50 research outputs found

    Automated detection of archaeological mounds using machine-learning classification of multisensor and multitemporal satellite data.

    Get PDF
    This paper presents an innovative multisensor, multitemporal machine-learning approach using remote sensing big data for the detection of archaeological mounds in Cholistan (Pakistan). The Cholistan Desert presents one of the largest concentrations of Indus Civilization sites (from ca 3300 to 1500 BC). Cholistan has figured prominently in theories about changes in water availability, the rise and decline of the Indus Civilization, and the transformation of fertile monsoonal alluvial plains into an extremely arid margin. This paper implements a multisensor, multitemporal machine-learning approach for the remote detection of archaeological mounds. A classifier algorithm that employs a large-scale collection of synthetic-aperture radar and multispectral images has been implemented in Google Earth Engine, resulting in an accurate probability map for mound-like signatures across an area that covers ca 36,000 km2 The results show that the area presents many more archaeological mounds than previously recorded, extending south and east into the desert, which has major implications for understanding the archaeological significance of the region. The detection of small (30 ha) suggests that there were continuous shifts in settlement location. These shifts are likely to reflect responses to a dynamic and changing hydrological network and the influence of the progressive northward advance of the desert in a long-term process that culminated in the abandonment of much of the settled area during the Late Harappan period.ER

    Adaptation to Variable Environments, Resilience to Climate Change: Investigating Land, Water and Settlement in Indus Northwest India

    Get PDF
    This paper explores the nature and dynamics of adaptation and resilience in the face of a diverse and varied environmental and ecological context using the case study of South Asia’s Indus Civilization (ca. 3000–1300 BC). Most early complex societies developed in regions where the climatic parameters faced by ancient subsistence farmers were varied but rain falls primarily in one season. In contrast, the Indus Civilization developed in a specific environmental context that spanned a very distinct environmental threshold, where winter and summer rainfall systems overlap. There is now evidence to show that this region was directly subject to climate change during the period when the Indus Civilization was at its height (ca. 2500–1900 BC). The Indus Civilization, therefore, provides a unique opportunity to understand how an ancient society coped with diverse and varied ecologies and change in the fundamental environmental parameters. This paper integrates research carried out as part of the Land, Water and Settlement project in northwest India between 2007 and 2014. Although coming from only one of the regions occupied by Indus populations, these data necessitate the reconsideration of several prevailing views about the Indus Civilization as a whole and invigorate discussion about human-environment interactions and their relationship to processes of cultural transformation

    Large-scale, multi-temporal remote sensing of palaeo-river networks: A case study from Northwest India and its implications for the indus civilisation

    Get PDF
    © 2018 by the authors. Remote sensing has considerable potential to contribute to the identification and reconstruction of lost hydrological systems and networks. Remote sensing-based reconstructions of palaeo-river networks have commonly employed single or limited time-span imagery, which limits their capacity to identify features in complex and varied landscape contexts. This paper presents a seasonal multi-temporal approach to the detection of palaeo-rivers over large areas based on long-term vegetation dynamics and spectral decomposition techniques. Twenty-eight years of Landsat 5 data, a total of 1711 multi-spectral images, have been bulk processed using Google Earth Engine. © Code Editor and cloud computing infrastructure. The use of multi-temporal data has allowed us to overcome seasonal cultivation patterns and long-term visibility issues related to recent crop selection, extensive irrigation and land-use patterns. The application of this approach on the Sutlej-Yamuna interfluve (northwest India), a core area for the Bronze Age Indus Civilisation, has enabled the reconstruction of an unsuspectedly complex palaeo-river network comprising more than 8000 km of palaeo-channels. It has also enabled the definition of the morphology of these relict courses, which provides insights into the environmental conditions in which they operated. These new data will contribute to a better understanding of the settlement distribution and environmental settings in which this, often considered riverine, civilisation operated.ER

    Adaptation to Variable Environments, Resilience to Climate Change: Investigating Land, Water and Settlement in Indus Northwest India

    Get PDF
    This paper explores the nature and dynamics of adaptation and resilience in the face of a diverse and varied environmental and ecological context using the case study of South Asia’s Indus Civilization (ca. 3000–1300 BC). Most early complex societies developed in regions where the climatic parameters faced by ancient subsistence farmers were varied but rain falls primarily in one season. In contrast, the Indus Civilization developed in a specific environmental context that spanned a very distinct environmental threshold, where winter and summer rainfall systems overlap. There is now evidence to show that this region was directly subject to climate change during the period when the Indus Civilization was at its height (ca. 2500–1900 BC). The Indus Civilization, therefore, provides a unique opportunity to understand how an ancient society coped with diverse and varied ecologies and change in the fundamental environmental parameters. This paper integrates research carried out as part of the Land, Water and Settlement project in northwest India between 2007 and 2014. Although coming from only one of the regions occupied by Indus populations, these data necessitate the reconsideration of several prevailing views about the Indus Civilization as a whole and invigorate discussion about human-environment interactions and their relationship to processes of cultural transformation

    Millets and Herders: The Origins of Plant Cultivation in Semiarid North Gujarat (India)

    Get PDF
    Botanical evidence suggests that North Gujarat (India) was a primary center of plant domestication during the mid-Holocene. However, lack of systematic archaeobotanical research and significant taphonomic processes have so far hampered the possibility of substantiating this hypothesis. This paper explores the role of plants in the subsistence strategies of early-middle Holocene populations in this semiarid region and the processes leading to plant cultivation. To do so, we carry out a multiproxy archaeobotanical study —integrating macro and microbotanical remains— at two hunter-gatherer and agropastoral occupations. The results show that the progressive weakening of the Indian summer monsoon ca. 7,000 years ago compelled human populations to adopt seminomadic pastoralism and plant cultivation, which resulted in the domestication of several small millet species, pulses, and sesame.Peer Reviewe

    Adaptation to Variable Environments, Resilience to Climate Change: Investigating Land, Water and Settlement in Indus Northwest India

    Get PDF
    This paper explores the nature and dynamics of adaptation and resilience in the face of a diverse and varied environmental and ecological context using the case study of South Asia’s Indus Civilization (ca. 3000–1300 BC). Most early complex societies developed in regions where the climatic parameters faced by ancient subsistence farmers were varied but rain falls primarily in one season. In contrast, the Indus Civilization developed in a specific environmental context that spanned a very distinct environmental threshold, where winter and summer rainfall systems overlap. There is now evidence to show that this region was directly subject to climate change during the period when the Indus Civilization was at its height (ca. 2500–1900 BC). The Indus Civilization, therefore, provides a unique opportunity to understand how an ancient society coped with diverse and varied ecologies and change in the fundamental environmental parameters. This paper integrates research carried out as part of the Land, Water and Settlement project in northwest India between 2007 and 2014. Although coming from only one of the regions occupied by Indus populations, these data necessitate the reconsideration of several prevailing views about the Indus Civilization as a whole and invigorate discussion about human-environment interactions and their relationship to processes of cultural transformation

    Adaptation to Variable Environments, Resilience to Climate Change: Investigating land, water and settlement in Indus northwest India

    Get PDF
    This paper explores the nature and dynamics of adaptation and resilience in the face of a diverse and varied environmental and ecological context using the case study of South Asia’s Indus Civilization (ca. 3000–1300 BC). Most early complex societies developed in regions where the climatic parameters faced by ancient subsistence farmers were varied but rain falls primarily in one season. In contrast, the Indus Civilization developed in a specific environmental context that spanned a very distinct environmental threshold, where winter and summer rainfall systems overlap. There is now evidence to show that this region was directly subject to climate change during the period when the Indus Civilization was at its height (ca. 2500–1900 BC). The Indus Civilization, therefore, provides a unique opportunity to understand how an ancient society coped with diverse and varied ecologies and change in the fundamental environmental parameters. This paper integrates research carried out as part of the Land, Water and Settlement project in northwest India between 2007 and 2014. Although coming from only one of the regions occupied by Indus populations, these data necessitate the reconsideration of several prevailing views about the Indus Civilization as a whole and invigorate discussion about human-environment interactions and their relationship to processes of cultural transformation.UKIERI, NERC, AHRC, British Academy, McDonald Institut

    Mountain and meadow: A reconstruction of long-term pastoralist ecology in the Kashmir Valley

    Get PDF
    The cultural history of the Kashmir Valley in the Western Himalayas spans at least 4500 years, beginning with some of the known Neolithic Agricultural villages in the mountainous regions of the northern Indian Subcontinent. The development of agriculture in the valley, and subsequent periods of cultural expansion have been attributed to economic growth that capitalised on warm-humid climate phases in the region, often followed by periods of supposed social collapse driven by the onset of cold-arid conditions. More recently, Kashmiri archaeologists have argued that these near-Malthusian interpretations result from a methodological focus on a handful of large sites, and that the Kashmir Valley contains multiple ecological niches suitable for a wide range of economic or ecological adaptation. This study seeks to build on palaeoenvironmental and archaeological data that suggests a more complex picture of social and ecological change in the valley. Rather than using archaeological remains, this study draws on environmental signatures of pastoralist usage, enrichment or modification of environmental niches at middle and high altitudes, primarily on the western flank of the Kashmir Valley. These data include changes in pollen spectra, charcoal and fungal spore accumulation or sediment deposition that are indicative of pastoralist activity in mountain regions, and are interpreted through the lens of niche construction theory. The results indicate that pastoralist land usage in the upland areas of Kashmir was spatially and temporally discontinuous, and likely entangled with other environmental and historical processes. Stronger signatures for pastoralism often appear contemporary with drier conditions and periods of regional agricultural intensification, indicating that upland summer season herding may be an adaptive strategy to mitigate other ecological or economic pressures
    corecore