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Abstract 

This paper presents an innovative multi-sensor, multi-temporal machine-learning approach using remote 

sensing Big Data for the detection of archaeological mounds in Cholistan (Pakistan). The Cholistan Desert 

presents one of the largest concentrations of Indus Civilisation sites (from c. 3300 to 1500 BC). Cholistan has 

figured prominently in theories about changes in water availability, the rise and decline of the Indus Civilisation 

and the transformation of fertile monsoonal alluvial plains into an extremely arid margin. This paper 

implements the first archaeological application of a multi-sensor, multi-temporal machine learning approach 

for the remote detection of archaeological mounds. A classifier algorithm that employs a large-scale collection 

of Synthetic Aperture Radar and multispectral images has been implemented in Google Earth Engine, resulting 

in an accurate probability map for mound-like signatures across an area that covers c. 36,000 km2. The results 

show that the area presents many more archaeological mounds than previously recorded, extending south and 

east into the desert, which has major implications for understanding the archaeological significance of the 

region. The detection of new small (<5 ha) to large mounds (>30 ha) suggests that there were continuous shifts 

in settlement location. These shifts are likely to reflect responses to a dynamic and changing hydrological 

network and the influence of the progressive northward advance of the desert in a long-term process that 

culminated in the abandonment of much of the settled area during the Late Harappan period. 

Keywords 

Multitemporal and multisensor satellite big data, machine learning, virtual constellations, archaeology, Indus 

Civilisation, South Asia. 

 

Significance statement 

This is the first paper illustrating the potential of machine learning-based classification of multi-sensor, multi-

temporal satellite data for the remote detection and mapping of archaeological mounded settlements in arid 

environments. Our research integrates for the first time multitemporal Synthetic Aperture Radar and 

multispectral bands to produce a highly accurate probability field of mound signatures. The results largely 

expand the known concentration of Indus settlements in the Cholistan Desert in Pakistan (c. 3300-1500 BC), 

with the detection of hundreds of new sites deeper in the desert than previously suspected including several 

large-sized urban centres. These distribution patterns have major implications regarding the influence of 

climate change and desertification in the collapse of the largest of the Old-World Bronze Age civilisations. 

 

  



 

Introduction 

Artificial mounds are a characteristic feature of permanent and semi-permanent settlement locations in past 

cultural landscapes, particularly on sedimentary plains, but also in arid and semi-arid regions. These mounds 

can be readily visible due to their prominence and shape, and the fact that they are comprised of accumulated 

debris such as mud bricks and pottery sherds, which creates specific soil with distinct colour and surface 

texture. These characteristics make them detectable using different methods, and their number and 

distribution have seen them play an important role in addressing questions about the formation of early 

urbanism, states and economic systems. 

The use of Remote Sensing (RS) to detect and map archaeological mounds has been attempted in many parts 

of the world (1–4). Much research has focused on arid and semi-arid areas in the Levant and the Near East, 

where the geomorphological and sedimentary properties of mounds make them highly visible in digital 

elevation models and aerial and satellite imagery (5). Mounds can also leave specific multispectral soil 

signatures in highly anthropised landscapes with levelled or irrigated fields (6). When available, the use of 

declassified historical photographs such as CORONA imagery has been critical to the detection of mounds (7–

9). Georeferenced historical map series have also been used solely or in combination with contemporary 

declassified data (10–14). In recent years, RS-based archaeological research has gradually incorporated 

machine learning techniques and algorithms that facilitate the automated detection of sites and features. Most 

of those applications have focused on the detection of small-scale features using high-resolution datasets such 

as lidar (15) or WorldView imagery (16–18). In the Near East, Menze and Ur (19) applied a Random Forest 

classifier over a multi-temporal collection of ASTER imagery to identify probable anthrosols. Some other 

attempts have used multi-temporal data to monitor archaeological sites and human impact such as urban 

sprawl and looting (20–22). The detection of anthropic signatures, such as those that characterise mounded 

sites, across a very large area, remains seldom attempted, presumably due to the large computational 

resources, programming expertise and the large amount of satellite data required. 

This paper presents a novel machine learning approach for the detection of mounded sites across one such 

very large area. It employs multi-temporal data in a way similar to the approach used by Menze and Ur (19), 

but rather than detecting anthroposols, which include modern towns, settlements and other areas of human 

use or occupation, this study outlines a method for restricting the algorithm detection to archaeological 

mounds. It does this by employing a new multi-sensor and multi-temporal approach that combines Synthetic 

Aperture Radar data and multispectral satellite imagery. The study area is the Cholistan Desert in Pakistan, 

which is a large arid area that has long been considered a core region of South Asia’s Indus Civilisation (c. 3300-

1500 BC). The results of the analysis are evaluated, compared to previous field survey data, and discussed in 

relation to the prevailing interpretations of the trajectories of settlement in the region, including the 

development and decline of the large urban centres of the Indus Civilisation.  

Research background 

The Cholistan Desert and the Indus Civilisation 

 

The Cholistan Desert is the western extension of the Great Indian or Thar Desert, and stretches from the 

southern edge of the alluvial plains of Punjab to the north of Sindh province in Pakistan (Figure 1a-b). The area 

is usually described as a marginal arid region that is highly sensitive to the annual variation of the Indian 

Summer Monsoon (23), the intensity of which has significantly affected its population and ecological diversity 

throughout the Holocene (24). Today its landscape is characterised by fossilised sand dunes with shrub 

vegetation, small patches of trees around artificial water tanks, called tobas, and saline mud flats called dahars 

(25, Figure 1c). The region has played a significant historical role in transcontinental mobility between Central 



 

and South Asia, as attested by the caravan routes that crossed the area and the numerous forts that protected 

them (26). The area has also been home to nomadic pastoralists who have moved with their livestock near 

tobas (23, 27). In recent decades, however, major investment in irrigation schemes in the western plains has 

changed the traditional subsistence strategies and movement patterns of local populations (28–30). Cholistan 

has figured prominently in discussions about the Indus Civilisation, and Possehl (31, 32) argued that it was the 

most important area of settlement concentration during the Mature Harappan period (also Harappa phase; 

c.2500-1900 BC), which is when South Asia’s first cities flourished. There has been considerable discussion 

about the region’s hydrological network and its relation to the former Ghaggar-Hakra River, the date at which it 

ceased to flow perennially is much debated (33–38). Despite its perceived archaeological importance, at 

present only survey data is available for the region. 

The first archaeological explorations in Cholistan can be traced back to the early European officials operating in 

the area in the 1830-40s, when sporadic mounded sites were reported on traveller’s notes (39, 40). Oldham 

(41) was among the first explorers to report scattered mounded sites in the desert in the late 1890s, and these 

observations were reiterated in the 1940s and 50s by Stein (42) and Field (43). The most extensive work in the 

region was led by Mughal, who executed an extensive survey between 1974 and 1977 (26). Additional areas of 

Cholistan were surveyed in the 1980s as part of an attempt to systematically survey the whole of Punjab (44). 

To date, Mughal’s publications constitute the largest and most detailed archaeological legacy data for this area, 

and the reported sites have been integrated into the corpus of Indus Civilisation sites (45, 46). Through field 

walking and random surface collection, Mughal’s team noted 414 locations associated to different 

chronological periods ranging from the early Indus phases to the early Islamic. Petrie and Lynam (47) reviewed 

Mughal’s legacy data  and incorporated sites reported by Stein in the 1940s, coming to a total of 462 

archaeological site locations in the Cholistan region.  

Some of the largest mounds discovered during the Mughal-led surveys have been the focus of recurrent visits 

by different teams (48, 49), particularly Ganweriwala, which traditionally has been considered one of the five 

major Indus cities together with Harappa, Mohenjo Daro, Rakhigarhi and Dholavira (46, Figure 1a, d), though 

its size and significance has been the focus of some discussion (48–51). Since Mughal’s surveys no major large-

scale field surveys have been conducted in the region, despite the substantial and continued interest that these 

sites have aroused (52–57).  

Mughal’s surveys: site distribution and settlement patterns 

Mughal found evidence for settlement distributions that varied across what he characterised as the Hakra, 

Early Harappan, Mature Harappan, and Late Harappan periods (26). The earliest, Hakra period, sites appear to 

be clustered to the south of Cholistan. There was a reduction of settlement in the south and displacement to 

the north in the Early Harappan period, a reduction of settlement in the north and more extensive settlement 

in the south in the Mature Harappan period, and abandonment of the south and a return to the north in the 

Later Harappan period. This alternating pattern is illustrated in Figure 2. Mughal argued that these shifts in 

settlement concentrations were related to the movement of river channels and water availability (26:23-26, 57: 

Figs 3-6, 58). While the Hakra, Early Harappan and Mature Harappan period sites were distributed over the 

whole of the area, the Late Harappan period sites appear to have been restricted to more northern locations. 

This displacement of settlement was not reversed in the subsequent Painted Grey Ware period, suggesting that 

during or at least after the Mature Harappan period, the population made a major shift north.  

Old limitations, novel approaches 

The Stein, Field and Mughal data are inevitably constrained by the technological limitations of their time. The 

toponomy, location and extension of mounded sites and scattered materials were recorded using manual and 

non-systematic approaches, which makes it difficult to identify existing mound site locations and to quantify 



 

their extension, exact distribution and pattern (59, 60). A second problem is the lack of quantitative parameters 

that can help evaluating their significance. These data were usually published in the form of list or gazetteers 

(e.g. 26, 46), lacking a quantified description of surface materials. Moreover, Mughal’s data (26: Table 11) 

include both mounded locations and other types of short-term occupation, such as industrial sites or 

campsites, and therefore many sites do not correspond to long-term mounded settlements. In addition, 

reported coordinates are often inaccurate and duplicated. 

The lack of more systematic field surveys in recent decades is largely due to the remote location of most of 

these mound sites, the harsh desert conditions of the area and its proximity to the India-Pakistan border. These 

limitations, along with the unique physiographic characteristics and archaeological significance of the region, 

make the Cholistan Desert an ideal scenario for testing new RS approaches. 

Materials and methods 

RS-based archaeological research in marginal or remote areas has often been limited by poor satellite coverage 

and limited temporal and spatial resolution. These limitations are changing thanks to: 1) the availability of time 

series of global, medium-resolution satellite imagery from Earth Observation missions, such as the Landsat and 

Copernicus programmes; and 2) the implementation of multi-petabyte image catalogues and geospatial 

datasets in cloud computing environments that allow for planetary-scale analysis. For the analysis presented in 

this paper, the Copernicus Sentinel open access satellite series, in particular Sentinel 1 (both ascending and 

descending sensors) and 2, have been employed as they offer a higher resolution and greater number of bands 

than available in other non-commercial satellite imagery. The original spatial resolution of the sensor bands 

employed, 10 and 20 m/px, is adequate for the detection of mound signatures in the area. These present a 

minimum diameter of around 100 m and, therefore, could incorporate enough number of pixels in sentinel 

imagery to be clearly identified. The Sentinel collections have been accessed and analysed using Google Earth 

Engine (GEE) in order to investigate and automatically identify surface sediments potentially related to 

archaeological mounds. The methodological workflow is illustrated in Figure 3. This novel combination of 

purposely built multi-source multitemporal data and methods based on Big Data analysis has allowed the 

examination of a very large-scale study area of c. 36,000 km2. 

Google Earth Engine (GEE) cloud computing geospatial platform 

GEE is a fast-growing web-based geospatial platform seeing application within several academic disciplines, and 

in recent years it has boosted the emergence of RS-based automated applications at the continental and 

planetary scale of analysis (61). The archaeological application of GEE has been greatly extended only recently 

(12, 62–67). GEE is particularly suitable for implementing large-scale multi-temporal data analysis as it provides 

access to a 20-petabyte catalogue of satellite imagery and geospatial datasets, which includes the Sentinel 

series and most other publicly accessible satellite data acquired since the 1970s. GEE parallelises and executes 

code developed in JavaScript or Python using Google’s cloud computing infrastructure, permitting work with 

intensive computational processes at unprecedented scales. GEE is also very useful for developing machine 

learning processes as it allows the computation of partial machine learning-based classifications within a few 

seconds (or minutes if large training sets and many bands are employed) using screen map area and resolution. 

This is an important advantage to traditional machine learning processes as it allows the evaluation of the 

results of new training data without having to compute a full-resolution classification of an entire area, and 

reduces the number of necessary iterations to achieve satisfactory results. GEE also incorporates high-

resolution imagery (equal to that of Google Earth) that allows the evaluation of the results of the classification 

and the selection of new training data without needing to export them to GIS software. Furthermore, GEE 

provides vector drawing tools that simplify training data selection. 



 

Multi-sensor Sentinel series 

Sentinel 1 is a dual polarization C-band SAR with several scanning modes. The analysis presented here selected 

interferometric wide (IW) swath mode, which is the mainland operational mode with a ground resolution of 10 

m/px and produces data in single (HH or VV) or double (HH + HV or VV + VH) polarization in both ascending and 

descending modes. Each scene available at GEE had been pre-processed using Sentinel-1 Toolbox to: 1) remove 

low intensity noise and invalid data on scene edges; 2) remove thermal noise; 3) radiometric calibration; and 4) 

terrain correction using SRTM 30 (spatial resolution of ~30 m, 1 arcsecond at equator, absolute horizontal 

accuracy ≤ 20 m, absolute vertical accuracy ≤ 16 m, and relative vertical accuracy ≤ 10 m). Sentinel 1 provides 

data starting from October 2014. 

Sentinel 2 multispectral imagery incorporates 13 bands from which only the visible/near infrared bands (VNIR 

B2-B8A) and the short-wave infrared bands (SWIR B11-B12) were employed. Bands B1, B9 and B10 (60 m/px 

each) correspond to aerosols, water vapour and cirrus respectively and they are not employed in this study 

except for the use of the cirrus-derived cloud mask applied. Visible (B2-B4) and NIR (B8) bands provide a 

ground resolution of 10 m/px, while red-edge (B5-B7 and B8A) and SWIR (B11-B12) bands present a 20 m/px 

spatial resolution. Specifically, for this research Sentinel 2 Level 1C products representing Top of Atmosphere 

(TOA) reflectance were preferred due to the larger span of its mission (starting from June 2015) and excellent 

resolution. 

Machine learning-based approaches to the detection of archaeological sites have previously employed a single 

type of multispectral imagery source. For the first time, this research has combined large multi-temporal series 

of multispectral (Sentinel 2) and SAR (Sentinel 1) satellite data for the detection of archaeological mounds. Its 

use responds to SAR capacity to reflect soil roughness, texture and dielectric property (68), and other ground 

physical conditions such as compactness. The characteristic compact soil of archaeological mounds that have 

been formed by the decay of clay-based mud-bricks was assumed to provide a stark contrast with surrounding 

desert soil (see 68–70). Another advantage of the use of SAR is that it has a certain amount of soil penetration 

in very dry sandy loose soils, which makes it particularly adequate for this specific area. Initial tests confirmed 

that known mound sites provided a characteristic SAR signature that differentiates them from the surrounding 

terrain (Figure 4a-d).  

A notable drawback of single SAR images, which has been reduced here with the use of multitemporal series, is 

the presence of noise (speckle), an artefact of microwave scattering. Furthermore, SAR alone is not able to 

provide enough information to isolate archaeological mounds from other types of similar clayish soils (such as 

modern desert seasonal settlements and dried up water tobas) that produce analogous responses. Equally, 

optical multispectral imagery is not single-handedly able to isolate mound spectral signatures in some other 

areas such those presenting natural accumulation of clays that produces similar spectral responses (Figure 4e-

f). The different nature of these sensors was an important factor for ensuring that those elements that would 

produce similar values to those of mounds in one source were discriminated in the other. Giving the 

complementarity of SAR and multispectral imaging, their combined use was conceived as a way of providing 

discriminant values for mounded archaeological sites in the area. 

Multi-temporal aggregates 

The use of multiple images makes it possible to consider short- and long-term environmental variability and 

different visibility conditions, thereby reducing the impact that incidental circumstances such as the presence 

of clouds have when using a single image. The only previous instance of the incorporation of multi-temporal 

images for the machine learning-based detection of archaeological mounds has been by Menze and Ur (19). 

They used multiple ASTER satellite images of the same area acquired at different moments over a period of 

several years. Here, we have superseded that approach by employing a multi-temporal fusion that averages 



 

1500 SAR images taken from 2014-20 in the case of Sentinel 1, and 3112 multispectral images acquired from 

2015 to 2020 in the case of Sentinel 2. 

An algorithm was developed (see SI Appendix) to combine all available Sentinel 1 images for the study area 

and create a composite image integrating polarisation and look angles to increase the amount of information 

available about the objects of interest. Median values were employed to integrate the different images 

available to ensure that we obtained a stable image and that radar speckle was eliminated. Medians were 

preferred to mean values to minimize the effect of eventual outliers. 

While Sentinel 1 SAR is unaffected by clouds, Sentinel 2 TOA values may be affected by cloud cover. The S2 TOA 

collection reports coded information on quality concerns for each pixel in the QA60 bitmask. We integrated all 

multi-temporal images of the Sentinel 2 collection into a single multispectral image by averaging the pixel 

values per each band but ignoring those observations flagged as cloudy (opaque or cirrus) in the QA60 bitmask. 

Sentinel 1 and 2 data aggregates made it possible to produce a 14-band multi-temporal and multi-sensor image 

composite. The image integrates 4 SAR bands (a single VV and a dual HH-HV band in both ascending and 

descending modes), and 10 optical multispectral bands (B2-B8A, B11 and B12). The high-quality optical and 

radar bands are not affected by particular environmental or visibility conditions and therefore reflect average 

reflectance values for the study area while significantly reducing the computational costs of the process. While 

incorporating seasonal information might have produced improved results (see for example 64, 72), we 

preferred to test the most straightforward approach of using aggregate averages, thus keeping computational 

cost relatively low. This is a particularly important point as the algorithm employs two sensors and a relatively 

high spatial resolution given the very large size of the study area. 

The creation of multi-temporal and multi-sensor (active and passive) aggregates for the detection of 

archaeological sites constitutes an important new development. Previous research has emphasized the current 

need for ‘the harmonization and synergistic use of different sensors […] to maximize the impact of earth 

observation sensors and enhance their benefit to the scientific community’ (73). In this regard, this research 

constitutes one of the first large-scale applications of the concept of virtual constellations, a ‘set of space and 

ground segment capabilities that operate in a coordinated manner to meet a combined and common set of 

Earth Observation requirements’, put forward by the Committee on Earth Observation Satellites (CEOS) (74, 

see also 75) and falls in line with current agendas for the advancement of archaeological remote sensing (76, 

77). Virtual constellations aim to combine sensors with similar attributes to increase the efficiency of remote 

sensing processes. Here, we have gone beyond the initial definition to include sensors with very different 

principles (active and passive), but with the combined potential to produce superior results given the nature of 

our object of interest. The use of a machine learning algorithm provided a practical way to employ the 

multiplicity and disparity of data present in the image composite bands. 

Machine learning algorithm 

The steps for classification of mound-like signatures included gathering training data, training the classifier 

model, classifying the image composite and then validate the classifier with an independent validation set. We 

employ a selection of 25 mound-sites identified in Mughal’s survey on desert areas (26) as our training (n=5) 

and validation (n=20) sets. Despite the quality problems in Mughal’s data, we selected those sites that could be 

clearly identified and accurately located high-resolution imagery available in GEE. These corresponded to large 

and well-preserved sites. Polygons were drawn in GEE to define the areas of the selected mounds from which 

the values of the pixels in the image composite could be extracted for the training of the algorithm. The 

definition of spectral signatures and the evaluation of training data is described in detail within the SI Appendix 

(Figures S1 and S2).  

A Random Forest (RF) classifier was selected for the GEE machine learning implementation. A RF classifier 

builds a number of decision trees on bootstrapped training samples, but each time it considers a split in a tree. 



 

For each split, a new random subset of predictors are considered when splitting nodes (78). The average of the 

resulting trees helps to avoid overfitting, and hence is less variable and more reliable than other decision tree-

based classifiers (17, 79). Moreover, RF classifiers can handle a small number of training samples and it is 

possible to get the number of votes (i.e. the probability density) for each class. These are two advantages that 

are particularly useful for RS-based archaeology with limited land use/cover information.  

In our GEE algorithm, the RF was composed of 128 trees, considered an adequate number to obtain optimal 

results without increasing computational cost unnecessarily (80). The RF was set in probability mode so that 

the results could be evaluated, filtered and refined to improve the algorithm’s detection capabilities. The 

machine learning process underwent three iterations. The original iteration of the algorithm produced 

satisfactory results in that it was possible to clearly identify the 20 well-known mounds used as test data, and 

many more potential mounds through their higher RF probability values. Nonetheless, two more iterations 

were necessary to tune pixels with higher percentages that did not correspond to mound-sites, thus ensuring a 

good balance between low presence of non-mound pixels with high RF probability values and a high mound 

detection rate. The output of the RF classifier is a probability field in raster format, in which each value records 

the probability of a given pixel being a “mound”.  

In order to produce a map of archaeological mounds, a >0.55 RF probability threshold for mound values was 

selected after close inspection of the training data on the high-resolution imagery, which produced a raster 

map of clusters (“mounds”) on a background of “no mound”. A higher threshold resulted in the better 

delineation of big and clear mounds, but many small clusters of pixels corresponding to partially covered or 

small mounds were lost. We considered the >0.55 threshold a good compromise between a high mound 

detection capacity and a minimal inclusion of false positive pixels (mainly scattered isolated pixels). The 

algorithm’s validation and quality assessment methods are outlined in the SI Appendix (Figures S3 and S4). 

Integration of complementary data, area estimates and GIS database 

The resulting clusters of high RF probability pixels representing mounds were vectorised to reconstruct the 

areas of the mounds currently covered by sand dunes or desert shrubs. Photo-interpretation used high-

resolution satellite imagery provided by several map services (including Google Earth and Bing Maps) and a 

limited collection of available WorldView 2-3 imagery. The combination of these sources provided enough 

temporal and environmental variability to evaluate and delineate the possible extent of the mounds identified 

by the algorithm. A final mound geodatabase was prepared in a GIS environment and compared with previous 

coordinates from legacy data (see 26, 44). 

Data Availability Statement 

All satellite data used in this study are freely available under the open data policy adopted by the Copernicus 

programme of the European Space Agency. The code developed for this research, which has been used to 

produce the results discussed in the paper is provided within the SI Appendix. This code has been written for 

Google Earth Engine (GEE)’s implementation of JavaScript. GEE provides free access to the satellite data and 

the processing necessary to conduct the analysis upon registration. The code is ready for the direct execution 

of the analysis discussed in this paper (including the gathering and treatment of Sentinel data) and it only 

requires to be pasted in GEE Code Editor and pressing the ‘run’ button. It includes instructions on how to use 

and modify it to be applied to other research needs or areas. The code is also available in an online repository 

https://github.com/horengo/Orengo_et_al_2020_PNAS were future updates will be implemented. 



 

Results 

RF probability field  

Thresholding the RF probability field at >0.55 resulted in a map of 337 clusters that we propose as 

archaeological mound soil surfaces (Figure 5a-e). This set includes the 25 mounds selected from Mughal’s 

surveys (26) used as training (n: 5) and validation (n: 20) data, which were all successfully identified by the 

algorithm. The newly proposed mounds are similar to the previously known mounds used as training data 

(Figure 6a). The capacity of the algorithm to detect mound-like signatures is probably related to: a) the high 

contrast in Sentinel 1 single and dual polarisation bands (81); b) the ability of the SAR C-band to penetrate 

loose dry sand (82-84); and c) the specific reflectance in the Sentinel 2 red edge, NIR and SWIR bands of 

anthropic sediments in mounded-sites (85, 86). 

Due to vegetation and sand cover the RF probability only produced a few well-defined rounded shapes. Most of 

the newly proposed mounds present fragmentary rounded shapes, elongated strips or shapeless groupings of 

pixels (Figure 6b). It is entirely possible that beside these 337 detected mounds there are also remains of 

archaeological mounds partially covered by sand or shrub vegetation, with low RF probability values. It is worth 

stressing that the algorithm helped to identify small clusters of mound-like pixels even when visible high-

resolution images or SAR backscatter alone do not show any significant change in surface land cover. 

When possible, the new features were matched with legacy data from previous archaeological sites recorded 

by Mughal’s team (26, 44). Out of a total of 337 clusters of high-probability pixels identified as archaeological 

mounds by the algorithm, only 71 (including the 25 employed to train and test the algorithm) could be linked 

with reasonable certainty to sites previously recorded. However, it is possible that some other mounds in the 

database were indeed recorded by Mughal, but their imprecise coordinates make it difficult to establish any 

secure spatial correlation. 

Discussion 

Detection and distribution of mound-like signatures 

Despite the intensity of the regional surveys conducted by Mughal’s teams in the 1970 and 1980s, the 

automated detection of mounds in Cholistan has significantly increased the number of mound-like settlements 

over a much larger area of Cholistan than previously thought. In particular, the distribution extends towards 

the southern part of the region and the inner Thar desert towards the east, which was an area that was 

virtually inaccessible for previous studies (Figure 7). 

As expected, the distribution of the detected mounds by the algorithm was concentrated in the desert areas. 

Multispectral contrast and SAR texture differences among classes are accentuated in the desert, especially in 

the dahar flat surfaces, whereas the environmental variability in the agricultural lands towards the western 

edge of the desert is highly affected by several factors (e.g. mechanised agriculture, irrigation canals, roads and 

railways and irrigation-supported agricultural villages). As a result, the visibility of most existing archaeological 

mounds in this area has been strongly influenced by present-day taphonomy. 

There is also a clear decrease in site density towards the middle of the overall site distribution (Figure 7). This 

can be attributed to an extended stretch of deeper dunes that potentially hides a similar site density to those 

documented west and north of the dune stretch. In a similar manner, the area where new mounds have been 

identified is delimited to the south and southeast by the presence of deep dunes. The distribution of 

documented sites in relation to the presence of dunes (Figure 7) strongly suggests that many more sites could 

be lying below dunes in the deeper desert, and therefore the depositional dynamics of aeolian sediments in the 

Cholistan desert may have played a crucial role in the settlement history of the region. It is also interesting to 



 

note that the areas with a higher concentration of sites are situated in open mud flats (dahars) that are 

scattered through the region, though many of these mounds are still partially covered by sand dunes. Some 

dahars are used today to extract fine silty sediments or to excavate tobas (25, 27). These activities have 

accumulated silty soils on the dahar surface, leaving soil signatures and texture that are very similar to those of 

mounds in single Sentinel 1 and 2 scenes and high-resolution imagery. In all cases, the RF probability field was 

able to clearly discriminate between dahars, tobas and archaeological mounded areas. 

Only 71 of the mounds located by Mughal match the new photo-interpreted RF probability mounds, and 

usually these are among the most well-preserved mounds in the landscape. A large number of nomadic sites 

and pottery distributions not related to long-term settlement were also reported by Mughal, but they were 

only distinguished on site by surface scatters of artefacts (27), and the resolution of our sources is not enough 

to locate them. An important aspect of the RF probability approach is that the new locations represent areas 

with a specific mound-like sediment signature, which suggests a relatively stable occupation, potentially for 

some time, and the continued use of construction materials such as mud brick. These characteristics are closely 

associated to sedentary dwellings in similar Indus contexts (51).  

For each new location, the extension, visibility and preservation of surface archaeological sediments can be 

now further explored in relation to its immediate surroundings. Previous studies tended to separate a unique 

multi-phase location into several distinct locations based on the distribution of surface material culture, which 

are largely biased by the terrain view that was used (no aerial images were available), and the partial burying 

and occlusion of sites. For example, the site of Bokhariyanwala was described as having occupation during the 

Mature and Late Harappan periods on two adjacent mounds. Our analysis shows that the ridge of a fossilised 

dune crosses the area, suggesting that these sites formed a single large mound (Figure 8a). Similarly, the site of 

Changalawa was reported to have two distinct Mature Harappan period mounds and a third Late Harappan 

period mound. However, the RF-probability field only returns a single mound in this area. In this case, the 

distribution of materials may have been disturbed by the presence of a 1920s irrigation canal crossing the site, 

and different parts of the one site may have been occupied in each period (Figure 8b). However, until 

archaeological excavation can be carried out at these sites, the possibility that some of these sites may be 

comprised of discontinuous occupations on multiple overlapping mounds cannot be dismissed. These examples 

reflect the high heterogeneity in terms of site visibility and preservation across the study area and provide a 

cautionary tale on using the previous data to study site density, distribution and size. 

Villages and towns: mound size estimates 

An important result of the automated site detection has been the delineation of the estimated area size for the 

337 mounds located in the area (Figure 9a-b). Mound area estimates in the Near East (87) have raised the 

question of whether these represent the total habitation size of a settlement, or wall debris and open-air 

spaces outside the settlement. For the results presented here, area estimates should be used with caution and 

be considered only as a tentative measure of the total mound area estimated through visual inspection of the 

RF probability field and high-resolution satellite imagery. A large proportion of the newly detected mounds are 

less than 5 ha in size (n = 246, 72.99%). Estimated site areas suggest a general pattern of small rural Indus 

settlements distributed between medium and large-size sites that are possibly urban in nature (26, 88), which 

is similar to other Indus core areas in north-western India such as Gujarat (89) and Haryana (90). However, the 

area for most of the known sites that we have identified is slightly different from those previously reported (26: 

table 13). For example, the Hakra period site of Lathwala was reported to be 26.3 ha, but the closest visible 

mound is around 5 ha, although it should be noted that the site is now clearly divided by a large sand ridge. The 

largest Early Harappan period site, Gamanwala, was reported as being 27.3 ha, but the closest mound to this 

location is a much smaller mound of c. 6.5 ha. Kudwala, the largest Late Harappan period mound at 38.1 ha 

could not be detected remotely, suggesting either that its original location was not correct or that it has since 

been obliterated by the expansion of agricultural land. Significantly, the RF probability field detected six 



 

mounds that can undoubtedly be considered as large Indus settlements, potentially towns of more than 20 ha. 

The distribution of these mounds is highlighted in Figure 9a-b. The Mature Harappan period settlement of 

Ganweriwala, initially estimated to be 80 ha in size (26), has long been considered one of the major centres of 

the Indus Civilisation. However, recent reassessment has shown that it was much smaller, between 20 and 40 

ha (49-51). Our data suggests that the mounded area is c. 33 ha, comparable to a large town (90), though it 

may well have functioned as an urban centre (51). It is possible, however, that Ganweriwala was not the only 

large town dating to the Mature Harappan period in the region. Two more sites identified by Mughal as dating 

to this period, Sanukewala and Rajbai, have a similar visible mound extension (c. 32 ha) and they could have 

been even larger in the past. The northwest section of Sanukewala is largely affected by an abandoned canal 

and Rajbai is partially covered by sand dunes. The Late Harappan period site of Siddhuwala, also have 

significant proportions (26.5 ha). The RF-probability field has also brought to light two previously unknown 

large sites, named Khundowala (29 ha) and Mulhiawala (20.5 ha) after the nearest toponym shown on 

historical maps. Mulhiawala is in the south-eastern margin of the desert, an area that was virtually empty of 

Indus sites before the automated detection of mounds. The site of Khundowala is unique in lying in the north-

east margin of the desert, and it is completely isolated from other visible mounds. The site is partially covered 

by a fossilised sand dune, and indeed the RF probability only showed a small portion of the total mound that 

can be appreciated today in high-resolution satellite imagery. The identification of this site is highly relevant, as 

it documents the presence of a large mound in the northern parts of the historical Hakra River basin. Despite 

previous evidence of the presence of more Indus Civilisation sites in this area (26, 44), only a few small mounds 

have been detected by the algorithm there. The implications of the northern expansion of the desert, as 

evidenced by the large sand dunes that partially cover these sites, is further discussed below.  

Long-term landscape dynamics 

The new distribution of mounds in the study area indicates that the Thar Desert has expanded considerably 

since the Indus period. No current occupation except for seasonal pastoral camps is known in the southern and 

western sectors of the site distribution area. Medieval and late Medieval period settlements such as the 

Cholistan forts known in the area form an arc delimiting the north-western limit of the Thar desert at a more 

northerly and westerly location (26). These patterns might suggest that the expansion of the desert is a long-

term process that has been progressing over several millennia, contributing to the abandonment of 

settlements at the desert margins.  

At present, the lack of palaeoenvironmental evidence such as sedimentary records in the core area of the 

Cholistan Desert can only be partially complemented by data from the adjacent Thar Desert, especially in west 

and north Rajasthan. Durcan et al. (91) have suggested that the Holocene geomorphological dynamics were 

highly dynamic and the distinct phases of fluvial and aeolian deposition were not spatially or temporally 

instantaneous, but rather a synchronic alternation. Some studies have, however, highlighted a drier climatic 

condition on the northern margins of the Thar Desert sometime after ~4.4 ± 0.1 ka BP (24, 59, 92–94), a phase 

that is consistent in other north-western regions such as mainland Gujarat (95, 96). Nonetheless, the cyclic 

fashion of the Quaternary aeolian activities in the Thar Desert started much earlier (c. 150 ka BP), and Singhvi 

and Kar (97) advocate for a phase of major aeolian activities during the Holocene Climatic Optimum (c. 5-3.5 ka 

BP), with century-scale rates of spatial shifts in dune forming in west Rajasthan up to 2 ka BP. Existing 

sedimentary records for the western margins of the Thar Desert, therefore, correlate well with a potential 

enhanced aeolian activity c. 4 ka BP, followed by declining rainfall, which, in turn, would have stabilised the 

now subdued sand dunes. Another burst of aeolian activity started c. 2 ka while the latest aeolian active phase 

was in historical times, when the rates of dune mobility in the desert increased mainly due to human pressure 

(98, 99).  

The new data on mound distribution can also be compared to the documentation of multiple palaeoriver 

channels and seasonal streams in the study area. Just as with the mounds, these are visible only in dahar 



 

surfaces and therefore it is difficult to offer a continuous picture of their shape and length. Overall, the 

hydrological network in the area has been related to the course of the former Ghaggar-Hakra River. Some 

authors have argued that the Ghaggar-Hakra system ceased to flow through this region before the Holocene 

(59, 100–103), thus suggesting that the alluvial plains of north-western India and eastern Pakistan were 

characterised by a continuum of fluvial environments interrelated through a seasonal precipitation gradient 

and local aeolian dynamics (36, 104). The river basin is well-documented in historical nineteenth century maps 

and narratives (Figure 9), showing recurring seasonal flooding during episodes of extreme rainfall such as in 

1804, 1805 and 1871 (105). However, previous RS-based attempts to identify the former channel network 

across Cholistan have suggested several potential interconnected waterflows (106–109), but little is known 

about their chronology. Moreover, the detected relict network of fluvial environments across the region has 

several characteristics that differ from a major Ghaggar-Hakra course, specifically: 1) these palaeochannels 

form multiple courses with roughly similar orientation; 2) their morphology is relatively straight, at least by 

comparison with those documented to the north of the study area, where they tend to be very sinuous given 

the low slope of the alluvial plain (see 64, 65, 110); and 3) their orientation is coincident with that of the 

fossilized dunes and not with that of the alluvial plains just north of the desert edge. In this regard, it is 

important to note that while rivers flow following the aspect of the terrain, dunes are mostly influenced by 

wind direction in plain areas. Therefore, the flow of many of the rivers detected must have been influenced by 

the presence of earlier relict sand dunes. The many sub-parallel, ephemeral river traces in the area might be 

related to a process of river migration towards the north-eastern region as dunes expanded from the south. 

Consequently, it is possible to propose that water was still available, at least seasonally, in streams and flooded 

fertile dahars until recent historical times, as attested by the nomadic migration traditions in the area (27, 111). 

The monsoonal-fed hydrological network changed dramatically from 1897 onwards with the construction of 

the Ottu Barrage on the northern Indian course of the Ghaggar River, which increased desertification in the 

southern desert edges and lead to the development of large irrigation schemes through the desert lands early 

in the 1930s (112).  

Indus settlement trends 

Although at the moment it is not possible to provide chronological information for the newly detected mounds, 

they can be combined with those previously identified and dated by Mughal (26) to attempt to understand 

changes in settlement distribution over time. The surveys of Cholistan documented all of the mounds that were 

encountered, including those of the Medieval period. Considering that the vast majority of the previously 

reported sites were settlements attributed to the periods of the Indus Civilisation, there is a high chance that 

most of the newly detected ones were also occupied during this same period. This assumption can be 

contrasted with similar Indus contexts. For example, in the plains of Haryana in north-west India, Green et al. 

(14) have highlighted that mound features visible on historical maps tend to be protohistoric or Bronze Age 

settlements when surveyed or validated on the ground, whereas Early Historic and Medieval settlements 

appear to be more frequently associated with modern settlement locations. In Cholistan, specifically, several 

mounds are partially covered by fossilised sand dunes and ridges indicating that these mounds largely pre-date 

the north-western expansion of the Thar Desert, and that mounds located deeper in the desert may therefore 

be particularly early in date. 

Mughal’s analysis highlighted the importance of the Cholistan settlement data for understanding the 

development of Indus urbanism, and Madella (113) has suggested that Cholistan was potentially a zone of 

intensive and extensive cultivation. Taken at face value, Mughal’s settlement distribution data for Cholistan 

suggests that this was an intensively occupied area. However, Petrie and Lynam’s (47) reanalysis of the data 

suggests that this settlement system may have been marked by displacement and considerable instability, 

which indicates that it was more unusual than is typically assumed. This interpretation has ramifications for the 

interpretation of agricultural practices and the sustainability of the region, indicating a high degree of flexibility 

and mobility. This insight is important, because there is currently no direct archaeobotanical evidence available 



 

from sites in this region. This agricultural flexibility must have been essential to Cholistan, which was 

strategically located in a central point of the area occupied by Indus populations (51, 114), and was potentially 

a necessary transit area for movement between different regions. Cholistan may well have formed a 

communication node between surrounding Indus areas. The apparent loss of the more southern areas of 

Cholistan for settlement may have been an important factor in the breakdown of Indus interaction networks 

and the increase in more local scale interactions in the Late Harappan period (115). The decline of settlement 

in Cholistan might thus have created a “dead zone” of interaction, increasing the cost of communication and 

exchange beyond the point that de-urbanizing cities could maintain.  

Conclusion 

The new dataset provides the first collection of Sentinel 1 and Sentinel 2 spectral signatures for mound-like 

archaeological features in drylands, and the resulting new mound locations can be now addressed in terms of 

RF probability values. We present the first combination of multi-temporal, multi-polarisation and multi-angle 

SAR bands and multi-temporal optical bands (including visible, red-edge, NIR and SWIR) analysed using a 

machine learning algorithm in a cloud computing platform for the detection and analysis of archaeological 

mounds, which has the potential to transform archaeological site detection. The machine learning algorithm 

that has been employed was able to detect all previously known mounds in the study area for which we could 

gather accurate locations and large numbers of new ones well beyond the expectations laid out by previous 

research. The method provides results that are noticeably superior to the use of single source remote sensing 

approaches. RS-based applications in arid and semi-arid areas elsewhere can benefit from the integration of 

globally-available Sentinel data in GEE’s accessible, flexible and reproducible environment to perform and 

evaluate machine-learning workflows.  

The new distribution of archaeological sites in the Cholistan Desert, in combination with legacy archaeological 

data, suggest that most of these mounds are proto-historic settlements, that they extended across a larger 

area than previously recognised, and that they include several previously unknown mounds that, considering 

their large size, can be classified as urban on their own right. Archaeological data in combination with 

landscape analysis, which includes the mapping of factors affecting site visibility, suggest that these were only a 

relatively small part of the mounds present in the area, many of which might lie below large dunes in the core 

study area and deeper into the desert. 

The archaeological sites in Cholistan were occupied at points along a span of five millennia. The significant 

number of Indus Civilisation Mature Harappan period and urban-scale mounds that were documented and the 

shift in the concentrations of settlement to the north suggests that it is important to consider the impact of the 

advancement of the desert on settlement displacement of Indus populations. Given the centrality of this area, 

the displacement of occupation in Cholistan potentially played an important role in the generalised processes 

of de-urbanisation, decrease in settlement size and regionalisation that characterise the Late Harappan period 

across the Indus region.  

While undoubtedly Cholistan was a significant zone of settlement for the populations of the Indus Civilisation, 

the nature of the settlement dynamics in this region and their relationship to water availability are in need of 

both ongoing re-evaluation and ground-truthing in the field. Indus populations had clearly adapted their 

behaviour to survive in this apparently unstable environment, and it appears to have remained an important 

area for settlement and a component in interactive networks for an extended period. Future research should 

perhaps also consider the role of pastoralism and the pastoral economy in this region, and its possible links to 

population mobility. The results of the study presented here provide critical new resources for the processes of 

re-thinking the dynamics of settlement distribution and the archaeological significance of the region. 
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Figure legends 

 

Figure 1. Location map of the Cholistan Desert: a) distribution of Indus sites with the location of the five major 

Indus cities during the urban period (c. 2500-1900 BC); b) distribution of Indus sites in the Cholistan Desert, 

after Mughal (26, 47); c) inset showing characteristic fossilised sand dunes, mud flats (dahars) and water ponds 

(tobas); d) the well-known mound of Ganweriwala, partially covered by a sand dune. 

 

Figure 2. Spatial distribution of Mughal’s sites per period. Approximate distribution of previously known Indus 

sites in the area (see 26, recently revised by 47). The smooth regression lines represent the spatial trends in the 



 

distribution of sites. Although many of these coordinates need re-visiting in the field, the chronological 

distribution of Mughal’s sites evidence continuous shifts in settlement. 

 

Figure 3. Schematic workflow used in this study. The code available within the SI Appendix follows the three 

main steps of this research performed in GEE: 1) development of a multi-sensor, multi-temporal image 

composite, 2) train and apply the RF classifier and 3) export the resulting probability raster field. In addition, 

data validation and statistics were performed using R software. 

 

Figure 4. SAR and multispectral mound visibility: a) Google Earth basemap showing the location of a well-

preserved mound (yellow circle) and three main land cover types in the desert edge: dahars or mud flat 

surfaces, stabilised sand dunes and spots of irrigated lands. Note the differences in mound and land cover 

visibility in the following band combinations from the multi-temporal image composite: b) dual Sentinel 1 band 

[VV,VH] in ascending mode ; c) single Sentinel 1  band  [VV] in ascending mode; d) Sentinel 1 false composite in 

RGB; e) Sentinel 2 visible composite (B4-B3-B2); f) Sentinel 2 false colour composite (B8-B4-B3). 

 

Figure 5. Results of the RF classifier: a) in red, extent of the study area, showing the distribution of new RF 

probability mounds; b) inset showing the RF probability at the desert edge, note the white dots scattered 

through the region indicating high-probability mounds; c) visible high-resolution imagery (Google Earth 

basemap) with virtual absence of mounds; d) the same area as c), showing high RF probability mound-like 

signatures in dahar surfaces; e) inset showing filtered pixels at >0.55 RF probability threshold, suggesting the 

presence of mounds partially covered by sand dunes. 

 

Figure 6. RF probability outputs: a) example of detected mound-like surfaces in well-known mounds used as 

validation set; b) clusters of high-probability pixels in the area, photo-interpreted as new archaeological 

mounds. Note the distinct preservation of mounds due to partial coverage of sand dunes and desert shrubs. 

 

Figure 7. Distribution of newly detected mounds in relation to regional landcover. 

 

Figure 8. Visibility of RF mounds and legacy data: Google basemaps and RF probability fields showing a) the 

vectorised new mound of Bokhariyanwala, closely located to multiple legacy coordinates for the same site; b) 

the vectorised new mound of Changalawa, also reported as multiple locations in legacy data probably due to 

the partial obliteration of the site by an irrigation canal. 

 

Figure 9. Mound area estimates: a) map showing the mound size estimates. The location of Ganweriwala and 

the other 5 large mounds (>20 ha) located in the region is highlighted. Note the extension of the Ghaggar-

Hakra River, as digitised from historical maps; b) histogram with the size density for the mounds. Mean size is 

indicated by the red dashed line. 
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