159 research outputs found

    Reusable abstractions for modeling languages

    Full text link
    This is the author’s version of a work that was accepted for publication in Information Systems. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Information Systems, 38, 8, (2013) DOI: 10.1016/j.is.2013.06.001Model-driven engineering proposes the use of models to describe the relevant aspects of the system to be built and synthesize the final application from them. Models are normally described using Domain-Specific Modeling Languages (DSMLs), which provide primitives and constructs of the domain. Still, the increasing complexity of systems has raised the need for abstraction techniques able to produce simpler versions of the models while retaining some properties of interest. The problem is that developing such abstractions for each DSML from scratch is time and resource consuming. In this paper, our goal is reducing the effort to provide modeling languages with abstraction mechanisms. For this purpose, we have devised some techniques, based on generic programming and domain-specific meta-modeling, to define generic abstraction operations that can be reused over families of modeling languages sharing certain characteristics. Abstractions can make use of clustering algorithms as similarity criteria for model elements. These algorithms can be made generic as well, and customized for particular languages by means of annotation models. As a result, we have developed a catalog of reusable abstractions using the proposed techniques, together with a working implementation in the MetaDepth multi-level meta-modeling tool. Our techniques and prototypes demonstrate that it is feasible to build reusable and adaptable abstractions, so that similar abstractions need not be developed from scratch, and their integration in new or existing modeling languages is less costly.Work funded by the Spanish Ministry of Economy and Competitivity with project “Go Lite” (TIN2011-24139), and the R&D programme of Madrid Region with project “eMadrid” (S2009/TIC-1650)

    Generic software for benchmarking formal concept analysis: Orange3 integration

    Get PDF
    Thanks to the internet of things (IoT) and cyber physical systems (CPS), we face an incremental growth of the available data, either on the internet or in private databases. This resulted in data mining techniques becoming an essential piece in the information retrieval process. Moreover, trends like the industry 4.0 encourages its usage to support data driven decisions, for instance. Formal Concept Analysis (FCA) is one of the most used techniques in the unsupervised data mining field due to its inherent ability to find patterns between concepts. As a consequence, many applications need the use of fast algorithms to perform the calculations to retrieve either the lattice or the association rules related with the data at their disposal. Due to this, scientists often rely on manually crafted benchmarks to compare how certain algorithms perform under different circumstances. In this work, we propose the architecture of a software to generalize these benchmarks independently of the algorithms, to be integrated in the open source data analysis software Orange3.Facultad de Informátic

    Generating a Catalog of Unanticipated Schemas in Class Hierarchies using Formal Concept Analysis

    Get PDF
    International audienceContext: Inheritance is the cornerstone of object-oriented development, supporting conceptual modeling, subtype polymorphism and software reuse. But inheritance can be used in subtle ways that make complex systems hard to understand and extend, due to the presence of implicit dependencies in the inheritance hierarchy. Objective: Although these dependencies often specify well-known schemas (i.e., recurrent design or coding patterns, such as hook and template methods), new unanticipated dependency schemas arise in practice, and can consequently be hard to recognize and detect. Thus, a developer making changes or extensions to an object-oriented system needs to understand these implicit contracts defined by the dependencies between a class and its subclasses, or risk that seemingly innocuous changes break them. Method: To tackle this problem, we have developed an approach based on Formal Concept Analysis. Our FoCARE methodology (Formal Concept Analysis based-Reverse Engineering) identifies undocumented hi- erarchical dependencies in a hierarchy by taking into account the existing structure and behavior of classes and subclasses. Results: We validate our approach by applying it to a large and non-trivial case study, yielding a catalog of Hierarchy Schemas, each one composed of a set of dependencies over methods and attributes in a class hierarchy. We show how the discovered dependency schemas can be used not only to identify good design practices, but also to expose bad smells in design, thereby helping developers in initial reengineering phases to develop a first mental model of a system. Although some of the identified schemas are already documented in existing literature, with our approach based on Formal Concept Analysis (FCA), we are also able to identify previously unidentified schemas

    Fuzzy concept analysis for semantic knowledge extraction

    Get PDF
    2010 - 2011Availability of controlled vocabularies, ontologies, and so on is enabling feature to provide some added values in terms of knowledge management. Nevertheless, the design, maintenance and construction of domain ontologies are a human intensive and time consuming task. The Knowledge Extraction consists of automatic techniques aimed to identify and to define relevant concepts and relations of the domain of interest by analyzing structured (relational databases, XML) and unstructured (text, documents, images) sources. Specifically, methodology for knowledge extraction defined in this research work is aimed at enabling automatic ontology/taxonomy construction from existing resources in order to obtain useful information. For instance, the experimental results take into account data produced with Web 2.0 tools (e.g., RSS-Feed, Enterprise Wiki, Corporate Blog, etc.), text documents, and so on. Final results of Knowledge Extraction methodology are taxonomies or ontologies represented in a machine oriented manner by means of semantic web technologies, such as: RDFS, OWL and SKOS. The resulting knowledge models have been applied to different goals. On the one hand, the methodology has been applied in order to extract ontologies and taxonomies and to semantically annotate text. On the other hand, the resulting ontologies and taxonomies are exploited in order to enhance information retrieval performance and to categorize incoming data and to provide an easy way to find interesting resources (such as faceted browsing). Specifically, following objectives have been addressed in this research work: Ontology/Taxonomy Extraction: that concerns to automatic extraction of hierarchical conceptualizations (i.e., taxonomies) and relations expressed by means typical description logic constructs (i.e., ontologies). Information Retrieval: definition of a technique to perform concept-based the retrieval of information according to the user queries. Faceted Browsing: in order to automatically provide faceted browsing capabilities according to the categorization of the extracted contents. Semantic Annotation: definition of a text analysis process, aimed to automatically annotate subjects and predicates identified. The experimental results have been obtained in some application domains: e-learning, enterprise human resource management, clinical decision support system. Future challenges go in the following directions: investigate approaches to support ontology alignment and merging applied to knowledge management.X n.s

    Generating a catalog of unanticipated schemas in class hierarchies using Formal Concept Analysis

    Get PDF
    Context: Inheritance is the cornerstone of object-oriented development, supporting conceptual modeling, subtype polymorphism and software reuse. But inheritance can be used in subtle ways that make complex systems hard to understand and extend, due to the presence of implicit dependencies in the inheritance hierarchy. Objective: Although these dependencies often specify well-known schemas (i.e., recurrent design or coding patterns, such as hook and template methods), new unanticipated dependency schemas arise in practice, and can consequently be hard to recognize and detect. Thus, a developer making changes or extensions to an object-oriented system needs to understand these implicit contracts defined by the dependencies between a class and its subclasses, or risk that seemingly innocuous changes break them. Method: To tackle this problem, we have developed an approach based on Formal Concept Analysis. Our Formal Concept Analysis based-Reverse Engineering methodology (FoCARE) identifies undocumented hierarchical dependencies in a hierarchy by taking into account the existing structure and behavior of classes and subclasses. Results: We validate our approach by applying it to a large and non-trivial case study, yielding a catalog of hierarchy schemas, each one composed of a set of dependencies over methods and attributes in a class hierarchy. We show how the discovered dependency schemas can be used not only to identify good design practices, but also to expose bad smells in design, thereby helping developers in initial reengineering phases to develop a first mental model of a system. Although some of the identified schemas are already documented in existing literature, with our approach based on Formal Concept Analysis (FCA), we are also able to identify previously unidentified schemas. Conclusions: FCA is an effective tool because it is an ideal classification mining tool to identify commonalities between software artifacts, and usually these commonalities reveal known and unknown characteristics of the software artifacts. We also show that once a catalog of useful schemas stabilizes after several runs of FoCARE, the added cost of FCA is no longer needed.Laboratorio de Investigación y Formación en Informática AvanzadaComisión de Investigaciones Científicas de la provincia de Buenos Aire

    Proceedings of the International Workshop "What can FCA do for Artificial Intelligence?" (FCA4AI 2014)

    Get PDF
    International audienceThis is the third edition of the FCA4AI workshop, whose first edition was organized at ECAI 2012 Conference (Montpellier, August 2012) and second edition was organized at IJCAI 2013 Conference (Beijing, August 2013, see http://www.fca4ai.hse.ru/). Formal Concept Analysis (FCA) is a mathematically well-founded theory aimed at data analysis and classification that can be used for many purposes, especially for Artificial Intelligence (AI) needs. The objective of the workshop is to investigate two main main issues: how can FCA support various AI activities (knowledge discovery, knowledge representation and reasoning, learning, data mining, NLP, information retrieval), and how can FCA be extended in order to help AI researchers to solve new and complex problems in their domain

    A Mode-Based Pattern for Feature Requirements, and a Generic Feature Interface

    Get PDF
    Feature-oriented requirements decompose a system's requirements into individual bundles of functionality called features, where each feature's behaviour can be expressed as a state-machine model. However, state machines are difficult to write; determining how to decompose behaviour into states is not obvious, different stakeholders will have different opinions on how to structure the state machine, and the state machines can easily become too complex. This thesis proposes a pattern for decomposing and structuring the model of a feature's behavioural requirements, based on modes of operation (e.g., Active, Inactive, Failed) that are common to features in multiple domains. Interestingly, the highest-level modes of the pattern can serve as a generic behavioural interface for all features that adhere to the pattern. The thesis proposes also several pattern extensions that provide guidance on how to structure the Active and Inactive behaviour of the feature. The pattern was applied to model the behavioural requirements of 21 automotive features that were specified in 7 production-grade requirements documents. The pattern was applicable to all 21 features, and the proposed generic feature interface was applicable to 50 out of 58 inter-feature references. A user study with 18 participants evaluated whether use of the pattern made it easier than otherwise to write state machines for features and whether feature state machines written with the help of the pattern are more readable than those written without the help of the pattern. The results of the study indicate that use of the pattern facilitates writing of feature state machines

    Decisioning 2022 : Collaboration in knowledge discovery and decision making: Applications to sustainable agriculture

    Get PDF
    Sustainable agriculture is one of the Sustainable Development Goals (SDG) proposed by UN (United Nations), but little systematic work on Knowledge Discovery and Decision Making has been applied to it. Knowledge discovery and decision making are becoming active research areas in the last years. The era of FAIR (Findable, Accessible, Interoperable, Reusable) data science, in which linked data with a high degree of variety and different degrees of veracity can be easily correlated and put in perspective to have an empirical and scientific perception of best practices in sustainable agricultural domain. This requires combining multiple methods such as elicitation, specification, validation, technologies from semantic web, information retrieval, formal concept analysis, collaborative work, semantic interoperability, ontological matching, specification, smart contracts, and multiple decision making. Decisioning 2022 is the first workshop on Collaboration in knowledge discovery and decision making: Applications to sustainable agriculture. It has been organized by six research teams from France, Argentina, Colombia and Chile, to explore the current frontier of knowledge and applications in different areas related to knowledge discovery and decision making. The format of this workshop aims at the discussion and knowledge exchange between the academy and industry members.Laboratorio de Investigación y Formación en Informática Avanzad

    Proceedings of the ECAI Workshop on Formal Concept Analysis for Artificial Intelligence (FCA4AI)

    Get PDF
    International audienceFormal Concept Analysis (FCA) is aimed at data analysis and classification. FCA proposes various efficient tools for concept lattice design and visualization, and is related to many research fields and application domains, including several fields of Artificial Intelligence (AI), e.g. knowledge discovery, knowledge representation and reasoning. In recent years, a series of work emerged for extending the possibilities of FCA w.r.t. knowledge processing, e.g. pattern structures and relational context analysis. Such extensions should allow FCA to deal with complex data from the knowledge discovery and the knowledge representation points of view. Moreover, these extensions of the capabilities of FCA offer new possibilities for AI activities in the framework of FCA. Accordingly, this workshop will be interested in two main issues: (i) how can FCA support AI activities and especially knowledge processing and (ii) how can FCA be extended for solving new and complex problems in AI

    9th International Workshop "What can FCA do for Artificial Intelligence?" (FCA4AI 2021)

    Get PDF
    International audienceFormal Concept Analysis (FCA) is a mathematically well-founded theory aimed at classification and knowledge discovery that can be used for many purposes in Artificial Intelligence (AI). The objective of the ninth edition of the FCA4AI workshop (see http://www.fca4ai.hse.ru/) is to investigate several issues such as: how can FCA support various AI activities (knowledge discovery, knowledge engineering, machine learning, data mining, information retrieval, recommendation...), how can FCA be extended in order to help AI researchers to solve new and complex problems in their domains, and how FCA can play a role in current trends in AI such as explainable AI and fairness of algorithms in decision making.The workshop was held in co-location with IJCAI 2021, Montréal, Canada, August, 28 2021
    corecore