katrina effect for both Louisiana and Mississippi states in 
USA, 2005,  

(a) the flooding in New Orleans following Katrina. (b) Debris and house foundations in Biloxi, 
Mississippi, following Katrina. (Source: www.hurricanescience.org) 
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Figure 1.3 Basic levee terminology. 

(Source: www.riverpartners.org) 

 

Figure 1.4  Unstable levee, as flood risk and levee condition are dynamic. 

(Source: www.usace.army.mil) 

http://www.riverpartners.org/
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Figure 1.5 Illustration of the levee failure. 

 

 

Figure 1.6  Illustration of levee failure mechanisms [2]. 

 

The roughness and related textural characteristics of the soil in a slide affect the 

amount and pattern of radar backscatter. The type of vegetation that grows in a slide area 
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differs from the surrounding levee vegetation, which can also be used in detecting slides 

[3]. An illustration of slides on the levee, is shown in Figures 1.6. 

 

Figure 1.7 Slough or slump slide on a levee. 

 

1.2 Other investigations on the levee 

We conducted field trips for the investigation of levee conditions, and focused on 

anomalous areas, pits, cracks, and unusual types of vegetation grown on the levee, as 

shown in Figures 1.8-1.10.  



 

6 

 

Figure 1.8 Earthen levee near the Francis and Rena Lara, MS.  

 

  

Figure 1.9 Noticed anomalous areas on the levee, during filed trips. 
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Figure 1.10 Pits and strange types of vegetation on the levee, noticed during filed 
trips. 

 

1.3 SAR technology to monitor levee condition  

This work explains an overview and presents results of the use of synthetic 

aperture radar (SAR) as an aid to the levee screening process. The NASA Jet Propulsion 

Laboratory’s (JPL’s) Uninhabited Aerial Vehicle SAR (UAVSAR) is a fully polarimetric 

L-band SAR which is designed to acquire airborne SAR data in fully quad-polarimetric 

manner. SAR technology, due to its high spatial resolution and soil penetration 

capability, is a good choice to identify problematic areas on earthen levees [4]. 

Polarimetric Synthetic Aperture Radar (PolSAR) data includes a variety of information 
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which relates to the physical properties of the target. In PolSAR, the transmitted signal is 

polarized and different polarizations of the backscatter signal are detected as: VV 

(vertical transmit and vertical receive), HV (horizontal transmit and vertical receive), and 

HH (horizontal transmit and horizontal receive). Hence, it provides much more 

information on the form of the scattering elements than a single channel SAR [5]. The L-

band SAR measurements can penetrate dry soil to as much as one meter depth. Thus they 

may be valuable in detecting changes in levees that will be key inputs to a levee 

vulnerability classification system [6].  

1.4 Motivation 

As shown recently with Hurricane Katrina and the floods like the ones that 

occurred in the Midwest and along the Mississippi River, the loss of life and property 

associated with the catastrophic failure of dams and levees can be extremely high. Over 

the entire United States, there are more than 150,000 kilometers of dam and levee 

structures of varying designs and conditions. In Mississippi alone, hundreds of dams and 

levees are not currently monitored, and there are no reasonable means to assess the 

potential risk for catastrophic failure. The dynamics of subsurface water events can cause 

damage on levee structures which could lead to slough slides, sand boils, or through 

seepage. Improved knowledge of the status of these levees would significantly improve 

the allocation of precious resources to inspect, test, and repair the ones in most need [4]. 

The objectives of this research are to support the development of state-of-the-art methods 

using remotely sensed data to support levee condition assessment, screening procedures, 

and to detect anomalies in an efficient and cost-effective manner based on the use of 

SAR. Because on-site inspection of levees is costly and time-consuming, monitoring the 
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physical condition of levees is vital in order to protect them from flooding and 

catastrophic failures. SAR technology, due to its high spatial resolution and soil 

penetration capability, is a good choice to identify such problem areas so that they can be 

treated to avoid possible catastrophic failure. Early detection of these events can assist 

levee mangers in prioritizing their inspection and repair efforts [4]. In this way, we can 

reduce the potential loss of property and lives.  

1.5 Contribution  

 Develop effective machine learning methods using remote sensing and 
SAR technologies to recognize levee that are susceptible to failure, for the 
Phase, Magnitude, and Complex SAR data. 

 Develop techniques to rapidly identify potential problem areas along 
levee. 

 Validate NASA JPL’s UAVSAR L-band aerial data with the ground truth 
data for levee condition assessment. 

 Implement majority filter to increase classification accuracy. 

 Develop object based classification methods with the help of the 
morphology filters. 
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CHAPTER II 

LITERATURE REVIEW  

2.1 Remotely sensed data 

2.1.1 Passive and active remote sensing systems 

Passive remote sensing systems record electromagnetic energy that was reflected 

(e.g., blue, green, red, and near-infrared light) or emitted (e.g., thermal infrared energy) 

from the surface of the Earth. There are also active remote sensing systems that are not 

dependent on the Sun’s electromagnetic energy or the thermal properties of the Earth. 

Active remote sensors create their own electromagnetic energy that: 1) is transmitted 

from the sensor toward the terrain, 2) interacts with the terrain producing a backscatter of 

energy, and 3) is recorded by the remote sensor’s receiver [7]. The active microwave 

(RADAR, Radio Detection and Ranging), which is based on the transmission of 

microwaves (3-25 cm wavelength) through the atmosphere and then recording the 

amount of energy back-scattered from the terrain [7-8]. The pulse of electromagnetic 

radiation sent out by the transmitter through the antenna is of a specific wavelength and 

duration. Active microwave (RADAR) commonly used frequencies are shown in Figure 

2.1. The RADAR wavelengths and frequencies used in active microwave remote sensing 

investigations are listed in Table 2.1. 
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Figure 2.1 Active microwave (RADAR) commonly used frequencies. 

 

Table 2.1 RADAR wavelengths and frequencies used in active microwave remote 
sensing investigations. 

 
 

2.1.2 Polarization 

The transmitted pulse of electromagnetic energy interacts with the terrain and 

some of it is back-scattered at the speed of light toward the aircraft or spacecraft where it 

once again must pass through a filter. If the antenna accepts the back-scattered energy, it 
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is recorded. Various types of back-scattered polarized energy may be recorded by the 

radar [7]. Polarimetric SAR data provides additional surface information for a levee 

monitoring [9-11]. In polarimetric Synthetic Aperture Radar (polSAR), the transmitted 

signal is polarized and different polarizations of the backscatter signal are detected. In 

extremely dry conditions, L-band Synthetic Aperture Radar (SAR) can penetrate meters 

in depth, but in most cases the radar penetration is typically only a few centimeters. The 

backscatter strength increases as the soil moisture increases. With different polarizations, 

VV (vertical transmit and vertical receive), HV (horizontal transmit and vertical receive), 

and HH (horizontal transmit and horizontal receive), SAR imagery can be used to 

separate different causes contributing to changes in the backscatter signal [4, 12-13]. HH 

and VV configurations produce like-polarized   radar imagery.  HV and VH 

configurations produce cross-polarized   imagery. The concept of polarization for 

transmitting and receiving signals is illustrated in the Figures 2.2-2.3.  
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Figure 2.2 Radar antenna polarization for transmitting and receiving signals. 

 

 

Figure 2.3 RADAR Polarization 

(a) An air borne radar operating in the HH polarization mode, (b) HV polarization mode. 
(Source: ccrs.nrcan.gc.ca) 



 

14 

2.1.3 Synthetic Aperture Radar  

Synthetic Aperture Radar (SAR) is a technique which uses signal processing to 

improve the resolution beyond the limitation of physical antenna aperture [14-15]. In 

SAR, forward motion of an actual antenna is used to synthesize a very long antenna. SAR 

allows the possibility of using longer wavelengths and still achieving good resolution 

with antenna structures of reasonable size [16]. The imaging radar geometry is shown in 

Figure 2.4. The use of SAR for remote sensing is particularly suited for tropical 

countries. By proper selection of operating frequency, the microwave signal can penetrate 

clouds, haze, rain and fog and precipitation with very little attenuation, thus allowing 

operation in unfavorable weather conditions that preclude the use of visible/infrared 

system [17-19]. Since SAR is an active sensor, which provides its own source of 

illumination, it can therefore operate day or night, able to illuminate with variable look 

angle and can select wide area coverage.  SAR has been shown to be very useful over a 

wide range of applications, including sea and ice monitoring [20], mining [21], oil 

pollution monitoring [22], oceanography [23], snow monitoring [24], classification of 

earth terrain [25], etc. The potential of SAR in a diverse range of application led to the 

development of a number of airborne and space borne SAR systems. A polarimetric 

airborne SAR system was developed by NASA Jet Propulsion Laboratory (JPL) and 

loaded on CV-990 aircraft system [26].  
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Figure 2.4 Imaging radar geometry. 

 

A major advance in radar remote sensing has been the improvement in azimuth 

resolution through the development of SAR systems. The synthetic aperture radar 

concept is shown in Figure 2.5. In a real aperture radar system, the size of the antenna (L) 

is inversely proportional to the size of the angular beam width. Great improvement in 

azimuth resolution could be realized if a longer antenna were used [7]. With SAR 

Doppler principles are used to monitor the returns from overlapping microwave pulses to 

synthesize the azimuth resolution of one very narrow beam.  

The effects of terrain on the radar signal that are characterized by the amount of 

radar cross-section, 𝜎, reflected back to the receiver, per unit area a on the ground. This is 

called the radar backscatter coefficient (𝜎0) and is computed as: 

 𝜎0 = 𝜎 /a (2.1) 
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The radar backscatter coefficient determines the percentage of electro-magnetic 

energy reflected back to the radar from within a resolution cell. The actual 𝜎0 for a 

surface depends on a number of terrain parameters like geometry, surface roughness, 

moisture content, and the radar system parameters (wavelength, depression angle, 

polarization, etc.) [7]. 

 

Figure 2.5 Synthetic Aperture Radar. 

 

2.1.4 Surface roughness 

Surface roughness is the terrain property that most strongly influences the 

strength of the radar backscatter. Aerial photo interprets often use the terminology rough 

(coarse), intermediate, or smooth (fine) to describe the surface texture characteristics [7]. 

It is possible to extend this analogy to the interpretation of radar imagery. Examples of 
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backscatter from different degrees of surface roughness is illustrated in Figure 2.6. Figure 

2.7 illustrates the phenomenon of volume scattering within larger target elements such as 

trees. Radar signals can be generated at several different wavelengths, which is useful 

because the energy has an ability to travel through vegetation or soil to different amounts 

that are controlled by the dielectric constant of the material. As Figure 2.8 shows, short 

wavelength radar (2 cm) will be reflected from the tops of trees. Long wavelength radar 

(24 cm) data will normally go right down to the ground and be reflected off of the 

surface. Intermediate wavelength radars (say, 6 cm) will sometimes experience multiple 

scattering events within the canopy. 

 

Figure 2.6 Surface roughness in Radar imagery. 
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Figure 2.7 Types of active microwave surface and volume scattering that take place 
in a hypothetical pine forest stand. 

 

 

Figure 2.8 Response of a pine forest stand to X-, C- and L-band microwave energy. 
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The five important scattering mechanisms in radar remote sensing are shown in 

Figure 2.9, and they are [27] backscattering from a rough surface (I), low-order multiple 

scattering, as occurs from dihedral effects in forest and urban areas (II), random volume 

backscatter from a non-penetrable layer of discrete scatterers (III), surface scattering after 

propagation through a random medium, as occurs in the use of low frequency P- or L-

band radar for penetration of vegetation cover (IV), and single scattering from anisotropic 

structures such as tree trunks, where the backscatter can be modeled as that from a rough 

dielectric cylinder or other canonical object with polarization anisotropy due to shape and 

dielectric material structure (V). 

 

Figure 2.9 Five important scattering mechanisms in radar remote sensing. 

 

2.2 Features 

A feature is an observable measured quantity such as image intensity or radar 

backscatter coefficient or some mathematical transformation or derived value calculated 
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from one or more quantities [4]. Ideally, such features have some physical meaning 

relevant to the targets of the classification.  

2.2.1 Per-pixel features 

Per-pixel features are values of observations at each pixel of the image, such as 

the radar backscatter intensity in each of the polarization channels, referred to here as 

radiometric features. Additional quantities can be derived from these features by 

computing mathematical functions of combinations of the features, known as 

decompositions [5], as polarimetric decomposition features. The relationship between the 

complex backscatter coefficients can reveal details about the nature of the scattering 

mechanism of the targets, such as relative amount of surface, double-bounce, or volume 

scattering [28].  

2.2.2 Textural features 

Textural features are those computed from the per-pixel values of groups of pixels 

in a neighborhood around the pixel under analysis. The neighborhood size is determined 

by the two dimensions of a window centered on the pixel under analysis that is used to 

collect the pixel values that go into the feature calculation. Textural features included are 

basic window statistics and Grey Level Co-occurrence Matrix (GLCM) features [6]. 

2.3 Classification 

2.3.1 Classification using Synthetic Aperture Radar 

Over decades, several classification or segmentation methods specifically 

intended for polarimetric Synthetic Aperture Radar (polSAR) data are described in the 

literature [29-37]), are widely used. Statistical classifiers require knowledge of the 
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statistical distribution of the data and an adaptation of the algorithm to the specific 

distribution [30]. Different representations exist of the scattering interactions of 

electromagnetic waves. For fully polarimetric radars, a substantial division can be made 

between the 2x2 scattering matrix [S] and the higher-order ones, the coherency and 

covariance matrices. The former, and the parameters extracted from it, directly describes 

the scattering properties of a given resolution element in an imaged scene [30]. The latter 

takes into account the random nature of natural environments and tries to also render this 

aspect in the parameters derived from the data; this implies averaging processes that, in 

the absence of repeated data sampling, are performed spatially over neighboring scene 

elements [30]. The necessity of a consistent statistical approach to data analysis of SAR 

has led to the predominant use of incoherent parameters. With respect to the coherent 

ones related to the [S] matrix [31,34-35,38-40] showed that for multi-look data 

represented as covariance or coherency matrices, the correct description is a complex 

Wishart distribution. In image classification, a distance measure for the membership of a 

pixel to a class based on this model could be defined and incorporated in several 

classification algorithms [38, 41]. Accordingly, only second-order representations have 

been considered when trying to combine these algorithms with an analysis of the 

scattering phenomena [35, 41].  

The classification uses either unsupervised or supervised methods to categorize 

pixels in an image into many classes. We can perform an unsupervised classification 

without providing training data, or we can perform a supervised classification, where we 

provide training data [42].Unsupervised classification clusters pixels in a dataset based on 

statistics only, without requiring defining training classes. Supervised classification 
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clusters pixels in a dataset into classes based on user-defined training data. We must 

define a minimum of two classes, with at least one training sample per class.  

2.3.2 ISODATA 

ISODATA (Iterative Self-Organizing Data Analysis) unsupervised classification 

starts by calculating class means evenly distributed in the data space, then iteratively 

clusters the remaining pixels using minimum distance techniques. Each iteration 

recalculates means and reclassifies pixels with respect to the new means [42-43]. This 

process continues until the percentage of pixels that change classes during an iteration is 

less than the change threshold or the maximum number of iterations is reached. 

2.3.3 K-Means 

K-Means unsupervised classification calculates initial class means evenly 

distributed in the data space then iteratively clusters the pixels into the nearest class using 

a minimum distance technique. Each iteration recalculates class means and reclassifies 

pixels with respect to the new means. All pixels are classified to the nearest class unless a 

standard deviation or distance threshold is specified, in which case some pixels may be 

unclassified if they do not meet the selected criteria. This process continues until the 

number of pixels in each class changes by less than the selected pixel change threshold or 

the maximum number of iterations is reached [42, 44]. 

2.3.4 RX-Anomaly Detection 

The Anomaly Detection uses the Reed-Xiaoli Detector (RXD) algorithm to 

identify the spectral or color differences between a region to test and its neighboring 

pixels or the entire dataset. This algorithm extracts targets that are spectrally distinct from 
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the image background. RXD is effective when the anomalous targets are sufficiently 

small relative to the background. Results from the RXD analysis are unambiguous and 

have proven very effective in detecting subtle spectral features. The algorithm uses the 

covariance matrix to calculate the Mahalanobis distance between the test pixels and the 

mean of the background pixels. We could use whether the mean spectrum should be 

derived from the full dataset (global) or from a localized kernel around the pixel (local). 

The standard RXD algorithm is [42, 45]: 

 𝛿𝑅𝑋𝐷  (𝑟) = (𝑟 − 𝜇)𝑇 𝐾𝐿𝑋𝐿
−1  (𝑟 − 𝜇) (2.2) 

where, 

r-is the sample vector  

μ-is the sample mean 

 𝐾𝐿𝑋𝐿 -is the sample covariance matrix 

2.3.5 Minimum distance  

Minimum distance classification uses the mean vectors for each class and 

calculates the Euclidean distance from each unknown pixel to the mean vector for each 

class. The pixels are classified to the nearest class [30, 32]. The standard deviations from 

mean can be no threshold, single value or multiple values. The lower the threshold value, 

the more pixels that are unclassified. The maximum distance error can be no threshold, 

single value or multiple values. The smaller the distance threshold, the more pixels that 

are unclassified [30]. The pixel of interest must be within both the threshold for distance 

to mean and the threshold for the standard deviation for a class. Minimum distance 

classification calculates the Euclidean distance for each pixel in the image to each class 

[30]: 
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 𝐷𝑖 (𝑥) =  √(𝑥 − 𝑚𝑖)𝑇(𝑥 − 𝑚𝑖)  (2.3) 

where, 

D - Euclidean distance 

i - The ith class 

x - n-dimensional data (where n is the number of features) 

mi - mean vector of a class 

2.3.6 Mahalanobis distance 

The Mahalanobis distance is a direction-sensitive distance classifier that uses 

statistics for each class. It is similar to the Maximum likelihood classification, but it 

assumes all class covariance’s are equal, and therefore, is a faster method. All pixels are 

classified to the closest training data [42- 43]. The distance threshold is the distance 

within which a class must fall from the center or mean of the distribution for a class. The 

smaller the distance threshold, the more pixels those are unclassified [42]. Unlike the 

minimum distance, this method takes the variability of classes into account; the 

maximum distance error can be zero thresholds for all the classes, or single value (0 to 

0.9) for all the classes, or multiple values (0 to 0.9) for individual classes. The distance 

threshold is the distance within which a class must fall from the center or mean of the 

distribution for a class. We use zero thresholds to all the classes. The Mahalanobis 

distance classification calculates the Mahalanobis distance for each pixel in the image to 

each class using the eq.2 [42]: 

 𝐷𝑖 (𝑥) =  √(𝑥 − 𝑚𝑖)𝑇 ∑ (𝑥 − 𝑚𝑖)−1    (2.4) 

where, 
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D -Mahalanobis distance 

i - The ith class 

x - n-dimensional data (where n is the number of features) 

Σ-1 - the inverse of the covariance matrix of a class 

mi - mean vector of a class 

2.3.7 Maximum likelihood  

Maximum likelihood assumes that the statistics for each class in each band are 

normally distributed and calculates the probability that a given pixel belongs to a specific 

class. Each pixel is assigned to the class that has the highest probability (that is, the 

maximum likelihood) [30, 32]. The probability threshold can be no threshold, single 

value, or multiple values. The threshold is a probability minimum for inclusion in a class. 

Maximum likelihood classification calculates the following discriminant functions for 

each pixel in the image: 

 𝑔𝑖 (𝑥) = ln 𝑝(𝑤𝑖 ) −
1

2
𝑙𝑛|∑𝑖| −

1

2
(𝑥 − 𝑚𝑖)𝑇  ∑ (𝑥 − 𝑚𝑖)−1

𝑖  (2.5) 

where, 

i - The ith class 

x - n-dimensional data (where n is the number of features) 

p(ωi) - probability that a class occurs in the image and is assumed the same for all 
classes 

|Σi| - determinant of the covariance matrix of the data in a class 

Σi-1 - the inverse of the covariance matrix of a class 

mi - mean vector of a class 
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2.3.8 Support vector machine 

Support vector machine (SVM) is a supervised classification method derived from 

statistical learning theory that often yields good classification results from complex and 

noisy data [42]. The benefit of SVM is that it works well with small training datasets.  

We could select the kernel types to use in the SVM classifier. These kernels show a 

critical role in SVM classification. The kernel types are linear, polynomial, radial basis 

function, and sigmoid. If the kernel type is polynomial, we need to choose the degree of 

the kernel polynomial to specify the degree use in the SVM classification. If the kernel 

type is polynomial or sigmoid, we need to specify the bias in the kernel function for the 

kernel use in the SVM algorithm. If the kernel type is polynomial, radial basis function, 

or sigmoid, use the gamma in the kernel function. We use the classification probability 

threshold to set the probability that is required for the SVM classifier to classify a pixel.  

2.4 Target classification  

Target classification is an important application of SAR data. Kong et al. [46] 

proposed an optimal polarimetric classifier based on the complex Gaussian distribution 

with single-look data. Lee et al. [40] proposed a maximum likelihood (ML) classifier of 

multi-look SAR data based on the complex Wishart distribution and an improved method 

of unsupervised classification combined with the H/alpha decomposition [38]. Lee et al. 

built two Bayesian classification schemes based on the statistics distribution. Besides the 

Bayesian based methods, many other algorithms have been developed, such as 

classification based on the Neural Network, support vector machines (SVMs) classifier, 

and fuzzy analysis methods [47-48]. Among those methods, the Bayesian theory based 

classifier is used mostly, but the distribution models are necessary [49]. The multi-
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complex Gaussian distribution and the complex Wishart distribution can also be used to 

describe the uniform area well, but the non-uniform targets such as forest and urban areas 

do not fit these models, which may lead to unsatisfactory classification results [50]. 

Classification, decomposition, and modeling of polSAR data have received a 

great deal of attention in recent literature. The objective behind these efforts is to better 

understand the scattering mechanisms that give rise to the polarimetric signatures seen in 

SAR image data [50]. A major problem in analyzing polSAR data, is in understanding the 

scattering mechanisms that give rise to features for different polarization parameters. 

Researchers, on examining some polSAR data from their scene of interest for the first 

time, often notice unusual bright or dark features when displaying one of the many 

possible polarization representations of the data (e.g., total power, HH, VV, or HV cross 

section, synthesized cross sections for arbitrary transmit and received polarizations, HH-

VV phase difference, HH-VV correlation coefficient, etc.). 

With the advancement of polarimetric scattering mechanisms, research activities 

in this area have been carried out to gain a better understanding of polSAR 

measurements. An early example can be found in Huynen’s research [51]. Another 

example is van Zyl’s work on classifying the dominant scattering mechanism for each 

pixel [36]. Decomposition of the target scattering matrix into three orthogonal 

components has been proposed by Cloude [52], Holm and Barnes [53], van Zyl [54], and 

Krogager [55]. Cloude and Pottier [56] have produced an excellent review of these 

decomposition theorems. A common limitation of these decompositions is that they tend 

to be mathematically based and may yield combinations of three scattering matrices that 

cannot be so easily related to physical scattering models. In some cases, the underlying 
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physical bases for the scattering decompositions can be traced to man-made or “hard” 

targets, such as metallic spheres or dihedrals and trihedrals, which may not be 

representative of the scattering occurring from natural targets, such as forests and other 

vegetated areas. There is also a tendency to require orthogonality between at least two of 

the scattering components, which may be overly restrictive for natural scatterers [50]. 

Recently, several algorithms for the classification of land features based on 

polarimetric microwave signatures have been developed [29, 40, 57-60]. These methods 

exploit observed similarities and correlations in feature vectors derived from either a 

complete coherent scattering matrix data or non-coherent multiple channel radar cross 

section data. However, most of the techniques are supervised in the sense that the feature 

vector is first derived from measurements over known terrain classes [31]. Unknown 

terrain is then compared to the training set and a statistical decision is made as to class 

membership. Several unsupervised techniques have also been developed [36, 54, 61-63]. 

They tend to be more physically-based and have the advantage that their performance is 

not data specific. Cloude and Pottier [31], consider the development of just such an 

unsupervised classification scheme which they suggest has some advantages over those 

currently employed in the literature. While classification studies can be used to 

demonstrate the basic ability of polarimetry to distinguish features in an image, there 

remains a requirement to extend this basic classification philosophy so that quantitative 

parameter extraction may be used in radar remote sensing [31]. 

2.5 Target detection 

Target detection in remotely sensed images can be conducted spatially, spectrally, 

or both. The difficulty with using spatial image analysis for target detection in remotely 
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sensed imagery arises from the fact that the ground sampling distance (GSD) is often 

larger than the size of the targets of interest [45]. If the targets are embedded in a single 

pixel, they cannot be detected spatially. Under such circumstances, target detection must 

be carried out at the sub-pixel level. An anomaly detector enables one to detect targets 

whose signatures are spectrally distinct from their surroundings with no a prior 

knowledge. In general, such anomalous targets are relatively small compared to the 

image background and only occur in the image with low probabilities [45]. Two 

approaches are of particular interest. One was developed by Reed and Yu [27-29] and is 

referred to as the RX detector (RXD), which has shown success in anomaly detection for 

multispectral and hyperspectral images [64-65]. Another was proposed in [66-67] and is 

referred to as low probability detection (LPD), which was designed to detect targets with 

low probabilities in an image. Interestingly, both approaches result in the same form of a 

matched filter, but differ in two aspects. The RXD uses the pixel currently being 

processed as the matched signal, while the LPD makes use of the unity vector (i.e., it has 

all ones in its components) as its matched signal. Therefore, the matched signal used in 

the RXD varies pixel-by-pixel as opposed to the constant-matched signal used in the 

LPD. Since the RXD uses the sample covariance matrix to take into account the sample 

spectral correlation, it performs the same task as does the Mahalanobis distance [42]. On 

the other hand, the LPD makes use of the sample correlation matrix to account for the 

spectral correlation among samples. As a result, it turns out to be a special case of the 

constrained energy minimization (CEM) filter developed in [66-67, 68-69] where the 

desired signal is designated as the unity vector. 
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2.6 Covariance matrix 

Cloude and Pottier introduced [31] the entropy-alpha-anisotropy (H/𝜶/A) 

classification based on the eigenvalues of the polarimetric (or coherency) Covariance 

Matrix (CM). The covariance matrix is usually estimated, under homogeneous and 

Gaussian assumptions, with the well-known Sample Covariance Matrix (SCM) which is 

Wishart distributed. 

2.7 Morphological profiles 

Morphological profiles have been successfully used as tools to combine spectral 

and spatial information for the classification of remote sensing data [70-72]. However, 

the previous applications have been limited to the multi-/ hyper-spectral data analysis. In 

this study, we extend the use of morphological profiles for classifying polarimetric 

synthetic aperture radar (POLSAR) data [45]. A Morphological profile of a gray-level 

image (or a feature) is a sequence generated with the morphological opening by 

reconstruction and closing by reconstruction operations, using structuring elements of 

increasing size [73-75]. 
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CHAPTER III 

METHODOLOGY 

3.1 Overview 

The methods used consist of subsetting the image of the levee area, extracting 

features from the radar data, training the classifier as needed, running the classifier, 

applying selected post-classification filters, testing the area of interest and validation of 

the results using ground truth data. The source SAR imagery is fully quad-polarimetric L-

band data from the NASA Jet Propulsion Laboratory’s (JPL’s) Uninhabited Aerial 

Vehicle Synthetic Aperture Radar (UAVSAR). The classification algorithms 

implemented are: unsupervised classification methods ISODATA, K-means, and RX-

anomaly Detector; and supervised classification methods Minimum distance, 

Mahalanobis distance, and Support vector machine. The classification results are then 

processed using a majority filter and morphology filters to further improve the accuracy. 

Classification with Grey Level Co-occurrence Matrix (GLCM) features is also tested. 

The polarimetric decomposition methods implemented are eigenvector/eigenvalue based 

H/A/Alpha and Model-based Freeman 3-component methods. The unsupervised 

classification techniques based on polarimetric decomposition parameters are A/α 

classification, H/A classification, H/α classification, H/Alpha/Lambda classification, 

Wishart-H/α classification, Wishart-H/A/α classification, and Wishart-scattering model 

based classification. The classification is performed using different components of the 
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data including magnitude, phase, and complex data from the Ground Projected Data 

(GRD) Multi Look Cross products (MLC) of the UAVSAR acquired data. The study area 

encompasses a portion of the levees of the lower Mississippi river, located in Mississippi, 

United States.  

3.2 Polarimetric decomposition and classification methods 

3.2.1 Model-based Freeman decomposition 

The Freeman decomposition models the covariance matrix as the contribution of 

three scattering mechanisms: volume scattering where a canopy scattered is modeled as a 

set of randomly, oriented dipoles, double-bounce scattering modeled by a dihedral corner 

reflector, and surface or single-bounce scattering modeled by a first-order Bragg surface 

scattered. The volume scattering from a forest canopy is modeled as the contribution 

from an ensemble of randomly oriented thin dipoles. The second component of the 

Freeman decomposition corresponds to the double-bounce scattering. A generalized 

corner reflector is employed to model the scattering process. The third component of the 

Freeman decomposition consists of a first-order Brag surface scattered modeling surface 

scattering [50, 76-77]. 

3.2.2 H/A/α polarimetric decomposition  

For the 3x3 coherency matrix [T], which relates to spatial-power, in the case of 

spatial-averaging, it is customary to consider the expected value of the coherency matrix 

 〈[T3]〉 as representing the averaged distributed target, as [78]: 

 〈[T]〉 =
1

N
∑ ki. ki

∗T =N
i=1

1

N
∑ [Ti]

N
i=1   (3.1) 
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From this estimate, the eigenvectors and eigenvalues of the 3X3 Hermitian 

coherency matrix  〈[T3]〉 can be calculated to generate a diagonal form of the coherency 

matrix which can be physically interpreted as statistical independence between a set of 

target vectors [33, 37]. The coherency matrix  〈[T3]〉can be written in the form of [78]: 

 〈[T3]〉 = [U3][Σ][U3]−1  (3.2) 

where [Σ] is a 3x3 diagonal matrix with non-negative real elements (eigenvalues) of  

〈[T3]〉  and [U3] = [u1     u2    u3] is a 3x3 unitary matrix, where u1,  u2, and  u3 are the 

three unit orthogonal eigenvectors of  〈[T3]〉.  

 [Σ3] = [

λ1 0 0
0 λ2 0
0 0 λ3

]   (3.3) 

Where ∞ > λ1 > λ2 > λ3 > 0 

The eigenvectors, ui for i = 1,2,3  of  〈[T3]〉  can be formulated as follows 

 ui = [cos αi     sin αi  cos βie
jδi     sin αi  cos βie

jγi   ]
T
 (3.4) 

The Eigen decomposition of 〈[T3]〉, can be written as follows 

 〈[T3]〉 = ∑ λiui
3
i=1 ui

∗T  (3.5) 

Where the symbol *T stands for complex conjugate. 

To introduce the degree of statistical disorder of each target, the entropy (H) is 

defined in the Von Neumann sense from the logarithmic sum of eigenvalues of  〈[T3]〉 

[31, 56], as: 

 H = − ∑ Pi
3
i=1 log3(Pi)  (3.6) 

where Pi are the probabilities obtained from the eigenvalues λi of  〈[T3]〉with: 

 Pi =  
λi

∑ λj
3
j=1

  (3.7) 
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If the entropy is low, then the system may be considered as weakly depolarizing 

and the dominant target scattering matrix component can be extracted as the eigenvector 

corresponding to the largest eigenvalue and ignore the other eigenvector components. If 

the entropy is high, then the target is depolarizing and we can no longer consider it as 

having a single equivalent scattering matrix. The full eigenvalue spectrum must be 

considered. Further, as the entropy increases, the number of distinguishable classes 

identifiable from polarimetric observations is reduced. In the limit case, when H=1, the 

polarization information becomes zero and the target scattering is truly a random noise 

process [78].  

While the entropy is a useful scalar descriptor of the randomness of the scattering 

problem, it is not a unique function of the eigenvalue ratios. Hence, another eigenvalue 

parameter defined as the anisotropy (A) can be introduced, with: 

 A =  
λ2−λ3

λ2+λ3
  (3.8) 

When A=0 the second and third eigenvalues are equal. The anisotropy may reach 

such a value for a dominant scattering mechanism, where the second and third 

eigenvalues are close to zero, or for the case of a random scattering type where the three 

eigenvalues are equal [78]. 

Span (𝜆) represents the total scattered power. 

 𝑠𝑝𝑎𝑛 = |𝑆𝐻𝐻|2 + |𝑆𝑉𝑉|2  + 2|𝑆𝐻𝑉|2 = ∑ 𝜆𝑖
3
𝑖=1    (3.9) 

 𝑠𝑝𝑎𝑛 = 𝑇𝑟𝑎𝑐𝑒 ([𝛴3])  = ∑ 𝜆𝑖
3
𝑖=1   (3.10) 

 𝜆 = ∑ 𝜆𝑖
3
𝑖=1 = 𝜆1 + 𝜆2 + 𝜆3  (3.11) 



 

35 

Average alpha angle (𝛼) identifies the dominant scattering mechanism for different 

scattering processes. 

 𝛼 =  ∑ 𝑃𝑖𝛼𝑖 =  𝑃1𝛼1 + 𝑃2𝛼2 + 𝑃3𝛼3 3
𝑖=1   (3.12) 

α reveals the averaged scattering mechanisms from surface scattering (α =0) to double 

bounce scattering (α=90).  

The condition for  〈[T3]〉to have such an equivalent scattering matrix [S] is for 

both the target entropy and the anisotropy to be equal to zero, which corresponds to a 

single nonzero eigenvalue (λ1) [52, 56]. In this case the coherency matrix  〈[T3]〉has rank 

r=1, and can be expressed as the outer product of a single target vector k1 with: 

 〈[T]〉 = k1. k1
∗T = λ1u1. u1

∗T   (3.13) 

Where λ1 = 2(A0 + B0) is equal to the Frobeninus norm (Span) of the corresponding 

scattering matrix and the corresponding unit target vector is expressed as follows: 

 𝑢1 =
𝑒𝑗∅

√2𝐴0λ1 
 [

2𝐴0

𝐶 + 𝑗𝐷
𝐻 − 𝑗𝐺

] =  
𝑒𝑗∅

√λ1 
 [

√2𝐴0

√𝐵0 + 𝐵𝑒+𝑗 arctan (𝐷 𝐶⁄ )

√𝐵0 − 𝐵𝑒−𝑗 arctan (𝐺 𝐻⁄ )

 ] (3.14) 

It is interesting to note that the modulus of the three components of the unit target 

vector is a direct function of the three Huynen target generators. Without using ground 

truth measurements, this polarimetric parameterization of the unit target vector u involves 

the fit of a combination of three simple scattering mechanisms: surface scattering, 

dihedral scattering and volume scattering, which are characterized from the three 

components (target generators) of the unit target vector such as [78]:  

Surface scattering:  𝐴0 ≫ 𝐵0 + 𝐵,  𝐵0 − 𝐵 

Dihedral scattering:  𝐵0 + 𝐵 ≫ 𝐴0,  𝐵0 − 𝐵 

Volume scattering:  𝐵0 − 𝐵 ≫ 𝐴0,  𝐵0 + 𝐵 
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3.2.3 H/A/Alpha unsupervised classification 

An unsupervised classification scheme has been introduced [31] based on the use 

of the two-dimensional H/α classification plane, where all random scattering mechanisms 

can be represented, as shown in Figures 3.1-3.2. The key idea is that entropy (H) arises as 

a natural measure of the inherent reversibility of the scattering data and that the alpha 

angle (α) can be used to identify the underlying average scattering mechanisms [78-79, 

80-81]. This classification plane is sub-divided into nine basic zones characteristic of 

classes of different scattering behavior as shown in Figure 3.1. It is important to note that 

the absolute magnitude of the eigenvalues were not taken into account. This simple 

classification procedure was just based on the comparison to fixed thresholds of the 

polarimetric properties of the different scattering mechanisms. The different class 

boundaries, in the H/α plane, have been determined so as to discriminate surface 

reflection (SR), volume diffusion (VD) and double bounce reflection (DB) along the α 

axis and low, medium and high degree of randomness along the entropy axis [31, 78]. 
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Figure 3.1 Segmentation of the H/α space [79]. 

 

 

Figure 3.2 H/α scattering mechanism identification plane [28]. 
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Cloude and Pottier [31, 79] offered this segmentation of the H/α space merely to 

illustrate the classification strategy and to emphasize the geometrical segmentation of 

physical scattering processes. It is this key feature which makes this an unsupervised, 

measurement-data-independent approach to the scatter feature classification problem. 

Zone 9 represents low entropy surface scatter, in this zone, low entropy scattering 

processes occur with alpha values less than 42°. These include specular scattering 

phenomena which do not involve 180 degree phase inversions between HH and VV. The 

physical surfaces such as water, as well as very smooth land surfaces fall into this 

category. Zone 8 represents low entropy dipole scattering, in this zone, strongly 

correlated mechanism occurs which has a large imbalance between HH and VV in 

amplitude, like scattering from vegetation with strong correlation of anisotropic 

scattering elements. Zone 7 represents low entropy multiple scattering events, this zone 

corresponds to low entropy double or even bounce scattering events. These are 

characterized by α > 47o. Zone 6 represents medium entropy surface scatter, this zone 

reflects the increase in entropy due to changes in surface roughness and due to canopy 

propagation effects. Thus, as the roughness/correlation length of a surface changes, its 

entropy will increase. Zone 5 represents medium entropy vegetation scattering, here, 

again, we have moderate entropy but with a dominant dipole type scattering mechanism. 

The increased entropy is due to a central statistical distribution of the orientation angle. 

Such a zone would include scattering from vegetated surfaces with anisotropic scatterers 

and moderate correlation of scattered orientations. Zone 4 represents medium entropy 

multiple scattering, this zone accounts for dihedral scattering with moderate entropy. This 

occurs for example in forestry applications, where double bounce mechanisms occur 



 

39 

following propagation through a canopy. The effect of the canopy is to increase the 

entropy of the scattering process. The boundary between zones 4, 5, 6, and 1, 2, 3, is set 

as 0.9. This is chosen on the basis of the upper limit for surface, volume, and dihedral 

scattering before random distributions apply. Zone 3 represents high entropy surface 

scatter, this class is not part of the feasible region in H/α space i.e., we cannot distinguish 

surface scattering with entropy H>0.9. Zone 2 represents high entropy vegetation 

scattering, high entropy volume scattering arises when α = 45o and H = 0.95. This can 

arise for a single scattering from a cloud of anisotropic needle like particles or from 

multiple scattering from a cloud of low loss symmetric particles. In both cases, however, 

the entropy lies above 0.9, where the feasible region of H/α space is rapidly shrinking. 

Scattering from forest canopies lies in this region, as does the scattering from some types 

of vegetated surfaces with random highly anisotropic scattering elements. Zone 1 

represents high entropy multiple scattering, in the H>0.9 region, we can still distinguish 

double bounce mechanisms in a high entropy environment. Again such mechanisms can 

be observed in forestry applications or in scattering from vegetation which has a well-

developed branch and crown structure. 

3.2.4 H/Alpha/Lambda unsupervised classification 

Cloude and Pottier [80, 82] demonstrated an unsupervised classification based on 

the H/α parameters. These parameters alone were not sufficient for good interclass 

resolution, indicating that additional information is needed. Even if the computation of H 

and α requires fully polarimetric data, these two parameters do not represent the whole 

polarimetric information. The use of other indicators such as the span or specific 

correlations coefficients may improve the classification results in a significant way [16]. 
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Hellmann et al. [83] tested an unsupervised classification based on the H/α/λ1 parameters. 

However λ1 alone was not able to represent the complete scattering mechanism about the 

target. The H/α/λ classification [83-84], including classification for individual λ values as 

H/α/λ1, H/α/λ2, and H/α/λ3, for a good interclass resolution [85-88]. In the H/α/λ 

approach, the backscatter intensity information contained in the eigenvalues λ1, λ2, and λ3 

is used to improve the interclass resolution due to the different reflectivities of different 

scatterer. 

3.2.5 Wishart-H/α unsupervised classification 

J.S. Lee et al. [38] proposed an unsupervised classification method that uses the 

two-dimensional H/α classification plane to initially classify the polarimetric SAR image. 

The initial classification map defines training sets for classification based on the Wishart 

distribution. The classified results are then used as training sets for the next iteration 

using the Wishart method. Significant improvement in each iteration has been observed, 

and the analysis of the final class centers on the two-dimensional H/α classification plane 

is useful for interpretation of terrain types [78]. However, the identification of the terrain 

type directly from the analysis of the classified image may cause some confusion, due to 

the color scheme. Indeed, during the classification, the cluster centers in the two-

dimensional H/α plane can move out of their zones, or several clusters may end in the 

same zone [38]. This is due to the fact that the zone boundaries were set somewhat 

arbitrarily [78]. A natural cluster corresponding to similar targets may lie across a frontier 

in the decision plane. In the H/α plane, pixels with very similar characteristics may be 

assigned, in an almost random way, to different classes due slightly different locations in 

the H/α plane [78, 89-92]. The unsupervised Wishart H/α segmentation scheme is 
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initialized in an efficient way with the results of the unsupervised identification of a 

scattering mechanism, using H, A, and α. This initialization provides 8 stable clusters 

relating to the underlying physical scattering mechanism [78-79]. The main kinds of 

natural media are clearly discriminated by the Wishart H/α segmentation scheme. This 

unsupervised classification algorithm modifies the decision boundaries in an adaptive 

way to better fit the natural distribution of the scattering mechanisms and takes into 

account information related to the back-scattered power [93-97]. 

3.2.6 Wishart-H/A/α unsupervised classification 

The Maximum likelihood Wishart segmentation may be further improved by 

explicitly including the anisotropy information during the segmentation procedure. The 

anisotropy indicates the relative importance of secondary mechanisms obtained from the 

expansion of a coherency matrix. This polarimetric indicator is particularly useful to 

discriminate scattering mechanisms with different eigenvalue distributions but with 

similar intermediate entropy values. In such cases, a high anisotropy value indicates two 

dominant scattering mechanisms with equal probability and a less significant third 

mechanism, while a low anisotropy value corresponds to a dominant first scattering 

mechanism and two non-negligible secondary mechanisms with equal importance [78-

79]. Polarimetric data are first segmented according to the Maximum likelihood Wishart 

algorithm. Once this procedure has converged, the 8 resulting clusters are split into 16 

ones by comparing the anisotropy of each pixel to a threshold fixed to 0.5. The 16 

segments are then used to initialize a second Wishart Maximum likelihood segmentation 

procedure. The introduction of the anisotropy in the clustering process permits the 

splitting of large segments into smaller clusters discriminating small disparities in a 
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refined way [78, 98-99]. The Wishart-H/A/α classification scheme gathers into segments 

pixels with similar statistical properties [100-103]. The three dimensional segmentation 

plane for the Wishart-H/A/α classification is shown in Figure 3.3. 

 

Figure 3.3 Unsupervised classification using H/A/α. 

(Source: www.gipsa-lab.grenoble-inp.fr) 

3.2.7 Wishart scattering model based classification 

To maintain target dominant scattering mechanism, Lee et al. [104] introduced a 

classification method comprised freeman decomposition and Wishart classifier. This 

method well preserves the purity of scattering categories and greatly improves the result 

of the classification based on scattering model [105-107]. Unlike other algorithms that 

classify pixels statistically and ignore their scattering characteristics, this algorithm not 

only uses a statistical classifier, but also preserves the purity of dominant polarimetric 
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scattering properties [108-110]. This process mainly involves two-stages: 1. Apply the 

scattering model-based decomposition developed by Freeman and Durden decomposition 

to divide pixels into three scattering categories: surface scattering, volume scattering, and 

double-bounce scattering. A class initialization scheme is also performed to initially 

merge clusters from many small clusters in each scattering category by applying a merge 

criterion developed based on the Wishart distance measure. 2. The iterative Wishart 

classifier is applied i.e. Maximum likelihood classifier based on the complex Wishart 

distribution. An automated color rendering scheme is applied, based on the classes’ 

scattering category to code the pixels [104, 111-113].  

3.3 Features 

A feature is an observable measured quantity such as image intensity or radar 

backscatter coefficient. Per-pixel features are values of observations at each pixel of the 

image, such as the radar backscatter intensity in each of the polarization channels, 

referred to here as radiometric features. Additional quantities can be derived from these 

features by computing mathematical functions of combinations of the features, known as 

decompositions [5], as polarimetric decomposition features. The polarimetric 

decomposition features used for the classification are entropy (H), anisotropy (A), angle 

(𝛼), and lambda (𝜆, 𝜆1, 𝜆2, and 𝜆3). Textural features are those computed from the per-

pixel values of groups of pixels in a neighborhood around the pixel under analysis. The 

neighborhood size is determined by the two dimensions of a window centered on the 

pixel under analysis that is used to collect the pixel values that go into the feature 

calculation. Textural features included are basic window statistics and GLCM features 

[6]. Co-occurrence measures to apply texture filters that are based on a co-occurrence 
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matrix. These filters include mean, variance, homogeneity, contrast, dissimilarity, 

entropy, second moment, and correlation [42]. The co-occurrence matrix by considering 

each pixel has eight neighboring pixels, x, y increments considered are 1, 1. 

3.4 Gray level co-occurrence matrix 

The Grey Level Co-occurrence Matrix (GLCM) is a statistical measure derived 

from the study of Haralick et al. [114] and indicates the conditional joint probabilities of 

two pairs of gray occurring, given two parameters: inter pixel distance (δ) and orientation 

(θ), [115]. The GLCM quantifies texture by measuring the spatial frequency of co-

occurrence of pixel gray levels in a user defined moving window and forms a co-

occurrence matrix [116]. In statistical texture analysis, texture features are computed 

from the statistical distribution of observed combinations of intensities at specified 

positions relative to each other in the image. According to the number of intensity points 

(pixels) in each combination, statistics are classified into first-order, second-order, and 

higher-order statistics. The GLCM method is a way of extracting second order statistical 

texture features [117]. The GLCM is one of the most common algorithms for computing 

texture measures [114]. Common pixel-based texture is dependent on the size of the 

moving window (also called the kernel), specified by a particular number of columns and 

rows, used in the texture calculation [118]. 

Co-occurrence measures to apply texture filters that are based on a co-occurrence 

matrix. These filters include mean, variance, homogeneity, contrast, dissimilarity, 

entropy, second moment, and correlation [42]. Co-occurrence measures use a co-

occurrence matrix to calculate texture values. This matrix is a function of both the 

angular relationship and distance between two neighboring pixels. It shows the number of 
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occurrences of the relationship between a pixel and its specified neighbor [42]. Haralick 

et al. refer to this as a gray-tone spatial-dependence matrix [114], their implementation 

considers four directions (0°, 45°, 90°, and 135°) between neighboring cells that are 

separated by some distance, d. The co-occurrence matrix by considering each pixel has 

eight neighboring pixels. It can move in one of the following [x, y] increments as shown 

in Figure 3.4. 

 

Figure 3.4 Co-occurrence matrix x and y increments. 

Mean: The local mean value of the processing window. 

Variance: The local variance of the processing window, the value is based on the 

greyscale quantization level. 

 𝑓4 = ∑ ∑ (𝑖 − 𝑢)2 𝑝(𝑖, 𝑗)𝑗𝑖   (3.15) 

Homogeneity: The inverse difference moment equation, values range from 0 to 1.0. 

 𝑓5 = ∑ ∑
1

1+(𝑖−𝑗)2  𝑝(𝑖, 𝑗)𝑗𝑖   (3.16) 

Contrast:  

 𝑓2 = ∑ 𝑛2𝑁𝑔−1

𝑛=0 {∑ ∑ 𝑝(𝑖, 𝑗)
𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1
} ,       |𝑖−𝑗|=𝑛 (3.17) 
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Dissimilarity: The absolute values of the greyscale differences. 

 𝑓 = ∑ 𝑛
𝑁𝑔−1

𝑛=1 {∑ ∑ 𝑝(𝑖, 𝑗)2𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1
} ,       |𝑖−𝑗|=𝑛 (3.18) 

Entropy: Values range from 0 to the alog of the processing window size. 

 𝑓9 = − ∑ ∑ 𝑝(𝑖, 𝑗) log (𝑝(𝑖, 𝑗))  𝑗𝑖  (3.19) 

Second Moment: The angular second moment, values range from 0 to 1.0. 

 𝑓1 = ∑ ∑ {𝑝(𝑖, 𝑗)}2 𝑗𝑖   (3.20) 

Correlation: Values range from -1.0 to 1.0. 

 𝑓3 =
∑ ∑ (𝑖,𝑗)𝑝(𝑖,𝑗)−µ𝑥µ𝑦 𝑗𝑖

𝜎𝑥𝜎𝑦
  (3.21) 

3.5 Classification 

Both unsupervised and supervised are tested. The unsupervised classification is a 

training free classification, so no need of ground truth for testing, and ease of use for 

levee managers. The RXD unsupervised classifications method is a fast and efficient 

method for the target identification. Supervised classification method requires the ground 

truth for testing the classifier, and more accurate than unsupervised methods. 

3.5.1 Unsupervised classification 

The unsupervised classification method process consists of image segmentation of 

the levee area, testing the area of interest, and validating the results using ground truth 

data. The classification is performed using the magnitude data of the Multi-Look Cross 

products (MLC) of the UAVSAR acquired. The MLC data is derived from an average of 

3 pixels in range and 12 pixels in azimuth of the single look complex data (SLC) pixel [4-

5]. Three bands HHHH, HVHV, and VVVV back scatter magnitudes are used as features 
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for the classification. Also three complex data bands HHHV, HHVV, and HVVV back 

scatter magnitudes are used as features for the classification. These processing steps for 

levee slide detection are illustrated in Figure 3.5. 

 

Figure 3.5 Unsupervised classification processing steps for slide detection on levee. 

 

3.5.2 Supervised classification 

The Supervised classification methods process consists of image segmentation of 

the levee area, training the classifier, testing the area of interest, and validating the results 

using ground truth data. The classification is performed using different types of data, 

including magnitude, phase, and complex data of the Multi-Look Cross products (MLC) 

of the UAVSAR data acquired. The MLC data is derived from an average of 3 pixels in 
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range and 12 pixels in azimuth of the single look complex data (SLC) pixel [4-5]. Three 

complex data bands HHHV, HHVV, and HVVV back scatter magnitudes are used as 

features for the classification.  The river side from the center of the levee is segmented 

because the probabilities of occurrence of slide are more into the river side. The 

supervised classification method is trained with two training classes: slide (or anomalous) 

and nonslide (or “healthy”) areas.  We use ground truth reference data to train and test the 

classification algorithms. Majority and morphology filters are applied to the classifier 

output to determine if they can improve the accuracy of the classification.  The 

classification with GLCM features is also performed to increase the slide detection 

accuracy. Finally, the overall slide and nonslide accuracies are computed using the 

confusion matrix. These processing steps for levee slide detection are illustrated in Figure 

3.6. 
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Figure 3.6 Supervised classification processing steps for slide detection on levee. 
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CHAPTER IV 

STUDY AREA AND DATA  

4.1 Description of polarimetric SAR data 

A general description of polSAR data involves covariance (or coherency) 

matrices. These 3×3 Hermitian matrices are described by nine real parameters. Three of 

the parameters are the eigenvalues. Therefore, the three complex eigenvectors (18 real 

variables) can contain at most six independent real variables. Orthonormality severely 

limits the eigenvectors [119]. Also, it is noted that once two eigenvectors are specified, 

the third eigenvector is fixed and that there is no new information in the third eigenvector 

[120]. Ainsworth et al. [119] present a new method for analyzing the eigenvectors that 

explicitly incorporates the orthonormality properties of the eigenvectors. The aim is to 

find variables that are universally useful and simple to apply. In addition to the scattering 

mechanism and the orientation angle of the scatterer that are typically extracted from the 

eigenvectors, we also derive phase offsets and depolarization parameters. This new 

parameterization of the eigenvectors provides a consistent uniform framework within 

which to compare and discuss polarimetric information inherent in polSAR data. 

PolSAR data includes a variety of information which relates to the physical 

properties of the terrain. Hence, it provides much more information on the form of the 

scattering elements than single polarization SAR [121]. On the other hand, PolSAR 

appears to have a challenging problem in the classification field due to complexity of 
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achieved information from its multiple polarimetric channels [122-123]. Thereby, 

investigations on PolSAR imagery have shown that it has more potential for applications 

such as classification and pattern recondition. However, feature extraction from the 

PolSAR image is one of the main issues in classification of polarimetric data. Since the 

elements of a scattering matrix are modeled by the behavior of the target, several 

analyzed and decomposed methods based on the scattering matrix have been proposed to 

identify the scattering characteristics [124-125]. 

4.2 Study area and data used 

The study area for this work focuses on the mainline levee system of the 

Mississippi River along the eastern side of the river, in Mississippi, USA [5], as shown in 

Figure 4.1. This study used airborne polarimetric L-band synthetic aperture radar 

(PolSAR) data acquired by NASA Jet Propulsion Laboratory’s (JPL’s) Uninhabited 

Aerial Vehicle Synthetic Aperture Radar (UAVSAR) instrument, shown in Figure 4.2. 

The L-band radar is capable of penetrating dry soil to few centimeters depth. Thus, it is 

valuable in detecting changes in levees that are key inputs to the classification system [6].  

4.3 Data used 

The data set consists of the three sets of co-polarized channels HHHH, HVHV, 

and VVVV multi-look cross products (MLC) for the magnitude data classification. And 

three sets of cross-polarized channels HHHV, HHVV, and HVVV multi-look cross 

products (MLC) for the individual polarization channel magnitude and phase data, also 

for complex data classification.  The MLC data consists of 3 sets of complex floating 

point values, 8 byte per pixel. These complex products are derived from an average of 3 
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pixels in range and 12 pixels in azimuth, i.e., the number of range looks in MLC and 

number of azimuth looks in MLC are 3x12 of the product of each single look complex 

data (SLC) pixel, which correspond to HHHV, HHVV, and HVVV. Three additional sets 

are real floating point, 4 bytes per pixel. These real powers are derived from an average 

of 3 pixels in range, and 12 pixels in azimuth, i.e., the number of range looks in MLC and 

number of azimuth looks in MLC are 3x12 of the product of each SLC pixel, which 

correspond to HHHH, HVHV, and VVVV. The pixel spacing for the MLC data is by 

7.2m x 4.99m for the azimuth and range directions, respectively. The pixel spacing for 

the SLC data is by 0.6m x 1.66m for the azimuth and range directions, respectively. The 

SLC data sets (HH, HV, and VV) are oversampled in nature and are dominated by 

speckle noise. We chose the MLC data sets to reduce the speckle effects. Among this 

data, we choose the HHHV, HHVV, and HVVV MLC complex data sets since both the 

MLC magnitude and phase are derived from the same 8 bytes per pixel of the complex 

MLC input files. For the MLC data, the used projected multi-looked data ground sample 

distance is of size 5.5m by 5.5m. UAVSAR projects slant range images to ground range 

using the backward projection method. An equiangular grid is found with latitude and 

longitude boundaries that cover the entire slant range image. For each point on the 

ground range grid, the corresponding indices are calculated on the multi-looked slant 

range image. The data value closest to the coordinates pointed by the calculated slant 

range indices is assigned to the point on the ground range grid. 

The image segment Sample 1 consists of 66x68x3 (columns, rows, bands)   for 

the magnitude data, 66x68x3 for the phase data, and 66x68x6 for the complex data. The 

image segment Sample 2 consists of 52x54x3 for the magnitude data, 52x54x3 for the 
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phase data, and 52x54x6 for the complex data. The image segment Sample 3 consists of 

61x89x3 for the magnitude data, 61x89x3 for the phase data, and 61x89x6 for the 

complex data. The test study area for segment Sample 1 is a 484m, for segment Sample 2 

is a 381m, and for segment Sample 3 is a 633m long stretch of levee in the area marked 

with a red box on the flight segment radar image shown in Figure 4.1 For the multi‐

polarized SAR imagery, it is useful to create a color composite image from the HH, HV, 

and VV channels that are being mapped to red, green, and blue, as shown in Figure 4.1, 

which includes both an overview image as well as a close‐up view of the test segments, 

overlaid on the base map. It has a swath width of 20 km and a total length of 200 km. The 

radar is fully polarimetric with a range bandwidth of 80 MHz (resulting in better than 2 m 

range resolution) and flies at a nominal altitude of 13,800 m [5-6]. The data was collected 

on Jan. 25, 2010. The key parameters of the UAVSAR instrument are shown in Table 

4.1. 

Table 4.1              Key UAVSAR instrument parameters [6]. 

Parameter Value 
Frequency L-band 

Bandwidth 80 MHz 

Range Resolution 1.8 m 

Polarization Full Quad-Polarization 

Raw ADC Bits 12 baseline 

Antenna Dimensions 0.5 m range/1.5 azimuth 

Azimuth Steering Greater than ±20° 

Power > 2.0 kW 
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Figure 4.1 Study area with radar color composite 3 band (HH, VV, & HV) image 
overlaid on base map. 

 

 

Figure 4.2 NASA JPL’s UAVSAR instrument. 
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4.4 Ground truth data used 

The availability of ground truth data for training a supervised classification 

processes for the present application is a challenge since the targets of interest are 

portions of a levee that show signs of impending failure. Once these are detected, they are 

quickly repaired depending on their severity [28]. The study area is one in which the 

levees are managed by the US Army Corps of Engineers (USACE) and are well-

monitored. The Corps, in association with the local levee boards, maintains a good 

cumulative history of past problems and have identified particularly problematic sections 

of levees in the study area. The ground truth data is provided by USACE with the 

approximate dates slides appeared, dates slides were repaired, ground coordinate 

locations of the slides, levee station number, types of materials (lime/sand) used in repair 

of slides, etc.,  as shown in Table 4.2. These are used as training samples [5]. 

Table 4.2 Ground truth data from Mississippi Levee Board [6]. 

Slide 
Number Length Vert. 

Face 

Dist. 
from  

Crown 

Latitude 
North 

Longitude 
West 

Date Slide 
Appeared  

Date Slide 
Repaired 

1 135' 15' 12' N33-07'-
44.4" 

W91-04'-
46.1" Oct. 2009 Mar.2010 

2 230' 7' 9' N32-37'-
37.2" 

W90-59'-
56.2" Oct. 2009 Apr.2010 

3 80' 2' 30' N32-36'-
37.7" 

W90-59'-
42.3" Oct. 2009 Nov. 2009 

4 120' 3' 15' N32-36'-
32.0" 

W90-59'-
46.3" Aug. 2008 Nov. 2009 

5 200' 8' 8' N32-36'-
29.1" 

W90-59'-
48.0"  - Sept. 2010 
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Ground truth data was also compared to the optical National Agriculture Imagery 

Program (NAIP) imagery to visually confirm the slide events as unrepaired or repaired, 

as shown in Table 4.3. In addition to the ground truth data provided by the Corps, the 

levee research team conducted field trips at the time of image acquisition to visually 

inspect the slides area and levee condition. The active slides (slides 1, 2, and 5) were 

present during the radar image acquisition time and they had not been repaired as of the 

image acquisition date. Though the slide appearance date was not identified for slide 5, it 

was visually identified in the NAIP imagery collected in 2009 and 2010, and was 

repaired after the image acquisition. Hence, it was an active slide during the time of 

image acquisition. Training masks were created for the slide events and labeled as either 

repaired or unrepaired at the time of acquisition. The training sample data from slide and 

nonslide (healthy) parts of the levees were obtained from the radar data using the training 

masks for analysis. The samples from the healthy parts of the levee near the slide events 

were used for training of the nonslide (healthy levee) class. In this work slides 1, 2, and 5 

are used in the classification testing and validation.  
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Table 4.3  Updated slides ground truth from Mississippi Levee Board. 

Slide 
No. 

From Levee Board 
(08Apr.2011) From visual aerial photo inspection 

Date Slide 
Appeared 

Date Slide 
Repaired 

NAIP 2009                       
(May-Sep) 

NAIP 2010                        
(May-Sep) 

1 Oct. 2009 Mar. 2010 Not Visible 
July 25 

Unrepaired 
Aug. 3 

2 Oct. 2009 Apr. 2010 Not Visible 
July 25 

Unrepaired 
June 22 

3 Oct. 2009 Nov. 2009 Not Visible 
July 25 

Repaired 
June 22 

4 Aug. 2008 Nov. 2009 Unrepaired  
July 25 

Repaired 
June 22 

5 - Sep. 2010 Unrepaired  
July 25 

Unrepaired 
June 22 
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CHAPTER V 

RESULTS AND DISCUSSION 

5.1 Overview 

This work explains an overview and presents results of the use of synthetic 

aperture radar (SAR) as an aid to the levee screening process. The objectives of this 

research are to support the development of state-of-the-art methods using remotely 

sensed data to support levee condition assessment, screening procedures, and to detect 

anomalies in an efficient and cost-effective manner based on the use of SAR technology. 

The methods used consist of subsetting the image of the levee area, extracting features 

from the radar data, training the classifier as needed, running the classifier, applying 

selected post-classification filters, testing the area of interest and validation of the results 

using ground truth data. The source SAR imagery is fully quad-polarimetric L-band data 

from the NASA Jet Propulsion Laboratory’s (JPL’s) Uninhabited Aerial Vehicle 

Synthetic Aperture Radar (UAVSAR). The classification algorithms implemented are: 

unsupervised classification methods ISODATA, K-means, and RX-anomaly Detector; 

and supervised classification methods Minimum distance, Mahalanobis distance, and 

Support vector machine. The classification results are then processed using a majority 

filter and morphology filters to further improve the accuracy. Classification with Grey 

Level Co-occurrence Matrix (GLCM) features is also tested. The polarimetric 

decomposition methods implemented are eigenvector/eigenvalue based H/A/Alpha and 
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Model-based Freeman 3-component methods. The unsupervised classification techniques 

based on polarimetric decomposition parameters are A/α classification, H/A 

classification, H/α classification, H/Alpha/Lambda classification, Wishart-H/α 

classification, Wishart-H/A/α classification, and Wishart-scattering model based 

classification. The classification is performed using different components of the data 

including magnitude, phase, and complex data from the Ground Projected Data (GRD) 

Multi Look Cross products (MLC) of the UAVSAR acquired data. The study area 

encompasses a portion of the levees of the lower Mississippi river, located in Mississippi, 

United States.  

5.2 Software tools used 

The objective of the levee classification algorithm development task is to select an 

algorithm and a set of features that can be used to identify areas of interest on levees. In 

this study, we focus on the detection of slump (slough) slides [4].  Several tools were 

used including ArcGIS 10.3, ENVI 5.2, ERDAS IMAGINE 2014, MATLAB, SAS, and 

polSARpro 5.0, to assess the statistical distribution of the polarimetric backscatter from 

the levee features and to detect slides on the levee. Features, selected for their potential 

information for the discrimination of the targets of interest were used for the 

classification. Both per-pixel and window-based (textural) features were examined. 

Based on the ground truth for the test samples, a confusion matrix is calculated from 

which accuracy statistics are derived. 
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5.3 Results description 

The motivation of this work is to detect slides on a levee using remotely sensed 

polarimetric Synthetic Aperture Radar (polSAR) imagery. Slough or slump slides are 

slope failures along a levee, which leave areas of the levee vulnerable to seepage and 

failure during high water events. This work investigates the facility of detecting the 

slough slides on an earthen levee with different types of SAR data. Various classification 

techniques of supervised and unsupervised methods are tested for slide detection on a 

levee. Both Polarimetric and textural features have been extracted and applied in the 

classification process to achieve better accuracies for the classification. The results 

section is narrated as: Case I is about unsupervised classification methods 

implementation with and without features for the magnitude and complex data, of the 

Sample 3 segment.  Polarimetric unsupervised classification techniques are tested with 

several features as Entropy, Alpha, Anisotropy, and Lambda. Case 2 is about supervised 

classification methods tested with post-classification majority and morphology filters 

implementation for magnitude data, of the Sample 3 segment. Case 3 is about supervised 

classification with GLCM features and post-classification majority filter implementation 

for the magnitude and phase data, of the Sample 3 segment. Case 4 is about supervised 

classification implementation with post-classification majority filter implementation for 

the magnitude, phase data and complex data, of the Samples 1, 2, and 3 segments. 

5.3.1 Case 1: Unsupervised classification  

5.3.1.1 ISODATA classification 

The image segmentation of the Sample 3 for the magnitude data and optical 

image with slide locations are shown in Figure 5.1. Three sets of real floating point co-
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polarized MLC data [126-127] which correspond to the magnitudes of the HHHH, 

HVHV, and VVVV components are used. The unsupervised ISODATA (Iterative Self-

Organizing Data Analysis) classification result with seven classes, overlaid with shapes 

for slide and anomalous areas, of the image segment of Sample 3 for the magnitude data 

is shown in Figure 5.2. Unsupervised classification clusters pixels in a dataset based on 

statistics, without requiring training data. ISODATA unsupervised classification starts by 

calculating class means evenly distributed in the data space, then iteratively clusters the 

remaining pixels using minimum distance techniques. ISODATA classification 

parameters used are: 5 number of minimum and 10 number of maximum classes are 

chosen.  Maximum number of iterations chosen are 10,   and percentage change threshold 

chosen is 10. For the experimental analysis, ISODATA classification have been tested 

with several different combinations of the parameters, among which the classification 

results with above said parameters works well.      
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Figure 5.1  Image segment for the magnitude data 

(a) Image segment of the Sample 3 for the magnitude data, (b) Optical image overlaid 
with slide locations. 

 

Figure 5.2 ISODATA classification. 

Overlaid with shapes for slide and anomalous areas, of the Sample 3 for the magnitude 
data. 
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5.3.1.2 K-means classification 

The K-means classification result with 10 classes, overlaid with shapes for slide 

and anomalous areas, of the image segment of Sample 3 for the magnitude data is shown 

in Figure 5.3. K-means unsupervised classification calculates initial class means evenly 

distributed in the data space then iteratively clusters the pixels into the nearest class using 

a minimum distance technique. K-means classification parameters used are: number of 

classes chosen are 10, maximum number of iterations chosen are 10,   and percentage 

change threshold chosen is 10.  

 

Figure 5.3 K-means classification. 

Overlaid with shapes for slide and anomalous areas, of the Sample 3 for the magnitude 
data. 
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5.3.1.3 RX-Anomaly Detection 

The Reed-Xiaoli Detector (RXD) classification result with global filter for the 

image segment, overlaid with shapes for slide and anomalous areas, of the Sample 3 of 

the magnitude data is shown in Figure 5.4. The active slide (slide 5) and repaired slides 

(slides 3 and 4) are marked with shape on the classification image. The Anomaly 

Detection uses the Reed-Xiaoli Detector (RXD) algorithm to identify the spectral or color 

differences between a region to test and its neighboring pixels or the entire dataset. This 

algorithm extracts targets that are spectrally distinct from the image background. RXD is 

effective when the anomalous targets are sufficiently small, relative to the background. 

Also tested for local filter with different kernel size, but the classification results with 

global filter shows better results. The RXD unsupervised classification results shows that 

it produces more appropriate classification results than the ISODATA and K-means 

unsupervised classification methods. 
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Figure 5.4 RXD classification. 

Overlaid with shapes for slide and anomalous areas, of the Sample 3 for the magnitude 
data.  

5.3.1.4 Classification based on Entropy/Alpha/Anisotropy features 

The PolSAR data was used for classification of scattering mechanisms of a target 

having a particular scattering process, such as surface, double-bounce, or volume 

scattering. An unsupervised classification scheme based on the use of the two-

dimensional H/α classification plane, where all random scattering mechanisms can be 

represented. The key idea is that entropy (H) arises as a natural measure of the inherent 

reversibility of the scattering data and that the alpha angle (α) can be used to identify the 

underlying average scattering mechanisms. The algorithms were applied to a subset area 

of the levee. The cross-polarized products, HHHV, HHVV, and HVVV bands are used. 

The eigenvalue-based H/A/α decomposition parameters Entropy, Anisotropy, and Alpha, 
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are shown in Figure 5.5. The Pauli RGB image with subset area marked with a red 

rectangle, H/α classification, and Wishart-H/α classification, are shown in Figure 5.6. The 

H/A classification, A/α classification, and Wishart-H/A/α classification, are shown in 

Figure 5.7. The segmented and occurrence planes for H/α, H/A, and A/α classification, 

are shown in Figure 5.8. H/α, H/A, A/α, and Wishart-H/α classification is classified into 9 

classes, based on the use of the two-dimensional H/α classification plane, and Wishart-

H/A/α classification is classified into 16 classes based on the H/α segmentation plane. 

The slough slide area is marked with polygon shape, and the testing area (river side of the 

levee) is marked with shape area on the images. The classification results reveal that the 

Wishart-H/α and Wishart-H/A/α classification method provides superior classification 

compared to the H/α, H/A, and A/α classification schemes. Because for the Wishart-H/α 

and Wishart-H/A/α classification, the polarimetric decomposed parameters i.e. entropy, 

alpha, and anisotropy are used as the training sets for the classification. The initial 

classification map defines training sets for classification based on the Wishart 

distribution. The classified results are then used as training sets for the next iteration 

using the Wishart method. The percentage of class switching is used 10 and the number 

of iteration performed are 10. In addition to the active slides, marked with the polygon 

area on the classification results, other anomalous areas are also detected in the 

classification process, as highlighted in the Figures 5.9-5.10. The chance of occurring 

slough sides are more to the river side than compared to the land side of the levee.  
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Figure 5.5 H/A/α features. 

(a) Entropy, (b) Alpha, and (c) Anisotropy, overlaid with shapes for levee river side and 
slide area.  

 

Figure 5.6 Wishart-H/α classification  

(a) Pauli RGB Image for Sample 3, (b) H/α classification, and (c) Wishart-H/α 
classification, overlaid with shapes for levee river side and slide area.   
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Figure 5.7 Wishart-H/A/α classification  

(a) H/A classification, (b) A/α classification, and (c) Wishart-H/A/α classification, 
overlaid with shapes for levee river side and slide area.   
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Figure 5.8 Segmented and occurrence planes  

(a-c) segmented planes for H/α, H/A, and A/α classification, (d-f) Occurrence planes for 
H/α, H/A, and A/α classification.   
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Figure 5.9 Wishart-H/α classification slide detection. 

(a) Wishart-H/α classification, (b) optical image overlaid with slide locations.    
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Figure 5.10  Wishart- H/A/α classification slide detection  

(a) Wishart-H/A/α classification, (b) optical image overlaid with slide locations.    

5.3.1.5 Classification based on Entropy/Alpha/ Lambda features 

The Eigen decomposition parameters entropy, alpha, and lambda, are shown in 

Figure 5.11.  The Pauli RGB image with subset area marked with a red rectangle, 

unsupervised H/α classification, and H/α/λ classification, are shown in Figure 5.12. The 

unsupervised H/α/λ1 classification, H/α/λ2 classification, and H/α/λ3 classification, are 

shown in Figure 5.13.  H/α classification is classified into 9 classes based on the H/α 

segmentation plane. Whereas, H/α/λ, H/α/λ1, H/α/λ2, and H/α/λ3 classifications are inter-

classified within the 9 classes to represent the interclass resolution due to the different 

reflectivities of different scatterers. The segmented and occurrence planes for H/α/λ1, 
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H/α/λ2, and H/α/λ3 classification are shown in Figure 5.14. For the slough slide areas, it 

can be seen that the surface scattering is partially dominant, the double-bounce scattering 

is strongly dominant, and the volume scattering is almost zero, since here our target 

(levee) is the naturally distributed. The H/α/λ classification and H/α/λ2 classification 

clearly identified the slide/anomalous areas, as highlighted in the Figures 5.15-5.16.  

 

Figure 5.11  H/α/λ features. 

(a) Entropy, (b) Alpha, and (c) Lambda, overlaid with shapes for levee river side and 
slide area.   

All the segmentation class values of segmented zones for the H/α, H/α/λ1, H/α/λ2, 

and H/α/λ3 classifications using the H/α segmentation plane for random media scattering 

are listed in the Table 5.1. Using these values the classification color map representing 

each class of H/α/λ classification is extended from 9 colors to 27 colors. In the 

classification with individual eigenvalues analysis, the H/α/λ1 classification shows where 
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surface scattering dominates, the H/α/λ2 classification highlights areas dominated by 

double-bounce scattering, and in the H/α/λ3 classification the volume scattering is 

emphasized. 

Table 5.1 Class values of segmented zones for the H/α, H/α/λ1, H/α/λ2, and H/α/λ3 
classifications using the H/α segmentation plane for random media 
scattering. 

Zone\Class 
value 

Classification 

H/α H/α/λ1 H/α/λ2 H/α/λ3 

Z1 1 1 3.37 6.54 
Z2 2 1.31 4.08 6.85 
Z3 0 0 0 0 
Z4 4 1.92 4.69 8.38 
Z5 5 2.23 5.00 7.77 
Z6 6 2.54 5.31 8.08 
Z7 7 2.85 5.62 8.38 
Z8 8 3.15 5.92 8.69 
Z9 9 3.46 6.23 0 
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Figure 5.12  H/α/λ classification. 

(a) Pauli RGB Image for Sample 3, (b) H/α classification, and (c) H/α/λ classification, 
overlaid with shapes for levee river side and slide area.   

 

Figure 5.13  H/α/ λ1/ λ2/ λ3 classification. 

 (a) H/α/λ1 classification, (b) H/α/λ2 classification, and (c) H/α/λ3 classification, overlaid 
with shapes for levee river side and slide area.   
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Figure 5.14  Segmented and occurrence planes.  

(a-c) segmented planes for H/α/λ1, H/α/λ2, and H/α/λ3 classification, (d-f) occurrence 
planes for H/α/λ1, H/α/λ2, and H/α/λ3 classification.   
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Figure 5.15  H/α/λ classification slide detection. 

 (a) H/α/λ classification, (b) optical image overlaid with slide locations.  
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Figure 5.16  H/α/λ2 classification slide detection. 

(a) H/α/λ2 classification, (b) optical image overlaid with slide locations.    

5.3.1.6 Wishart scattering model based classification 

The scattering model-based decomposition developed by Freeman and Durden 

decomposition to divide pixels into three scattering categories: surface scattering, volume 

scattering, and double-bounce scattering. The Freeman and Durden decomposition 

scattering categories: surface scattering, double-bounce scattering, and random/volume 

scattering, are shown in Figure 5.17. The Pauli RGB image with subset area marked with 

a red rectangle and Wishart scattering model based classification are shown in Figure 

5.18.  The slide and anomalous areas detection with the Wishart scattering model based 

classification is highlighted, as shown in Figure 5.19. A class initialization scheme is also 
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performed to initially merge clusters from many small clusters in each scattering category 

by applying a merge criterion developed based on the Wishart distance measure. The 

initial number of clusters chosen are 30. The final number of percentage scattering type 

minimum value for single bounce, double bounce, and random/volume chosen is 5, with 

mixed scattering type threshold of 0.5. The iterative Wishart classifier is applied i.e. 

Maximum likelihood classifier based on the complex Wishart distribution. The 

processing window size for rows and columns used is 3x3. The percentage of pixels 

switching class is 10, with maximum number of iterations performed are 10. An 

automated color rendering scheme is applied, based on the classes’ scattering category to 

code the pixels. Color map percentage scattering type for single bounce is blue, for 

double bounce is red, and for random/volume bounce is green. This method not only uses 

a statistical classification, but also preserves the purity of dominant polarimetric 

scattering properties. The polarimetric signatures of co-polarization channel and cross-

polarization channel, for slide and nonslide area, are shown in Figures 5.20-5.21.   
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Figure 5.17  Freeman-Durden decomposition. 

 (a) Freeman-Durden decomposition odd bounce, (b) double bounce, and (c) 
random/volume bounce, overlaid with shapes for levee river side and slide area. 
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Figure 5.18  Wishart scattering model based classification. 

 (a) Pauli RGB image for Sample 3, (b) Wishart scattering model based classification, 
overlaid with shapes for levee river side and slide area.   
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Figure 5.19  Wishart scattering model based classification slide detection. 

(a) Wishart scattering model based classification, (b) optical image overlaid with slide 
locations.    
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Figure 5.20  polarimetric signature of slide area. 

 (a) polarimetric signature of co-polarization channel, (b) polarimetric signature of cross-
polarization channel, for slide area.   

  

 

Figure 5.21  polarimetric signature of nonslide area. 

 (a) polarimetric signature of co-polarization channel, (b) polarimetric signature of cross-
polarization channel, for nonslide area.  
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The chance of presence of big trees is more likely to the riverside of the levee, if 

any are there is dominated by the double bounce/random bounce, which is identified with 

polSAR unsupervised classification. The polSAR data unsupervised classification with 

features extraction such as entropy, alpha, anisotropy, and lambda produces more 

appropriate results than the unsupervised classification with no features extraction. The 

interesting point noticed that unsupervised classification methods ISODATA, K-means, 

and RXD were not worked properly for the complex data except for the magnitude data. 

Wishart based unsupervised classification schemes clearly shows better results for his 

application. Apart from the Wishart based classification schemes, H/α/λ2 classification 

noticeably shows better results to identify slough slide areas, because generally on the 

levee slide areas possibly predominate with the double bounce than other healthy part of 

the levee usually dominated the surface/single bounce.   

5.3.2 Case 2: Supervised classification  

5.3.2.1 Minimum distance classification 

The image segment of Sample 3 for the magnitude data is shown in Figure 5.22. 

Three sets of real floating point co-polarized MLC data which correspond to the 

magnitudes of the HHHH, HVHV, and VVVV bands are used as features. Two training 

areas were chosen as slide 5 (anomalous) and nonslide (healthy) areas as shown in Figure 

5.22. The ground truth pixels used for slide 5 and nonslide area are 78 and 84, 

respectively. The image segment of Sample 3 ground truth pixels has a total of 929. The 

Minimum distance classification results, with majority filter, and with morphology filter 

(erode), of the image segment of Sample 3 for the magnitude data are shown in Figure 

5.23. Majority post classification filtering uses a moving window (kernel) where each 
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central pixel assigned to the majority class of the pixels within the window. It examines 

the labels of neighborhood classes [10]. This filter is applied to a classification image to 

change false pixels within a large single class to the own class. The kernel size used here 

for the majority filter is 3x3. The center pixel in the kernel will be replaced with the class 

value of the majority of the pixels in the kernel [42]. The center pixel weight used here is 

1. It determines how many times the class of the center pixel is counted when 

determining the class majority. For the image segment of Sample 3, though some of the 

slide areas (slide 3 and 4) were repaired by the time of the image acquisition, they still 

show anomalous and are detected by the classification technique. In addition to the active 

slide area (slide 5) detection, the other repaired slide areas (slide 3 and 4) are also 

detected to some extent as shown in Figures 5.24-5.25. Because these slide areas (slide 3 

and 4) were repaired two months ago, by the time of the image acquisition, they still 

show anomalous because of the texture roughness and possibly lack of grass on repaired 

slide area [128]. Accuracy assessment for the Minimum distance classifier of the image 

segment of Sample 3 is evaluated using the confusion matrix, which is listed in the 

Tables 5.2-5.10. For the Minimum distance classification with morphology filter, the 

slide accuracy 92% and nonslide accuracy 100% was achieved. All accuracies (overall, 

slide, and nonslide) are improved with majority filter, and further improved with the 

morphology filter.   
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Figure 5.22  Image segment of the Sample 3 for the magnitude data. 

(a) Image segment (testing area, river side of the levee) of the Sample 3 for the 
magnitude data, (b) Regions of   interest (slide and nonslide area, training areas), and (c) 
Image segment overlaid with the slide and nonslide classes multipoint shape, levee center 
line, and annotation. 

 

Figure 5.23  Minimum distance classification. 

(a) Minimum distance classification, (b) with majority filter, and (c) with morphology 
filter (erode), overlaid with shapes for training areas and anomalous areas, of the Sample 
3 for the magnitude data. 
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Table 5.2 Accuracy analysis of the Minimum distance classification of the Sample 3 
for the magnitude data. 

Overall Accuracy = (132/162)  81% 

  Ground Truth (Pixels) Ground Truth (Percent) 

Class Slide5 nonslide  Total Slide5 nonslide Total 

Slide5 48 0 48 61 0 29 

nonslide 30 84 114 38 100 70 

Total 78 84 162 100 100 100 

 

Table 5.3 Commission and omission error analysis of the Minimum distance 
classification of the Sample 3 for the magnitude data. 

Class Commission 
(Percent) 

Omission 
(Percent) 

Commission 
(Pixels) 

Omission 
(Pixels) 

Slide5 0  38  0/48                30/78   

nonslide 26  0 30/114 0/84   

 

Table 5.4 Producer and user accuracy analysis of the Minimum distance classification 
of the Sample 3 for the magnitude data. 

Class Prod. Acc. 
(Percent) 

User Acc. 
(Percent) 

Prod. Acc. 
(Pixels) 

User Acc. 
(Pixels) 

Slide5 61  100  48/78                48/48   

nonslide 100  73  84/84               84/114   
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Table 5.5 Accuracy analysis of the Minimum distance classification with majority 
filter of the Sample 3 for the magnitude data. 

Overall Accuracy = (133/162)  82% 

  Ground Truth (Pixels) Ground Truth (Percent) 

Class Slide5 nonslide Total Slide5 nonslide Total 

Slide5 49 0 49 62  0 30  

nonslide 29 84 113 37  100 69  

Total 78 84 162 100 100 100 

 

Table 5.6 Commission and omission error analysis of the Minimum distance 
classification with majority filter of the Sample 3 for the magnitude data. 

Class Commission 
(Percent) 

Omission 
(Percent) 

Commission 
(Pixels) 

Omission 
(Pixels) 

Slide5 0  37  0/49                29/78   

nonslide 25  0 29/113                 0/84   

 

Table 5.7 Producer and user accuracy analysis of the Minimum distance classification 
with majority filter of the Sample 3 for the magnitude data. 

Class Prod. Acc. 
(Percent) 

User Acc. 
(Percent) 

Prod. Acc. 
(Pixels) 

User Acc. 
(Pixels) 

Slide5 62 100 49/78 49/49 

nonslide 100 74 84/84 84/113 
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Table 5.8 Accuracy analysis of the Minimum distance classification with morphology 
filter (erode) of the Sample 3 for the magnitude data. 

Overall Accuracy = (156/162)  96% 

  Ground Truth (Pixels) Ground Truth (Percent) 

Class Slide5 nonslide Total Slide5 nonslide Total 

Slide5 72 0 72 92  0 44.44   

nonslide 6 84 90 7  100 55.56   

Total 78 84 162 100 100 100 

 

Table 5.9 Commission and omission error analysis of the Minimum distance 
classification with morphology filter (erode) of the Sample 3 for the 
magnitude data. 

Class Commission 
(Percent) 

Omission 
(Percent) 

Commission 
(Pixels) 

Omission 
(Pixels) 

Slide5 0  7  0/72                 6/78   

nonslide 6  0 6/90                 0/84   

 

Table 5.10 Producer and user accuracy analysis of the Minimum distance classification 
with morphology filter (erode) of the Sample 3 for the magnitude data. 

Class Prod. Acc. 
(Percent) 

User Acc. 
(Percent) 

Prod. Acc. 
(Pixels) 

User Acc. 
(Pixels) 

Slide5 92  100  72/78                72/72   

nonslide 100  93  84/84               84/90     
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Figure 5.24 Minimum distance classification slide detection. 

 (a) Minimum distance classification, (b) with majority filter, of the Sample 3 for the 
magnitude data, and (c) optical image overlaid with slides and nonslide classes shape, 
levee center line, and annotation. 

 

Figure 5.25  Minimum distance classification slide detection. 

 (a) Minimum distance classification, (b) with morphology filter (erode), of the Sample 3 
for the magnitude data, and (c) optical image overlaid with slides and nonslide classes 
shape, levee center line, and annotation. 
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5.3.2.2 Mahalanobis distance classification 

The Mahalanobis distance classification results, with majority filter, and with 

morphology filter (erode), of the image segment of Sample 3 for the magnitude data are 

shown in Figure 5.26. The morphology filter type used here is the Erode. Usually known 

as shrink or reduce, it removes islands of pixels smaller than the structural element in an 

image. In morphology filters morphological kernels used as the structuring element [42]. 

The morphology filter (erode) with squared kernel size 3x3 is used [129]. The number of 

iterations (cycles) of the morphology filter performed are 1. The filter style used is the 

Gray to preserve gradients of the pixels. In addition to the active slide area (slide 5) 

detection, the other repaired slide areas (slide 3 and 4) are also detected to some extent as 

shown in Figures 5.27-5.28. Accuracy assessment for the Mahalanobis distance classifier 

of the image segment of Sample 3 is evaluated using the confusion matrix, which is listed 

in the Tables 5.11-5.19. The confusion matrix is calculated by comparing the location and 

class of each ground truth pixel with the corresponding location and class in the 

classification image. Each column of the confusion matrix represents a ground truth class 

and the values in the column correspond to the classification image’s labeling of the 

ground truth pixels. The overall accuracy is calculated by summing the number of pixels 

classified correctly and dividing by the total number of pixels. The ground truth image or 

ground truth ROIs defines the true class of the pixels. The pixels classified correctly are 

found along the diagonal of the confusion matrix which lists the number of pixels that 

were classified into the correct ground truth class [42]. The total number of pixels is the 

sum of all the pixels in all the ground truth classes. Errors of commission represent pixels 

that belong to another class that are labeled as belonging to the class of interest. The 
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errors of commission are shown in the rows of the confusion matrix. Errors of omission 

represent pixels that belong to the ground truth class but the classification technique has 

failed to classify them into the proper class [42]. The errors of omission are shown in the 

columns of the confusion matrix. The producer accuracy is a measure indicating the 

probability that the classifier has labeled an image pixel into Class A given that the 

ground truth is Class A. User accuracy is a measure indicating the probability that a pixel 

is Class A given that the classifier has labeled the pixel into Class A [42]. For the 

Mahalanobis distance classification with morphology filter, the slide accuracy 98% and 

nonslide accuracy 100% was achieved.  

 

Figure 5.26  Mahalanobis distance classification. 

(a) Mahalanobis distance classification, (b) with majority filter, and (c) with morphology  
filter (erode), overlaid with shapes for training areas and anomalous areas, of the Sample 
3 for the magnitude data. 
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Figure 5.27  Mahalanobis distance classification slide detection.  

(a) Mahalanobis distance classification, (b) with majority filter, of the Sample 3 for the 
magnitude data, and (c) optical image overlaid with slides and nonslide classes shape, 
levee center line, and annotation. 

 

Figure 5.28 Mahalanobis distance classification slide detection. 

 (a) Mahalanobis distance classification, (b) with morphology filter (erode), of the 
Sample 3 for the magnitude data, and (c) Optical image overlaid with slides and nonslide 
classes shape, levee center line, and annotation. 
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Table 5.11 Accuracy analysis of the Mahalanobis distance classification of the Sample 
3 for the magnitude data. 

Overall Accuracy = (146/162)  90% 

  Ground Truth (Pixels) Ground Truth (Percent) 

Class Slide5 nonslide Total Slide5 nonslide Total 

Slide5 62 0 62 79 0 38  

nonslide 16 84 100 20  100 61  

Total 78 84 162 100 100 100 

 

Table 5.12 Commission and omission error analysis of the Mahalanobis distance 
classification of the Sample 3 for the magnitude data. 

Class Commission 
(Percent) 

Omission 
(Percent) 

Commission 
(Pixels) 

Omission 
(Pixels) 

Slide5 0  20  0/62                16/78   

nonslide 16  0 16/100                 0/84   

 

Table 5.13 Producer and user accuracy analysis of the Mahalanobis distance 
classification of the Sample 3 for the magnitude data. 

Class Prod. Acc. 
(Percent) 

User Acc. 
(Percent) 

Prod. Acc. 
(Pixels) 

User Acc. 
(Pixels) 

Slide5 79  100  62/78                62/62   

nonslide 100  84 84/84               84/100   
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Table 5.14 Accuracy analysis of the Mahalanobis distance classification with majority 
filter of the Sample 3 for the magnitude data. 

Overall Accuracy = (151/162)  93% 

  Ground Truth (Pixels) Ground Truth (Percent) 

Class Slide5 nonslide Total Slide5 nonslide Total 

Slide5 67 0 67 85  0 41  

nonslide 11 84 95 14  100 58  

Total 78 84 162 100 100 100 

 

Table 5.15 Commission and omission error analysis of the Mahalanobis distance 
classification with majority filter of the Sample 3 for the magnitude data. 

Class Commission 
(Percent) 

Omission 
(Percent) 

Commission 
(Pixels) 

Omission 
(Pixels) 

Slide5 0  14  0/67                11/78   

nonslide 11  0 11/95                 0/84   

 

Table 5.16 Producer and user accuracy analysis of the Mahalanobis distance 
classification with majority filter of the Sample 3 for the magnitude data. 

Class Prod. Acc. 
(Percent) 

User Acc. 
(Percent) 

Prod. Acc. 
(Pixels) 

User Acc. 
(Pixels) 

Slide5 85  100  67/78 67/67   

nonslide 100  88  84/84               84/95   
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Table 5.17 Accuracy analysis of the Mahalanobis distance classification with 
morphology filter (erode) of the Sample 3 for the magnitude data. 

Overall Accuracy = (161/162)  99% 

  Ground Truth (Pixels) Ground Truth (Percent) 

Class Slide5 nonslide Total Slide5 nonslide Total 

Slide5 77 0 77 98  0 47  

nonslide 1 84 85 1  100 52  

Total 78 84 162 100 100 100 

 

Table 5.18 Commission and omission error analysis of the Mahalanobis distance 
classification with morphology filter (erode) of the Sample 3 for the 
magnitude data. 

Class Commission 
(Percent) 

Omission 
(Percent) 

Commission 
(Pixels) 

Omission 
(Pixels) 

Slide5 0  1  0/77                1/78   

nonslide 1  0 1/85                 0/84   
 

Table 5.19 Producer and user accuracy analysis of the Mahalanobis distance 
classification with morphology filter (erode) of the Sample 3 for the 
magnitude data. 

Class Prod. Acc. 
(Percent) 

User Acc. 
(Percent) 

Prod. Acc. 
(Pixels) 

User Acc. 
(Pixels) 

Slide5 98  100  77/78 77/77   

nonslide 100  98  84/84               84/85   
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All accuracies of the Minimum distance and Mahalanobis distance classification 

of the Sample 3 for the magnitude data are listed in Table 5.20. A graphical summary of 

the accuracy results for the Minimum distance and Mahalanobis distance classification of 

the image segment of Sample 3 for the magnitude data is shown in Figure 5.29. The 

identification of the anomalies are good with the classification results and was improved 

with the majority filter. The classification accuracy is further improved with morphology 

filter. The overall and slide accuracies are higher for the Mahalanobis distance classifier 

compared to the Minimum distance classifier of the Sample 3 for the magnitude data. 

Table 5.20 Accuracy analysis of the Minimum distance (MID) and Mahalanobis 
distance (MD) classification, and with majority and morphology filter 
(erode) of the Sample 3 for the magnitude data. 

Classification Method 
Vs. Accuracy (%) 

Overall 
Accuracy 

Slide 
Accuracy 

Nonslide  
Accuracy 

Minimum distance  81  61  100 

MID with majority filter 82  62  100 

MID with morphology filter 96  92  100  

Mahalanobis distance 90 79 100 

MD with majority filter 93 85 100 

MD with morphology filter 99 98 100 
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Figure 5.29 Accuracy comparison. 

Accuracy comparison of the Minimum distance and Mahalanobis distance classification, 
with majority and morphology filter, of the Sample 3 for the magnitude data. 

5.3.3 Case 3: Supervised classification with GLCM features  
5.3.3.1 Magnitude data 

The image segment of Sample 3 for the magnitude data is shown in Figure 5.30. 

Three sets of complex floating point cross-polarized MLC data which correspond to the 

magnitudes of the HHHV, HHVV, and HVVV bands are used as features. Two training 

areas were chosen as slide 5 (anomalous) and nonslide (healthy) areas of the Sample 3 for 

the magnitude data is as shown in Figure 5.30. The ground truth pixels used for slide 5 

and nonslide area are 78 and 84, respectively. The image segment of Sample 3 ground 
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truth pixels has a total of 929. The SVM classification results, and with GLCM features, 

of the Sample 3 for the magnitude data are shown in Figure 5.31. The kernel type used 

for the SVM classification is radial basis function with gamma value 0.33 [130-132]. Co-

occurrence measures to apply texture filters that are based on a co-occurrence matrix. It 

shows the number of occurrences of the relationship between a pixel and its specified 

neighbor. The co-occurrence measures based on a co-occurrence matrix [133] used are 

mean, variance, homogeneity, contrast, dissimilarity, entropy, second moment, and 

correlation. The size of the processing window used is 3 rows and 3 columns. The X and 

Y shift values used to calculate the co-occurrence matrix is 1x1.The greyscale 

quantization level used to calculate the co-occurrence matrix is 64. In addition to the 

active slide area (slide 5) detection, the other repaired slide areas (slide 3 and 4) are also 

detected to some extent as shown in Figure 5.32. Accuracy assessment for the classifier 

of the image segment of Sample 3 is evaluated using the confusion matrix, which is listed 

in the Tables 5.21-5.26. For the SVM classification without GLCM features of the 

Sample 3 for the magnitude data, the slide accuracy 88% and nonslide accuracy 90% was 

achieved. With GLCM features of the Sample 3 for the magnitude data, the slide 

accuracy 100% and nonslide accuracy 100% was achieved, which is greatly improved 

compared with the without GLCM features.  
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Figure 5.30  Image segment of the Sample 3 for the magnitude data.  

(a) Image segment (testing area, river side of the levee) of the Sample 3 for the 
magnitude data, (b) Regions of   interest (slide and nonslide area, training areas), and (c) 
Image segment overlaid with the slide and nonslide classes multipoint shape, levee center 
line, and annotation. 

 

Figure 5.31  SVM classification for the magnitude data. 

(a) SVM classification, (b) with GLCM features, overlaid with shapes for training areas 
and anomalous areas, of the Sample 3 for the magnitude data. 
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Figure 5.32  SVM classification slide detection. 

(a) SVM classification, (b) with GLCM features, of the Sample 3 for the magnitude data, 
and (c) optical image overlaid with slides and nonslide classes shape, levee center line, 
and annotation. 

Table 5.21 Accuracy analysis of the SVM classification of the Sample 3 for the 
magnitude data. 

Overall Accuracy = (145/162)  89% 

  Ground Truth (Pixels) Ground Truth (Percent) 

Class Slide5 nonslide Total Slide5 nonslide Total 

Slide5 69 8 77 88 9  47  

nonslide 9 76 85 11  90  52  

Total 78 84 162 100 100 100 
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Table 5.22 Commission and omission error analysis of the SVM classification of the 
Sample 3 for the magnitude data. 

Class Commission 
(Percent) 

Omission 
(Percent) 

Commission 
(Pixels) 

Omission 
(Pixels) 

Slide5 10  11 8/77                 9/78   

nonslide 10  9  9/85                 8/84   

 

Table 5.23 Producer and user accuracy analysis of the SVM classification of the 
Sample 3 for the magnitude data. 

Class Prod. Acc. 
(Percent) 

User Acc. 
(Percent) 

Prod. Acc. 
(Pixels) 

User Acc. 
(Pixels) 

Slide5 88  89  69/78                69/77   

nonslide 90  89  76/84                76/85   
 

Table 5.24 Accuracy analysis of the SVM classification with GLCM features of the 
Sample 3 for the magnitude data. 

Overall Accuracy = (162/162)  100% 

  Ground Truth (Pixels) Ground Truth (Percent) 

Class Slide5 nonslide Total Slide5 nonslide Total 

Slide5 78 0 78 100  0  48  

nonslide 0 84 84 0  100  51  

Total 78 84 162 100 100 100 
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Table 5.25 Commission and omission error analysis of the SVM classification with 
GLCM features of the Sample 3 for the magnitude data. 

Class Commission 
(Percent) 

Omission 
(Percent) 

Commission 
(Pixels) 

Omission 
(Pixels) 

Slide5 0  0  0/78 0/78 

nonslide 0  0  0/84                 0/84   
 

Table 5.26 Producer and user accuracy analysis of the SVM classification with GLCM 
features of the Sample 3 for the magnitude data. 

Class Prod. Acc. 
(Percent) 

User Acc. 
(Percent) 

Prod. Acc. 
(Pixels) 

User Acc. 
(Pixels) 

Slide5 100  100  78/78 78/78 

nonslide 100  100  84/84                84/84                
 

5.3.3.2 Phase data  

The image segment of Sample 3 for the phase data is shown in Figure 5.33. Three 

sets of complex floating point cross-polarized MLC data which correspond to the phase 

of the HHHV, HHVV, and HVVV bands are used as features. Two training areas were 

chosen as slide 5 (anomalous) and nonslide (healthy) areas of the Sample 3 for the phase 

data is as shown in Figure 5.33. The SVM classification results, and with GLCM 

features, of the Sample 3 of the image segment for the phase data is shown in Figure 

5.34. In addition to the active slide area (slide 5) detection, the other repaired slide areas 

(slide 3 and 4) are also detected to some extent as shown in Figure 5.35. Accuracy 

assessment for the classifier of the image segment of Sample 3 is evaluated using the 

confusion matrix, which is listed in the Tables 5.27-5.32. For the SVM classification 

without GLCM features of the Sample 3 for the phase data, the slide accuracy 71% and 
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nonslide accuracy 71% was achieved. With GLCM features of the Sample 3 for the phase 

data, the slide accuracy 97% and nonslide accuracy 94% was achieved, which is greatly 

improved compared with the without GLCM features.  

 

Figure 5.33  Image segment of the Sample 3 for the phase data.  

(a) Image segment (testing area, river side of the levee) of the Sample 3 for the phase 
data, (b) Regions of   interest (slide and nonslide area, training areas), and (c) Image 
segment overlaid with the slide and nonslide classes multipoint shape, levee center line, 
and annotation. 
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Figure 5.34  SVM classification for the phase data.  

(a) SVM classification, (b) with GLCM features, overlaid with shapes for training areas 
and anomalous areas, of the Sample 3 for the phase data. 

 

Figure 5.35 SVM classification slide detection. 

 (a) SVM classification, (b) with GLCM features, of the Sample 3 for the phase data, and 
(c) optical image overlaid with slides and nonslide classes shape, levee center line, and 
annotation. 
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Table 5.27 Accuracy analysis of the SVM classification of the Sample 3 for the phase 
data. 

Overall Accuracy = (116/162)  71% 

 Ground Truth (Pixels) Ground Truth (Percent) 

Class Slide5 nonslide Total Slide5 nonslide Total 

Slide5 56 24 80 71 28 49 

nonslide 22 60 82 28 71 50 

Total 78 84 162 100 100 100 

 

Table 5.28 Commission and omission error analysis of the SVM classification of the 
Sample 3 for the phase data. 

Class Commission 
(Percent) 

Omission 
(Percent) 

Commission 
(Pixels) 

Omission 
(Pixels) 

Slide5 30 28  24/80                22/78   

nonslide 26  28  22/82                24/84   

 

Table 5.29 Producer and user accuracy analysis of the SVM classification of the 
Sample 3 for the phase data. 

Class Prod. Acc. 
(Percent) 

User Acc. 
(Percent) 

Prod. Acc. 
(Pixels) 

User Acc. 
(Pixels) 

Slide5 71  70  56/78                56/80   

nonslide 71  73  60/84                60/82   
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Table 5.30 Accuracy analysis of the SVM classification with GLCM features of the 
Sample 3 for the phase data. 

Overall Accuracy = (155/162)  95% 

  Ground Truth (Pixels) Ground Truth (Percent) 

Class Slide5 nonslide Total Slide5 nonslide Total 

Slide5 76 5 81 97  5  50  

nonslide 2 79 81 2  94  50 

Total 78 84 162 100 100 100 

 

Table 5.31 Commission and omission error analysis of the SVM classification with 
GLCM features of the Sample 3 for the phase data. 

Class Commission 
(Percent) 

Omission 
(Percent) 

Commission 
(Pixels) 

Omission 
(Pixels) 

Slide5 6  2  5/81                 2/78   

nonslide 2  5  2/81                 5/84   

 

Table 5.32 Producer and user accuracy analysis of the SVM classification with GLCM 
features of the Sample 3 for the phase data. 

Class Prod. Acc. 
(Percent) 

User Acc. 
(Percent) 

Prod. Acc. 
(Pixels) 

User Acc. 
(Pixels) 

Slide5 97  93  76/78                76/81   

nonslide 94  97  79/84                79/81   

 

All accuracies (overall, slide, and nonslide) are improved with GLCM features. 

All accuracies of the SVM classification of the Sample 3 for the magnitude and phase 

data are listed in Table 5.33. A graphical summary of the accuracy results for the SVM 
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classification of the image segment of Sample 3 for the magnitude and phase data is 

shown in Figure 5.36. The identification of the anomalies are good with the classification 

results, and classification accuracy is significantly improved with the GLCM features. 

The classification accuracies of the Sample 3 for the magnitude data classification is 

higher than compared to the phase data classification. 

Table 5.33 Accuracy analysis of the SVM classification with and without GLCM 
features of the Sample 3 for the magnitude and phase data. 

Data Type Classification Method 
Vs. Accuracy (%) 

Overall 
Accuracy 

Slide 
Accuracy 

Nonslide 
Accuracy 

Magnitude 
data 

SVM 89 88 90  

SVM with GLCM features 100 100 100 

Phase Data 
SVM 71 71 71 

SVM with GLCM features 95 97 94 
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Figure 5.36 Accuracy comparison. 

Accuracy comparison of the SVM classification with and without GLCM features, of the 
Sample 3 for the magnitude and phase data. 

5.3.4 Case 4: Supervised classification for the complex data 

5.3.4.1 Sample 1: Magnitude, Phase, and Complex data  

5.3.4.1.1 Magnitude Data: 

The supervised classification process was run separately with the magnitude only, 

phase only, and full complex (magnitude and phase) SAR multi-looked cross product 

data. The cross-polarized products, HHHV, HHVV, and HVVV, are used based on the 

assumption that they carry more information about the surface scattering properties. Two 

training areas were chosen as slide1 (anomalous) and nonslide (healthy) areas for the 
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segment Sample 1, as shown in Figure 5.37. The segment Sample 1 ground truth pixels 

used for slide1 and nonslide area are 48 and 132, respectively. The segment Sample 1 

ground truth pixels has a total of 762. The Mahalanobis distance supervised classification 

results, with and without majority filter applied, for all three cases (magnitude data, phase 

data, and complex data). The segment Sample 1 for the magnitude data is shown in 

Figure 5.37. The Mahalanobis distance classification results, with and without majority 

filter, of the segment Sample 1 for the magnitude data are shown in Figure 5.38. The 

segment Sample 1 for the phase data is shown in Figure 5.40. The Mahalanobis distance 

classification results, with and without majority filter, of the segment Sample 1 for the 

phase data are shown in Figure 5.41. The Mahalanobis distance classification results, 

with and without majority filter, of the segment Sample 1 for the complex data are shown 

in Figure 5.43.  Generally, the entire healthy levee has a similar pattern, but the slide 

areas eventually have a different pattern in the radar backscattering data [134]. 

Sometimes other artifacts, such as trees at the toe of the levee and high grass on the levee, 

may also show similar pattern as the slide area, but in reality, that may not be a slide area, 

as shown in Figures 5.39, 5.42, and 5.44. Also as clearly highlighted in the Figure 5.44, 

the false positives may also occur in the classification process possibly due to rough 

surface and/or anomalous areas. Specifically the possibility of presence of the anomalous 

areas are more near the vicinity of the slide areas. This possibly due to change of several 

soil properties in and around slide areas, or different grass types with different height of 

grass exits on levee. In particular this data collection was made on mid-winter season 

(January 25, 2010), the grass might be barely present on the levee, so the surface 

roughness plays a major role in the radar back scatter. Accuracy assessment for the 
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classifier of the segment Sample 1 is evaluated using the confusion matrix, which is listed 

in the Tables 5.34-5.39 for the magnitude data, Tables 5.40-5.45 for the phase data, and 

Tables 5.46-5.51 for the complex data.  

 

Figure 5.37 Image segment of the Sample 1 for the magnitude data. 

(a) Regions of   interest (training classes), (b) Image segment of the Sample 1 for the 
magnitude data (testing area) overlaid with the slide and nonslide classes multipoint 
shape, levee center line, and annotation. 
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Figure 5.38  Mahalanobis distance classification of the Sample 1. 

(a) Mahalanobis distance classification, (b with majority filter, overlaid with shapes for 
training areas, of the Sample 1 for the magnitude data. 
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Table 5.34  Accuracy analysis of the Mahalanobis distance classification of the 
Sample 1 for the magnitude data. 

          Overall Accuracy = (141/180)  78%  

  Ground Truth (Pixels) Ground Truth (Percent) 

Class Slide1 nonslide Total Slide1 nonslide Total 

Slide1 32 23 55 66  17  30  

nonslide 16 109 125 33  82  69  

Total 48 132 180 100 100 100 

 

Table 5.35 Commission and omission error analysis of the Mahalanobis distance 
classification of the Sample 1 for the magnitude data. 

Class Commission 
(Percent) 

Omission 
(Percent) 

Commission 
(Pixels) 

Omission 
(Pixels) 

Slide1 41  33  23/55                16/48   

nonslide 12  17  16/125               23/132   

 

Table 5.36 Producer and user accuracy analysis of the Mahalanobis distance 
classification of the Sample 1 for the magnitude data. 

Class Prod. Acc. 
(Percent) 

User Acc. 
(Percent) 

Prod. Acc. 
(Pixels) 

User Acc. 
(Pixels) 

Slide1 66  58  32/48                32/55   

nonslide 82  87  109/132              109/125   
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Table 5.37 Accuracy analysis of the Mahalanobis distance classification with majority 
filter of the Sample 1 for the magnitude data. 

          Overall Accuracy = (158/180)  87%  

  Ground Truth (Pixels) Ground Truth (Percent) 

Class Slide1 nonslide Total Slide1 nonslide Total 

Slide1 36 10 46 75  7  25  

nonslide 12 122 134 25  92  74  

Total 48 132 180 100 100 100 

 

Table 5.38 Commission and omission error analysis of the Mahalanobis distance 
classification with majority filter of the Sample 1 for the magnitude data. 

Class Commission 
(Percent) 

Omission 
(Percent) 

Commission 
(Pixels) 

Omission 
(Pixels) 

Slide1 21  25  10/46                12/48   

nonslide 8  7  12/134               10/132   

 

Table 5.39 Producer and user accuracy analysis of the Mahalanobis distance 
classification with majority filter of the Sample 1 for the magnitude data. 

Class Prod. Acc. 
(Percent) 

User Acc. 
(Percent) 

Prod. Acc. 
(Pixels) 

User Acc. 
(Pixels) 

Slide1 75  78  36/48                36/46   

nonslide 92  91  122/132              122/134   
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Figure 5.39  Mahalanobis distance classification of the Sample 1 slide detection. 

(a) Mahalanobis distance classification, (b) with majority filter, of the Sample 1 for the 
magnitude data, and (c) optical image overlaid with slides and nonslide classes shape, 
levee center line, and annotation. 

5.3.4.1.2 Phase data: 

 

Figure 5.40  Image segment of the Sample 1 for the phase data. 

 (a) Regions of   interest (training classes), (b) Image segment of the Sample 1 for the 
phase data (testing area) overlaid with the slide and nonslide classes multipoint shape, 
levee center line, and annotation. 
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Figure 5.41 Mahalanobis distance classification of the Sample 1. 

 (a) Mahalanobis distance classification, (b) with majority filter, overlaid with shapes for 
training areas, of the Sample 1 for the phase data. 

Table 5.40 Accuracy analysis of the Mahalanobis distance classification of the Sample 
1 for the phase data. 

          Overall Accuracy = (125/180)  69%  

  Ground Truth (Pixels) Ground Truth (Percent) 

Class slide nonslide Total Slide1 nonslide Total 

Slide1 25 32 57 52  24  31  

nonslide 23 100 123 47 75  68  

Total 48 132 180 100 100 100 
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Table 5.41 Commission and omission error analysis of the Mahalanobis distance 
classification of the Sample 1 for the phase data. 

Class Commission 
(Percent) 

Omission 
(Percent) 

Commission 
(Pixels) 

Omission 
(Pixels) 

Slide1 56  47  32/57                23/48   

nonslide 18  24  23/123               32/132   

 

Table 5.42    Producer and user accuracy analysis of the Mahalanobis distance 
classification of the Sample 1 for the phase data. 

Class Prod. Acc. 
(Percent) 

User Acc. 
(Percent) 

Prod. Acc. 
(Pixels) 

User Acc. 
(Pixels) 

Slide1 52  43  25/48                25/57   

nonslide 75  81  100/132              100/123   
 

Table 5.43 Accuracy analysis of the Mahalanobis distance classification with majority 
filter of the Sample 1 for the phase data. 

          Overall Accuracy = (128/180)  71%  

  Ground Truth (Pixels) Ground Truth (Percent) 

Class slide nonslide Total Slide1 nonslide Total 

Slide1 23 27 50 47  20  27  

nonslide 25 105 130 52  79  72  

Total 48 132 180 100 100 100 

 

  



 

117 

Table 5.44 Commission and omission error analysis of the Mahalanobis distance 
classification with majority filter of the Sample 1 for the phase data. 

Class Commission 
(Percent) 

Omission 
(Percent) 

Commission 
(Pixels) 

Omission 
(Pixels) 

Slide1 54  52  27/50                25/48   

nonslide 19  20  25/130               27/132   

 

Table 5.45 Producer and user accuracy analysis of the Mahalanobis distance 
classification with majority filter of the Sample 1 for the phase data. 

Class Prod. Acc. 
(Percent) 

User Acc. 
(Percent) 

Prod. Acc. 
(Pixels) 

User Acc. 
(Pixels) 

Slide1 47  46  23/48                23/50   

nonslide 79  80  105/132              105/130   

 

 

Figure 5.42  Mahalanobis distance classification of the Sample 1 slide detection. 

(a) Mahalanobis distance classification, (b) with majority filter, of the Sample 1 for the 
phase data, and (c) optical image overlaid with slides and nonslide classes shape, levee 
center line, and annotation. 
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5.3.4.1.3 Complex data: 

 

Figure 5.43  Mahalanobis distance classification of the Sample 1.  

(a) Mahalanobis distance classification, (b) with majority filter, overlaid with shapes for 
training areas, of the Sample 1 for the complex data. 

Table 5.46 Accuracy analysis of the Mahalanobis distance classification of the Sample 
1 for the complex data. 

          Overall Accuracy = (145/180)  80%  

  Ground Truth (Pixels) Ground Truth (Percent) 

Class slide nonslide Total Slide1 nonslide Total 

Slide1 35 22 57 72 16  31  

nonslide 13 110 123 27  83  68  

Total 48 132 180 100 100 100 
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Table 5.47 Commission and omission error analysis of the Mahalanobis distance 
classification of the Sample 1 for the complex data. 

Class Commission 
(Percent) 

Omission 
(Percent) 

Commission 
(Pixels) 

Omission 
(Pixels) 

Slide1 38  27  22/57                13/48   

nonslide 10  16  13/123               22/132   

 

Table 5.48 Producer and user accuracy analysis of the Mahalanobis distance 
classification of the Sample 1 for the complex data. 

Class Prod. Acc. 
(Percent) 

User Acc. 
(Percent) 

Prod. Acc. 
(Pixels) 

User Acc. 
(Pixels) 

Slide1 72  61  35/48                35/57   

nonslide 83  89  110/132 110/123   

 

Table 5.49 Accuracy analysis of the Mahalanobis distance classification with majority 
filter of the Sample 1 for the complex data. 

          Overall Accuracy = (169/180)  93%  

  Ground Truth (Pixels) Ground Truth (Percent) 

Class slide nonslide Total Slide1 nonslide Total 

Slide1 39 2 41 81  1  22  

nonslide 9 130 139 18  98  77  

Total 48 132 180 100 100 100 
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Table 5.50 Commission and omission error analysis of the Mahalanobis distance 
classification with majority filter of the Sample 1 for the complex data. 

Class Commission 
(Percent) 

Omission 
(Percent) 

Commission 
(Pixels) 

Omission 
(Pixels) 

Slide1 4  18 2/41                 9/48   

nonslide 6  1  9/139                2/132   

 

Table 5.51 Producer and user accuracy analysis of the Mahalanobis distance 
classification with majority filter of the Sample 1 for the complex data. 

Class Prod. Acc. 
(Percent) 

User Acc. 
(Percent) 

Prod. Acc. 
(Pixels) 

User Acc. 
(Pixels) 

Slide1 81  95  39/48                39/41   

nonslide 98  93  130/132              130/139   

 

 

Figure 5.44  Mahalanobis distance classification of the Sample 1 slide detection.  

(a) Mahalanobis distance classification, (b) with majority filter, of the Sample 1 for the 
complex data, and (c) optical image overlaid with slides and nonslide classes shape, levee 
center line, and annotation. 
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All accuracies (overall, slide, and nonslide) of the segment Sample 1 for the 

magnitude data, phase data, and complex data are listed in the Table 5.52. For the Sample 

1, slide accuracy 47% and nonslide accuracy 79% for the phase data; slide accuracy 75% 

and nonslide accuracy 92% for the magnitude data; and slide accuracy 81% and nonslide 

accuracy 98% for the complex data was achieved. From the classification results, it is 

clear that the accuracies (overall, slide, and nonslide) for the complex data are higher 

when compared to those from the magnitude and phase data alone. Furthermore, all 

accuracies are greatly improved with majority filter. A graphical summary of the 

accuracy results for the segment Sample 1 is shown in Figure 5.45. 

Table 5.52 Accuracy analysis of the Mahalanobis distance (MD) classification, and 
with majority filter, of the Sample 1 for the magnitude, phase, and complex 
data. 

Data Type Classification Method 
V/s. Accuracy (%) 

Overall 
Accuracy 

Slide 
Accuracy 

Nonslide 
Accuracy 

Magnitude data 
  

Mahalanobis distance  78 66 82 

MD with majority filter 87 75 92 

Phase data 
Mahalanobis distance  59 77 40 

MD with majority filter 63 85 38 

Complex data 
Mahalanobis distance  80 72 83 

MD with majority filter 93 81 98 
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Figure 5.45 Accuracy comparison of the Sample 1. 

Accuracy comparison of the Mahalanobis distance classification with and without 
majority filter, of the Sample 1, for the phase, magnitude, and complex data. 

5.3.4.2 Sample 2: Magnitude, Phase, and Complex data  

5.3.4.2.1 Magnitude data: 

The segment Sample 2 for the magnitude data is shown in Figure 5.46. Two 

training areas were chosen as slide2 (anomalous) and nonslide (healthy) areas for the 

segment sample 2, as shown in Figure 5.46. The segment Sample 2 ground truth pixels 

used for slide2 and nonslide area are 57 and 124, respectively. The segment Sample 2 

ground truth pixels has a total of 590. The Mahalanobis distance classification results, 

0

10

20

30

40

50

60

70

80

90

100

OA_MD SA_MD NSA_MD OA_MDF SA_MDF NSA_MDF

A
cc

u
ra

cy

Phase Magnitude Complex

OA: overall accuracy,  SA: slide accuracy,  NSA: nonslide accuracy,
MD: Mahalanobis distance, MDF: MD with majority filter



 

123 

with and without majority filter, of the segment Sample 2 for the magnitude data are 

shown in Figure 5.47. The segment Sample 2 for the phase data is shown in Figure 5.49. 

The Mahalanobis distance classification results, with and without majority filter, of the 

segment Sample 2 for the phase data are shown in Figure 5.50. The Mahalanobis distance 

classification results, with and without majority filter, of the segment Sample 2 for the 

complex data are shown in Figure 5.52.  Sometimes artifacts such as roughness in texture 

on the levee may show false positives, as shown in Figures 5.48, 5.51, and 5.53. 

Accuracy assessment for the classifier of the segment Sample 2 is evaluated using the 

confusion matrix, are listed in the Tables 5.53-5.58 for the magnitude data, Tables 5.59-

5.64 for the phase data, and Tables 5.65-5.70 for the complex data.  

 

Figure 5.46  Image segment of the Sample 2 for the magnitude data.  

(a) Regions of   interest (training classes), (b) Image segment of the Sample 2 for the 
magnitude data (testing area) overlaid with the slide and nonslide classes multipoint 
shape, levee center line, and annotation. 
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Figure 5.47  Mahalanobis distance classification of the Sample 2.  

(a) Mahalanobis distance classification, (b) with majority filter, overlaid with shapes for 
training areas, of the Sample 2 for the magnitude data. 

Table 5.53 Accuracy analysis of the Mahalanobis distance classification of the Sample 
2 for the magnitude data. 

Overall Accuracy = (153/181)  84% 

  Ground Truth (Pixels) Ground Truth (Percent) 

Class Slide2 nonslide Total Slide2 nonslide Total 

Slide2 49 20 69 85  16  38  

nonslide 8 104 112 14  83  61  

Total 57 124 181 100 100 100 
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Table 5.54 Commission and omission error analysis of the Mahalanobis distance 
classification of the Sample 2 for the magnitude data. 

Class Commission 
(Percent) 

Omission 
(Percent) 

Commission 
(Pixels) 

Omission 
(Pixels) 

Slide2 28  14  20/69                 8/57   

nonslide 7  16  8/112               20/124   

      

Table 5.55 Producer and user accuracy analysis of the Mahalanobis distance 
classification of the Sample 2 for the magnitude data. 

Class Prod. Acc. 
(Percent) 

User Acc. 
(Percent) 

Prod. Acc. 
(Pixels) 

User Acc. 
(Pixels) 

Slide2 85  71  49/57                49/69   

nonslide 83  92  104/124              104/112   

 

Table 5.56 Accuracy analysis of the Mahalanobis distance classification with majority 
filter of the Sample 2 for the magnitude data. 

Overall Accuracy = (173/181)  95% 

  Ground Truth (Pixels) Ground Truth (Percent) 

Class Slide2 nonslide Total Slide2 nonslide Total 

Slide2 53 4 57 92 3  31  

nonslide 4 120 124 7  96  68  

Total 57 124 181 100 100 100 
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Table 5.57 Commission and omission error analysis of the Mahalanobis distance 
classification with majority filter of the Sample 2 for the magnitude data. 

Class Commission 
(Percent) 

Omission 
(Percent) 

Commission 
(Pixels) 

Omission 
(Pixels) 

Slide2 7  7  4/57                 4/57                 

nonslide 3  3  4/124                4/124                

 

Table 5.58 Producer and user accuracy analysis of the Mahalanobis distance 
classification with majority filter of the Sample 2 for the magnitude data. 

Class Prod. Acc. 
(Percent) 

User Acc. 
(Percent) 

Prod. Acc. 
(Pixels) 

User Acc. 
(Pixels) 

Slide2 92  92 53/57                53/57                

nonslide 96  96  120/124              120/124              

 

 

Figure 5.48  Mahalanobis distance classification of the Sample 2 slide detection.  

(a) Mahalanobis distance classification, (b) with majority filter, of the Sample 2 for the 
magnitude data, and (c) optical image overlaid with slides and nonslide classes shape, 
levee center line, and annotation. 
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5.3.4.2.2 Phase data: 

 

Figure 5.49  Image segment of the Sample 2 for the phase data.  

(a) Regions of   interest (training classes), (b) Image segment of the Sample 2 for the 
phase data (testing area) overlaid with the slide and nonslide classes multipoint shape, 
levee center line, and annotation. 

 

Figure 5.50 Mahalanobis distance classification of the Sample 2. 

 (a) Mahalanobis distance classification, (b) with majority filter, overlaid with shapes for 
training areas, of the Sample 2 for the phase data. 
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Table 5.59 Accuracy analysis of the Mahalanobis distance classification of the Sample 
2 for the phase data. 

Overall Accuracy = (93/181)  51% 

  Ground Truth (Pixels) Ground Truth (Percent) 

Class Slide2 nonslide Total Slide2 nonslide Total 

Slide2 34 65 99 59  52  54  

nonslide 23 59 82 40  47  45  

Total 57 124 181 100 100 100 

 

Table 5.60 Commission and omission error analysis of the Mahalanobis distance 
classification of the Sample 2 for the phase data. 

Class Commission 
(Percent) 

Omission 
(Percent) 

Commission 
(Pixels) 

Omission 
(Pixels) 

Slide2 65  40  65/99                23/57   

nonslide 28  52  23/82               65/124   

    

Table 5.61 Producer and user accuracy analysis of the Mahalanobis distance 
classification of the Sample 2 for the phase data. 

Class Prod. Acc. 
(Percent) 

User Acc. 
(Percent) 

Prod. Acc. 
(Pixels) 

User Acc. 
(Pixels) 

Slide2 59  34  34/57                34/99   

nonslide 47  71  59/124                59/82   
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Table 5.62 Accuracy analysis of the Mahalanobis distance classification with majority 
filter of the Sample 2 for the phase data. 

Overall Accuracy = (97/181)  53% 

 Ground Truth (Pixels) Ground Truth (Percent) 

Class Slide2 nonslide Total Slide2 nonslide Total 

Slide2 36 63 99 63 50 54 

nonslide 21 61 82 36 49 45 

Total 57 124 181 100 100 100 

 

Table 5.63 Commission and omission error analysis of the Mahalanobis distance 
classification with majority filter of the Sample 2 for the phase data. 

Class Commission 
(Percent) 

Omission 
(Percent) 

Commission 
(Pixels) 

Omission 
(Pixels) 

Slide2 63 36 63/99   21/57   

nonslide 25  50 21/82 63/124   

 

Table 5.64 Producer and user accuracy analysis of the Mahalanobis distance 
classification with majority filter of the Sample 2 for the phase data. 

Class Prod. Acc. 
(Percent) 

User Acc. 
(Percent) 

Prod. Acc. 
(Pixels) 

User Acc. 
(Pixels) 

Slide2 63 36  36/57 36/99 

nonslide 49 74 61/124 61/82   
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Figure 5.51  Mahalanobis distance classification of the Sample 2 slide detection.  

(a) Mahalanobis distance classification, (b) with majority filter, of the Sample 2 for the 
phase data, and (c) optical image overlaid with slides and nonslide classes shape, levee 
center line, and annotation. 

5.3.4.2.3 Complex data:  

 

Figure 5.52  Mahalanobis distance classification of the Sample 2.  

(a) Mahalanobis distance classification, (b) with majority filter, overlaid with shapes for 
training areas, of the Sample 2 for the complex data. 
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Table 5.65 Accuracy analysis of the Mahalanobis distance classification of the Sample 
2 for the complex data. 

Overall Accuracy = (154/181)  85% 

  Ground Truth (Pixels) Ground Truth (Percent) 

Class Slide2 nonslide Total Slide2 nonslide Total 

Slide2 49 19 68 85  15  37  

nonslide 8 105 113 14  84  62  

Total 57 124 181 100 100 100 

 

Table 5.66 Commission and omission error analysis of the Mahalanobis distance 
classification of the Sample 2 for the complex data. 

Class Commission 
(Percent) 

Omission 
(Percent) 

Commission 
(Pixels) 

Omission 
(Pixels) 

Slide2 27  14  19/68                 8/57   

nonslide 7  15  8/113               19/124   

 

Table 5.67 Producer and user accuracy analysis of the Mahalanobis distance 
classification of the Sample 2 for the complex data. 

Class Prod. Acc. 
(Percent) 

User Acc. 
(Percent) 

Prod. Acc. 
(Pixels) 

User Acc. 
(Pixels) 

Slide2 85  72  49/57                49/68   

nonslide 84  92  105/124              105/113   
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Table 5.68 Accuracy analysis of the Mahalanobis distance classification with majority 
filter of the Sample 2 for the complex data. 

Overall Accuracy = (177/181)  97% 

  Ground Truth (Pixels) Ground Truth (Percent) 

Class Slide2 nonslide Total Slide2 nonslide Total 

Slide2 53 0 53 92  0  29  

nonslide 4 124 128 7  100  70  

Total 57 124 181 100 100 100 

 

Table 5.69 Commission and omission error analysis of the Mahalanobis distance 
classification with majority filter of the Sample 2 for the complex data. 

Class Commission 
(Percent) 

Omission 
(Percent) 

Commission 
(Pixels) 

Omission 
(Pixels) 

Slide2 0  7  0/53                 4/57   

nonslide 3  0  4/128                0/124   

 

Table 5.70 Producer and user accuracy analysis of the Mahalanobis distance 
classification with majority filter of the Sample 2 for the complex data. 

Class Prod. Acc. 
(Percent) 

User Acc. 
(Percent) 

Prod. Acc. 
(Pixels) 

User Acc. 
(Pixels) 

Slide2 92  100  53/57 53/53   

nonslide 100  96  124/124              124/128   
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Figure 5.53 Mahalanobis distance classification of the Sample 2 slide detection.  

 (a) Mahalanobis distance classification, (b) with majority filter, of the Sample 2 for the 
complex data, and (c) optical image overlaid with slides and nonslide classes shape, levee 
center line, and annotation. 

All accuracies (overall, slide, and nonslide) of the segment Sample 2 for the 

magnitude data, phase data, and complex data are listed in the Table 5.71. For the Sample 

2, the Mahalanobis distance classification with majority filter, slide accuracy 63% and 

nonslide accuracy 49% for the phase data; slide accuracy 92% and nonslide accuracy 

96% for the magnitude data; and slide accuracy 92% and nonslide accuracy 100% for the 

complex data was achieved. From the classification results, it is clear that the accuracies 

(overall, slide, and nonslide) for the complex data are higher when compared to those 

from the magnitude and phase data alone. Furthermore, all accuracies are greatly 

improved with majority filter. A graphical summary of the accuracy results for the 

segment Sample 2 is shown in Figure 5.54. 

  



 

134 

Table 5.71 Accuracy analysis of the Mahalanobis distance (MD) classification, and 
with majority filter, of the Sample 2 for the magnitude, phase, and complex 
data. 

Data Type Classification Method 
V/s. Accuracy (%) 

Overall 
Accuracy 

Slide 
Accuracy 

Nonslide 
Accuracy 

Magnitude data 
  

Mahalanobis distance  84 85 83 

MD with majority filter 95 92 96 

Phase data 
Mahalanobis distance  51 59 47 

MD with majority filter 53 63 49 

Complex data 
Mahalanobis distance  85 85 84 

MD with majority filter 97 92 100 

 

 

Figure 5.54 Accuracy comparison of the Sample 2.  

Accuracy comparison of the Mahalanobis distance classification with and without 
majority filter, of the Sample 2 for the phase, magnitude, and complex data. 
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5.3.4.3 Sample 3: Magnitude, Phase, and Complex data  

5.3.4.3.1 Magnitude data: 

The segment Sample 3 for the magnitude data is shown in Figure 5.55. The 

histogram for the testing area (image segment) and training classes (slide and nonslide 

areas) of the Sample 3 for the magnitude data is shown in Figure 5.56.  Two training 

areas were chosen as slide 5 (anomalous) and nonslide (healthy) areas for the segment 

Sample 3, as shown in Figure 5.55. The segment Sample 3 ground truth pixels used for 

slide 5 and nonslide area are 78 and 84, respectively. The segment Sample 3 ground truth 

pixels has a total of 929. The Mahalanobis distance classification results, with and 

without majority filter, of the segment Sample 3 for the magnitude data are shown in 

Figure 5.57. The segment Sample 3 for the phase data is shown in Figure 5.59. The 

histogram for the testing area (image segment) and training classes (slide and nonslide 

areas) of the Sample 3 for the phase data is shown in Figure 5.60. The phase data is 

derived from the complex data of the polSAR [135-138].The Mahalanobis distance 

classification results, with and without majority filter, of the segment Sample 3 for the 

phase data are shown in Figure 5.61. The Mahalanobis distance classification results, 

with and without majority filter, of the segment Sample 3 for the complex data are shown 

in Figure 5.63.  For the segment Sample 3, though some of the slide areas (slide 3 and 4) 

were repaired by the time of the image acquisition, they still show anomalous and are 

detected by the classification technique. In addition to the active slide area (slide 5) 

detection, the other repaired slide areas (slide 3 and 4) are also detected to some extent as 

shown in Figures 5.58, 5.62, and 5.64. Because these slide areas (slide 3 and 4) were 

repaired two months ago, by the time of the image acquisition, they still show anomalous 
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because of the texture roughness and possibly lack of grass on repaired slide area. 

Sometimes other artifacts, such as trees at the toe of the levee and high grass on the levee, 

may also show similar pattern as the slide area, but in reality, that may not be a slide area, 

as shown in Figures 5.58, 5.62, and 5.64. The false positives may also occur in the 

classification process possibly due to rough surface, anomalous areas, and/or presence of 

tress. Specifically the possibility of presence of the anomalous areas are more near the 

vicinity of the slide areas, and possibility of presence of the tress to the river side of the 

levee. In this case of Sample 3, the presence of tress are more near the toe of the levee, 

which we could be able to notice it from the Figures 5.58, 5.62, and 5.64, hence the 

chance of occurrence of false positives are more near the toe of the levee.    

The three accuracy measures considered are overall, producer, and user 

accuracies. The overall accuracy is calculated by summing the number of pixels 

classified correctly divided by the total number of pixels. The producer accuracy is 

calculated based on how many pixels are classified correctly for the given ground truth 

data. The user accuracy is calculated based on how many pixels are classified correctly 

for the given ground truth data and how many other class pixels are classified into the 

respective class. For instance, for the segment Sample 3, the overall accuracy of the 

Mahalanobis distance classification for the slide and nonslide areas for the magnitude 

data is 90%, where 146 pixels are correctly classified out of the total 162 pixels. For the 

slide area, a producer accuracy of 85% is obtained where 67 pixels correctly classified as 

slide area out of the 78 ground truth pixels and a user accuracy of 93% is obtained where 

67 pixels as correctly classified as slide area and 5 pixels of the nonslide area are 

classified into the slide area.  
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Accuracy assessment for the classifier of the segment Sample 3 is evaluated using 

the confusion matrix, are listed in the Tables 5.72-5.77 for the magnitude data, Tables 

5.78-5.83 for the phase data, and Tables 5.84-5.89 for the complex data. For the Sample 

3, slide accuracy 69% and nonslide accuracy 92% for the phase data; slide accuracy 94% 

and nonslide accuracy 100% for the magnitude data; and slide accuracy 98% and 

nonslide accuracy 100% for the complex data was achieved.  

 

Figure 5.55 Image segment of the Sample 3 for the magnitude data. 

 (a) Regions of   interest (training classes), (b) Image segment of the Sample 3 for the 
magnitude data (testing area) overlaid with the slide and nonslide classes multipoint 
shape, levee center line, and annotation. 
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Figure 5.56 Histogram of the testing and training areas. 

Histogram of the testing and training areas of the Sample 3 for the magnitude data. 

 

Figure 5.57  Mahalanobis distance classification of the Sample 3.  

(a) Mahalanobis distance classification, (b) with majority filter, overlaid with shapes for 
training areas and anomalous areas, of the Sample 3 for the magnitude data. 
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Figure 5.58  Mahalanobis distance classification of the Sample 3 slide detection.  

(a) Mahalanobis distance classification, (b) with majority filter, of the Sample 3 for the 
magnitude data, and (c) optical image overlaid with slides and nonslide classes shape, 
levee center line, and annotation. 

Table 5.72 Accuracy analysis of the Mahalanobis distance classification of the Sample 
3 for the magnitude data. 

Overall Accuracy = (146/162)  90% 

  Ground Truth (Pixels) Ground Truth (Percent) 

Class Slide5 nonslide Total Slide5 nonslide Total 

Slide5 67 5 72 85  5  44  

nonslide 11 79 90 14  94  55  

Total 78 84 162 100 100 100 
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Table 5.73 Commission and omission error analysis of the Mahalanobis distance 
classification of the Sample 3 for the magnitude data. 

Class Commission 
(Percent) 

Omission 
(Percent) 

Commission 
(Pixels) 

Omission 
(Pixels) 

Slide5 6  14  5/72 11/78   

nonslide 12  5  11/90                 5/84   

      

Table 5.74 Producer and user accuracy analysis of the Mahalanobis distance 
classification of the Sample 3 for the magnitude data. 

Class Prod. Acc. 
(Percent) 

User Acc. 
(Percent) 

Prod. Acc. 
(Pixels) 

User Acc. 
(Pixels) 

Slide5 85  93  67/78 67/72   

nonslide 94  87 79/84                79/90   

 

Table 5.75 Accuracy analysis of the Mahalanobis distance classification with majority 
filter of the Sample 3 for the magnitude data. 

Overall Accuracy = (158/162)  97% 

  Ground Truth (Pixels) Ground Truth (Percent) 

Class Slide5 nonslide Total Slide5 nonslide Total 

Slide5 74 0 74 94  0  45  

nonslide 4 84 88 5  100  54  

Total 78 84 162 100 100 100 
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Table 5.76 Commission and omission error analysis of the Mahalanobis distance 
classification with majority filter of the Sample 3 for the magnitude data. 

Class Commission 
(Percent) 

Omission 
(Percent) 

Commission 
(Pixels) 

Omission 
(Pixels) 

Slide5 0 5 0/74 4/78   

nonslide 4  0  4/88                 0/84   

 

Table 5.77 Producer and user accuracy analysis of the Mahalanobis distance 
classification with majority filter of the Sample 3 for the magnitude data. 

Class Prod. Acc. 
(Percent) 

User Acc. 
(Percent) 

Prod. Acc. 
(Pixels) 

User Acc. 
(Pixels) 

Slide5 94  100  74/78 74/74   

nonslide 100  95 84/84 84/88   
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5.3.4.3.2 Phase data: 

 

Figure 5.59  Image segment of the Sample 3 for the phase data.  

(a) Regions of   interest (training classes), (b) Image segment of the Sample 3 for the 
phase data (testing area) overlaid with the slide and nonslide classes multipoint shape, 
levee center line, and annotation. 

 

Figure 5.60 Histogram of the testing and training areas. 

Histogram of the testing and training areas of the Sample 3 for the phase data. 
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Figure 5.61  Mahalanobis distance classification of the Sample 3.  

(a) Mahalanobis distance classification, (b) with majority filter, overlaid with shapes for 
training areas and anomalous areas, of the Sample 3 for the phase data. 

 

Figure 5.62  Mahalanobis distance classification of the Sample 3 slide detection.  

(a) Mahalanobis distance classification, (b) with majority filter, of the Sample 3 for the 
phase data, and (c) optical image overlaid with slides and nonslide classes shape, levee 
center line, and annotation. 
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Table 5.78  Accuracy analysis of the Mahalanobis distance classification of the 
Sample 3 for the phase data. 

Overall Accuracy = (112/162)  69% 

  Ground Truth (Pixels) Ground Truth (Percent) 

Class Slide5 nonslide Total Slide5 nonslide Total 

Slide5 47 19 66 60  22  40  

nonslide 31 65 96 39        77  59  

Total 78 84 162 100 100 100 

 

Table 5.79 Commission and omission error analysis of the Mahalanobis distance 
classification of the Sample 3 for the phase data. 

Class Commission 
(Percent) 

Omission 
(Percent) 

Commission 
(Pixels) 

Omission 
(Pixels) 

Slide5 28 39 19/66 31/78   

nonslide 32  22 31/96 19/84   

      

Table 5.80 Producer and user accuracy analysis of the Mahalanobis distance 
classification of the Sample 3 for the phase data. 

Class Prod. Acc. 
(Percent) 

User Acc. 
(Percent) 

Prod. Acc. 
(Pixels) 

User Acc. 
(Pixels) 

Slide5 60  71 47/78 47/66   

nonslide 77  67 65/84 65/96   
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Table 5.81 Accuracy analysis of the Mahalanobis distance classification with majority 
filter of the Sample 3 for the phase data. 

Overall Accuracy = (132/162)  81% 

  Ground Truth (Pixels) Ground Truth (Percent) 

Class Slide5 nonslide Total Slide5 nonslide Total 

Slide5 54 6 60 69  7  37  

nonslide 24 78 102 30  92  62  

Total 78 84 162 100 100 100 

 

Table 5.82 Commission and omission error analysis of the Mahalanobis distance 
classification with majority filter of the Sample 3 for the phase data. 

Class Commission 
(Percent) 

Omission 
(Percent) 

Commission 
(Pixels) 

Omission 
(Pixels) 

Slide5 10 30 6/60                24/78   

nonslide 23 7  24/102 6/84   

 

Table 5.83 Producer and user accuracy analysis of the Mahalanobis distance 
classification with majority filter of the Sample 3 for the phase data. 

Class Prod. Acc. 
(Percent) 

User Acc. 
(Percent) 

Prod. Acc. 
(Pixels) 

User Acc. 
(Pixels) 

Slide5 69  90 54/78   54/60   

nonslide 92 76 78/84 78/102   
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5.3.4.3.3 Complex data: 

 

Figure 5.63  Mahalanobis distance classification of the Sample 3.  

(a) Mahalanobis distance classification, (b) with majority filter, overlaid with shapes for 
training areas and anomalous areas, of the Sample 3 for the complex data. 

 

Figure 5.64  Mahalanobis distance classification of the Sample 3 slide detection.  

(a) Mahalanobis distance classification, (b) Mahalanobis distance classification with 
majority filter, of the Sample 3 for the complex data, and (c) optical image overlaid with 
slides and nonslide classes shape, levee center line, and annotation. 
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Table 5.84  Accuracy analysis of the Mahalanobis distance classification of the 
Sample 3 for the complex data. 

Overall Accuracy = (153/162)  94% 

  Ground Truth (Pixels) Ground Truth (Percent) 

Class Slide5 nonslide Total Slide5 nonslide Total 

Slide5 71 2 73 91 2  45  

nonslide 7 82 89 8  97  54  

Total 78 84 162 100 100 100 

 

Table 5.85 Commission and omission error analysis of the Mahalanobis distance 
classification of the Sample 3 for the complex data. 

Class Commission 
(Percent) 

Omission 
(Percent) 

Commission 
(Pixels) 

Omission 
(Pixels) 

Slide5 2 8 2/73 7/78 

nonslide 7 2 7/89 2/84 

   

Table 5.86 Producer and user accuracy analysis of the Mahalanobis distance 
classification of the Sample 3 for the complex data. 

Class Prod. Acc. 
(Percent) 

User Acc. 
(Percent) 

Prod. Acc. 
(Pixels) 

User Acc. 
(Pixels) 

Slide5 91  97  71/78                71/73   

nonslide 97  92  82/84                82/89   
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Table 5.87 Accuracy analysis of the Mahalanobis distance classification with majority 
filter of the Sample 3 for the complex data. 

Overall Accuracy = (161/162)  99% 

  Ground Truth (Pixels) Ground Truth (Percent) 

Class Slide5 nonslide Total Slide5 nonslide Total 

Slide5 77 0 77 98  0  47  

nonslide 1 84 85 1  100  52  

Total 78 84 162 100 100 100 

 

Table 5.88 Commission and omission error analysis of the Mahalanobis distance 
classification with majority filter of the Sample 3 for the complex data. 

Class Commission 
(Percent) 

Omission 
(Percent) 

Commission 
(Pixels) 

Omission 
(Pixels) 

Slide5 0  1 0/77 1/78   

nonslide 1 0  1/85 0/84   

 

Table 5.89 Producer and user accuracy analysis of the Mahalanobis distance 
classification with majority filter of the Sample 3 for the complex data. 

Class Prod. Acc. 
(Percent) 

User Acc. 
(Percent) 

Prod. Acc. 
(Pixels) 

User Acc. 
(Pixels) 

Slide5 98 100 77/78 77/77   

nonslide 100  98 84/84 84/85   

 

All accuracies (overall, slide, and nonslide) of the segment Sample 3 for the 

magnitude data, phase data, and complex data are listed in the Table 5.90. From the 

classification results, it is clear that the accuracies (overall, slide, and nonslide) for the 
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complex data are higher when compared to those from the magnitude and phase data 

alone. Furthermore, all accuracies are greatly improved with majority filter. A graphical 

summary of the accuracy results for the segment Sample 2 is shown in Figure 5.65. For 

all the three samples, it consistently shows that the accuracies for the complex data are 

higher when compared to those from the magnitude and phase data alone.  

Table 5.90 Accuracy analysis of the Mahalanobis distance (MD) classification, and 
with majority filter, of the Sample 3 for the magnitude, phase, and complex 
data. 

Data Type Classification Method 
V/s. Accuracy (%) 

Overall 
Accuracy 

Slide 
Accuracy 

Nonslide 
Accuracy 

Magnitude data 
  

Mahalanobis distance  90 85 94 

MD with majority filter 97 94 100 

Phase data 
Mahalanobis distance  69  60 77  

MD with majority filter 81   69  92 

Complex data 
Mahalanobis distance  94 91 97 

MD with majority filter 99 98 100 
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Figure 5.65 Accuracy comparison of the Sample 3. 

Accuracy comparison of the Mahalanobis distance classification with and without 
majority filter, of the Sample 3 for the phase, magnitude, and complex data. 
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CHAPTER VI 

CONCLUSIONS AND FUTURE WORK 

The research presents results of the use of synthetic aperture radar (SAR) in 

combination with remote sensing imagery to detect anomalies on an earthen levee. The 

classification techniques are applied to the polarimetric SAR data. The unsupervised 

classification methods implemented are ISODATA, K-means, and RX-anomaly Detector. 

The polarimetric unsupervised classification techniques tested are based on polarimetric 

decomposition parameters are A/α classification, H/A classification, H/α classification, 

H/Alpha/Lambda classification, Wishart-H/α classification, Wishart-H/A/α classification, 

and Wishart-scattering model based classification. The polarimetric decomposition 

methods tested are eigenvector/eigenvalue based H/A/Alpha and Model-based Freeman 3 

components to investigate anomalies on an earthen levee. The supervised classification 

techniques tested are Minimum distance, Mahalanobis distance, and Support vector 

machine. A majority filter and morphology filters were applied to some of the 

classification results as post processing step, which improved the accuracy of the 

classification. The use of GLCM features is also shown to increase the slide detection 

accuracy.  

The RXD unsupervised classification results show that it produces more 

appropriate classification results than the ISODATA and K-means unsupervised 

classification methods. It is shown that slough slides on levees exhibit distinctive 
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scattering mechanisms compared to the healthy areas, and that these differences are 

revealed by unsupervised classification methods utilizing the polarimetric decomposition 

parameters entropy, anisotropy, alpha, and lambda. The resulting color coded class maps 

can be used to detect anomalous areas on the levee for closer inspection. The polarimetric 

decomposition methods and classification results are worthy choices to identify 

anomalies on an earthen levee. The polarimetric methods make available added 

information about the target information and structure details. The obtained classification 

results reveal that the polSAR data unsupervised classification with features extraction 

such as entropy, alpha, anisotropy, and lambda produces more appropriate results than 

the unsupervised classification with no features extraction. Wishart based unsupervised 

classification schemes clearly shows better results for his application. Apart from the 

Wishart based classification schemes, H/α/λ2 classification noticeably shows better 

results to identify slough slide areas, because generally on the levee slide areas possibly 

predominate with the double bounce than other health part of the levee usually dominated 

the surface/single bounce. The Wishart-scattering model based classification, further 

improves the classification results to detect anomalies on levee, by preserving the purity 

of dominant polarimetric scattering properties.   

Obviously, supervised classification methods provide better classification results 

compared to the unsupervised methods. The anomaly identification is good with these 

results and was improved with the use of a majority filter. The classification accuracy is 

further improved with a morphology filter. The classification accuracy is significantly 

improved with the use of GLCM features. In addition to the active slide areas, other 

anomalous areas are also detected. The false positives might be due to rough surface, 
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anomalous areas, and/or presence of trees. One interesting point that we noticed is that 

some of the slide areas that were repaired just two months prior to the time of image 

acquisition still appear anomalous because of the texture roughness and lack of grass, and 

are detected by the presented classification technique. The classification results obtained 

for all three cases (magnitude, phase, and complex data), with classification accuracies 

for the complex data being higher, indicate that the use of synthetic aperture radar in 

combination with remote sensing imagery can effectively detect anomalies or slides on an 

earthen levee. For all the three samples it consistently shows that the accuracies for the 

complex data are higher when compared to those from the magnitude and phase data 

alone. The tests comparing complex data features to magnitude and phase data alone, and 

full complex data, and use of post-processing filter, all had very high accuracy.  Hence 

we included more test samples to validate and distinguish results.  

The classification is performed using magnitude, phase and complex data. The 

cross-polarized products, HHHV, HHVV, and HVVV, are used based on the assumption 

that they carry more information about the surface scattering properties. Also used three 

sets of real floating point co-polarized MLC data which correspond to the magnitudes of 

the HHHH, HVHV, and VVVV bands are used as features for some of the classification 

methods. The effectiveness of the algorithms is demonstrated using fully quad-

polarimetric L-band SAR imagery from the NASA Jet Propulsion Laboratory’s (JPL’s) 

Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR). The study area is a 

section of the lower Mississippi River valley in the southern USA. Furthermore, although 

the test study area is small, which includes one active slide area for each segment, the 

methodology presented in this paper still shows promising results. Planned future work 
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includes the use of longer test area consisting of more active slides, seasonal images 

acquired by the SAR, and allowing for different geometric orientations of the levee. 
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