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Preface

The first and the second edition of the FCA4AI Workshop showed that many researchers
working in Artificial Intelligence are indeed interested by a well-founded method for classi-
fication and mining such as Formal Concept Analysis (see http://www.fca4ai.hse.ru/).
The first edition of FCA4AI was co-located with ECAI 2012 in Montpellier and published as
http://ceur-ws.org/Vol-939/ while the second edition was co-located with IJCAI 2013
in Beijing and published as http://ceur-ws.org/Vol-1058/. Based on that, we decided
to continue the series and we took the chance to organize a new edition of the workshop in
Prague at the ECAI 2014 Conference. This year, the workshop has again attracted many
different researchers working on actual and important topics, e.g. recommendation, linked
data, classification, biclustering, parallelization, and various applications. This shows the
diversity and the richness of the relations between FCA and AI. Moreover, this is a good
sign for the future and especially for young researchers that are at the moment working in
this area or who will do.

Formal Concept Analysis (FCA) is a mathematically well-founded theory aimed at data
analysis and classification. FCA allows one to build a concept lattice and a system of
dependencies (implications) which can be used for many AI needs, e.g. knowledge discovery,
learning, knowledge representation, reasoning, ontology engineering, as well as information
retrieval and text processing. As we can see, there are many “natural links” between FCA
and AI.

Recent years have been witnessing increased scientific activity around FCA, in particular
a strand of work emerged that is aimed at extending the possibilities of FCA w.r.t. knowl-
edge processing, such as work on pattern structures and relational context analysis. These
extensions are aimed at allowing FCA to deal with more complex than just binary data,
both from the data analysis and knowledge discovery points of view and as well from the
knowledge representation point of view, including, e.g., ontology engineering.

All these investigations provide new possibilities for AI activities in the framework of
FCA. Accordingly, in this workshop, we are interested in two main issues:

• How can FCA support AI activities such as knowledge processing (knowledge discov-
ery, knowledge representation and reasoning), learning (clustering, pattern and data
mining), natural language processing, and information retrieval.

• How can FCA be extended in order to help AI researchers to solve new and complex
problems in their domains.

The workshop is dedicated to discuss such issues. This year, the papers submitted to the
workshop were carefully peer-reviewed by three members of the program committee and 11
papers with the highest scores were selected. We thank all the PC members for their reviews
and all the authors for their contributions.

The Workshop Chairs

Sergei O. Kuznetsov
National Research University, Higher Schools of Economics, Moscow, Russia

Amedeo Napoli
LORIA (CNRS – Inria Nancy Grand Est – Université de Lorraine), Vandoeuvre les Nancy,
France

Sebastian Rudolph
Technische Universitaet Dresden, Germany
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Manuel Atencia, Jérôme David, and Jérôme Euzenat . . . . . . . . . . . . . . . . . . . 85

12 Lattice-Based View Access: A way to Create Views over SPARQL Query for Knowl-
edge Discovery
Mehwish Alam and Amedeo Napoli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5



6



Abstraction, taxonomies, connectivity : from AI to FCA
and back

Henry Soldano

Université Paris 13, Sorbonne Paris Cité, L.I.P.N UMR-CNRS 7030
F-93430, Villetaneuse, France

Abstract. We describe an experience of transfer and ideas exchange between AI
and FCA. The original motivation was a data analysis problem in which there
were objects, structured attributes together with a categorization of objects, lead-
ing to the idea that in some way the categorization should alter the selection of
interesting patterns. On one hand, soon it appeared that to investigate the data
it was interesting to use various degrees of coarseness not only on the pattern
language but also on the extensions, i.e. the support, following the data mining
terminology, of the patterns. On an other hand, closed patterns are known to sum-
marize the whole set of frequent patterns, and FCA proposes to organize these
closed patterns into a concept lattice, each node of which was a pair made of a
closed pattern and its extension, but there were no known way to use categoriza-
tion and relative coarseness in a flexible way. On the FCA technical side, this led
us in particular to extend concept lattices to smaller conceptual structures, called
abstract concept lattices, in which the extension of a term/motif/pattern in a set
of objects is constrained by an external a priori view of the data together with a
parameter controlling the degree of coarseness [1,2]. A closer view to the struc-
ture of the corresponding extensional space led us back to AI : we called such
a structure an abstraction as it captured part of the notion of domain abstraction
as it has been investigated in AI [3]. The most interesting transfer back to AI
relied on the following observation : the set of abstract implications related to
these abstract lattices had a particular meaning that was naturally expressed in
modal logics. A direct consequence is that the notion of abstraction necessary to
preserve the lattice structure of closed patterns, i.e. to preserve the concept lattice
structure, defined a particular class of modal logics, we called modal logics of
abstraction, whose properties led to a new kind of semantics [4]. In few words, in
such a modal logics the modal connector, usually known as a ”necessity“ connec-
tor and represented as a square, could be translated as an ”abstraction“ operator,
i.e. a sentence as ”2 P“ was understood as ”Abstractly P“. The corresponding
semantics relied on a covering of the universe, and could not, except in partic-
ular cases, be translated as the standard ”possible world“ semantics of the most
common modal logics.
More recently, new trends in AI and data mining orient research towards linked
data. The same formal notion of abstraction can be defined on graphs, and this
leads to a way to extract closed patterns from graphs whose vertices are objects
described in a FCA framework, therefore allowing to investigate attributed graphs
[5]. Finally, recent work on data mining discuss closure operators on partially
ordered pattern languages weaker than lattices, as the set of connected subgraphs
of some graph, which leads to extend formal concept analysis beyond the lattice
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structure still preserving a large part of the nice formal structures and results of
FCA[6].
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Using Formal Concept Analysis to Create
Pathways through Museum Collections

Tim Wray, Peter Eklund??

Faculty of Engineering and Information Science
University of Wollongong

Northfields Avenue, NSW 2522, Australia

Abstract. This paper presents A Place for Art – an iPad app that al-
lows users to explore an art collection via semantically linked pathways
that are generated using Formal Concept Analysis. The app embraces
the information seeking approach of exploration and is based on the
idea that showing context and relationships among objects in a museum
collection augments an interpretive experience. The fundamental inter-
action metaphor inherent in A Place for Art relies on Formal Concept
Analysis so the interface has embedded within it the semantic clustering
features of machine learning in artificial intelligence.

Keywords: Intelligent Interfaces, Formal Concept Analysis

This paper presents “A Place for Art”, a working artefact developed by a
team of developers of which the authors are members and that has been reported
more extensively elsewhere [17] albeit not to a AI or FCA audience. The work
can be framed as a contemporary extension of work using FCA for Information
Retrieval[6, 3].

A Place for Art showcases a collection of contemporary and Australian indige-
nous works from the University of Wollongong’s Art Collection. It is a digitized
companion piece to the print publication of the same name [9]. The app provides
access to 77 works and accompanying short essay pieces that feature the history
of the collection and significance to its local region. The key result is a semantic
navigation concept driven interaction paradigm that has Formal Concept Anal-
ysis (FCA) at its heart. A demonstration of the design – an iPad app – is a
very important companion to this written text and the reader is encouraged to
download, install and run the app while reading the paper.

1 Pathways through an Art Collection using FCA

Interaction and navigation in A Place for Art relies on users creating and explor-
ing their own path through the collection: an approach that is well supported
by the literature on information seeking in museum collections. For example:
Skov[13] found that online visitors demonstrated exploratory behaviors such as

?? On leave in 2014 to the IT University of Copenhagen, Denmark
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serendipity and, when finding the unexpected, exhibited meaning making qual-
ities, i.e. following paths and making implicit connections between objects. Fur-
ther, Goodale et al. [7] conceptualize the pathway as a guiding metaphor to
characterize the design of digital artifacts that support creative and divergent
exploration of cultural data-sets. In their findings, the authors elaborate that
pathways can be both used as a means to creatively explore a collection and also
to structure the relationships among the objects.

Previous work has experimented with semantically linking museological con-
tent [12, 1], such as the semantically enriched search platform produced by
Schreiber et al. [11]. In our work, we build a custom user interface that embraces
the pathway metaphor by allowing the user to navigate clusters of related art
content and ‘branch off’ at specific points of interest. To do this, we employ
Formal Concept Analysis (FCA) to derive clusters of related artworks, and then
exploit FCA’s relational properties to generate semantically linked pathways. In
this paper, we apply the terms convergence to describe the way FCA can be used
to cluster related objects, and divergence to the way a visitor could potentially
move through different sets of object clusters based on their shifting points of
interest. We elaborate on this convergence - divergence approach to navigation,
along with a brief overview of FCA in the following section.

1.1 Formal Concept Analysis, Convergence and Divergence

Formal Concept Analysis (FCA) was developed in the early 1980s as a mathema-
tization of the human cognitive constructs of concepts and concept hierarchies
[14]. Concepts are understood as basic units of thought shaped by observations
of existing phenomena and formed in dynamic processes within social and cul-
tural environments ([15], p. 2). According to its philosophical definition [15], a
concept is composed of a set of objects as its extension, and all attributes, prop-
erties and meanings that apply to those objects as its intension. As an example,
if one considers the idea of works that depict heavy industry and the Illawarra1

(its intension), which we derived from the text analysis of the printed catalogue,
there are 7 paintings (its extension) in the collection which have these attributes
(see Table 1); a concept is therefore defined as the simultaneous perception of its
intension and extension, i.e., the compositional qualities of those paintings (as
attributes) and the actual paintings (as objects) defined via those attributes.

In FCA, concepts are mathematized as formal concepts defined as a pair
(A,B) where A and B respectively are elements of the set of objects G (the
formal concept’s extension) and the set of attributes that describe those objects
M (the formal concept’s intension). Concepts are never perceived in isolation,
but in the context of existing phenomena. By interpreting concepts in context,
one can derive implications and perceive their relational and spatial properties
to other concepts. For the purposes of interpreting works in A Place for Art,
we consider groups of artworks that share equivalences as concepts that are
a part of the 77 works that compose its collection, its context. In FCA, the
context is mathematized as a formal context defined as a K(G,M, I) where G

1 The Illawarra is the name of a region 80-160km south of Sydney, Australia.
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Table 1. A sample of formal concepts from A Place for Art

Formal concept, expressed in natural language No. of objects

paintings that depict the Illawarra 8
works that evoke identity issues and social critique 6
surreal works that depict animal imagery 6
vibrant and abstract paintings 11
intricate works that depict nature 6
vibrant works that evoke a sense of calm 6
works that depict heavy industry and the Illawarra 7

and M respectively describe its set of objects and attributes and I describes
the associations between them. Formally, I ⊆ G×M is a binary relation where
(g,m) ∈ I is read object g has attribute m.

A valuable layer of meaning is added when concepts are perceived in con-
text. One way of inferring meaning is by deriving attribute implications. These
implications provide the assertion that within a given context, if all objects
with X attributes also possess Y attributes, then X infers Y . Applying this
form of inference gives the ability to gain insights into the implicit relation-
ships and phenomena within the collection. In A Place for Art, it infers that,
for example, all works that depict natural landscapes are painted with coarse
brush strokes, or that all the depictions of heavy industry in the A Place for
Art collection also all take place in the Illawarra. Using the latter assertion as
an example, these attribute implications are formed by the way formal concepts
are constructed: for a give formal concept (A,B), that has an attribute set M =
{’heavy industry’}, let G be composed of all objects that possess M , giving the
result of: G = {‘Waiting, Port Kembla’, ‘Foundry Men’, ‘Steel Works BHP’,...}
Now let M be all attributes common to objects in G, giving the result of:
M = {‘heavy industry’, ’the Illawarra’} G and M are then combined as (A,B)
to create a closed concept. The additional attributes that were derived from this
operation give rise to their implication, in this case, ‘heavy industry’ → ‘the
Illawarra’. In A Place for Art, formal concepts are computed using the PCbO
algorithm [8] but the choice of algorithm is not important.

Within its context of 77 artworks, there are a total of 330 formal concepts, 7
of these formal concepts are expressed in natural language are shown in Table 1.
By deriving clusters from data and inferring association rules, formal concepts
provide the mathematical realization of – what we term – a convergence: the
way a group of otherwise disparate works of art are represented as a meaningful
whole. A Place for Art also employs purpose built algorithms for describing
concepts in natural language.

The examples shown here and in Table 1 are direct outputs generated from
these algorithms. When a formal concept is expressed in natural language, the
algorithm takes its intension and orders it based on their semantic qualifiers and
parts of speech, such as whether they depict the work itself (‘painting’, ‘screen-
print’, etc.), are adjectival (‘surreal’, ‘vibrant’, etc.) or are otherwise appended
as clause fragments (‘identity issues’, ‘a sense of calm’, etc.). Using basic princi-
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ples of grammar and sentence construction, these attributes are then conjoined
to produce a statement. The algorithms also take into consideration whether
the natural language statement should be expressed in a singular or plural form,
given that, according to the principles of FCA, individual objects are also formal
concepts. These natural language statements are used to convey the semantic
meaning of the convergences as human-readable, narrative-like statements.

Meaning is further conveyed when concepts are observed in relation to one
another. Concepts are inherently spatial and relational, as connections of con-
cepts are networked to create a concept lattice [14] or are spatially conveyed
via a measure of their concept similarity and distance. One common method
of constructing a knowledge space in FCA is via the exploitation of the sub-
concept/superconcept relationship. Within a context, the complete set of formal
concepts– ordered by this relationship – induces a concept hierarchy – an implic-
itly structured collation of human knowledge that can be represented visually as
a concept lattice or line diagram.

Fig. 1. A line diagram showing a small selection of artworks from A Place for Art.

Following the example in Fig. 1, the concept ‘abstract paintings with geo-
metric patterns and coarse brush strokes’ – depicted by the artwork titled ‘Solar
Boat’ as it appears bottom-right in the concept lattice is a subconcept of ab-
stract paintings with geometric patterns – that also includes the artwork Port
Kembla Landscape, appearing to its top-right – which in turn is also subconcept
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of both abstract paintings and abstract works with geometric patterns. In FCA,
a formal concept (A,B) is a subconcept of (C,D) (expressed (A,B) < (C,D))
if A ⊆ C and B ⊇ D. Likewise, a formal concept (A,B) is a superconcept of (C,
D) (expressed as (A,B) > (C,D)) if A ⊇ C and B ⊆ D.

Relations between concepts can be understood in terms of conceptual neigh-
bors – concepts that are more general or more specific to one another within the
concept hierarchy. A concept (A,B) is said to be the lower neighbor, of concept
(C,D) if (A,B) < (C,D) such that there is no concept (E,F ) that gives rise
to (A,B) < (E,F ) < (C,D). Likewise a concept (A,B) is said to be the upper
neighbor, of concept (C,D) if (A,B) > (C,D) such that there is no concept
(E,F ) that gives rise to (A,B) > (E,F ) > (C,D). Following the running exam-
ple, the concepts ‘abstract paintings with geometric patterns and coarse brush
strokes’, ‘abstract paintings and abstract works with geometric patterns’ are all
conceptual neighbors of ‘abstract paintings with geometric patterns’.

Concepts can also be related in terms of similarity: i.e., certain concepts
can be considered conceptually similar based on sharing some common objects
and attributes, with the mathematics of such described in Formica [5]. Further-
more, concept similarity provides a fast approximation for identifying a concept
s neighbors. In Table 2, for example, for the formal concept ‘abstract paintings
with geometric patterns’, its immediate lower neighbor ‘vibrant and abstract
paintings with geometric patterns’ is identified as its most similar concept. It
is also partially similar to the more distant ‘energetic and vibrant paintings’,
more so than the notionally relevant paintings that depict the Illawarra and the
almost irrelevant works that depict animal imagery.

These concept similarity metrics are also valid for comparing object-to-concept
as well as concept-to-concept relationships, since, according to the mathematics
of FCA, formal concepts can represent individual objects called object concepts.
For instance, consider the print ‘Illawarra Flame Tree and Bowerbird’ (Fig. 2)
which is, according to the natural language description of its object concept, “an
intricate and vibrant print that depicts animal imagery, the Illawarra and na-
ture and has red and blue tones” Using the concept similarity metrics described
above, we can observe the multiplicity of contexts that this object can be in-
terpreted in, and determine which concepts are ‘most’ similar to the artwork
(shown below in Table 3).

Table 2. Concepts similar to abstract paintings with geometric patterns

Formal concept, expressed in natural language Similarity Score

vibrant and abstract paintings with geometric patterns 0.80
energetic and abstract paintings with geometric patterns 0.73
abstract paintings 0.60
energetic and vibrant paintings 0.32
paintings that depict the Illawarra 0.16
works that depict animal imagery 0.03

Examining the objects in these contexts and ordering them by relevance
gives the ability to induce new objects and draw equivalencies between then.
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This provides the basis of how divergences work in A Place for Art. Divergent
exploration is based on the idea that every turning point within the collection
should infer new objects and enlighten new connections. Hence, divergences have
two design criteria: a) they should infer new objects based on similarity of an
object of interest and b) the resulting pathways should always infer new objects
that have not yet been presented previously by prior convergences. This approach
avoids repetition and circularity navigating the information space, where the sum
of divergences affords a gradual unveiling of the collection by highlighting new
works of interest.

Table 3. Concepts similar to “Illawarra Flame Tree and Bowerbird”.

Formal concept, expressed in natural language Similarity #objects

intricate prints that depict animal imagery and nature 0.50 2
works that depict animal imagery and have red tones 0.38 2
intricate works that depict nature 0.21 3
works that have blue tones 0.13 8
works that depict animal imagery 0.11 11
vibrant works 0.08 23

Fig. 2. “Illawarra Flame Tree and Bowerbird”.

When considering what objects to show in a divergence, all the other objects
represented by the ‘pivot point’ are determined, along with the total set of
objects in prior convergences. Based on the object depicted in its pivot point, an
object concept is constructed, in which a set of formal concepts containing that
object are retrieved. Using concept similarity metrics, the formal concept that
is selected is the one that has the highest similarity score containing objects not
part of a prior set of convergences. These new objects are then reconstructed as
a formal concept, so that any additional attributes are implied from this reduced
set, which is then presented as an adjoining pathway from the pivot point.
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2 Refections on Divergence/Convergence

The convergent-divergent interaction paradigm is also supported by the theory
and philosophy of Formal Concept Analysis in two ways. Formal concepts –
just like the human concepts they are modeled on “express subjectivity and
emotions” [15]. In the context of museum collections, this provides the ability to
model human meaning and thought in the form of sentiments and conjectures;
within the A Place for Art, the idea that certain works have ‘warm tones’ or
‘evoke a sense of calm’. It also offers a way of creating inferences and structures
from these conjectures without their explicit encoding in other formal knowledge
representation schemas.

The second implication concerns the relational qualities of the conceptual
structure, a quality best observed from the concept lattice (Fig 1). Wille [14]
introduces the notion of conceptual landscapes as a metaphor to describe the
inherently spatial properties of human knowledge, drawing parallels to Murray’s
[10] landscape paradigm. Whereas Murray’s perspective refers to spatial quali-
ties of navigating information spaces, Wille’s conceptual landscapes describe the
way humans produce, communicate and consume knowledge. Yet, like Murray,
Wille alludes to the metaphorical adoption of landscape motifs that dictate the
way humans interact with information spaces, and shares the view that comput-
ers are a medium, rather than a container for the storage and display of data. He
argues “The idea of a landscape is becoming increasingly influential in the field
of knowledge representation and processing. Especially, the frequently used term
of ‘navigation’ suggests this idea is becoming a leading metaphor. That view is
also supported by the development of computers as a medium. This develop-
ment shows that it is time for explicating the pragmatic landscape paradigm for
knowledge processing” (Wille[16]).

From this proposition, Wille defines the practice and discipline of Conceptual
Knowledge Processing [4, 14] as a set of techniques that make use of a variety of
conceptual structures to augment human activities in knowledge representation,
processing and communication. Within this framework, Wille defines the act of
identification – the positioning and contextualization of objects, concepts or data
elements in relation to other objects, concepts or data elements and exploration
– understood as the act of seeking without a goal, or where the item in question
is vague or not well known.

3 Conclusion

The mathematization of the convergent-divergent paradigm of navigation and its
implementation in A Place for Art highlight the spatial properties of its interac-
tion and of its underlying conceptual structures. These structures recognize the
inherently polyvalent nature of knowledge and their interpretation that orbits
and interpretation of museum objects [2], and, through the convergent-divergent
interaction paradigm, A Place for Art intends to afford creative exploration of
these structures in a non-didactic way. Evaluation of the interface among user
communities reinforces the success of the approach and these results are de-
scribed in the presentation at FCA4AI but are to be fully published elsewhere.
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Abstract. The paper brie�y introduces multiple classi�er systems and
describes a new algorithm, which improves classi�cation accuracy by
means of recommendation of a proper algorithm to an object classi�ca-
tion. This recommendation is done assuming that a classi�er is likely to
predict the label of the object correctly if it has correctly classi�ed its
neighbors. The process of assigning a classi�er to each object is based on
Formal Concept Analysis. We explain the idea of the algorithm with a
toy example and describe our �rst experiments with real-world datasets.

1 Introduction

The topic of Multiple Classi�er Systems (MCSs) is well studied in machine
learning community [1]. Such algorithms appear with di�erent names � mixture
of experts, committee machines, classi�er ensembles, classi�er fusion and others.

The underlying idea of all these systems is to train several (base) classi�ers
on a training set and to combine their predictions in order to classify objects
from a test set [1]. This idea probably dates back to as early as the 18th cen-
tury. The Condorcet's jury theorem, that was formulated in 1785 in [2], claims
that if a population makes a group decision and each voter most likely votes
correctly, then adding more voters increases the probability that the majority
decision is correct. The probability that the majority votes correctly tends to 1
as the number of voters increases. Similarly, if we have multiple weak classi�ers
(meaning that classi�er's error on its training data is less than 50% but greater
than 0%), we can combine their predictions and boost the classi�cation accuracy
as compared to those of each single base classi�er.

Among the most popular MCSs are bagging [3], boosting [7], random forests
[9], and stacked generalization (or stacking) [10].

In this paper, we present one more algorithm of such type � Recommender-
based Multiple Classi�er System (RMCS). Here the underlying proposition is
that a classi�er is likely to predict the label of the object from a test set correctly
if it has correctly classi�ed its neighbors from a training set.

The paper is organized as follows. In chapter 2, we discuss bagging, boosting
and stacking. In Section 3, we introduce basic de�nitions of Formal Concept
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Analysis (FCA). Section 4 provides an example of execution of the proposed
RMCS algorithm on a toy synthetic dataset. Then, Section 5 describes the RMCS
algorithm itself. Further, the results of the experiments with real data are pre-
sented. Section 7 concludes the paper.

2 Multiple Classi�er Systems

In this chapter, we consider several well-known multiple classier systems.

2.1 Bagging

The bootstrap sampling technique has been used in statistics for many years.
Bootstrap aggregating, or bagging, is one of the applications of bootstrap sam-
pling in machine learning. As su�ciently large data sets are often expensive or
impossible to obtain, with bootstrap sampling, multiple random samples are cre-
ated from the source data by sampling with replacement. Samples may overlap
or contain duplicate items, yet the combined results are usually more accurate
than a single sampling of the entire source data achieves.

In machine learning the bootstrap samples are often used to train classi�ers.
Each of these classi�ers can classify new instances making a prediction; then
predictions are combined to obtain a �nal classi�cation.

The aggregation step of bagging is only helpful if the classi�ers are di�erent.
This only happens if small changes in the training data can result in large changes
in the resulting classi�er � that is, if the learning method is unstable [3].

2.2 Boosting

The idea of boosting is to iteratively train classi�ers with a weak learner (the
one with error better than 50% but worse than 0%) [4]. After each classi�er is
trained, its accuracy is measured, and misclassi�ed instances are emphasized.
Then the algorithm trains a new classi�er on the modi�ed dataset. At classi-
�cation time, the boosting classi�er combines the results from the individual
classi�ers it trained.

Boosting was originally proposed by Schapire and Freund [5,6]. In their Adap-
tive Boosting, or AdaBoost, algorithm, each of the training instances starts with
a weight that tells the base classi�er its relative importance [7]. At the initial step
the weights of n instances are evenly distributed as 1

n The individual classi�er
training algorithm should take into account these weights, resulting in di�er-
ent classi�ers after each round of reweighting and reclassi�cation. Each classi�er
also receives a weight based on its accuracy; its output at classi�cation time is
multiplied by this weight.

Freund and Schapire proved that, if the base classi�er used by AdaBoost
has an error rate of just slightly less than 50%, the training error of the meta-
classi�er will approach zero exponentially fast [7]. For a two-class problem the
base classi�er only needs to be slightly better than chance to achieve this error
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rate. For problems with more than two classes less than 50% error is harder to
achieve. Boosting appears to be vulnerable to over�tting. However, in tests it
rarely over�ts excessively [8].

2.3 Stacked generalization

In stacked generalization, or stacking, each individual classi�er is called a
level-0 model. Each may vote, or may have its output sent to a level-1 model

� another classi�er that tries to learn which level-0 models are most reliable.
Level-1 models are usually more accurate than simple voting, provided they are
given the class probability distributions from the level-0 models and not just the
single predicted class [10].

3 Introduction to Formal Concept Analysis

3.1 Main de�nitions

A formal context in FCA is a triple K = (G,M, I), where G is a set of
objects, M is a set of attributes, and the binary relation I ⊆ G × M shows
which object possesses which attribute. gIm denotes that object g has attribute
m. For subsets of objects and attributes A ⊆ G and B ⊆ M Galois operators

are de�ned as follows:

A′ = {m ∈M | gIm ∀g ∈ A},
B′ = {g ∈ G | gIm ∀m ∈ B}.

A pair (A,B) such that A ⊆ G,B ⊆M,A′ = B and B′ = A, is called a formal

concept of a context K. The sets A and B are closed and called the extent and
the intent of a formal concept (A,B) respectively. For the set of objects A the
set of their common attributes A′ describes the similarity of objects of the set
A and the closed set A′′ is a cluster of similar objects (with the set of common
attributes A′) [11].

The number of formal concepts of a context K = (G,M, I) can be quite large
(2min{|G|,|M |} in the worst case), and the problem of computing this number
is #P-complete [12]. There exist some ways to reduce the number of formal
concepts, for instance, choosing concepts by stability, index or extent size [13].

For a context (G,M, I), a concept X = (A,B) is less general than or equal

to a concept Y = (C,D) (or X ≤ Y ) if A ⊆ C or, equivalently, D ⊆ B.
For two concepts X and Y such that X ≤ Y and there is no concept Z with
Z 6= X,Z 6= Y,X ≤ Z ≤ Y , the concept X is called a lower neighbor of Y , and Y
is called an upper neighbor of X. This relationship is denoted by X ≺ Y . Formal
concepts, ordered by this relationship, form a complete concept lattice which
might be represented by a Hasse diagram [14]. Several algorithms for building
formal concepts (including Close by One) and constructing concept lattices are
studied also in [14].
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One can address to [11] and [15] to �nd some examples of formal contexts,
concepts and lattices with their applications. Chapter 4 also shows the usage of
FCA apparatus in a concrete task.

However, in some applications there is no need to �nd all formal concepts of a
formal context or to build the whole concept lattice. Concept lattices, restricted
to include only concepts with frequent intents, are called iceberg lattices. They
were shown to serve as a condensed representation of association rules and fre-
quent itemsets in data mining [15].

Here we modi�ed the Close by One algorithm slightly in order to obtain
only the upper-most concept of a formal context and its lower neighbors. The
description of the algorithm and details of its modi�cation is beyond the scope
of this paper.

4 A toy example

Let us demonstrate the way RMCS works with a toy synthetic dataset shown
in Table 1. We consider a binary classi�cation problem with 8 objects comprising
a training set and 2 objects in a test set. Each object has 4 binary attributes
and a target attribute (class). Suppose we train 4 classi�ers on this data and try
to predict labels for objects 9 and 10.

Using FCA terms, we denote by G = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} � the whole
set of objects, Gtest = {9, 10} � the test set, Gtrain = G\Gtest � the training
set, M = {m1,m2,m3,m4}� the attribute set, C = {cl1, cl2, cl3, cl4}� the set
of classi�ers.

Table 1. A sample data set of 10 objects
with 4 attributes and 1 binary target
class

G/M m1 m2 m3 m4 Label

1 × × × 1

2 × × 1

3 × × 0

4 × × × 1

5 × × × 1

6 × × × 0

7 × × × 1

8 × × 0

9 × × × × ?

10 × × ?

Table 2. A classi�cation context

G/C cl1 cl2 cl3 cl4
1 × × ×
2 × ×
3 × ×
4 × ×
5 × ×
6 × × ×
7 × ×
8 × × ×

Here we run leave-one-out cross-validation on this training set for 4 classi�ers.
Further, we �ll in Table 2, where a cross for object i and classi�er clj means that
clj correctly classi�es object i in the process of cross-validation. To clarify, a
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cross for object 3 and classi�er cl4 means that after being trained on the whole
training set but object 3 (i.e. on objects {1, 2, 4, 5, 6, 7, 8}), classi�er cl4 correctly
predicted the label of object 3.

Let us consider Table 2 as a formal context with objects G and attributes
C (so now classi�ers play the role of attributes). We refer to it as classi�cation
context. The concept lattice for this context is presented in Fig. 1.

Fig. 1. The concept lattice of the classi�cation context

As it was mentioned, the number of formal concepts of a context K =
(G,M, I) can be exponential in the worst case. But for the toy example it is
possible to draw the whole lattice diagram. Thankfully, we do not need to build
the whole lattice in RMCS algorithm � we only keep track of its top concepts.

Here are these top concepts: (G, ∅), ({1, 3, 5, 6}, {cl1}), ({2, 4, 5, 6, 7, 8}, {cl2}),
({1, 2, 4, 8}, {cl3}), ({1, 3, 6, 7, 8}, {cl4}).

To classify objects from Gtest, we �rst �nd their k nearest neighbors from
Gtrain according to some distance metric. In this case, we use k = 3 and Ham-
ming distance. In these conditions, we �nd that three nearest neighbors of object
9 are 4, 5 and 7, while those of object 10 are 1, 6 and 8.

Then, we take these sets of nearest neighbors Neighb9 = {4, 5, 7} and
Nieghb10 = {1, 6, 8}, and �nd maximal intersections of these sets with the ex-
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tents of formal concepts presented above (ignoring the concept (G, ∅)). The in-
tents (i.e. classi�ers) of the corresponding concepts are given as recommendations
for the objects from Gtest. The procedure is summarized in Table 3.

Table 3. Recommending classi�ers for objects from Gtest

Gtest 1st

nearest
neighbor

2nd

nearest
neighbor

3rd

nearest
neighbor

Neighbors Classi�cation concept
which extent gives the
maximal intersection
with the Neighbors
set

Recommended
classi�er

9 4 5 7 {4, 5, 7} ({2, 4, 5, 6, 7, 8}, {cl2}) cl2
10 1 6 8 {1, 6, 8} ({1, 3, 6, 7, 8}, {cl4}) cl4

Finally, the RMCS algorithm predicts the same labels for objects 9 and 10
as classi�ers cl2 and cl4 do correspondingly.

Lastly, let us make the following remarks:

1. We would not have ignored the upper-most concept with extentG if it did not
have an empty intent. That is, if we had the top concept of the classi�cation
context in a form (G, {clj}) it would mean that clj correctly classi�ed all
objects from the training set and we would therefore recommend it to the
objects from the test set.

2. One more situation might occur that two or more classi�ers turn out to be
equally good at classifying objects from Gtrain. That would mean that the
corresponding columns in classi�cation table are identical and, therefore, the
intent of some classi�cation concept is comprised of more than one classi�er.
In such case, we do not have any argument for preferring one classi�er to
another and, hence, the �nal label would be de�ned as a result of voting
procedure among the predicted labels of these classi�ers.

3. Here we considered an input dataset with binary attributes and a binary
target class. However, the idea of the RMCS algorithm is still applicable for
datasets with numeric attributes and multi-class classi�cation problems.

5 Recommender-based Multiple Classi�er System

In this section, we discuss the Recommender-based Multiple Classi�er System
(RMCS). The pseudocode of the RMCS algorithm is presented in the listing
Algorithm 1.

The inputs for the algorithm are the following:

1. {Xtrain, ytrain} � is a training set, Xtest � is a test set;
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2. C = {cl1, cl2, ..., clK} � is a set of K base classi�ers. The algorithm is in-
tended to perform a classi�cation accuracy exceeding those of base classi�ers;

3. dist(x1, x2) � is a distance function for objects which is de�ned in the
attribute space. This might be the Minkowski (including Hamming and Eu-
clidean) distance, the distance weighted by attribute importance and others.

4. k, n_fold � are parameters. Their meaning is explained below;
5. topCbO(context) � is a function for building the upper-most concept of a

formal context and its lower neighbors. Actually, it is not an input for the
algorithm but RMCS uses it.

The algorithm includes the following steps:

1. Cross-validation on the training set. AllK classi�ers are trained on n_folds−
1 folds of Xtrain. Then a classi�cation table (or context) is formed where a
cross is put for object i and classi�er clj if clj correctly classi�es object i
after training on n_folds− 1 folds (where object i belongs to the rest fold);

2. Running base classi�ers. All K classi�ers are trained on the whole Xtrain.
Then, a table of predictions is formed where (i, j) position keeps the pre-
dicted label for object i from Xtest by classi�er clj ;

3. Building top formal concepts of the classi�cation context. The topCbO al-
gorithm is run in order to build upper formal concepts of a classi�cation
context. These concepts have the largest possible number of objects in ex-
tents and minimal possible number of classi�ers in their intents (not counting
the upper-most concept);

4. Finding neighbors of the objects from Xtest. The objects from the test set
are processed one by one. For every object from Xtest we �nd its k nearest
neighbors from Xtrain according to the selected metric sim(x1, x2). Let us
say these k objects form a set Neighbors. Then, we search for a concept of a
classi�cation context which extent yields maximal intersection with the set
Neighbors. If the intent of the upper-most concept is an empty set (i.e., no
classi�er correctly predicted the labels of all objects from Xtrain, which is
mostly the case), then the upper-most concept (G, ∅) is ignored. Thus, we
select a classi�cation concept, and its intent is a set of classi�ers Csel;

5. Classi�cation. If Csel consists of just one classi�er, we predict the same label
for the current object from Xtest as this classi�er does. If there are several
selected classi�ers, then the predicted label is de�ned by majority rule.

6 Experiments

The algorithm, described above, was implemented in Python 2.7.3 and tested
on a 2-processor machine (Core i3-370M, 2.4 HGz) with 3.87 GB RAM.

We used four UCI datasets in these experiments - mushrooms, ionosphere,
digits, and nursery.1 Each of the datasets was divided into training and test
sets in proportion 70:30.

1 http://archive.ics.uci.edu/ml/datasets
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Algorithm 1 Recommender-based Multiple Classi�er System

Input: {Xtrain, ytrain}, Xtest � are training and test sets, C = {cl1, cl2, ..., clK} �
is a set of base classi�ers, topCbO(context, n) � is a function for building the upper-
most concept of a formal context and its lower neighbors, dist(x1, x2) � is a distance
function de�ned in the attribute space, k � is a parameter (the number of neighbors),
n_fold � is the number of folds for cross-validation on a training set
Output: ytest � are predicted labels for objects fromXtest

train_class_context = [ ][ ] � is a 2-D array
test_class_context = [ ][ ] � is a 2-D array
for i ∈ 0 . . . len(Xtrain)− 1 do

for cl ∈ 0 . . . len(C)− 1 do

train classi�er cl on (n_fold− 1) folds not including object Xtrain[i]
pred = predicted label for Xtrain[i] by classi�er cl
train_class_context[i][cl] = (pred == ytrain[i])

end for

end for

for cl ∈ 0 . . . len(C)− 1 do

train classi�er cl on the whole Xtrain

pred = predicted labels for Xtest by classi�er cl
test_class_context[:][cl] = pred

end for

top_concepts = topCbO(class_context)
for i ∈ 0 . . . len(Xtest)− 1 do

Neighbors = k nearest neighbors of Xtest[i] from Xtrain according to sim(x1, x2)
concept = argmax(c.extent ∩ Neighbors), c ∈ top_concepts
Csel = concept.intent
labels = predictions for Xtest[i] made by classi�ers from Csel

ytest[i] = argmax(count_freq(labels))
end for

Table 4. Classi�cation accuracy of 6 algorithms on 4 UCI datasets: mushrooms (1),
ionosphere (2), digits (3), and nursery (4)

Data SVM,
RBF kernel
(C=1, γ=0.02)

Logit
(C=10)

kNN
(euclidean,
k=3)

RMCS
(k=3,
n_folds=4)

Bagging SVM
(C=1, γ=0.02)
50 estimators

AdaBoost
on decision
stumps,
50 iterations

1 0.998
t=0.24 sec.

0.996
t=0.17 sec.

0.989
t=1.2*10−2 sec.

0.997
t=29.45 sec.

0.998
t=3.35 sec.

0.998
t=44.86 sec.

2 0.906
t=5.7*10−3 sec.

0.868
t=10−2 sec.

0.858
t=8*10−4 sec.

0.933
t=3.63 sec.

0.896
t=0.24 sec.

0.934
t=22.78 sec.

3 0.917
t=0.25 sec.

0.87
t=0.6 sec.

0.857
t=1.1*10−2 sec.

0.947
t=34.7 sec.

0.92
t=4.12 sec.

0.889
t=120.34 sec.

4 0.914
t=3.23 sec.

0.766
t=0.3 sec.

0.893
t=3.1*10−2 sec.

0.927
t=220.6 sec.

0.913
t=38.52 sec.

0.903
t=1140 sec.
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Data SVM,
RBF kernel
(C=103, γ=0.02)

Logit
(C=103)

kNN
(minkowski,
p=1, k=5)

RMCS
(k=5,
n_folds=10)

Bagging SVM
(C=103,
γ=0.02)
50 estimators

AdaBoost
on decision
stumps,
100 iterations

1 0.998
t=0.16 sec.

0.999
t=0.17 sec.

0.999
t=1.2*10−2sec.

0.999
t=29.45 sec.

0.999
t=3.54 sec.

0.998
t=49.56 sec.

2 0.906
t=4.3*10−3 sec.

0.868
t=10−2 sec.

0.887
t=8*10−4 sec.

0.9
t=3.63 sec.

0.925
t=0.23 sec.

0.934
t=31.97 sec.

3 0.937
t=0.22 sec.

0.87
t=0.6 sec.

0.847
t=1.1*10−2 sec.

0.951
t=34.7 sec.

0.927
t=4.67 sec.

0.921
t=131.6 sec.

4 0.969
t=2.4 sec.

0.794
t=0.3 sec.

0.945
t=3*10−2 sec.

0.973
t=580.2 sec.

0.92
t=85.17 sec.

0.912
t=2484 sec.

We ran 3 classi�ers implemented in SCIKIT-LEARN library 2(written in Python)
which served as base classi�ers for the RMCS algorithm as well. These were a
Support Vector Machine with Gaussian kernel (svm.SVC() in Scikit), logis-
tic regression (sklearn.linear_model.LogisticRegression()) and k Nearest
Neighbors classi�er (sklearn.neighbors.classification.
KNeighborsClassifier()).

The classi�cation accuracy of each classi�er on each dataset is presented in
Table 4 along with special settings of parameters. Moreover, for comparison, the
results for Scikit's implementation of bagging with SVM as a base classi�er
and AdaBoost on decision stumps 3 are presented.

As we can see, RMCS outperformed its base classi�ers in all cases, while it
turned out to be better than bagging only in case of multi-class classi�cation
problems (datasets digits and nursery).

7 Conclusion

In this paper, we described the underlying idea of multiple classi�er systems,
discussed bagging, boosting and stacking. Then, we proposed a multiple classi-
�er system which turned out to outperform its base classi�ers and two particular
implementations of bagging and AdaBoost in two multi-class classi�cation prob-
lems.

Our further work on the algorithm will continue in the following directions:
exploring the impact of di�erent distance metrics (such as the one based on
attribute importance or information gain) on the algorithm's performance, ex-
perimenting with various types of base classi�ers, investigating the conditions
preferable for RMCS (in particular, when it outperforms bagging and boosting),
improving execution time of the algorithm and analyzing RMCS's over�tting.

2 http://scikit-learn.org
3 https://github.com/pbharrin/machinelearninginaction/tree/master/Ch07
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Abstract. In this work we introduce a novel technique to enumerate
constant row/column value biclusters using formal concept analysis. To
achieve this, a numerical data-table (standard input for biclustering al-
gorithms) is modelled as a many-valued context where rows represent
objects and columns represent attributes. Using equivalence relations de-
fined for each single column, we are able to translate the bicluster mining
problem in terms of the partition pattern structure framework. We show
how biclustering can benefit from the FCA framework through its ro-
bust theoretical description and efficient algorithms. Finally, we show
how this technique is able to find high quality biclusters (in terms of
the mean squared error) more efficiently than a state-of-the-art bicluster
algorithm.

1 Introduction

Biclustering has become a fundamental tool for bioinformatics and gene expres-
sion analysis [4]. Different from standard clustering where objects are compared
and grouped together based on their full descriptions, biclustering generates
groups of objects based on a subset of their attributes, values or conditions.
Thus biclusters are able to represent object relations in a local scale instead of
the global representation given by an object cluster [12]. In this sense, biclus-
tering has many elements in common with Formal Concept Analysis (FCA) [6].
In FCA objects are grouped together by the attributes they share in what is
called a formal concept. Furthermore, formal concepts are arranged in a hierar-
chical and overlapping structure denominated a concept lattice. Hence a formal
concept can be considered as a bicluster of objects and attributes representing
relations in a local scale, while the lattice structure gives a description in the
global scale. FCA is not only analogous to biclustering, but has much to offer
in terms of mining techniques and algorithms [10]. The concept lattice can also
provide biclusters with an overlapping hierarchy which has been reported as an
important feature for bicluster analysis [15]. Recently, some approaches consid-
ering the use of FCA algorithms to mine biclusters from a numerical data-table
have been introduced showing good potential [8, 7]. In this work, we present a
novel technique for lattice-based biclustering using the pattern structure frame-
work [5], an extension of FCA to deal with complex data. More specifically, we
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propose a technique for mining biclusters with similar row/column values, a spe-
cialization of biclustering focused on mining attributes with coherent variations,
i.e. the difference between two attributes is the same for a group of objects [12].
We show that, by the use of partition pattern structures [1], we can find high
quality maximal biclusters (w.r.t. the mean squared error). Finally, we compare
our approach with a standard constant row value algorithm [3], showing the
capabilities and limitations of our approach.

The remainder of this paper is organized as follows. The basics of bicluster-
ing are introduced in Section 2. Section 3 presents our approach and Section
4 presents the experiments and initial findings of our biclustering technique.
Finally, Section 5 concludes our article and presents some new perspectives of
research.

2 Biclustering definitions

A numerical data-table is a matrixM whereMij indicates the value of an object
gi ∈ G w.r.t. the attribute mj ∈ M with i ∈ [1..|G|] and j ∈ [1..|M|] (| · | represents
set cardinality). A bicluster ofM is a submatrix B where each value Bij satisfies
a given restriction. According to [4, 12], there are five different restrictions which
we summarize in Table 1.

Constant values Bij = c Within the submatrix, all values are equal to a constant
c ∈ R (R indicates real values).

Constant row val-
ues

Bij=c + αi Within the submatrix, all the values in a given row i are
equal to a constant c and a row adjustment αi ∈ R.

Constant column
values

Bij=c + αj Within the submatrix, all the values in a given column j
are equal to a constant c and a column adjustment αj ∈ R.

Coherent values Bij=
c + αi + βj

Within the submatrix, all the values in a given column j
are equal to a constant c, a row adjustment αi and a col-
umn adjustment βj . Instead of addition, the model can also
consider multiplicative factors.

Coherent evolution Values in the submatrix induce a linear order.

Table 1: Types of biclusters.

Similar values instead of constant values When noise is present in a data-
table, it is difficult to search for constant values. Several approaches have tackled
this issue in different ways, e.g. by the use of evaluation functions [14], equiva-
lence relations [2, 13] and tolerance relations [7]. The most common way is es-
tablishing a threshold θ ∈ R to enable the similarity comparison of two different
values w1, w2 ∈ R. We say that w1 'θ w2 (values are similar) iff |w1 − w2| ≤ θ.
Thus, constant values are a special case of similar values when θ = 0. Using this,
we can redefine the first three types of biclusters as follows:

1. Similar values: Bij 'θ Bkl.
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2. Similar row/column values:
(a) Similar row values: Bij 'θ Bil.
(b) Similar column values: Bij 'θ Bkj .

Example 1. With θ = 1, Table 2 shows in its upper left corner a bicluster with
similar values (dark grey). The upper right corner represents a similar column
bicluster (light grey). Lower left corner considering {g3, g4} and {m1, m2} (not
marked in the table) represents a similar row bicluster.

m1 m2 m3 m4 m5

g1 1 2 2 1 6

g2 2 1 1 0 6

g3 2 2 1 7 6

g4 8 9 2 6 7

Table 2: Bicluster
with similar values

(θ = 1).

m1 m3

g2 2 1

g3 2 1

Table 3:
Constant
column

bicluster.

3 Biclustering using partition pattern structures

The pattern structure framework is an extension of FCA proposed to deal with
complex data [5]. Partition pattern structures are an instance of the pattern
structure framework proposed to mine functional dependencies among attributes
of a database [1] dealing with set partitions. In the following, we provide the
specifics of partition pattern structures where the main definitions are given in
[5].

Let G be a set of objects, M a set of attributes andM a data-table of numerical
values whereMij contains the value of attribute (column) mj ∈ M in object (row)
gi ∈ G. A partition d = {pi} of the set G can be formalized as a collection of
components pi such as:

⋃

pi∈d
pi = G pi ∩ pj = ∅ ; (pi, pj ∈ d, i 6= j)

Two partitions can be ordered by the coarser-finer relation where we say
that a partition d1 = {pi} is a refinement of d2 = {pj} (or d2 is a coarsening
of d1) iff ∀ pi ∈ d1,∃ pj ∈ d2, pi ⊆ pj . We denote this as d1 v d2 where
d1, d2 ∈ D is the space of all partitions of the set G.

Let us define the mapping function δ : M→ D, which assigns to each attribute
in M the partition it generates over the set of objects G, as follows:
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δ(mj) = {[gi]mj
| gi ∈ G} (1)

[gi]mj = {gk ∈ G | Mij =Mkj} (2)

Where [gi]mj is the equivalence class of gi w.r.t. attribute mj , i.e. the set of
rows in data-table M which have the same value in column mj as row gi. Since
the set of equivalence classes for a given attribute generates a partition over G,
it comes naturally that δ(mj) ∈ D for any mj ∈ M.

It is easy to show that the order in the space of object partitions D defines
a complete lattice for which the similarity operator u for any two partitions
d1, d2 ∈ D is defined as follows:

d1 u d2 =
⋃
pi ∩ pj (3)

d1 v d2 ⇐⇒ d1 u d2 = d1 (4)

Then, a partition pattern structure is determined by the triple (M, (D,u), δ)
in which the following derivation operators for B ⊆ M and d ∈ D are defined:

B� =
l

m∈B
δ(m) (5)

d� = {m ∈ M | d v δ(m)} (6)

Similarly to standard FCA, we have that (B, d) is a partition pattern concept
(pp-concept) when B� = d and d� = B and that for two pp-concepts (B1, d1)
and (B2, d2), the order between them is given by (B1, d1) ≤ (B2, d2) ⇐⇒ (B1 ⊆
B2) or (d2 v d1). Pp-concepts determines biclusters as pairs (p, B) where p is
a component of the partition pattern d . It should be noticed that to keep
consistency with previous notation, we write biclusters as pairs (p, B) (p represent
rows and B represent columns), while pp-concepts are written inversely (B, d) (B
is the extent and d is the intent of (B, d)).

Proposition 1. Let (B, d) be a pp-concept, then for any partition component
p ∈ d each pair (p, B) corresponds to a constant column value bicluster.

The proof of this proposition is straightforward considering that each pair
(p, B) represents a submatrix the columns of which were selected using an equiv-
alence relation, i.e. the values in the columns are the same.

We say that a bicluster (p, B) is maximal iff adding an object to p or an
attribute to B does not result in a bicluster, i.e. (p ∪ {g}, B) and (p, B ∪ {m}) are
not biclusters. While pp-concepts are maximal (closed under (·)�), biclusters
corresponding to pairs (p, B) are not always maximal. This is due to the fact
that pp-concepts are maximal w.r.t. the partitions and not w.r.t. the individual
components of those partitions. Nevertheless, maximal biclusters are still easy
to identify.
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Proposition 2. Let (B1, d1), (B2, d2) be two pp-concepts such as (B1, d1) ≤
(B2, d2). Let p ⊆ G be a component of a partition. If p ∈ d1 and p /∈ d2 then
the bicluster corresponding to (p, B1) is maximal.

Proof. Given definitions in Equations 2, 5 and 6, we have that for (B1, d1) and
for any gi ∈ p, the following is true:

p =
⋂

mj∈B1
{gk ∈ G | Mij =Mkj} (7)

Consequently, for any other object gh ∈ G, such as gh /∈ p, we haveMij 6= Mhj .
Hence, the pair (p+ {gh}, B) cannot be a bicluster.

Let B2 = B1 + {mj} for any mj ∈ M, we show that (p, B2) cannot be a cluster
by contradiction. Let (p, B2) be a bicluster. Then, there exists the pp-concept
(B2, B

�
2 ) such as p ∈ B�2 . If it does, then it is necessarily a direct super concept

of (B1, d1). However, this contradicts the definition p /∈ B�2 .

Supporting similar values: In general, it is not possible to support simi-
lar value biclusters as described in Section 2 using the partition pattern struc-
tures framework. This is due to the fact that the restriction Bij 'θ Bkl ⇐⇒
|Bij − Bkl| ≤ θ is not transitive and hence, it is not an equivalence but
a tolerance relation [10] which do not necessarily generates partitions over the
set of objects. However, the setting to support this scenario is only slightly dif-
ferent from the partition pattern structures framework. We do not provide its
description for the sake of simplicity.

Nevertheless, through the use of interval of values we can get a close repre-
sentation of similar value biclusters considering that two rows (objects) are in
the same equivalence class if their values in a given column (attribute) is within
a given interval (rather than being equal as described in Equation 2). For exam-
ple, consider in Table 2 the intervals [0, 1] and [6, 7] for attribute m4. We can see
that it generates the partition {g1, g2}, {g3, g4}. We call these intervals “equiva-
lence blocks”, similarly as the “tolerance blocks” described in [10]. Equivalence
blocks can be either pre-defined, allowing the user to include some background
knowledge in the biclustering process, or calculated on-the-fly if a number of
equivalence blocks γ is specified.

4 Experiments

4.1 Partition pattern concept lattice calculation

In order to calculate the partition pattern concept lattice for a given data-table
we used the AddIntent algorithm as described in [16]. We applied AddIntent
over a subset of the dataset called MovieLens 100k1 of movie ratings containing
943 users and 50 movies (out of a total of 1682) using the predefined set of
equivalence blocks [1, 2][3, 3][4, 5]. The dataset contains user ratings for movies

1 http://grouplens.org/datasets/movielens/
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Fig. 1: AddIntent Iterations per prune vs Execution time

which range from 1 to 5. When information is not available, the matrix contains
0 which we disregard (we do not mine biclusters with columns equal to 0). The
dataset contained 16532 similar column biclusters.

Empirical results showed that less than 20% of the pp-concepts within the
pp-lattice actually hold a maximal bicluster. In order to improve the efficiency
of AddIntent for biclustering purposes we have included a pruning step between
a certain number of AddIntent iterations (each time a new intent is added to
the lattice). The pruning step consists of removing from the lattice any concept
that do not hold a maximal bicluster. Figure 1 shows experimental results in
this regard. The graphic shows the execution time (y axis) taken by AddIntent
to calculate the 16532 biclusters when a pruning step was included in a given
number of iterations (x axis). The solid horizontal line represents the execution
time without pruning (30.5 seconds). While initially, the execution time doubles
the non-optimized version (for a lattice prune each AddIntent iteration), later
the time quickly stabilizes around half the time the non-optimized version. Best
time is found for 40 iterations (15 seconds).

The pruning affects the number of intent intersections performed by AddIn-
tent. When the lattice is pruned, there are not as many intents to intersect
as there were originally. However, pruning the lattice is an expensive task and
adds overhead to the algorithm. The correct balance of this trade-off leads to
dramatic improvements in the performance (twice in the experiments), however
further experimentation in different numerical data-tables are needed to draw
more conclusions regarding its setting.

4.2 Biclusters quality

A second experiment was performed over an example dataset provided with the
system BicAt2 containing 419 objects and 70 attributes. We measure the perfor-
mance of our approach mining similar row biclusters compared with Cheng and
Church’s algorithm (CC) [3]. CC tries to find a determined number of biclusters

2 http://www.tik.ee.ethz.ch/sop/bicat/
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with a maximum threshold for the mean squared error δ. Results are shown in
Table 4. Parameters for pp-lattice are number of equivalence blocks γ and mini-
mal number of columns in the cluster σ. CC was executed as provided by BicAt
and other parameters were left as system’s default.

Time Biclusters Parameters MSE Max Size

[s] [Kunits] Max [cells]

PPL 451 901 γ=20, σ=10 0.016 209

PPL 27 36 γ=10, σ=30 0.032 372

PPL 306 390 γ=10, σ=25 0.037 442

PPL 3,404 4,471 γ=10, σ=20 0.041 462

PPL 253 314 γ=5, σ=50 0.259 1,173

CC 418 1 δ = 0.5 3.2 17,752

CC 416 1 δ = 0.3 2.81 17,752

CC 4,018 10 δ = 0.1 4.92 17,752

Table 4: Comparison between CC and pp-lattice bicluster algorithm.

Results show a general better performance of our approach which is able
to mine more than four million maximal biclusters from the dataset in less
time than CC calculates only ten thousands. In terms of minimal squared error
(MSE), our approach gets smaller scores which induces better quality biclusters.
CC is able to find larger biclusters compared to our approach given the top-
down strategy which implements. While larger biclusters can be found with our
approach by decreasing the number of equivalent classes (γ), this is done at
the cost of increasing the MSE as shown in Table 4. Compared to CC, our
approach is better on finding many high quality and rather small biclusters
inducing specialized associations among objects. CC is better at creating a global
map of the entire data-table by finding larger biclusters.

5 Conclusions and research perspectives

In this work we have presented a novel technique for exhaustive similar row/column
value biclustering based on FCA algorithms using partition pattern structures.
We have shown the capabilities of the technique which is able to find a large
number of high quality biclusters. Furthermore, biclusters are provided with an
overlapping hierarchy based on a concept lattice structure. How to leverage cur-
rent biclusters analysis techniques using the concept lattice is still a matter of
research.

Partition pattern structures were initially proposed for functional dependen-
cies mining [1] using association rules from pp-concepts. How these techniques
may benefit from the current approach and the opposite, is an interesting sub-
ject which should be explored. Using other techniques of formal concept selection
and filtering, and their associations with biclusters is another compelling aspect
for a future work.
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Abstract. Black-box optimization problems are of practical importance
throughout science and engineering. Hundreds of algorithms and heuris-
tics have been developed to solve them. However, none of them outper-
forms any other on all problems. The success of a particular heuristic
is always relative to a class of problems. So far, these problem classes
are elusive and it is not known what algorithm to use on a given prob-
lem. Here we describe the use of Formal Concept Analysis (FCA) to
extract implications about problem classes and algorithm performance
from databases of empirical benchmarks. We explain the idea in a small
example and show that FCA produces meaningful implications. We fur-
ther outline the use of attribute exploration to identify problem features
that predict algorithm performance.

1 Introduction

Optimization problems are ubiquitous in science and engineering, including op-
timizing the parameters of a model [11], finding an optimal statistical estimator,
or finding the best operating conditions for an electronic circuit or a biochemical
network. An optimization problem is defined by a parameter space spanned by
the variables to be optimized, and an objective function defined over that space.
The goal is to find points in the parameter space where the objective function
has an extremum. In a black-box problem, the function is not known, but it
can be evaluated point-wise. The objective function is hence given as an oracle,
which, given a point in parameter space as an input, returns the objective func-
tion value at that point. Most practical applications in science and engineering
are black-box problems, where the objective function may comprise running a
numerical computer simulation or performing a laboratory measurement in order
to, e.g., determine how well an electronic circuit works.

Partially funded by the German Research Foundation (DFG) via the Cluster of
Excellence ‘Center for Advancing Electronics Dresden (cfAED)’. Supported by DFG
Research Training Group 1763 (QuantLA).
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Owing to their practical importance, hundreds of algorithms and heuristics
have been developed to (approximately) solve black-box optimization problems.
The “No Free Lunch Theorem” [19] states that no algorithm performs better (i.e.,
finds the extremum in less iterations or finds a better extremum) than any other
algorithm on all problems. Algorithm performance is hence relative to a problem
or a class of problems. It is, however, unknown what these problem classes are,
and how one should choose a “good” algorithm given a certain problem instance.

We aim at developing a recommender system for proposing efficient algo-
rithms for a given black-box optimization problem. Formal Concept Analysis
(FCA) [6] has previously been shown useful in recommender systems for rating
systems and advertisement [4,8]. Here we present the idea of using attribute ex-
ploration in FCA to find discriminative attributes of empirical benchmark data
of different algorithms tested on different problems. We show that FCA produces
meaningful implications about problem features and algorithms that imply good
performance. Some of the implications found confirm hypotheses that are com-
monly known in the optimization community, others are novel. We also outline
the use of attribute exploration to discover sets of problem features that are
particularly predictive for algorithm performance. This is work in progress and
we are not presenting a final solution. We do, however, believe that FCA will
provide a powerful tool on the way towards a generic recommender system and
problem classification for black-box optimization.

2 Black-box Optimization Problems

We consider real-valued scalar black-box problems, modeled as an oracle function
f : Rd → R mapping a d-tuple x of real numbers (problem parameters) to a
scalar real number f(x) (objective function value). The function f is not assumed
to be explicitly known. A black-box optimization problem entails finding extremal
points of f using only point-wise function evaluations. The iterative sequence of
evaluations used to progress toward an extremum is called the search strategy.

The Black-Box Optimization Benchmark (BBOB) test suit is a standard
collection of test functions used to empirically benchmark different optimization
heuristics [7]. The suit contains 24 benchmark functions with known ground
truth for parameter spaces of different dimensions. Figure 1 plots four example
functions in two dimensions.

(a) Sphere (b) Rastrigin sep. (c) Weierstrass (d) Katsuura

Fig. 1. Four black-box optimization benchmark (BBOB) functions in two dimensions.

A problem instance is a triple (f, d, ε), where f is an instance of a black-box
function, d > 0 is the parameter space dimension, and ε ∈ R≥0 a tolerance.
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Solving a problem instance (f, d, ε) means finding a d-tuple x ∈ Rd such that
|fmin− f(x)| < ε, where fmin is the global minimum of f . Note that the ground-
truth global minimum fmin is known for the benchmark functions, but not in a
practical problem instance.

3 An FCA-based Recommender System
We propose a system for recommending suitable algorithms for a given black-
box optimization problem based on FCA. Similar recommender systems, albeit
not based on FCA, have been suggested [3, 9, 15], and FCA has been applied
to collaborative recommender systems for high-dimensional ratings [4] and in
contextual advertising [8]. To the best of our knowledge, the use of FCA in a
recommender system for black-box optimization has not been attempted so far.

3.1 Performance Measures

A run of an algorithm solving a problem instance is called successful. The per-
formance of an algorithm a on a problem instance p is measured by the expected
running time (ERT) [1, 3]:

ERT(a, p) = N+(a, p) +
1− π+(a, p)

π+(a, p)
N−(a, p),

where N+(a, p) and N−(a, p) are the average numbers of function evaluations
for successful and unsuccessful runs of a on p, respectively, and π+(a, p) is the
ratio of the number of successful runs over the number of all runs of a on p.

The problem instances (fj , d, ε), where j ∈ {1, ..., 24}, d ∈ {2, 3, 5, 10, 20, 40},
and ε ∈ E = {103, 101, 10−1, 10−3, 10−5, 10−8}, have been used to test over
112 algorithms; the dataset is available online.1 Note that the algorithms treat
the benchmark functions as black boxes, i.e., they only evaluate the functions,
whereas the actual function remains hidden to the algorithm. The known global
minimum is only used to evaluate the performance of the algorithms.

Often, algorithms cannot solve problem instances for any tolerance value
within a certain number of function evaluations; see Table 1. To obtain a per-
formance measure also in these cases, we introduce a penalty of 106 for every
tolerance level that the algorithm could not solve. This penalized ERT (pERT)
of an algorithm a on an instance f of a benchmark function in d dimensions for
a set E of tolerances is here defined as:

pERT(a, f, d, E) =
ERT(a, (f, d, εbest))

d
+ 106|{ε ∈ E | ERT(a, (f, d, ε)) =∞}|,

where εbest is the smallest value in E such that ERT(a, (f, d, ε)) 6=∞.

3.2 Benchmark Data Used

Table 1 shows the performance values of four algorithms on the benchmark func-
tions Sphere and Rastrigin separable in 10 dimensions. The algorithm (1+1)-
CMA-ES implements an evolutionary strategy with covariance matrix adapta-
tion [2]. We also include two variants of Particle Swarm Optimization (PSO):

1 http://coco.gforge.inria.fr
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ERT pERT
Tolerance 103 101 10−1 10−3 10−5 10−8

Sphere

(1+1)-CMA-ES 1 90 267 440 611 872 87.2
PSO 1 221 2 319 4 911 7 659 11 865 1 186.5
PSO-BFGS 1 68 74 74 74 75 7.5
Simplex 1 1 596 3 450 7 283 18 418 80 428 8 042.8

Rastrigin separable

(1+1)-CMA-ES 4 1 456 464 ∞ ∞ ∞ ∞ 4 145 646.4
PSO 4 259 992 6 532 067 6 533 720 6 537 337 6 542 104 654 210.4
PSO-BFGS 2 120 255 ∞ ∞ ∞ ∞ 4 012 025.5
Simplex 1 ∞ ∞ ∞ ∞ ∞ 5 000 000.1

Table 1. ERT and pERT performance values of four algorithms on the functions Sphere
and Rastrigin Separable in 10 dimensions.

standard PSO [5] and PSO-BFGS, a hybrid of PSO and the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) algorithm [18]. The fourth algorithm is the classical
Simplex algorithm [16,17]. Each algorithm can solve a problem instance for the
Sphere function to any value of tolerance, whereas on the separable Rastrigin
function this is the case only for PSO, but with higher ERT. The last column
shows the pERT values that account for any failed tolerance level with a penalty.

Functions can be characterized by features. Several high-level features have
been hypothesized to predict black-box optimization algorithm performance,
such as multi-modality, global structure, and separability [10]. Table 2 lists the
extent to which different BBOB test functions exhibit these features. Multi-

Function multi-modality global structure separability

Sphere none none high
Rastrigin separable high strong high
Weierstrass high medium none
Katsuura high none none

Table 2. Three high-level features of four BBOB benchmark functions.

modality refers to the number of local minima of a function.

Global structure refers to the structure that emerges when only considering
minima (in a minimization problem ), i.e., the point set left after deleting all non-
optimal points. Separability specifies whether a function is a Cartesian product
of one-dimensional functions. For instance, the Sphere function (Fig. 1(a)) is
unimodal and, therefore, has no global structure (only one point remains when
restricting to minima) and is highly separable. The separable Rastrigin function
(cf. Fig. 1(b)) is separable, highly multimodal, and has a strong global structure
(the set of local minima forms a convex funnel).
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3.3 Results

Different numerical measures have been suggested to estimate the features of a
black-box function from sample evaluations. These include fitness distance cor-
relations [13] and ICoFis, a method based on information content [14]. Further-
more, in [9] it is shown that in several cases it is possible to predict the high-level
features of Table 2 from low-level features that can be computed from samples
only. Based on these observations, we develop an FCA-based recommender sys-
tem that suggests well-performing algorithms for a given black-box optimization
problem by extracting implications from the BBOB database. The recommender
system consists of three steps; cf. Algorithm 3.1. In Step 1, features of the black-
box function that is given as an input are estimated by drawing samples from
the function. In Step 2, these features are used to determine the features of al-
gorithms that perform well on such functions. In Step 3, a specific algorithm is
chosen that has these algorithm features. Determining good algorithm features

Algorithm 3.1 Recommender System

Input: unknown black-box function from which samples can be drawn
Output: algorithm which is suitable for optimizing input function

Step 1: estimate features of input function
Step 2: imply features of algorithms that do well on functions with such features
Step 3: pick an algorithm that has these features

(Step 2) is done using implications that form the background knowledge of the
recommender system. The premise of an implication contains algorithm features
together with features of benchmark functions, whereas the conclusion consists
of attributes corresponding to the performances of the algorithms when solving
the functions. The implications are obtained from the BBOB database by FCA.
More precisely, we build a formal context K = (G,M, I), where G is the set of
objects consisting of all pairs of benchmark functions and algorithms, M is the
set of attributes consisting of the features of algorithms and benchmark functions
together with the attributes assigned to performance values, and I is the inci-
dence matrix between the objects in G and the attributes in M . We obtain the
implications from the context K by computing the canonical base (or another
implicational base) of K.

We illustrate our approach in Table 3. The objects are pairs of benchmark
functions and algorithms, as introduced in Sec. 3.2. The attributes are features
of algorithms, performance attributes Pi, for i ∈ { 0, 5, 6, 7 },2 and the function
features (Table 2). As algorithm features we use the respective names of the
algorithms together with the features deterministic and hybrid (stating that the
algorithm is a combination of different search strategy). We consider Table 3 as
a formal context and compute its canonical base to obtain the implications:

2 To obtain a binary table, we partition the range of pERT-values into 10 intervals
and introduce attribute names Pi for the intervals.
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{ (1+1)-CMA-ES,multimod high } → {P6 }
{PSO, sep high } → {P0 }

{PSO, sep none,multimod high } → {P6 }
{PSO-BFGS, sep high, globstruct strong,multimod high } → {P6 }

{ sep high, globstruct none } → {P0 }
{ sep none,multimod high, globstruct none,Alg hybrid } → {P5 }

{ globstruct med } → {P6 }
Based on this background knowledge, the recommender system would, e.g., sug-
gest to use the algorithm PSO for functions with high separability. If additionally
the function does not exhibit a global structure (e.g., the function is unimodal),
then any algorithm would do well. For functions with high multi-modality, no
separability, and no global structure, the system would recommend a hybrid
algorithm over (1+1)-CMA-ES, confirming previous observations [12].

We note that the quality of the recommendations made by the system de-
pends on the “quality” of the implications constituting the background knowl-
edge. To obtain better recommendations (Step 3), suitable features of the input
function need to be efficiently computable (Step 1) and the implications need to
form a basis of a sufficient benchmark set (Step 2).

4 Discovering Function Features

It is not clear that the function features currently used in the optimization
community define meaningful problem classes with respect to expected algorithm
performance. It is an open and non-trivial problem to discover new features for
this purpose. We sketch a method that could assist an expert in finding new
features using attribute exploration from FCA [6]. This goal-oriented approach
may be more practical than an undirected synthesis of new features.

In attribute exploration, we start from an initial formal context K and a set
S of valid implications of K. Then, we compute new implications A → B such
that A → B is valid in K, but does not follow from S, where A and B are sets
of attributes. In case such an implication can be found, a (human) expert has to
confirm or reject A→ B. In the former case, A→ B is added to S. If the expert
rejects A → B, s/he has to provide a counterexample that is then added to K.
If no new implications can be computed any more, the search terminates.

Consider the context Kfeatures = (G,M, I), where G is the set of benchmark
functions, M the set of function features, and the incidence relation I represents
the fact that a function has a certain feature. Applying attribute exploration
directly to Kfeatures would not work, as we are seeking new attributes (features),
and not new objects (benchmark functions). Since objects and attributes be-
have symmetrically in every formal context, however, we can apply attribute
exploration to the dual context K−1

features = (M,G, I−1).
Implications from K−1

features are of the form { fi1 , . . . , fij } → { fij+1
}, fik ∈ G.

Presenting such implications to an expert means asking whether all features that
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Sphere (1+1)-CMA-ES 3 3 3 3 3

PSO 3 3 3 3 3

PSO-BFGS 3 3 3 3 3 3

Simplex 3 3 3 3 3 3

Rastrigin sep. (1+1)-CMA-ES 3 3 3 3 3

PSO 3 3 3 3 3

PSO-BFGS 3 3 3 3 3 3

Simplex 3 3 3 3 3 3

Weierstrass (1+1)-CMA-ES 3 3 3 3 3

PSO 3 3 3 3 3

PSO-BFGS 3 3 3 3 3 3

Simplex 3 3 3 3 3 3

Katsuura (1+1)-CMA-ES 3 3 3 3 3

PSO 3 3 3 3 3

PSO-BFGS 3 3 3 3 3 3

Simplex 3 3 3 3 3 3

Table 3. Example Context.

fi1 , . . . , fij have in common are also features of function fij+1
. A counterexample

would then correspond to a new feature that fi1 , . . . , fij have in common, but
that is not shared by fij+1 . These are the features we are looking for.

To illustrate the method, suppose that the context Kfeatures contains the
same functions as in Table 3, but the feature multi-modality as the only at-
tribute. Then, using our approach, the expert would need to judge the impli-
cation {Rastrigin } → {Weierstrass }, and s/he could reject the implication by
providing a “new” feature global structure strong, which the separable Rastrigin
function has, but the Weierstrass function has not (counterexample).

5 Conclusions

We have outlined the use of FCA in building a recommender system for black-
box optimization. The implications resulting from the small, illustrative example
presented here are meaningful in that they both confirm known facts and suggest
new ones. Attribute exploration could moreover be a powerful tool for discovering
new features that are more predictive of the expected performance.

The ideas presented here are work in progress. Ongoing and future work
will address the computability/decidability of features on black-box functions,
and evaluate the proposed FCA-based recommender system using the BBOB
database. We will investigate novel function and algorithm features, and compare
the results obtained by FCA with results from clustering and regression analysis.
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15. M. A. Muñoz, M. Kirley, and S. K. Halgamuge. A meta-learning prediction model
of algorithm performance for continuous optimization problems. In Proc. of PPSN-
2012, pp. 226–235. Springer, 2012.

16. J. A. Nelder and R. Mead. A simplex method for function minimization. The
Computer Journal, 7(4):308–313, 1965.

17. L. Pál. Comparison of multistart global optimization algorithms on the BBOB
noiseless testbed. In Proc. of GECCO-2013, pp. 1153–1160, 2013.

18. C. Voglis, G. S. Piperagkas, K. E. Parsopoulos, D. G. Papageorgiou, and I. E. La-
garis. Mempsode: comparing particle swarm optimization and differential evolution
within a hybrid memetic global optimization framework. In Proc. of GECCO-2012,
pp. 253–260. ACM, 2012.

19. D. H. Wolpert and W. G. Macready. No free lunch theorems for optimization.
IEEE Trans. Evol. Comput., 1(1):67–82, 1997.

42



Metric Generalization and Modification of
Classification Algorithms Based on Formal

Concept Analysis

Evgeny Kolmakov

Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State
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Abstract. FCA-based classifiers can deal with nonbinary data represen-
tation in different ways: use it directly or binarize it. Those algorithms
that binarize data use metric information from the initial feature space
only as a result of scaling (feature binarization procedure). Metric ap-
proach in this area allows one significantly reducing classification refusals
number and provides additional information which can be used for clas-
sifier training. In this paper we propose an approach which generalizes
some of existing FCA classification methods and allows one to modify
them. Unlike other algorithms, the proposed classifier model uses initial
metric information together with order object-attribute dependencies.

Keywords: classification, pattern recognition, formal concept analysis

1 Introduction

Formal concept analysis (FCA) is a branch of applied lattice theory allowing one
to formalize some machine learning models. It provides tools to solve various
tasks in many domains of computer science, such as knowledge representation
and management, data mining, including classification and clustering. There are
many FCA-based classification algorithms known [6]. One of the particular fea-
tures of FCA methods is that object x ∈ X is being described using binary
attributes. However, in many cases attributes can be, e.g., real numbers, graphs,
etc. There are classification methods using nonbinary representation directly,
e.g., see these works on pattern structures [4], [5], but many classifiers use it
only after scaling procedure. The scaling procedure is the transformation of the
initial feature space F into the Boolean cube Bn. It leads to the significant loss
of the metric information provided by F space. In this paper we propose gener-
alizations and modifications of several FCA-based classifiers, which use scaling
procedure, by introducing new classifier model on the basis of class estimates. It
generalizes straight hypotheses-based algorithm [1] and both of GALOIS classifi-
cation procedures [3]. We also define the pseudometric on arbitrary finite lattice,
which is based on the ideas from Rulearner rules induction algorithm [2] and so
has intelligible interpretation in terms of formal concepts and concept lattice.

In what follows we keep to standard lattice theory and FCA definitions.
Therefore here we briefly describe some basic definitions, classifiers and introduce
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the notation which is used further. Let G and M be an arbitrary sets called the
set of objects and the set of attributes respectively and I ⊆ G×M be a binary
relation. The triple K = (G,M, I) is called a formal context. The following (·)′
mappings define a Galois connection between 2G and 2M sets partially ordered
by set-theoretic inclusion:

A′ = {m ∈ M | gIm for all g ∈ A} , B′ = {g ∈ G | gIm for all m ∈ B} .
A pair (A,B), such that A ⊆ G,B ⊆ M and A′ = B,B′ = A is called a formal
concept of K with formal extent A and formal intent B. For object g ∈ G we
write g′ instead of {g}′. Define the “projection” mappings ext : (A,B) 7→ A and
int : (A,B) 7→ B. Formal concepts of a given context K form a complete lattice
denoted by B(K). It is called the concept lattice of a context K. Let 〈L,∧,∨〉
be a lattice and x ∈ L. By x▽ (x△) we denote the order ideal (filter) generated
by x. By At(L), J(L) and M(L) we denote the set of all atoms, join-irreducible
and meet-irreducible elements of L respectively. The function f : L → R is called
supermodular if f(x) + f(y) 6 f(x ∨ y) + f(x ∧ y) for all x, y ∈ L.

A concept C is called consistent if all objects in ext(C) belong to the same
class. Both GALOIS classification procedures are described in [3]. GALOIS(1)
calculates the similarity ΓC(x) between an object x and each consistent concept
C, then x is assigned to the class corresponding to C with the highest value of
ΓC(x). GALOIS(2) finds all consistent concepts C satisfying int(C) ⊆ x′, then
x is assigned to the most numerous class in the previous set.

Let K = (G,M, I) be a context and w /∈ M be a target attribute. The input
data for classification may be described by three contexts w.r.t. w: the positive
context K+ = (G+,M, I+), the negative context K− = (G−,M, I−) and the un-
defined context Kτ = (Gτ ,M, Iτ ). G−, G+ and Gτ are sets of positive, negative
and undefined objects respectively. Iǫ ⊆ Gǫ×M , where ǫ ∈ {−,+, τ} are binary
relations that define structural attributes. Galois operators in these contexts are
denoted by (·)+, (·)−, and (·)τ respectively. A formal concept of a positive con-
text is called a positive concept. Negative and undefined concepts are defined
similarly. If the intent B+ of a positive concept (A+, B+) is not contained in the
intent g− of any negative example g ∈ G−, then it is called a positive hypoth-
esis with respect to the property w. A positive intent B+ is called falsified if
B+ ⊆ g− for some negative example g ∈ G−. Negative hypotheses are defined
similarly. By “hypotheses-based classifier” we mean the classification procedure
from [1], which can be described as follows. If unclassified object g ∈ Gτ contains
a positive but no negative hypotheses, it is classified positively, similar for nega-
tive. If g does not contain any positive or negative hypothesis (insufficient data)
or contains both positive and negative hypotheses (inconsistent data), then no
classification happens.

2 Generalization and Modification of Algorithms

The common drawback of the FCA-based classifiers using binary features af-
ter scaling is that they forget the initial feature space metric structure. The
main idea of this paper is to use this metric information together with order-
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theoretic relations between objects and attributes provided by a concept lattice.
It is important that F and Bn spaces with additional structures (metric and
formal context) are being used at the same time, providing more possibilities for
classifier training methods.

2.1 Metric estimates

Denote by H+ and H− the sets of concepts constructed from a training set,
which intents are positive and negative hypotheses respectively. We assume that
(F , ρ) is a metric space, and let S(x,A) be the similarity measure (based on
the metric from F , see examples in Section 3) between an object x and a set of
objects A. Let us define the estimates for positive and negative classes:

Γ+(x) =
∑

C∈H+

I(x,C)S(x, ext(C)), Γ−(x) =
∑

C∈H−

I(x,C)S(x, ext(C)),

where I(x,C) = [int(C) ⊆ x′] and [·] is the indicator function. Then the classifier
will have the following form: a(x) = sign Γ (x) = sign(Γ+(x)− Γ−(x)).

Proposition 1. If hypotheses-based classifier correctly predicts class label for an
object then a(x) = sign Γ (x) does the same.

In comparison with hypotheses-based classifier the number of classification
refusals is reduced, but the total error rate can increase.

2.2 Analogy with algorithms based on estimate calculations

To calculate the estimates in the method above we use positive and negative hy-
potheses sets, i.e. special subsets of concept lattice. Such calculation of estimates
can be generalized to an arbitrary concept lattice subsets somehow characteriz-
ing individual classes y ∈ Y .

Let C be the set of concepts which we call the support concepts system.
Suppose that each concept from C characterizes only one class y ∈ Y , that
is C =

⊔
y∈Y Cy, where Y is the set of classes. Then define the estimate of object

x for class y as follows:

Γy(x) =
∑

C∈Cy

S(x,C).

The classifier will have the following form: a(x) = argmaxy∈Y Γy(x). The es-
timates of this type are similar to the estimates used in estimate calculations
methods [7] and the sets Cy are the support sets analogues.

Consider specific examples of support concepts system C, similarity measure
S(x,C) and analyze corresponding classifiers:

1. C = H+

⊔H− are positive and negative hypotheses sets,
S(x,C) = [int(C) ⊆ x′]Ŝ(x, ext(C)), where Ŝ(x, ext(C)) is the given simi-
larity measure. The corresponding classifier was described above.

2. C =
⊔

y∈Y Cy is the consistent concepts set.
If S(x,C) = | (M \ int(C)) ∪ x′| we get modified GALOIS(1) algorithm.
If S(x,C) = [int(C) ⊆ x′] we get GALOIS(2) algorithm.
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2.3 Analogy with metric classifiers

Let C = {C1, . . . , Cn} be the support concepts system. Suppose that there is the
distance measure ρ in F space. Sort C in increasing order w.r.t. the values of the
distance ρ(x,Ci) between object x and concepts Ci:

ρ(x,C(1)
x ) 6 ρ(x,C(2)

x ) 6 · · · 6 ρ(x,C(n)
x ),

where C
(i)
x is the i-th neighbour of x among C, y(i)x is the class, characterized by

C
(i)
x concept. Define the estimate of object x for class y:

Γy(x) =

n∑

i=1

wi(x)[y
(i)
x = y],

wi(x) is x i-th neighbour weight (positive function non-increasing w.r.t. i).
The defined estimates are completely analogous to the metric classifiers es-

timates, except that the neighbours here are not objects but support concepts.
Thus choosing the suitable weights wi(x) we get analogs of all known metric

classifiers (kNN, Parzen window, potential functions and others), but in terms
of concepts. For example:

– wi(x) = [i 6 k] is k nearest neighbours method;
– wi(x) = [i 6 k]wi is k weighted nearest neighbour method (wi depends only

on the neighbour number);

– wi(x) = K(
ρ(x,C(i)

x )
h(x) ) is Parzen window method (K(z) is non-increasing

positive-valued function defined on [0, 1], h(x) is the window width).

All the proposed methods are the generalizations of the existing methods
and can be used for their modifications. They use both metric information from
F and object-attribute dependencies provided by concept lattice. This allows to
reduce the number of classification refusals and error rate.

2.4 Pseudometric on the set of concepts

Another approach which uses the notion of similarity in FCA algorithms is to
define a distance function on the set of concepts. In Rulearner algorithm ([2]) the
most important characteristics of concept lattice element u were the value of the
function cover(u) = |J(L) ∩ u▽| and M(L) ∩ u△ set. The comparison of lattice
elements is performed on the basis of these characteristics. In the case of reduced
context, this ties up with a fact, that every concept is characterized by its extent
(distinct objects correspond to join-irreducible elements) and intent (distinct
features correspond to meet-irreducible elements). Thus, cover(u) corresponds to
the number of objects from training set covered by the concept u, and M(L)∩u△

corresponds to the attributes characterizing u. We use these observations to
define the distance function on an arbitrary finite lattice. Due to the propositions
dual to theorems 3.1 and 3.3 from [8], the following theorem holds.
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Theorem 1. Let 〈L,∧,∨〉 be a lattice and f : L → R is isotone and supermod-
ular function, then df (x, y) = f(x)+ f(y)− 2f(x∧ y) defines a pseudometric on
this lattice.

Consider arbitrary finite lattice 〈L,∧,∨〉, non-empty subset D ⊆ L and a
function f : L → Z+, defined as follows: f(x) = |D(x)|, where D(x) = D ∩ x▽.

Proposition 2. The function f(x) is isotone and supermodular.

Proof. The isotone property of f follows from the following chain of implications:

x 6 y ⇒ x▽ ⊆ y▽ ⇒ D(x) ⊆ D(y) ⇒ f(x) = |D(x)| 6 |D(y)| = f(y).

To prove supermodularity consider the following:

f(x)+f(y) = |D(x)|+|D(y)| = |D(x)∪D(y)|+|D(x)∩D(y)| 6 f(x∨y)+f(x∧y).
To prove the last inequality observe that D(x) ∪D(y) ⊆ D(x ∨ y) follows from
the following inclusions:

x 6 x ∨ y ⇒ D(x) ⊆ D(x ∨ y), y 6 x ∨ y ⇒ D(y) ⊆ D(x ∨ y).

The equality D(x) ∩D(y) = D(x ∧ y) follows from x▽ ∩ y▽ = (x ∧ y)▽. ⊓⊔
Thus, according to the theorem above, the function f(x) induces the pseu-

dometric df (x, y) on the lattice, defined by the following equality:

df (x, y) = f(x) + f(y)− 2f(x ∧ y).

The value of df (x, y) has simple interpretation.

Proposition 3. df (x, y) = |D(x)⊕D(y)|, where A⊕B = (A \B) ∪ (B \A).
Proof. From the proof of the proposition above we conclude that the equality
D(x) ∩D(y) = D(x ∧ y) holds. Consider the chain of equalities:

f(x) + f(y)− 2f(x ∧ y) = |D(x)|+ |D(y)| − 2|D(x ∧ y)| =
= |D(x)|+ |D(y)| − 2|D(x) ∩D(y)| =
= |D(x) ∪D(y)|+ |D(x) ∩D(y)| − 2|D(x) ∩D(y)| =
= |D(x) ∪D(y)| − |D(x) ∩D(y)| = |D(x)⊕D(y)|.

⊓⊔
Corollary 1. If 〈L,∧,∨〉 is a finite Boolean algebra and D is the set of all atoms
of L, then df (x, y) is exactly the Hamming distance.

In order to compare formal concepts it is reasonable to choose D = J(L)
or D = At(L). In terms of this pseudometric two concepts are the closer, the
less object concepts are covered by only one of them. Moreover, the cover(u)
and df (x, y) functions are tied: cover(u) = df (u,

∧
L). One of the drawbacks of

the defined distance measure is that the number of elements from D covered by
x∧y is not taken into account. In some cases it may lead to inadequate distance
estimates.

Possible modifications:
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1. Various normalizations to take the number of elements into account, e.g.:

d(x, y) =
|D(x)⊕D(y)|
|D(x) ∪D(y)| .

2. Weighting elements of D, e.g. let D = J(L) and we be the proportion of the
hypotheses covering e = (g′′, g′). Then d(x, y) will have the following form:

d(x, y) =
∑

e∈D(x)⊕D(y)

we.

The distance between concepts can be applied to modify the classification
algorithms mentioned above. For example, let an object x be classified with
hypotheses-based algorithm. Suppose there are two positive hypotheses H+

1 , H+
2

and two negative hypotheses H−
1 , H−

2 for the classification of x. In this case
the algorithm refuses to classify x. Suppose we know the concept distances
d(H+

1 , H+
2 ), d(H−

1 , H−
2 ) and also d(H+

1 , H+
2 ) ≫ d(H−

1 , H−
2 ). Then it is natural

to classify x as positive, because the distant concepts (in terms of the proposed
measure) are less ”correlated” (since they cover many distinct object concepts),
and hence their answers are more significant. Distance between concepts can also
be used for reducing the size of concepts system (used by classifier, e.g. consis-
tent concepts) in order to improve generalization ability of classifier, reduce the
overfitting and remove concepts based on noisy data.

3 Experiments

In this section the experimental results are presented. The algorithms have been
tested on two data sets taken from UCI Machine Learning Repository [9]: SPECT
and SPECTF Heart Data Set (training set consists of 80 objects, testing set con-
sists of 187 objects, 22 binary attributes in SPECT, 44 real-valued attributes
in SPECTF) and Liver Disorders Data Set (training set consists of 150 ob-
jects, testing set consists of 195 objects, 6 real-valued attributes, 30 binary at-
tributes (after scaling)). Tested algorithms: GALOIS(1, 2), Rulearner, straight
hypotheses-based algorithm, modified GALOIS(1) (described by the second ex-
ample in Section 2.2), modified hypotheses-based algorithm with metric esti-
mates (described in Section 2.1 with different similarity functions). Euclidian
metric ρ(x, y) was used in F space in both experiments. Similarity function:
S(x,C) = K(ρ(x,C), a), where K(r, a) and ρ(x,C) are one of the following
functions:

K1(r, a) =
1

1 + exp(ar)
, K2(r, a) =

1

r + a
.

ρ1(x,C) = inf
c∈C

ρ(x, c), ρ2(x,C) =
1

|C|
∑

c∈C

ρ(x, c), ρ3(x,C) = sup
c∈C

ρ(x, c).

We introduce the following notation: νc is the proportion of classified objects,
νr = 1 − νc is the proportion of refused classifications, et is total error rate
(including refusals), er is the error rate among classified objects.
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Algorithm νc νr et er
GALOIS(1) 1 0 0.1604 0.1604

Modified GALOIS(1) 1 0 0.0856 0.0856

GALOIS(2) 1 0 0.0802 0.0802

Rulearner 0.7487 0.2513 0.2727 0.0286

Hypotheses-based 0.5936 0.4064 0.6150 0.1842

K = K1, a = 0.0125, ρ = ρ1 0.8021 0.1979 0.3155 0.1467

K = K1, a = 0.0125, ρ = ρ2 0.8021 0.1979 0.2888 0.1133

K = K1, a = 0.0125, ρ = ρ3 0.8021 0.1979 0.2834 0.1067

K = K1, a = 1, ρ = ρ2 0.7273 0.2727 0.3422 0.0956

K = K2, a = 1, ρ = ρ1 0.8021 0.1979 0.2941 0.1200

K = K2, a = 1, ρ = ρ2 0.8021 0.1979 0.3209 0.1533

Table 1. SPECT and SPECTF Heart Data Set. Experimental results.

Algorithm νc νr et er
GALOIS(1) 1 0 0.4605 0.4605

Modified GALOIS(1) 1 0 0.5590 0.5590

GALOIS(2) 1 0 0.4359 0.4359

Rulearner 0.9795 0.0205 0.4564 0.4450

Hypotheses-based 0.2923 0.7077 0.8256 0.4035

K = K1, a = 1, ρ = ρ1 0.8821 0.1179 0.5231 0.4593

K = K1, a = 0.01, ρ = ρ2 0.8974 0.1026 0.5436 0.4914

K = K1, a = 0.25, ρ = ρ3 0.8872 0.1128 0.5385 0.4798

K = K2, a = 200, ρ = ρ1 0.8974 0.1026 0.4769 0.4171

K = K2, a = 150, ρ = ρ2 0.8974 0.1026 0.4564 0.3943

K = K2, a = 150, ρ = ρ3 0.8974 0.1026 0.4667 0.4057

Table 2. Livers Disorder Data Set. Experimental results.

The aim of the experiments was to compare FCA classification methods
and not to achieve low error rate in solving particular tasks. Hence we used
simple scaling procedure: normalizing all attributes to [0, 1] interval and then
applying interval-based nominal scaling (the number of intervals was chosen to
be 5). It explains high error rate of all classifiers in the second task. Individual
scaling (e.g. scaling with floating-size intervals) for each task may significantly
reduce error rate, but this work is not focused on this problem. From the results
above we may conclude that for hypotheses-based algorithm modifications the
number of refusals is substantially reduced together with total error rate et.
Modified GALOIS(1) classifier improved GALOIS(1) on the first data set and
disimproved it on the second. This may be due to the different nature of binary
data description: in the first case 22 binary attributes were obtained from 44
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real-valued using complex binarization procedure, while in the second one this
procedure was very simple. The choice of K(r, a) and ρ(x,C) affects only et but
not νr, hence their accurate selection may improve classification quality.

4 Conclusions

In this paper we have formally described and experimentally studied a new ap-
proach to classification which encompasses the usage both of metric information
provided by the initial feature space and the order object-attribute dependen-
cies. Also we have defined the pseudometric on arbitrary finite lattice, which
has intelligeble interpretation in terms of concepts and hence can be used for
comparing concepts in order to improve FCA classification methods. Further
developments can be focused on studying of classifiers obtained from the pro-
posed model by fixing the support concepts system C and the similarity measure
S(x,C) and on the possibilities of choosing such support concepts system that
allows to construct only a part of concept lattice.
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Abstract. Data mining aims at finding interesting patterns from datasets,
where “interesting” means reflecting intrinsic dependencies in the do-
main of interest rather than just in the dataset. Concept stability is a
popular relevancy measure in FCA but its behaviour have never been
studied on various datasets. In this paper we propose an approach to
study this behaviour. Our approach is based on a comparison of stabil-
ity computation on datasets produced by the same general population.
Experimental results of this paper show that high stability of a con-
cept in one dataset suggests that concepts with the same intent in other
dataset drawn from the population have also high stability. Moreover,
experiments shows some asymptotic behaviour of stability in such kind
of experiments when dataset size increases.

Keywords: formal concept analysis, stability, pattern selection, exper-
iments

1 Introduction

In data mining, many usefulness measures of patterns are introduced. For ex-
ample, more than 30 statistical methods are enumerated and discussed in [1].
Such a high number of different approaches to pattern selection emphasizes the
importance of the problem. In this paper we would like to focus on a measure
which is introduced within Formal Concept Analysis (FCA). FCA is a mathe-
matical formalism having many applications in data analysis [2]. Starting from
the set of objects and the corresponding sets of attributes FCA tends to general-
ize the descriptions for any set of objects. Although this approach is less efficient
than the statistical methods it is still feasible and ensures that no potentially
interesting pattern is missed.

Within FCA there are several approaches for pattern selection. Two disjoint
approaches can be distinguished. The first one is to introduce background knowl-
edge into the procedure computing concepts [3–5]. These approaches allow one
to find patterns which are likely to be useful for the current task. Although the
number of resulting patterns can be significantly reduced, they are still numer-
ous. The second approach can be applied in a composition with the first ones,
ranking the resulting patterns w.r.t. a relevance measure.

The authors of [6] provide several measures for ranking concepts that stem
from the algorithms possibly underlying human behavior. Stability is another
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m1 m2 m3 m4 m5 m6

g1 x x
g2 x x
g3 x x
g4 x x
g5 x

(a)

({g1} ; ∗)[0.5] ({g2} ; ∗)[0.5] ({g3} ; ∗)[0.5] ({g4} ; ∗)[0.5] ({g5} ; ∗)[0.5]

(∅; ∗)[1.0]

( {g1, g2, g3, g4} ; {m6})[0.69]

({g1, g2, g3, g4, g5} ; ∗)[0.47]

(b)

Fig. 1: A toy formal context (a) and the correspnoding concept lattice with sta-
bility indexes (b).

measure for ranking concepts, introduced in [7] and later revised in [8–10]. Sev-
eral other methods are considered in [11], where it is shown that stability is more
reliable in noisy data. For the moment, stability seems to be the most widely
used usefulness measure around the FCA community. Thus, in this paper we are
going to focus on stability. Although this measure is often used, there is neither a
reliable comparison nor a deep research on its usefulness. Consequently, the goal
of this paper is to evaluate the usefulness of stability. Here we experimentally
prove that the stability for a pattern is coherent with the stability computed for
the same pattern but w.r.t. a different dataset coming from the same population
(the similarly distributed dataset).

The rest of the paper is organised as follows. Section 2 introduces definition
of stability and discusses known stability estimates. In Section 3 experiments on
relevancy of stability are discussed.

2 Stability of a formal concept

2.1 Formal concept analysis (FCA)

FCA [2] is a formalism for data analysis. FCA starts with a formal context and
builds a set of formal concepts organized within a concept lattice. A formal
context is a triple (G,M, I), where G is a set of objects, M is a set of attributes
and I is a relation between G and M , I ⊆ G×M . In Figure 1a, a formal context
is shown. A Galois connection between G and M is defined as follows:

A′ = {m ∈M | ∀g ∈ A, (g,m) ∈ I}, A ⊆ G
B′ = {g ∈ G | ∀m ∈ B, (g,m) ∈ I}, B ⊆M

The Galois connection maps a set of objects to the maximal set of attributes
shared by all objects and reciprocally. For example, {g1, g2}′ = {m6}, while
{m6}′ = {g1, g2, g3, g4}.

Definition 1. A formal concept is a pair (A,B), where A is a subset of objects,
B is a subset of attributes, such that A′ = B and A = B′, where A is called the
extent of the concept, and B is called the intent of the concept.
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For example, a pair ({g1, g2, g3, g4} ; {m6}) is a formal concept. Formal con-
cepts can be partially ordered w.r.t. the extent inclusion (dually, intent inclu-
sion). For example, ({g3} ; {m3,m6}) ≤ ({g1, g2, g3, g4} ; {m6}). This partial or-
der of concepts is shown in Figure 1b.

2.2 The definition of stability

Stability is an interestingness measure of a formal concept introduced in [7] and
later revised in [8, 10].

Definition 2. Given a concept c, concept stability Stab(c) is defined as

Stab(c) :=
|{s ∈ ℘(Ext(c)) | s′ = Int(c)}|

2|Ext(c)| (1)

i.e., the relative number of subsets of the concept extent (denoted by Ext(c)),
whose description (i.e., the result of (·)′) is equal to the concept intent (denoted
by Int(c)) where ℘(P ) is the power set of P .

Example 1. Figure 1b shows the concept lattice of the context in Figure 1a,
for simplicity some intents are not given. The extent of the highlighted con-
cept c is Ext(c) = {g1, g2, g3, g4}, thus, its power set contains 24 elements. The
descriptions of 5 subsets of Ext(c) ({g1} , . . . , {g4} and ∅) are different from
Int(c) = {m6}, while all other subsets of Ext(c) have a description equal to

{m6}. So, Stab(c) = 24−5
24 = 0.69.

Stability measures the dependence of a concept intent on objects of the con-
cept extent. In [10] it is shown that stability of a concept c is the relative number
of subcontexts where there exists the concept c with intent Int(c). A stable con-
cept can be found in many such subcontexts, and therefore is likely to be found
in an unrelated context built from the population under study.

In some papers it is noticed that in large datasets most of the concepts tends
to have stability close to 1 [12, 13]. Thus, in order to distinguish between them
we use the following logarithmic stability:

LStab(c) = − log2(1− Stab(c)) (2)

Stability computation is #P-complete [7, 8]. In this paper we rely on the
algorithm from [10], with a worst-case complexity of O(L2), where L is the size
of the concept lattice. However, generally it is quite efficient on real data.

3 Experiment on relevancy of stability

Experiments on behaviour of stability are carried out on public datasets available
from the UCI repository [14]. These datasets are shown in Table 1. With their
different size and complexity, these datasets provide a rich experimental basis.
Complexity here stands for the size of the concept lattice given the initial number
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Table 1: Datasets used in the experiments. Column ‘Shortcut’ refers to the short
name of the dataset used in the rest of the paper; ’Size’ is the number of objects
in the dataset; ‘Max. Size’ is the maximal number of objects in a random subset
of the dataset the concept lattice can be computed for; ‘Max. Lat. Size’ is the
size of the corresponding concept lattice; ‘Lat. Time’ is the time in seconds for
computing this lattice; ‘Stab. Time’ is the time in seconds to compute stability
for every concept in the maximal lattice.

Dataset Shortcut Size Max. Size Max. Lat. Size Lat. Time Stab. Time

Mushrooms1 Mush 8124 8124 2.3 · 105 324 57
Plants2 Plants 34781 1000 2 · 106 45 104

Chess3 Chess 3198 100 2 · 106 30 7.4 · 103

Solar Flare (II)4 Flare 1066 1066 2988 0 0
Nursery5 Nurs 12960 12960 1.2 · 105 245 5
1http://archive.ics.uci.edu/ml/datasets/Mushroom
2http://archive.ics.uci.edu/ml/machine-learning-databases/plants/
3http://archive.ics.uci.edu/ml/datasets/Chess+(King-Rook+vs.+King-Pawn)
4http://archive.ics.uci.edu/ml/datasets/Solar+Flare
5http://archive.ics.uci.edu/ml/datasets/Nursery

of objects in the corresponding context. For example, Chess is the most complex
dataset as for only 100 objects in the context there are already 2 ·106 of concepts
in the concept lattice.

When computing stability, one wants to know if the intent of a stable concept
is a general characteristic rather than an artefact specific for a dataset. For that it
is necessary to evaluate stability w.r.t. a test dataset different from the reference
one. Reference and test datasets are two names of disjoint datasets on which
the stability behaviour is evaluated. In order to do that the following scheme of
experiment is developed:

1. Given a dataset K of size K objects, experiments are performed on dataset
subsets whose size in terms of number of objects is N . This size is required
to be at least half the size of K. For example, for a dataset of size K = 10
the size of it subset can be N = 4.

2. Two disjoint dataset subsets K1 and K2 of size N (in terms of objects)
of dataset K are generated by sampling, e.g., K1 = {g2, g5, g6, g9} and
K2 = {g3, g7, g8, g10}. Later, K1 is used as a reference dataset for computing
stability, while K2 is a test dataset for evaluating stability computed in K1.

3. The corresponding sets of concepts L1 and L2 with their stability are built
for both datasets K1 and K2.

4. The concepts with the same intents in L1 and L2 are declared as correspond-
ing concepts.

5. Based on this list of corresponding concepts, a list of pairs S = {〈X,Y 〉 , . . . }
is built, where X is the stability of the concept in L1 and Y is the stability
of the corresponding concept in L2. If an intent exists only in one dataset,
its stability is set to zero in the other dataset (following the definition of

54



Fig. 2: Stability in the test dataset w.r.t the reference one in Mush4000 in (a)
plane scale (b) logarithmic scale.

stability). Finally, the list LS = {〈Xlog, Ylog〉 , . . . } includes the stability
pairs from S in logarithmic scale as stated by Eq. (2). We study here the
sets S and LS.

The idea of evaluating stability computed on a reference dataset w.r.t. a test
dataset comes from the supervised classification methods. Moreover, this idea
is often used to evaluate statistical measures for pattern selection and can be
found as a part of pattern selection algorithms with a good performance [15].

Sets of pairs S and LS can be drawn by matching every point 〈X,Y 〉 to a
point in a 2D-plot. The best case is y = x. It means that stability computed
for dataset part K1 is exactly the same as stability computed for the dataset
part K2. However, this is hardly the case in real-world experiments. For ex-
ample, Figure 2a shows the corresponding diagram for the dataset Mush4000.1

This figure also highlights the fact that many concepts have stability close to
1. However, when the logarithmic set LS is used, a blurred line y = x can be
perceived in Figure 2b. Moreover, selecting the concepts which are stable w.r.t.
a high threshold in the reference dataset K1, the corresponding concepts in K2

are stable w.r.t. a lower threshold. Thus, we can conclude that stability is more
tractable in the logarithmic scale, and, thus, we only consider this logarithmic
scale in the rest of the paper.

3.1 Setting a stability threshold

In the previous subsection it is mentioned that concepts stable in the reference
dataset are stable in the test dataset with a smaller threshold. But what is
“smaller”? Imagine that in the reference dataset K1 we have the threshold θ1,
i.e., if Stab(c) ≥ θ1 then c is stable, while in the K2 we have θ2. Then, we
want to know the threshold θ1 such that at least 99% of stable concepts in K1

1 From here, the name of a dataset followed by a number such as ‘NameN ’ refers to
an experiment based on the dataset Name where K1 and K2 are of the size N .
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Fig. 3: Stability threshold in the reference dataset ensuring that 99% of concepts
in the test datasets corresponding to stable concepts are stable with stability
thresholds 1 or 5.

corresponds to stable concepts in K2. Figure 3 shows the reference threshold
θ1 (x-axis) w.r.t. the size of the datasets (y-axis) for θ2 = 1 and θ2 = 5. For
example, the line ‘5: Mush’ corresponds to the line of θ1, where θ2 is fixed to 5
w.r.t. to the size of the dataset built from dataset Mushrooms. The value θ2 = 1
means that any stable concept is just found in the test dataset, while θ2 = 5
requires that they are quite stable in the test dataset. We can see that for large
datasets the stability threshold is independent of the dataset, while for small
datasets the diversity is higher. We can see that the value of θ1 should be set to
5–6 in order to ensure that 99% of stable concepts have corresponding concepts
in another dataset.

3.2 Stability and ranking

Another way of using usefulness measures is pattern ranking. Thus, it is an
interesting question if the order of patterns could be preserved by using stability.
A way to study an order of an array ar is to compute its sorting rate r, i.e.,
the relative number of pairs in the array sorted in the ascending order: r =

2 · {(i,j)|i<j and ari≤arj}
|ar|·(|ar|−1) . A sorting rate equal to 1 means that the array is in

the ascending order, while 0 means that it is in the descending order; the value
0.5 means that there is no order at all. Figure 4 shows the sorting rate (SR) for
different datasets, i.e., the sorting rate of concept stabilities in K2, ordered w.r.t.
stabilities of the corresponding stable concepts in K1. We can see that SR for all
datasets is slowly increasing preserving nearly the same value along the stability
threshold in K1. And, thus, concept stability can be used to rank concepts.

56



0 10 20 30 40

0.
65

0.
75

0.
85

0.
95

Reference Stability Threshold

S
or

tin
g 

R
at

e

● ● ●
● ●

● ●

● ● ●

●

Mush120
Mush4000
Plnt250
Plnt1000
Sflr120
Sflr500
Nurs250
Nurs6480

Fig. 4: Global sorting rate for different datasets.

4 Conclusion

In this paper we study concept stability as an efficient measure for pattern
selection. It is shown that stability computed in the logarithmic scale is more
convenient since it allows one to better distinguish stable concepts. Given a
threshold of stability, patterns whose stability are above a threshold in a given
dataset are likely to have stability above a smaller threshold in another dataset
coming from the same distribution. However, independently of a dataset, as
found experimentally, a concept should have logarithmic stability more than 5
in order to reflect any property of the population. We also show that stability
is able to sort concepts in two independent datasets with nearly the same order
by selecting concepts with stability above a certain threshold.

There are many future research directions. The found properties of stability
suggest that interesting concepts can be found by resampling, i.e., analyzing
many small parts of a large dataset, thus providing a key to an efficient processing
of datasets with Formal Concept Analysis. The second important direction is to
develop a methodology for comparison of stability and other known approaches
for pattern selection.
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Abstract. There is a big gap between variety of applications of Formal Concept 

Analysis (FCA) methods and general-purpose software implementations. We 

discuss history of FCA-based software tools, which is relatively short, main 

problems in advancing of such tools, and development ideas. We present Formal 

Concept Analysis Research Toolbox (FCART) as an integrated environment for 

knowledge and data engineers with a set of research tools based on Formal 

Concept Analysis. FCART helps us to illustrate methodological and 

technological problems of FCA approach to data analysis and knowledge 

extraction. 

Keywords: Formal Concept Analysis, Knowledge Extraction, Data Mining, 

Software. 

1 Introduction 

Formal Concept Analysis (FCA) [1] is a mature group of mathematical models and a 

well foundation for methods of data mining and knowledge extraction. There is a huge 

amount of publications about many aspects of FCA using in different application fields. 

Why are there no universal and flexible FCA based tools have implemented in data 

mining software? We can assume that last ten years is an enough time to implement 

such tools not only in the most popular big analytic software but also in separate 

instruments are tightly integrated with other data access tools. Is there a problem in 

methodology of current "FCA data mining" approach? 

Most popular FCA tools are small utilities purposed for final drawing of relatively 

small (tens to hundred concepts) formal concept lattice and calculate its properties. The 

other tools are very experimental and separately implement one or several mathematical 

models. 

Can we have exchangeable set of tools for iterative building a formal context from 

raw data, for working with big lattices, for deep analysis of properties of interesting 

concepts in good user interface? 
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2 Problems and solutions 

The FCA community started a discussion of the universal FCA workflow several 

years ago. There were a number of approaches to extending FCA to richer descriptions 

and at the same time to extending scalability of FCA-based methods proposed: 

1. Pattern structures [2, 3, 4, 5] for dealing with complex input objects (such objects 

may have, for example, graph representation). 

2. Various scaling techniques [6, 7, 8] for dealing with many-valued contexts. 

3. Similarity measures on concepts [9, 10]. 

4. Various concepts indices for important concepts selection [11, 12, 13]. 

5. Alpha lattices [14] (and other coarser variants of concept lattice). 

6. Relational concept analysis [15]. 

7. Attribute exploration [16]. 

8. Approaches for fragmentary lattice visualization (from iceberg to embedded 

lattices). 

9. "Fuzzy FCA" approach in form of biclustering methods [17] and other techniques. 

Near the middle of the last decade there were very successful implementations of 

transforming a small context into a small line diagram and calculate implications and 

association rules. The most well-known open source projects are ConExp [18], Conexp-

clj [19], Galicia [20], Tockit [21], ToscanaJ [22], FCAStone [23], Lattice Miner [24], 

OpenFCA [25], Coron [26], Cubist [27]. These tools have many advantages. However, 

they suffer from the lack of rich data preprocessing, the abilities to communicate with 

various data sources, session management, reproducibility of computational 

experiments. It prevents researchers from using these programs for analyzing complex 

big data without different additional third party tools. 

The goal of our efforts is an integration of ideas, methods, and algorithms, which are 

mentioned all above, in one environment. It is not only a programing task. At first, it is 

a challenge facing methodologists of the FCA community. The most significant 

problems: 

1. Sense of FCA approaches in AI tasks.  

2. Performance of basic FCA algorithms. 

3. Logical complexity of raw data preprocessing task. 

4. Scaling of many-valued contexts. 

5. Interactive work with FCA artifacts. 

Now we want to discuss some aspects of integration problems. In a previous article 

[28], we have described the stages of development of a software system for information 

retrieval and knowledge extraction from various data sources (textual data, structured 

databases, etc.). Formal Concept Analysis Research Toolbox (FCART) was designed 

especially for the analysis of semi structured and unstructured (including textual) data. 

In this article, we describe FCART as an extensible toolset for checking different 

integration ideas. As an example of current development activities, the main FCA 

workflow will be demonstrated. 
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3 Methodology 

FCART was originated from DOD-DMS platform which creation was inspired by the 

CORDIET methodology (abbreviation of Concept Relation Discovery and Innovation 

Enabling Technology) [29] developed by J. Poelmans at K.U. Leuven and P. Elzinga 

at the Amsterdam-Amstelland police. The methodology allows analyst to obtain new 

knowledge from data in an iterative ontology-driven process. In FCART we 

concentrated on main FCA workflow and tried to support high level of extensibility. 

FCART is based on several basic principles that aim to solve main integration 

problems: 

1. Iterative process of data analysis using adjustable data queries and interactive 

analytic artifacts (such as concept lattice, clusters, etc.). 

2. Separation between processes of data querying (from various data sources), data 

preprocessing (of locally saved immutable snapshots), data analysis (in interactive 

visualizers of immutable analytic artifacts), and results presentation (in report 

editor). 

3. Extendibility at three levels: customizing settings of data access components, query 

builders, solvers and visualizers; writing scripts (macros); developing components 

(add-ins). 

4. Explicit definition of all analytic artifacts and their types. It provides consistent 

parameters handling, links between artifacts for end-user and allows one to check 

the integrity of session. 

5. Realization of integrated performance estimation tools and system log. 

6. Integrated documentation of software tools and methods of data analysis. 

The core of the system supports knowledge discovery techniques, based on Formal 

Concept Analysis, clustering, multimodal clustering, pattern structures and the others. 

From the analyst point of view, basic FCA workflow in FCART has four stages. On 

each stage, a user has the ability to import/export every artifact or add it to a report. 

1. Filling Local Data Storage (LDS) of FCART from various external SQL, XML or 

JSON-like data sources (querying external source described by External Data Query 

Description – EDQD). EDQD can be produced by some External Data Browser. 

2. Loading a data snapshot from local storage into current analytic session (snapshot is 

described by Snapshot Profile). Data snapshot is a data table with annotated 

structured and text attributes, loaded in the system by accessing LDS. 

3. Transforming the snapshot to a binary context (transformation described by Scaling 

Query). 

4. Building and visualizing formal concept lattice and other artifacts based on the 

binary context in a scope of analytic session. 

FCART has been already successfully applied to analyzing data in medicine, 

criminalistics, and trend detection. 
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4 Technology 

We use Microsoft and Embarcadero programming environments and different 

programming languages (C++, C#, Delphi, Python and other). Native executable of 

FCART client (the core of the system) is compatible with Microsoft Windows 2000 

and later and has no additional dependences. Scripting is an important feature of 

FCART. Scripts can do generating and transforming artifacts, drawing, and building 

reports. For scripting we use Delphi Web Script and Python languages. Integrated script 

editor with access to artifacts API allows quick implementation of experimental 

algorithms for generating, transforming, and visualizing artifacts. 

Current version of FCART consists of the following components.  

─ Core component includes 

 multiple-document user interface of research environment with session manager 

and extensions manager, 

 snapshot profiles editor (SHPE),  

 snapshot query editor (SHQE),  

 query rules database (RDB),  

 session database (SDB),  

 main part of report builder. 

─ Local Data Storage (LDS) for preprocessed data.  

─ Internal solvers and visualizers of artifacts. 

─ Additional plugins, scripts and report templates. 

FCART Local Data Storage (LDS) plays important role in effectiveness of whole 

data analysis process because all data from external data storages, session data and 

intermediate analytic artifacts saves in LDS. All interaction between user and external 

data storages is carried out through the LDS. There are many data storages, which 

contain petabytes of collected data. For analyzing such Big Data an analyst cannot use 

any of the software tools mentioned above. FCART provides different scenarios for 

working with local and external data storages. In the previous release of FCART an 

analyst could work with quite small external data storage because all data from external 

storage is converted into JSON files and is saved into LDS. In the current release, we 

have improved strategies of working with external data. Now analyst can choose 

between loading all data from external data storage to LDS and accessing external data 

by chunks using paging mechanism. FCART-analyst should specify the way of 

accessing external data at the property page of the generator.  

All interaction between a client program and LDS goes through the web-service. 

The client constructs http-request to the web-service. The http-request to the web 

service is constructed from two parts: prefix part and command part. Prefix part 

contains domain name and local path (e.g. http://zeus.hse.ru/lds/). The command part 

describes what LDS has to do and represents some function of web-service API. Using 

web-service commands FCART client can query data from external data storages in 

uniform and efficient way. 
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5 Interactive part of main FCA workflow 

The most interesting part for analyst is an interactive work with artifacts in multiple-

document user interface of FCART client. 

We will illustrate our vision with real examples of querying data and working with 

big lattices. FCART supports interactive browsing of concept lattices with more than 

20000 concepts (see Fig. 1) with fine adjustment of drawing. User may feel some 

interaction delays but system have special instruments to visualize and navigate big 

lattices: scaling of lattice element sizes, parents-children navigator, filter-ideal 

selection, separation of focused concepts from other concepts. We have tested several 

drawing techniques for visualizing fragments of big lattices and prepared a collection 

of additional drawing scripts for rendering focused concept neighborhood, selected 

concepts, “important” concepts, and filter-ideal with different sorting algorithms for 

lattice levels. 

 

Fig. 1. Lattice browser with focused concept separation 
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User also can build linked sublattices and calculate standard association rules, 

implication basis, etc. All artifacts can be commented, annotated and appended to one 

of reports in a current session.  

FCART also supports working with concepts in a form of table with sorting and 

grouping abilities (see Fig. 2). Concept properties in the last column of this table 

(indices [30], similarity measures, etc.) can be calculated by scripts. 

 

Fig. 2. List of all formal concepts, sorted by value of concept stability index 

6 Conclusion and future work 

In this paper, we have discussed important questions for all researchers in FCA field 

about implementation of essential software tools. We will try to suggest solutions for 

some of those problems in our system. The version 0.9.4 of FCART client 

(http://ami.hse.ru/issa/Proj_FCART) and version 0.2 of LDS Web-service 

(http://zeus2.hse.ru) have been introduced this spring. 
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We have tested preprocessing in the current release with Amazon movie reviews 

dataset (7.8 million of documents – it is big enough for check standard FCA limitations) 

[31]. This dataset was loaded to FCART LDS and transformed into many-valued 

contexts, binary contexts, lattices and other artifacts. The main goal of the current 

release is to develop architecture, which can work with really big datasets. For now, 

FCART is being tested on other collections of CSV, SQL, XML, and JSON data with 

unstructured text fields. 

The release of the version 1.0 of FCART is planned for August 2014. We will discuss 

this version at the seminar and touch on flexibility, extensibility, and overall 

performance issues. We are opened for ideas to improve methodology and various 

aspects of implementation. 
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Abstract. Relational Concept Analysis (RCA) extends standard For-
mal Concept Analysis (FCA) by taking relations between objects into
account. The scalability of RCA learning on top of huge amounts of sen-
sor data is a challenge for applications such as smart home system mon-
itoring in ambient assisted living environments. One possible approach
to improve scalability is to exploit the capabilities of modern parallel
computing architectures such as multi-core CPUs. In this paper, we pro-
pose PRCA (Parallel Relational Concept Analysis), a novel framework
for parallel relational concept learning. 1

1 Introduction

In the next few years, the world population will be ageing dramatically: the per-
centage of people over 65 will grow to more than 25% and average life expectancy
will increase to 75. This will have a particular impact on the health care systems
since there will not be enough health care workers to adequately attend to all el-
derly people. Especially elderly people who suffer from cognitive impairment are
known to remain independent for longer when living in their own home. Despite
their cognitive shortfalls these people are still able to perform everyday activi-
ties like washing, grooming and eating. These activities are called Activities of
Daily Living (ADLs) and it has been demonstrated that they will be retained
for a longer period if the elderly people remain in their familiar environment. [1]
The application scenario of the research described in this paper is in the field
of smart home systems that support elderly cognitive impaired people to stay
independently in their own houses as long as possible with just minimal sup-
port from health care services. A smart home system monitors inhabitants with
unobtrusive sensors, identifies particular behaviors and notifies health workers
if an abnormal behavior, such as taking medication in the middle of the night,
occurs. Abnormal behaviour detection is a core feature of smart home systems.

1 This colloborative work between the Massey University Smart Environments
(MUSE) group and der Corporate Semantic Web (CSW) group at Freie Univer-
sitaet Berlin has been partially supported by the Royal Society of New Zealand
and the BMBF in the User Guided Semantic Content Enrichment project and the
“InnoProfile-Transfer Corporate Smart Content” project
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Concepts of normal behaviour are learned from positive and negative training
data. New behaviours are classified using the concepts of normal behaviours.

Formal concept analysis (FCA) is a simple yet powerful and elegant represen-
tational concept learning mechanism introduced in [2]. The explicit separation
between intention and extension makes FCA an ideal platform for symbolic ma-
chine learning: training data represents concept extensions from which concept
intentions are being inferred that can later be used as classifiers.

Relational Concept Analysis (RCA) was first proposed in [3]. It extends stan-
dard FCA by taking relations between objects into account.

Given the amount of data that has to be processed by modern applications,
the scalability of learning is of particular concern. One approach to tackle this
problem is to take advantage of parallel computing platforms (multicore CPUs,
GPUs, cloud computing), and to parallelise learning algorithms. In this paper,
we present PRCA (Parallel Relational Concept Analysis), a novel framework for
parallel concept learning. PRCA is based on RCA [3, 6, 4] in order to improve
the expressiveness of pure FCA, and uses multicore CPUs to improve scalability.
We evaluate the accuracy of the learning algorithm and the performance gains
on a set of benchmark data sets widely used in description logic learning, and
compare results with existing description logic learners (DLLearner 2, PARCEL
3). The results indicate that on most data sets, PRCA outperforms DL-based
learners. PRCA also provides a wide range of configuration options that can be
used to implement project specific heuristics.

2 Related Work

Our research is mainly based on the mathematical foundations of FCA as de-
scribed in [2]. Standard FCA is restricted to data sets thata are either already
represented as binary relations or that can be easily transformed into such a rep-
resentation using method such as conceptual scaling [2]. We are not interested
in “pure” FCA-based learning, but in learning from data sets that also contain
binary relations between objects. These data sets cannot be transformed via
conceptual scaling and hence cannot be processed by standard FCA algorithms.

Huchard et al. have proposed Relational Concept Analysis (RCA) [3], a
method that extends FCA for the purpose of taking relations between objects
into account. PRCA is based on ideas from the relational data model, relational
scaling and iterative relational property generation. RCA aims to generate com-
plete lattices of data sets. This leads to scalability issues since the size of the
concept lattices grows rapidly with the number of relationships between contexts.
Our idea differs from RCA in that we do not focus on complete lattice creation
but on building lattices of selected properties that are good for dividing positive
from negative examples. Furthermore, in PRCA we try to address the scalability
problem by using concurrent computing. In [5], Kuznetsov proposes the symbolic

2
http://aksw.org/Projects/DLLearner.html

3
http://code.google.com/p/parcel-2013/
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machine learning method JSM in terms of FCA learning from positive and neg-
ative examples. This method consists of two parts, learning hypotheses from
positive and negative examples and a classification of undetermined examples
by the learned hypotheses. This method is adapted and employed in the PRCA
framework. Our hypotheses generation algorithm differs from the approach pre-
sented in [5], in that it is not based on two separate formal contexts for positive
and negative examples, but on a combined formal context which is processed
in parallel. When a concept extension contains only positive examples, then its
intention is regarded as positive hypothesis. When a concept extension contains
only negative examples, then its intention is regarded as negative hypothesis.
The difference between the RCA and PRCA approach is that after creating the
formal context PRCA generates all possible combinations in the relational scal-
ing step, instead of only relations to concepts as in RCA. In PRCA the relational
properties are combinations of relational and basic information of the relational
context. As a result PRCA creates more relational properties then RCA, because
the concepts that already pre-group the data are not used. Although this seems
to be a disadvantage on the first glance, it is necessary for the parallelization of
the algorithm. Otherwise, there would be step dependency as in RCA.

3 Parallel Relational Concept Analysis Framework

The main approach of the Parallel Relational Concept Analysis (PRCA) frame-
work is the parallelization of the scaling step of object-object relations to rela-
tional properties and the integration of basic and relational properties into one
concept lattice. The aim is to learn positive and negative hypotheses. PRCA
does not generate a complete lattice with all relational properties, but only finds
suitable relational properties that are good for dividing the positive from the
negative examples. Therefore, the PRCA framework iteratively generates new
relational properties from the relational information given in the data set and
combines them with the basic properties in one lattice until sufficient hypotheses
are found.

3.1 Basic Steps

Figure 1 depicts the basic steps of the PRCA framework. The input of the
framework are relational contexts. We define a relational context C as a pair
(K,R) consisting of a set of formal contexts K = {Ki}, whereby each context
Ki = (Oi, Pi, Ii) has objects Oi, properties Pi and a relationship Ii between these
objects and properties; and object-object relations R = {Ri}, with Ri ⊆ Oi

1×Oi
2,

associating objects from two contexts.
Each basic relation Rj has a source (relational) context Ci and a target (rela-

tional) context Ck, both source and target can be identical. The main (relational)
context is a learning problem with multiple contexts. One context is the main
context. This is the context that contains the positive, negative (and unknown)
labelled objects of the learning problem.
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The learning algorithm consists of several steps.

In the Generation of Relations step, relations are generated based on the
basic relations and properties of the relational contexts. The generator yields
basic relations as well as new composite relations. A composite relation is the
result of composing two relations or one relation and an additional post condi-
tion. Different generation operators like joins, intersections and conditional joins
exist. For instance, the relation join is defined as Rj.k := Rj .Rk. Applying a
postcondition creates a new relation by applying filters based on properties in
the target context.

In the following Relational Scaling step, these relations are then scaled to
relational properties. Different Scaling operators exist: existential, universal and
cardinality restricted. There are also different scaling directions: left and right
direction (has/is).

Fig. 1. The basic steps of the Parallel Relational Concept Analysis (PRCA) framework

In the Integration into Lattice step, the relational properties are integrated
with the basic properties into one lattice to check for new positive hypotheses,
i.e. intentions of concepts that contain only positive examples)=, All new formal
concept intentions being hypotheses are selected and stored.

In the Learning step, it is checked if all positive and negative examples are
covered by at least one positive, or negative hypothesis, respectively. If all pos-
itive examples of the main context are covered by at least one hypothesis, the
best hypotheses are selected and returned as result of the learning process.

3.2 Components of the PRCA Framework

Figure 2 shows the realization of the basic steps of the PRCA framework. In-
put data are one or more relational contexts. In addition to formal contexts and
the set of basic relations, each relational context contains a set for storing rela-
tional properties that are scaled during relational scaling step. Uncovered positive
examples is an agenda containing all positive examples. When a new positive
hypothesis is found , the examples covered by this hypothesis will be removed
from the agenda. Hypotheses is a container shared by all parallel running work-
ers to collect the learned hypotheses. The global property pool contains all basic
properties and relational properties which are relevant for building the lattice.
The parallel running workers scale new relational properties and add them to
the global property pool. The relation generator generates new relations using
the operations described above.
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The steps Relational Scaling and Integration into Lattice are realized by
parallel running worker threads. In each working step, the worker requests a
new relation from the relation generator, scales new relational properties and
integrates them into one lattice with the basic properties and previously scaled
properties.

Step by step the lattice is extended by new formal concepts. When a new
formal concept covers only positive examples the worker updates the agenda
of uncovered positive examples and stores the intention of the concept as new
hypothesis in its local hypotheses pool.

Fig. 2. Components and Configuration possibilities of the PRCA framework

The worker adds the new relational properties to the global property pool and
to the relational property pool of the respective relational context.

The Learning step is done by the learner. The learning is finished when all ex-
amples have been removed from the agenda, i.e., all examples are covered. Then,
each worker adds its found hypotheses to the global hypotheses pool. Then, the
learner selects the best hypotheses to create the result of the learning process. A
set cover algorithm is used for this purpose. By default, we use a simple greedy
algorithm that selects hypotheses covering the most (not yet covered) examples.
The use of other algorithms is possible as well.

3.3 Configuration

The purpose of the framework is to provide a tool for developing and evaluat-
ing different strategies of RCA learning. The framework offers several variability
points and configuration options that can be combined. In particular, this in-
cludes operators to compose relations, filters and set coverage algorithms to
select hypotheses.

Scaling operators define the type of the relational scaling. Multiple scaling
operators can be defined at the same time. Each worker applies all the defined
scaling operators to the given relation.
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Property filter : The workers add their newly scaled relational properties to
the global property pool. However, not all relational properties are relevant. To
reduce the number of irrelevant properties, the configured property filter controls
which properties are added to the global property pool.

A relation filter filters the generated relations. When the relation generator
is requested for a next relation it will only return relations that pass the filter.

4 Evaluation

4.1 Methodology

The evaluation is conducted with a ten 10 fold cross validation. The evaluation
metrics are:

Learning Time: duration from context to selected hypotheses.
The hypotheses learned by the prototypes are used to classify unknown ex-

amples. To determine the quality of the learned hypotheses their correctness,
completeness and accuracy are measured. Therefore a set of positive and nega-
tive labelled examples is used. Each example of the data set is classified by the
learned hypotheses. The results of the classification are compared to the orig-
inal labels of the examples. Correctness determines the ability of the learned
hypotheses to classify negative examples as negative. Completeness determines
the ability of the learned hypotheses to classify positive examples as positive.
Accuracy combines correctness and completeness. It determines the ability of
the learned hypotheses to classify undetermined examples correctly.

correctness = |negative examples classified as negative|
|all negative examples|

completeness = |positive examples classified as positive|
|all positive examples|

accuracy =

|negative examples classified as negative| + |positive examples classified as positive|
|all examples|

Definition length: A further quality property of the learned hypotheses is their
length. A shorter hypothesis is regarded as better than a longer one describing
the same objects.

– property length: To compute the length of a property the containing rela-
tions, properties and scaling operators are counted, e.g.,
• female = 1
• exists has sibling (exists has child (female)) = 5

– hypotheses length: The hypothesis is the conjunction of all its properties. The
hypothesis length is influenced by the number of properties per hypothesis and
the length of the properties. It is the sum of the length of all its properties
plus n-1 “ANDs” between n properties. For example, the hypothesis {female,
old} consists of two hypotheses with length one. Its hypothesis length is three
(female AND old).
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– definition length:The definition length is the sum of the length of all its hy-
potheses plus the n-1 ORs between n hypotheses. For example, in the learning
problem Uncle of the Family data set the learned definition consists of two
hypotheses: {male, exists has sibling.child} OR

{male, exists has married.sibling.child}.
It has a definition length of twelve (4 + 1 (AND) + 1 (OR) + 5 + 1 (AND))

4.2 Data sets

Data sets used for evaluation are the family data set: machine learning data set
from DL learner repository 4 and the straight data set: a (randomly) generated
data set.

Data Sets Exam-
ples

Posit-
ive

Negat-
ive

Relatio-
nal
Con-
texts

Basic Proper-
ties

Relations

Uncle (Family) 202 38 38 1 2 4

Cousin (Family) 202 71 71 1 2 4

Aunt (Family) 202 41 41 1 2 4

Grandson (Family) 202 30 30 1 2 4

Grand mother
(Family)

202 17 16 1 2 4

Straight200 200 100 100 2 Deck 0, Card 17 Deck 1, Card 3

Straight800 800 400 400 2 Deck 0, Card 17 Deck 1, Card 3
Table 1. Summary of the data sets used for evaluation.

4.3 Evaluation Results

– First experiments (family benchmark): configuration PRCA I: minimal con-
figuration to solve family problems: existential scaling (left), join, all-filter

– Second experiments (family benchmark): configuration PRCA II: more ex-
pressive configuration: join, both post conditional join, existential scaling
(left), universal scaling (left)

– Third experiments (poker benchmark): configuration PRCA III: trade-off
high accuracy and short definition length: all-filter, intersection, join, bloom
relation filter, existential scaling (left)

– Fourth experiments (poker benchmark): configuration PRCA IV: trade-off
learning time: 80% uncovered positive filter, intersection, join, bloom relation
filter, existential scaling (left)

Family data sets:

– The learning time is faster with minimal configuration (PRCA I) than with
more expressive configuration.

4 http://sourceforge.net/p/dl-learner/code/HEAD/tree/trunk/examples/

family/
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Learning Time (ms) Testing Accuracy (%) Definition Length No. of hypotheses

Family data set - Aunt

PRCA I 24.5 ± 0.9 100 ± 0 12 ± 0 2 ± 0
PRCA II 59.9 ± 8.5 100 ± 0 15 ± 0 2 ± 0
DL Learner 134.3 ± 29.8 99.5 ± 0.6 21.9 ± 2 2 ± 0

Family data set - Grandgrandmother

PRCA I 24.3 ± 1.3 100 ± 0 6 ± 0 1 ± 0
PRCA II 58.4 ± 6.2 99 ± 2.4 13.1 ± 2 1.6 ± 0.2
DL Learner 68 ± 4.4 82.3 ± 6.3 26 ± 3 1.7 ± 0.3

Family data set - Grandson

PRCA I 19.1 ± 0.5 100 ± 0 5 ± 0 1 ± 0
PRCA II 19.8 ± 1.1 99.6 ± 0.8 6 ± 0.1 1 ± 0
DL Learner 23.8 ± 4.5 99.4 ± 0.7 10.1 ± 2.4 1.1 ± 0.2

Family data set - Uncle

PRCA I 25.5 ± 1.1 99.3 ± 0.8 12 ± 0 2 ± 0
PRCA II 65.2 ± 11.3 99 ± 0.8 16.7 ± 0.3 2 ± 0
DL Learner 140.2 ± 13.9 97.9 ± 1.7 23.5 ± 3.7 2.1 ± 0.2

Family data set - Cousin

PRCA I 37.8 ± 1.5 100 ± 0 10 ± 0 2 ± 0
PRCA II 1727.2 ± 489 99.7 ± 0.5 17.8 ± 3 2.1 ± 0.2
DL Learner 346 ± 24.7 99.3 ± 0.8 23.3 ± 7 2.1 ± 0.1

Poker data set - Straight 200

PRCA III 2196.5 ± 131.8 100 ± 0 10 ± 0 1 ± 0
PRCA IV 1061.9 ± 55.5 99.1 ± 0.1 26.3 ± 1.5 1 ± 0
DL Learner 1596.6 ± 30.7 73.8 ± 2.5 466.2 ± 19.4 16.7 ± 0.6

Poker data set - Straight 800

PRCA III 9504.3 ± 510.4 100± 0 10 ± 0 1 ± 0
PRCA IV 2609.5 ± 144.8 99.95 ± 06 33.8 ± 0.2 1 ± 0
DL Learner runs out of memory - - -

Table 2. Experiment result summary: PRCA and DL-Learner with ParCEL-Ex on sev-
eral Family and Straight learning problems. The values are the averages and standard
deviations of ten 10-fold cross-validations.

– The additional generator operators lead to the generation of more irrelevant
relations, that need to be scaled and integrated into the lattice. Furthermore,
the additional scaling operators and the less restrictive property filter lead
to more properties that need to be integrated into the lattice as well. Hence
bigger lattices are generated. The generation and scaling of more irrelevant
relations and the generation of lattices with more concepts increases the
learning time when PRCA is run with a more expressive configuration.

– PRCA achieves high testing accuracy on all learning problems, but not 100%
because the data sets are small and the learned definitions are over fitted to
the training data set.

– A general problem of FCA (for our purpose) is that it generates most spe-
cific descriptions instead of most general ones. According to the definition
offormal concept a concept consists of all properties common to all objects
in the concept extension (because FCA is based on closure operator). (this
happens on small data sets, but may happen on noisy data sets as well)

– PRCA with minimal configuration outperforms DL Learner regarding learn-
ing time while achieving the same testing accuracy values.

– definition length: the definitions of the DL Learner tend to be a bit longer
than those of PRCA because DL Learner combines partial definitions and
counter partial definitions, e.g., one partial definition for the uncle learning
problem is not female and exists sibling.exists child.top.
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– DL Learner and PRCA find the same number of partial definitions/hypotheses
(hypotheses in PRCA correspond to partial definitions in DL Learner).

Straight data set:

– The DL-Learner has troubles with learning these problems. On Straight200
its testing accuracy is only 73.9% which is useless for practical application
and on Straight800 it runs out of memory. The definition length value and
analysis of the result files reveal that ParCEL-Ex learns specific partial def-
initions whereas PRCA learns one generic hypothesis and achieves high ac-
curacy (99-100%) in all test runs.

– The configurations for the straight data sets are trade-offs between learning
time.

– With PRCA III the hypothesis with minimal length is learned and 100%
testing accuracy is gained, e.g.,
exists has [[card+[card+[card.nextRank+card].nextRank].nextRank].nextRank+card]

– However, learning times are large on both data sets: more than 2 seconds on
Straight200 and more than 9 seconds on Straight800.

– With the weaker 80% uncovered positives filter learning time is reduced on
both data sets: the learning duration of the Staight200 learning problem
becomes two times faster and the learning duration of Straight800 becomes
3.6 times faster. The trade-offs are that the testing accuracy gets less (but
is still more than 99%) and the definition length becomes 2.6 times longer
on Straight200 and 3.4 times longer on Straight800.

– The definition length values and result file analysis reveal that when the filter
gets weaker the hypotheses consist of more properties. These properties are
shorter than in the PRCA III hypothesis, but describe the straight only
partially. For instance, the hypothesis describes a sequence of four cards of
sequential rank and three cards with two of sequential rank and a third of
the “next-next-next” rank. This leads to worse testing accuracy. The reason
is the small training data set: the hypothesis covers all positive examples
and not any negative example.

In summary,

– the benchmark shows that PRCA outperforms DL Learner on the used
data sets (when run with appropriate configuration). It is faster with al-
ways higher accuracy.

– the experiments revealed the general problem of FCA. It generates most
specific descriptions instead of most general ones. We tried to reduce the
irrelevant properties by property filters. However, hypotheses still contain
irrelevant properties. Further work may investigate property reduction dur-
ing the final hypotheses selection in the learner.

– PRCA find short definitions because DL Learner (ParCEL-Ex) combines
counter partial definitions.

– for generalizing the results evaluations on bigger data sets (more examples,
more relations, more properties, more complex definition, noisy data) need
to be conducted
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– the slowing down on more expressive configurations and on learning prob-
lems with long hypotheses indicates that the relation generator needs to be
improved, e.g., by atm breadth first search→ heuristic based search, relation
filter mechanism for filtering duplicate relations

– for improving lattice creation (the more properties are in the pool the bigger
the lattice the more time is needed to create the lattice) we apply distributed
lattice creation.

5 Discussion

Our application scenario is in learning positive concepts of normality for de-
tecting abnormal (i.e. negative) behaviours in the context of smart monitoring
environments in ambient assisted living. Our event data sets don’t only contain
object-property relations but also more complex information relating objects
to other objects which have properties. We therefore extended standard FCA-
based learning on the basis of RCA for parallel learning on top of data with
object-object relations. Due to the amount of data, high scalability of the learn-
ing method is relevant and the proposed parallel learner addresses this problem.
The proposed approach is configurable and extensible which allows us to further
study and evaluate relational concept analysis in different parallel configurations.
We conducted experiments that have shown that we can handle data sets with
one or multiple relational contexts and that PRCA outperforms DL Learner
on the used data sets: PRCA finds a solution on straight data sets, where DL
Learner doesn’t find a correct solution. On data sets where both find solutions
PRCA learns the definitions faster and achieves similar results for testing accu-
racy.
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Abstract. In this paper, we introduce Semantic Lattice (SemLat), a
method that allows the construction of concept lattices from lexical-
semantic information extracted from PropBank-style labelled texts. We
apply SemLat to Tourism and Finances domain texts from Wikicorpus
1.0 through case studies that are examined in detail. We compare con-
ceptual structures generated by SemLat, that makes use of semantic rela-
tions, to structures generated from purely syntactic relations. We intrinsi-
cally evaluate the structures using a semantic-similarity based structural
measure. We also analyse, in a qualitative approach, the contribution of
semantic roles in concept formation. We claim that conceptual structures
generated by SemLat produce richer concepts as they provide intentional
descriptions that are more informative, from a semantic point of view.

Keywords: Formal Concept Analysis, Semantic Role, Concept Lattices.

1 Introduction

Conceptual structures such as terminologies, thesauri, taxonomies and ontologies
are important resources for information systems. Since building and maintaining
such structures is costly, automatic and semi-automatic approaches have been
proposed to minimize the effort of extracting concepts and semantic relations
from texts. We are interested in exploring the potential of the semantic roles in
the learning of conceptual structures. A semantic role expresses the meaning of
an argument in a situation described by the verb in a sentence. With the use
of semantic roles, we can identify, for example, the agentive entity of an action,
even if it appears in diverse syntactical positions through the text. In this paper,
we present the Semantic Lattice (SemLat) - a simple method to generate concept
lattices from semantic relations extracted from texts, exploring the benefits of
Formal Concept Analysis (FCA) as a conceptual clustering method. We intrinsi-
cally evaluate the conceptual lattices built, using a structural measure based on
semantic similarity. We qualitatively analyse the contribution of semantic roles
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in the formation of concepts. Results show that conceptual structures created by
SemLat generate richer concepts, as they provide intentional descriptions that
are more informative, from a semantic point of view.

This paper is organized in 6 sections. In Section 2 we study related work. Sec-
tion 3 shortly introduces semantic roles and FCA. Section 4 briefly describes the
SemLat method. Section 5 presents the studies concerning SemLat and Section
6 brings our conclusions.

2 Related Work

The idea of combining the FCA method with semantic roles is not new. Kam-
phuis and Sarboin [1] propose to represent a sentence in natural language, asso-
ciating FCA to semantic roles. They deal with two types of linguistic relations:
minor (nouns to adjectives and adverbs) and major (verbs to nouns). Differently
from that work, we extract relations from linguistically tagged texts namely the
major ones. Rudolf Wille [2] also presents examples of FCA structures combined
with semantic roles. He combines conceptual graphs with FCA structures, aiming
the formalization of useful logic to representation and processing. There are no
comments, in his work, on the processing of information present in the concep-
tual graphs, so we understand that neither the construction of these graphs nor
their mapping into FCA structures, were performed automatically. Our study
deals with the automatic extraction of information from texts (to generate rep-
resentation structures) and we analyse the limits of our approach. The FCA
method was aheady combined with semantic roles, as in [3], where efforts turn
to the linguistic analysis as a purpose for representing FrameNet through con-
cept lattices. Distinct from our work, the authors do not use FCA as a support to
build ontological structures from texts. Instead, we use textual information and
PropBank annotation to identify the roles. Although the approaches in [1,2,3]
seemed promising at the time they have been proposed, they were little ex-
plored probably due to the difficulties with the text annotation process, since
the appearance of automatic semantic role annotators is more recent. Even with
thorough literature review, we did not find, to date, studies that explore the use
of semantic roles in conjunction with the FCA method to support construction
of ontological structures from texts. We address this issue in our research.

3 Semantic Roles and FCA

Semantics roles are “roles within the situation described by a sentence” [4]. Al-
though there is no consensus on a single list of semantic roles, some are widely
accepted [5] such as: Agent, Patient, Instrument, Theme, Source and Destina-
tion. The barrier regarding the definition of roles has been circumvented by
assigning numerical labels (A0, A1, A2, ...) to the arguments of the verbs. This
is the case for PropBank1 corpus, which has been extensively used to train se-
mantic role taggers for the English language. The F-EXT-WS tool used to tag

1 http://www.cis.upenn.edu/˜ace

78



the corpora in the present study, also adopts these labels [6]. For the English
language, it provides Part-of-Speech (POS) tagging, syntactical annotation and
semantic roles tagging. F-EXT-WS uses the tags defined for PennTreeBank 2.

FCA was introduced by Rudolf Wille in the 80’s as a method for data analysis
[2]. A key element in FCA is the formal context, characterized by the triple
(G,M, I), where: G is the set of domain entities, called formal objects; M consists
of the features of these entities, their formal attributes; and I is the binary
relation on G×M , called the incidence relation, which associates a formal object
to its attributes. The formal concepts are built from the formal context. A formal
concept is determined by the pair (O,A) if and only if O ⊂ G and A ⊂M . Once
the concepts have already been defined, the concept lattice is created [7].

4 The SemLat Method

The SemLat method is the result of several studies, including Relational Con-
cept Analysis [8], in the interest of how to include semantic roles in lattices
[9,10]. SemLat comprises 3 stages shown in Fig. 1. The SemLat input is a corpus
annotated with lexical-semantic information, lemmatized. From this corpus we
create the conceptual structure.

Fig. 1. SemLat stages

The ’Extraction of semantics relations’ stage consists of the building of tuples
containing, for a certain verb, its arguments and the semantic roles associated
with these arguments. Aiming to build a conceptual structure, relevant noun
phrases are extracted from the arguments. The steps to build tuples are:

1. To analyze the sentences, identifying and extracting verbs and respective
arguments and associated semantic roles.

2. To identify the noun phrases in the verb arguments discarding those formed
by proper nouns (as we have not included an instance level in the ontological
structure).

3. To form tuples, using information extracted from sentences in steps 1 and
2. Each tuple must contain noun phrases and their correspondent semantic
roles. Tuples are in the following format: (np1,sr1,np2,sr2) where npi and
sri correspond, respectively, to the noun phrase and its semantic role.

Let’s consider the following sentence from PropBank: “The financial-services
company will pay 0.82 share for each Williams share.“ After annotating (Fig. 2)
the sentence with the use of F-EXT-WS, we are able to extract necessary lexical-
semantic information from this sentence and complete the tuple (company, A0,
share, A1).
2 http://www.cis.upenn.edu/˜treebank/
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(A0 (DT The) (NNS financial-services) (NN company)) (MD will) (V (VB pay)) (A1
(CD 0.82) (NN share) (IN for) (DT each) (NNP Williams) (NN share)).

Fig. 2. Sentence annotated with F-EXT-WS

The second stage aims to produce the object-attribute pairs that will give
origin to the FCA formal context. From each tuple (np1,sr1,np2,sr2) extracted
from the texts, two object-attribute pairs are created: (np1,sr1 of np2) and
(np2,sr2 of np1). So, from the tuple (company, A0, share, A1) the pairs (com-
pany, A0 of share) and (share, A1 of company) are created. Frequently, A0 cor-
responds to Agent and A1 to Patient. With the use of semantic roles, we can
better determine the relationship between the nouns: company is an agent of
share, and share is a patient of company. As many pairs can be generated, in
order to avoid an excessively sparse formal context, we group concepts, as de-
scribed in [9]. The pairs created, the formal context can be built. SemLat’s last
stage consists of the generation of the conceptual structure (Fig. 3). In order to
accomplish this task, FCA algorithms, such as Bordat [11], can be used. Another
alternative is to use a specific tool to generate lattices such as Concept Expert3

1.3 .

5 Studies concerning SEMLAT

We compare structures built with the SemLat method (Fig. 3b) to those built
with FCA exclusively based on the syntactic relations between verbs and their
arguments, as proposed by Cimiano in [12] (Fig. 3a). In order to accomplish
this task, we use Wikicorpus4 1.0 comprising Wikipedia texts. We randomly
took from Wikicorpus 322 texts of the Finances domain and 284 texts of the
Tourism domain. These subsets were named correspondingly, WikiFinance and
WikiTourism. Both corpora were annotated with lexical-semantic information
using F-EXT-WS. We lemmatized nouns present in the identified noun phrases
with TreeTagger5. To analyse the contribution brought with the semantic roles
in the formal concepts formation, we outlined two case studies:

– case (np, v): describes syntactical relations of the type verb-argument.
– case (np, sr of np): describes semantic relations obtained with SemLat.

With these two studies and using WikiFinance and WikiTourism corpora, we
produced four conceptual structures to be examined (only relations with a min-
imum frequency of 2 were considered):

– TourismFCA (np, v): from case (np, v) for the WikiTourism corpus.
– TourismFCA (np, sr of np): from case (np, sr of np) for the WikiTourism

corpus.

3 http://sourceforge.net/projects/conexp
4 http://nlp.lsi.upc.edu/wikicorpus/
5 http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/
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– FinanceFCA (np, v): from case (np, v) for the WikiFinance corpus. A subset
of this structure is shown in Fig. 3a.

– FinanceFCA (np, sr of np): from case (np, sr of np) for the WikiFinance
corpus (subset in Fig. 3b).

(a) (b)

Fig. 3. Syntactic and semantic lattices

Table 1 contains information on these structures, including number of objects,
attributes, concepts and edges. We notice that case (np, sr of np) has in average
4 times more attributes than case (np, v). This number of attributes was already
expected, since in case (np, sr of np) the attributes are much more specific. This
specificity increases in around 7% of the concepts in the Finances domain and
in approximately 30% in the Tourism domain. This fact may be related to the
scope of the texts in each domain.

Table 1. Information on the conceptual structures generated

FCA case #objects #attributes #concepts #edges

Finance
(np,v) 631 237 760 2055

(np,sr of np) 631 1018 819 1919

Tourism
(np,v) 383 121 239 529

(np,sr of np) 383 535 343 633

In a subjective and shallow analysis, we perceive the Tourism domain texts
are more restricted than the Finances ones. While Tourism texts mostly approach
subjects related to attractions, texts from Finances include descriptions on the
key terms in the domain. In the following sections we study the contribution of
semantic roles in the formation of concepts.

5.1 Lexical cohesion

Although extensively studied, the evaluation of conceptual structures is still
an issue to be further investigated. When we evaluate FCA-based structures,
difficulties increase due to the fact that this investigation is recent. We found
two measures ideally appliable to this evaluation [13,14] both comparing FCA
structures regarding the objects and the formal attributes of their concepts.
As the formal concepts generated from the case studies were not equivalently
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configured (they had different attributes), we could not apply these measures
satisfactorily. So we focused our analysis on formal objects. The evaluation of
these lattices was based on the structural Semantic Similarity Measure (SSM)
[15]. SSM indicates how close are the concepts that match (exactly or partially)
the search terms in an ontology. In the present study, SSM became a sort of
lexical cohesion measure, as it was applied to the objects of each formal concept
from the FCA structure. Typically, synonymy, hypernymy and meronymy are
considered, when calculating cohesion. In order to obtain such cohesion value,
as recommended in [15], we used in the SSM estimation the measure defined by
Wu and Palmer [16] which takes semantic relations from an ontological structure
to calculate the semantic distance between words. Equation (1) indicates the
average lexical cohesion among the N concepts in a FCA structure, regarding a
conceptual structure E.

SSME =
1

N

∑N
i=1 ssmi (1)

As detailed in Equation (2), ssmi computes the similarity in the set of objects
G of a concept i in a FCA structure, using Wu e Palmer (wup) measure. In case
the cardinality of G is 1, ssmi is zero.

ssmi =





1

|Gi|
|Gi|−1∑
j=1

|Gi|∑
k=j+1

wupE(oj , ok) for |Gi| > 1 and oj , ok ∈ Gi

0 o/w

(2)

Besides WordNet6, we applied SSM over domain ontologies: LSDIS Finance7

and Finance8 for the Finances domain, and Travel9 and TGPROTON10 for the
Tourism domain. Although the extension and richness in WordNet relations,
these relations are mostly general and do not refer to a specific domain. We be-
lieve that the measure proposed by Wu and Palmer [16], applied to the WordNet
structure, might not fully capture the expected semantic relations so producing
less expressive values. Besides, even if domain ontologies have a more concise
concepts set (regarding its domain), it is more frequent to find n-gram labelled
concepts (n > 1) as for the present studies. So, it is possible to assert that the
relations among concepts are domain relations. These points may conduct to
more significant results, from a semantic point of view, when concerning the
quality of the clusters of concepts. Table 2 shows the results obtained from the
application of SSM. In this table, W, F, L, TG and T correspond to the lexical
resources used: WordNet, LSDIS Finance, Finance, TGPROTON and Travel,
respectively. As we imagined, SSM showed a low cohesion for both domains
when using WordNet. As we expected, the domain ontologies have a cohesion

6 http://wordnet.princeton.edu/
7 http://lsdis.cs.uga.edu/projects/meteor-s/wsdl-s/ontologies/LSDIS Finance.owl
8 http://www.fadyart.com/ontologies/data/Finance.owl
9 http://protege.cim3.net/file/pub/ontologies/travel/travel.owl

10 http://goodoldai.org/ns/tgproton.owl
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distinct from that found in the texts we used. In this case, cohesion values were
low because less than 10% of the objects in concepts from a lattice were present
in the ontologies. For the Tourism domain, we believe the variety of the texts
was the main reason for the low matching. The absence of non-hierarchical rela-
tions in the selected ontologies caused some difficulties to the evaluation as well.
As the semantic roles should express non-hierarchical relations, the cohesion of
these relations were not computed in the evaluation results. As a next step we
performed a qualitative analysis.

Table 2. SSM application results

Finance Tourism

case SSMw SSMF SSML SSMw SSMTG SSMT

(np,v) 0.33 0.33 0.27 0.18 0.05 0.02
(np,sr of np) 0.20 0.21 0.16 0.09 0.01 0.01

5.2 Qualitative Analysis

In this section we address, from a qualitative perspective, the importance of
semantic roles in the formation of the formal concepts. Features inherent to se-
mantic roles may help distinguish, classify and, essentially, better associate the
elements extracted from texts. To illustrate this analysis, we used a subset from
FinanceFCA (np, sr of np) and FinanceFCA (np, v) lattices. These subsets are
those presented in Fig. 3. We perceived that the semantic roles caused the gen-
eration of an extra concept. The nouns analyst and dividend were not clustered
in a same concept. However, the relation between them was not lost. In the
structure obtained from case (np, sr of np) from Fig. 3b, transversal relations
appear as attributes. The object analyst is defined as A0 of dividend, meaning
that it is the Agent of dividend. And the object dividend is A1 of analyst, its
patient. In both cases, the structures produce a concept for “share”. In case
(np, sr of np) we get to more clearly interpret the relation between share and
the other elements of the domain. We can notice that share is usually patient
(A1) of stockholder, company e shareholder. The stockholder concept showed
to be a superconcept in both structures but, in case (np, sr of np), share was
not its subconcept. This relation was expressed in the attributes. In case (np
,sr of np), stockholder as well as company and shareholder, its subconcepts, are
agents (A0) of share. From this analysis we noticed that, even if the semantic
roles make the concepts more specific, they are much more informative than the
verbs. The concepts generated from case (np, sr of np) are semantically richer,
from an intentional point of view, than those from case (np,v).

6 Conclusions

In this paper we depicted the SemLat method, which allows to build concepts
based on semantic roles, using FCA as a conceptual clustering method. We then
investigated the contribution of SemLat in the formation of concepts. From a
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structural and lexical point of view, it is still difficult to objectively evaluate the
contribution of semantic roles in the building of formal concepts. The cohesion
computed by SSM for the Tourism and Finances domains was inconclusive. From
a qualitative point of view, we perceived semantically richer formal concepts.
The inclusion of semantic roles in the formal attributes improved the intentional
description of concepts. We are interested in the extrinsic evaluation of the con-
cept lattices generated by SemLat. Presently, we are analysing the contribution
of these structures in the text categorization task. Work on more appropriate
methods for the evaluation of ontological structures is also important for future
directions of the present study.
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Abstract. Links between heterogeneous data sets may be found by using a gen-
eralisation of keys in databases, called linkkeys, which apply across data sets.
This paper considers the question of characterising such keys in terms of formal
concept analysis. This question is natural because the space of candidate keys is
an ordered structure obtained by reduction of the space of keys and that of data set
partitions. Classical techniques for generating functional dependencies in formal
concept analysis indeed apply for finding candidate keys. They can be adapted in
order to find database candidate linkkeys. The question of their extensibility to
the RDF context would be worth investigating.

We aim at finding correspondences between properties of two RDF datasets which
allows for identifying items denoting the same individuals. This is particularly useful
when dealing with linked data [8] for finding equality links between data sets.

Because the RDF setting raises many additional problems, we restrict ourselves here
to databases. The problem is illustrated by the two (small) book relations of Table 1
(from [5], p.116). We would like to characterise a way to identify items on the same
line while not (wrongly) identifying any other pair of items.

bookstore relation library relation
id firstname title lastname lang year author orig translator wid
id fn tt ln lg y a o t w

1845 Poe Raven Baudelaire a1
1845 Poe Raven Mallarmé a2

3 E. Gold bug Poe en 1843 Poe Gold Bug Baudelaire b
4 T. On murder Quincey en 1827 Quincey On murder Schwob c
5 T. Kant Quincey en 1827 Quincey Kant Schwob d
6 T. Confessions Quincey en 1822 Quincey Confessions Musset e
7 J.-J. Confessions Rousseau fr
8 T. Confessions Aquinus fr

Table 1. Two relations with, on the same lines, those tuples that represents the same individual
(the line after attribute names are abbreviations).

For that purpose, we have defined linkkeys [5, 2] and we would like to formulate
the linkkey extraction problem in the framework of formal concept analysis [6].
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We first present this problem in the context of database candidate key extraction
where one looks for sets of attributes and the sets of equality statements that they gen-
erate. We formulate this problem as the computation of a concept lattice. Then we turn
to an adaptation of linkkeys to databases and show that the previous technique cannot
be used for extracting the expected linkkeys. Instead we propose an adaptation.

1 Candidate keys in databases

A relation D = 〈A, T 〉 is a set of tuples T characterised by a set of attributes A. A key
is a subset of the attributes whose values identify a unique tuple.
Definition (key) Given a database relation D = 〈A, T 〉, a key is a subset of the at-
tributes K ⊆ A, such that ∀t, t′ ∈ T , (∀p ∈ K, p(t) = p(t′))⇒ t ≈ t′.

Classically, keys are defined from functional dependencies. A set of attributes A is
functionally dependent from another K, if equality of the attributes of K determines
equality for the attributes of A. If the equality between tuples is the same thing as the
equality for all attribute values, then a key is simply those sets of attributes of which A
is functionally dependent.

However, we have not used the equality between tuple (=) but a particular ≈ rela-
tion. The reason is that we do not want to find keys for the database with =, but with an
unknown relation ≈ which is to be discovered.

The statements t ≈ t′ are those equality statements that are generated by the key.
The ≈ relation must contain = (t = t′ ⇒ t ≈ t′) and be an equivalence relation (this is
by definition if it is the smallest relation satisfying the key).

From a key K of a relation 〈A, T 〉, it is easy to obtain these statements through
the function γ : 2A → 2T ×T such that γ(K) = {t ≈ t′|∀p ∈ K, p(t) = p(t′)}. γ is
anti-monotonic (∀K,K ′ ⊆ A,K ⊆ K ′ ⇒ γ(K) ⊇ γ(K ′)).

We define candidate key extraction as the task of finding the minimal sets of at-
tributes which generate a partition of the set of tuples.
Definition (candidate key) Given a database relation D, a candidate key is a key such
that none of its proper subsets generate the same partition. κ(D) is the set of candidate
keys.

Those candidate keys which generate the singletons(T ) partition are called normal
candidate keys and their set noted κ̂(D) = {K ∈ κ(D)|∀(t ≈ t′) ∈ γ(K), t = t′}.

The problem of candidate key extraction is formulated in the following way:
Problem: Given a database relation D, find κ(D).

This problem is usually not considered in databases. Either keys are given and used
for finding equivalent tuples and reducing the table, or the table is assumed without
redundancy and keys are extracted. In this latter case, the problem is the extraction of
normal candidate keys.

Using lattices is common place for extracting functional dependencies [9, 4] and the
link to extract functional dependencies with formal concept analysis has already been
considered [6] and further refined [10, 3].

In fact, this link can be fully exploited for extracting candidate keys instead of find-
ing functional dependencies.
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It consists of defining1 a formal context enc(〈A, T 〉) = 〈P2(T ),A, I〉 such that:
∀p ∈ A,∀〈t, t′〉 ∈ P2(T ),

〈t, t′〉Ip iff p(t) = p(t′)

The (formal) concepts of this encoding, that we denote by the set FCA(enc(D)),
associate a set of attributes to a set of pairs of tuples. These pairs of tuples are tuples that
cannot be distinguished by the values of the attributes, i.e., our≈ assertions. The candi-
date keys are the minimal elements of the intent which generate exactly the correspond-
ing partition2. κ(D) = ⋃

c∈FCA(enc(D)) µ⊆{K ⊆ intent(c)|γ(K) = γ(intent(c))}.
For any key K ∈ κ(D), γ(c) is the reflexive, transitive and symmetric closure of

the extent of its concept.
If this method is applied to the data sources of Table 1, the result is displayed in

Figure 1.

T × T
∅

3 ≈ 4 ≈ 5 ≈ 6, 7 ≈ 8

{lg}
4 ≈ 5 ≈ 6 ≈ 8

{fn}
6 ≈ 7 ≈ 8

{tt}

4 ≈ 5 ≈ 6

{lg, ln, fn}
7 ≈ 8

{lg, tt}
6 ≈ 8

{tt, fn}

A = {id, fn, tt, ln, lg}

T ′ × T ′

∅

a1 ≈ a2 ≈ b, c ≈ d ≈ e
{a}

a1 ≈ a2, c ≈ d
{a, y}

a1 ≈ b, c ≈ d
{a, t}

c ≈ d
{y, a, t}

a1 ≈ a2
{y, a, o}

A′ = {w, y, a, o, t}

Fig. 1. Example of the key concept lattice for the bookstore (left) and library (right) relations.

As presented in Table 2, this may generate several candidate keys for the same
concept ({o, t} and {w} for the maximal partition in the library dataset; in the bookstore
dataset, the concept of extent 4 ≈ 5 ≈ 6 has two candidate keys {ln} and {lg, fn} and
the maximal partition has three candidate keys {id}, {tt, ln} and {tt, fn, lg}).

This answers positively to our first question: it is possible to extract keys, i.e., gen-
erating κ(D) from data with some help from formal concept analysis.

1 For an arbitraty total strict order < on T , P2(T ) = {〈t, t′〉 ∈ T 2 | t < t′}.
2 µRE = {X ∈ E|∀X ′ ∈ E,¬(X ′RX))}.
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intent potential keys candidate keys extent
{id, fn, tt, ln, lg} id. . . , {id}, {tt, ln}, {tt, fn, lg} ∅
{fn, ln, lg} fnlnlg, fnlg, fnln, lgln, ln {ln}, {fn, lg} {4 ≈ 5 ≈ 6}
{tt, lg} ttlg {tt, lg} {7 ≈ 8}
{fn, tt} fntt {fn, tt} {6 ≈ 8}
{lg} lg {lg} {3 ≈ 4 ≈ 5 ≈ 6, 7 ≈ 8}
{fn} fn {fn} {4 ≈ 5 ≈ 6 ≈ 8}
{tt} tt {tt} {6 ≈ 7 ≈ 8}
∅ ∅ ∅ T × T

{w, y, a, t, o} w, . . . ot, yot, aot, yaot, wyaot {o, t}, {w} ∅
{y, a, o} o, ao, at, yo, yao {o} {a1 ≈ a2}
{y, a, t} yt, yat {y, t} {c ≈ d}
{y, a} y, ya {y} {a1 ≈ a2, c ≈ d}
{a, t} t {t} {a1 ≈ b, c ≈ d}
{a} a {a} {a1 ≈ a2 ≈ b, c ≈ d ≈ e}
∅ ∅ ∅ T ′ × T ′

Table 2. The list of concepts extracted from the bookstore (top) and library (bottom) relations.
All intent should be completed by their subsets.

2 Database linkkey extraction

Consider that, instead of one relation, we are faced with two relations from two different
databases which may contain tuples corresponding to the same individual.

We assume that candidate attribute pairs are already available through an alignment
A which expresses equivalences between attributes of both relations. In this example,
A = {〈lastname, author〉, 〈title, orig〉, 〈id,wid〉}. Our goal is to find those which will
identify the same individuals (tuples) in both databases.

2.1 Linkkeys for databases

Linkkeys [5] have been introduced for generating equality, a.k.a. sameAs, links between
RDF datasets. We present a simplified notion of linkkey which is defined over relations.
Definition (Linkkey) Given two relationsD = 〈A, T 〉 andD′ = 〈A′, T ′〉 and an align-
mentA ⊆ A×A′.LK ⊆ A is a linkkey betweenD andD′ iff ∀t, t′ ∈ T , T ′; (∀〈p, p′〉 ∈
LK, p(t) = p(t′)) ⇒ t ≈ t′. The set of linkkeys between D and D′ with respect to A
is denoted κA(D,D′).

This definition may be rendered independent from A by assuming A = A×A′, so
any attribute of one relation may be matched to any other.

2.2 Strong linkkey extraction

One way to deal with this problem is to start with keys: either candidate keys or normal
candidate keys. For that purpose, we define κ(D)/A as the operation which replaces,
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in all candidate keys of D, each occurrence of an attribute in a correspondence of A by
this correspondence3.

A first kind of linkkeys that may be extracted are those which are normal can-
didate keys in their respective relations. They are called strong linkkeys and may be
obtained by selecting normal candidate keys that contain only attributes mentioned in
the alignment (replacing the attribute by the correspondence) and to intersect them, i.e.,
κ̂(D)/A∩κ̂(D′〉)/A. Strong linkkeys have the advantage of identifying tuples matching
across relations without generating any links within the initial relations.

In the example of Table 1, there is one such strong linkkey: {〈id,wid〉}. Indeed, the
normal candidate keys for the bookstore relation are {id}, {title, lastname}, or {title, firstname, lang}
and, for the library relation they are {wid} and {orig, translator}. Since, translator has
no equivalent in the bookstore relation (through A), only {〈id,wid〉} can be used. Un-
fortunately, it does not identify any equality statement as this happens very often with
databases surrogates (this may have been worse if both relations used integers as iden-
tifiers: identifying false positives).

This scheme may be relaxed by trying to extract linkkeys from all candidate keys.
In this way one would simply use κ(D)/A ∩ κ(D′)/A. In our example, this does not
bring further linkkeys.

2.3 Candidate linkkey extraction

The technique proposed above, does indeed generate linkkeys, but does not generate all
of them: linkkeys may rely on sets of attributes which are not candidate keys. Indeed,
one interesting linkkey for the relations above is {〈lastname, author〉, 〈title, orig〉}.

Surprisingly, it does not use a normal candidate key of the library relation and not
even a candidate key of the bookstore relation as {author, orig} generates the same links
as {orig} in this relation. However, when applied to the elements of T ×T ′ this linkkey
generates non ambiguous links, i.e., links which do not entail new links within a relation
(this would have been different if a tuple 〈year = 1822, author = Quincey, orig =
Confessions, translator = Baudelaire〉 were present in the library relation).

Such linkkeys may be found by the same type of technique as before. It consists
of defining a formal context enc(〈A, T 〉, 〈A′, T ′〉, A) = 〈T × T ′, A, I〉 such that:
∀〈p, p′〉 ∈ A,∀〈t, t′〉 ∈ T × T ′,

〈t, t′〉I〈p, p′〉 iff p(t) = p′(t′)

γ is redefined to deal with subsets of alignments and generate ≈ assertions on T ∪
T ′. But, in order for ≈ to remain an equivalence relation it will be necessary to close ≈
on T ∪ T ′ and not only on T ×T ′. Indeed if two tuples of T are found equal to a tuple
of T ′, then by transitivity, they should be equal as well.

Again, candidate linkkeys are the minimal elements of the intent which generate
exactly the corresponding set of links. κA(D,D′) =

⋃
c∈FCA(enc(D,D′,A)) µ⊆{K ⊆

intent(c)|γ(K) = γ(intent(c))}.
3 This assumes that the alignment is one-to-one. This assumption is necessary for this subsection

of the paper only.
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T × T ′

∅

3 ≈ a1, 3 ≈ a2, 3 ≈ b,
4 ≈ c, 4 ≈ d, 4 ≈ e,
5 ≈ c, 5 ≈ d, 5 ≈ e,
6 ≈ c, 6 ≈ d, 6 ≈ e

{〈fn, a〉}

3 ≈ b, 4 ≈ c, 5 ≈ d,
6 ≈ e, 7 ≈ e, 8 ≈ e

{〈tt, o〉}

3 ≈ b, 4 ≈ c,
5 ≈ d, 6 ≈ e
{〈fn, a〉, 〈tt, o〉}

A = {〈fn, a〉, 〈tt, o〉, 〈id, w〉}

Fig. 2. Linkkey concept lattice for the relations of Table 1.

This technique, applied to the example of Table 1, generates the lattice of Figure 2. It
can be argued that the candidate linkkeys {〈fn, a〉, 〈tt, o〉} and {〈id, w〉} are better than
the others because they do not generate other statements within the relations. Indeed,
{〈tt, o〉} generates 6 ≈ 7 ≈ 8, and {〈fn, a〉} generates a1 ≈ a2 ≈ b, c ≈ d ≈ e and
4 ≈ 5 ≈ 6.

3 Conlusion and further work

We introduced, in the context of the relational model, the notions of candidate keys and
linkkeys and we discussed potential links with formal concept analysis. These are only a
few elements of a wider program. Problems were expressed in the relational framework
because they are simpler. Our ambition is to provide an integrated way to generate
links across RDF data sets using keys and it may be worth investigating if the proposed
formal concept analysis framework can be extended to full RDF data interlinking.

Plunging this in the context of RDF requires further developments:

– considering that values do not have to be syntactically equal but may be found
equal with respect to some theory: this may be a simple set of equality statement
(“étudiant”=“student”) or may depend on RDF Schemas or OWL ontologies;

– considering several tables depending on each others together (this is related to Re-
lational Concept Analysis [7] and could use the notion of foreign keys);
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– considering that RDF attributes are not functional and hence yield a more general
type of keys [1].

Once this is integrated within a common theoretical framework, a full solution re-
quires work before and after running formal concept analysis:

– Before, it is necessary to use ontology/database matching [5] and to proceed to
value normalisation.

– After, it is necessary to select among these potential or candidate keys those which
are the more accurate [2].
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BP 239, Vandoeuvre-lès-Nancy, F-54506, France

{mehwish.alam,amedeo.napoli}

Abstract. The data published in the form of RDF resources is increas-
ing day by day. This mode of data sharing facilitates the exchange of
information across the domains. Although it provides easier ways in the
use of data such as through SPARQL queries. These queries over seman-
tic web data usually produce list of tuples as answers which may be huge
in number or may require further manipulation so that it can be under-
stood and interpreted. Accordingly, this paper introduces a new clause
View By in the SPARQL query for creating semantic views over the raw
SPARQL query answers. This approach namely, Lattice-Based View Ac-
cess (LBVA), is a framework based on Formal Concept Analysis (FCA).
It provides a classification of the answers of SPARQL queries based on
a concept lattice, that can be navigated for retrieving or mining specific
patterns in query results w.r.t. user constraints. In this way, the concept
lattice can be considered as a materialized view of the data resulting
from a SPARQL query.

Keywords: Formal Concept Analysis, SPARQL Query Views, Lattice-Based
Views, SPARQL, Classification.

Introduction

A considerable amount of Semantic Web (SW) data is already available on the
web. Thus many agents are looking for more and more data present in the form
of ontologies and RDF triples. Linked Open Data (LOD) [2] is a huge source of
RDF resources interlinked with each other to form a cloud. SPARQL queries are
used in order to make these data usable by domain experts and software agents.
Sometimes queries are executed which may generate huge amount of results
giving rise to the problem of information overload [4]. A typical example is the
answers retrieved by search engines, which may mix between several meanings
of one keyword. In case of huge results, many results are navigated to find the
interesting links, which may be overwhelming without any navigation tool. Same
is the case with the answers obtained by SPARQL queries, which may be huge
in number and it may be harder to extract the most interesting patterns. This
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problem of information overload raises new challenges for data modeling and
analysis and calls for improving data access, information retrieval and knowledge
discovery w.r.t web querying.

In order to deal with the problem of information overload, this paper proposes
a new approach based on Formal Concept Analysis (FCA [5]), which provides a
lattice-based classification of the results obtained by SPARQL queries w.r.t user
constraints. This new framework, namely Lattice Based View Access (LBVA),
allows the classification of SPARQL query results into a concept lattice, referred
to as views, for data analysis, knowledge discovery and information retrieval
purposes. Based on one SPARQL query several views can be generated from
different perspectives. In addition, LBVA allows for navigation over SPARQL
query results. Here after, we describe how the views (a view corresponds to a
concept lattice) can be designed from a SPARQL query and the result which is
returned. Moreover, the analysis and the interpretation of the views is totally
supported by the concept lattice. In case of large data only a part of the lattice
can be considered for the analysis using the technique of iceberg lattices.

The intuition of classifying results obtained by querying LOD is inspired by
web clustering engines [3] such as Carrot21. The general idea behind web clus-
tering engines is to group the results obtained by query posed by the user based
on the different meanings of the terms related to a query. Such systems deal with
unstructured textual data on web. However, there are some studies conducted to
deal with structured RDF data. In [4], the authors target the problem of man-
aging large amounts of results obtained by conjunctive queries with the help of
subsumption hierarchy present in the knowledge base. On the other hand, lattice-
based views provide classification based on the formal concepts and a partially
ordered organization of the results. It also opens possibilities for navigation or
information retrieval by traversing the concept lattice and for data analysis by
allowing the extraction of association rules from the lattice. Additionally, unlike
[4], LBVA also deals with data that has no schema (which is often the case with
linked data).

The concept lattice provides a well founded structure on which a series of in-
terpretations can be carried out. This framework is general and does not depend
on any particular domain and may be used in addition with external resources,
e.g. domain knowledge.

The paper is structured as follows: Section 1 gives a brief overview of Linked
Open Data and gives the motivating example. Section 2 defines LBVA and gives
the overall architecture of the framework. Section 3 briefly described the exper-
imentation setting. Finally, Section 4 concludes the paper.

1 Linked Open Data

Linked Open Data (LOD) [2] is the way of publishing structured data which
helps in the connection between several resources through their schema. LOD

1 http://project.carrot2.org/index.html
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represents data in the form of RDF graphs. Given a set of URIs U , blank nodes
B and literals L, an RDF triple is represented as t = (s, p, o) ∈ (U ∪ B) ×
U × (U ∪ B ∪ L), where s is a subject, p is a predicate and o is an object. A
finite set of RDF triples is called as RDF Graph G such that G = (V,E), where
V is a set of vertices and E is a set of labeled edges and G ∈ G, such that
G = (U ∪ B) × U × (U ∪ B ∪ L). Each pair of vertices connected through a
labeled edge keeps the information of a statement. Each statement is represented
as 〈subject, predicate, object〉 referred to as an RDF Triple. V includes subject
and object while E includes the predicate.

SPARQL2 is the standard query language for RDF. In the current work we
will focus more on the type of queries whose output performs value selection
over the variables matching the patterns (queries containing SELECT clause).
Now let us assume that there exists a set of variables V disjoint from U in
the above definition of RDF, then (U ∪ V ) × (U ∪ V ) × (U ∪ V ) is a graph
pattern called a triple pattern. If a variable ?X ∈ V and ?X = c then c ∈ U .
Given U , V and a triple pattern t a mapping µ(t) would be the triple obtained
by replacing variables in t with U . [[.]]G takes an expression of patterns and
returns a set of mappings. Given a mapping µ : V → U and a set of variables
W ⊆ V , µ is represented as µ|W , which is described as a mapping such that
dom(µ|W ) = dom(µ) ∩W and µ|W (?X) = µ(?X) for every ?X ∈ dom(µ) ∩W .
Finally, the SPARQL SELECT query is defined as follows:

Definition 1. A SPARQL SELECT query is a tuple (W,P ), where P is a graph
pattern and W is a set of variables such that W ⊆ var(P ). The answer of (W,P )
over an RDF graph G, denoted by [[(W,P )]]G , is the set of mappings:

[[(W,P )]]G = {µ|W |µ ∈ [[P ]]G}

In the above definition var(P ) is the set of variables in pattern P and vari-
ables W in SELECT clause of SPARQL query3. Further details on the formal-
ization and foundations of RDF databases are discussed in [1].

Example 1. Consider a query all the bands which play different stringed instru-
ments along with their origin. This example will continue in the rest of this
paper. Let us name this query Q, then Q can not be answered by standard search
engines as it generates a separate list of bands and stringed instruments requir-
ing multiple resources to be integrated. However, Q can be answered by SPARQL
queries over LOD. For example, let us consider the SPARQL query in Listing 1.1
over DBpedia4. DBpedia is the central hub of LOD which extracts data from
Wikipedia and makes it available in the structured format.

2 http://www.w3.org/TR/rdf-sparql-query/
3 In the rest of the paper we denote W as V to avoid overlap between the attribute

values W in many-valued context.
4 http://dbpedia.org/sparql
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(a) Classes of Bands w.r.t. Musical Instruments
and Countries, e.g., the concept on the top right
corner with the attribute Cuatro contains all the
bands which play Cuatro.

(b) Classes of Musical Instruments w.r.t Bands
and their Origin

Fig. 1: Concept Lattices w.r.t Musical Instrument’s and Band’s Perspective.

Listing 1.1: SPARQL Query Q

SELECT ?band ? instrument ? o r i g i n WHERE {
?band rd f : type dbpedia−owl : Band .
?band dbpprop : o r i g i n ? o r i g i n .
?band dbpedia−owl : bandMember ?member .
?member dbpedia−owl : instrument ? instrument .
? instrument dcterms : s u b j e c t Category : S t r i ng in s t rument s .

GROUP BY ? instrument ? o r i g i n

The above SPARQL query returns a list of bands along with the instruments
they play and their origin as an answer. An excerpt of the answers is shown
below:

dbpedia5:RHCP6 dbpedia:Banjo dbpedia:US

dbpedia:Disturbed dbpedia:Bass Guitar dbpedia:US,

dbpedia:The Solution dbpedia:Banjo dbpedia:Sweden.

In case of too many origins GROUP BY clause will lead to many small groups
which would be hard for the user to observe with respect to origin or instrument,
failing in the task of grouping. A classification technique can be used for navi-
gation or interpretation. For example, Figure 1(a) shows a concept lattice for a
small part of query answers. Here we can see classes such as the concept which
contains all the bands which play Cuatro. If the search is more specified then
the origin of each of the bands can also be retrieved. It is possible to retrieve
bands which play Cuatro and are from UK, here Chrome Hoof is the band which
plays Cuatro in the current small example. On the other hand, Figure 1(b)
shows a concept lattice where musical instruments are classified with respect to
bands and their origin, giving a totally different perspective over the same set
of answers.

5 http://dbpedia.org/resource/
6 Red Hot Chilli Peppers

96



2 Lattice-Based View Access

In this paper, we propose an approach called Lattice-Based View Access which
generates a concept lattice referred to as view. This view provides users with clas-
sification, navigation and analysis capabilities over these results. In the scenario
of LOD, query processing procedure can not be controlled, so, in our algorithm
we do not process the SPARQL query. The views are defined over RDF data by
processing the set of tuples returned by the SPARQL query.

2.1 SPARQL Queries with Classification Capabilities

The idea of introducing a VIEW BY clause is to provide classification of the re-
sults and add a knowledge discovery aspect to the results w.r.t the variables
appearing in VIEW BY clause. For example, we have a SPARQL SELECT query
Q = SELECT ?X ?Y ?Z WHERE {pattern P} VIEW BY ?X then the set of vari-
ables V = {?X, ?Y, ?Z}. According to the definition 1 the answer of the tuple
(V, P ) is represented as [[({?X, ?Y, ?Z}, P )]] = µi where i ∈ {1, . . . , k} and k is
the number of mappings obtained for the query Q. Here, dom(µi) = {?X, ?Y, ?Z}
which means that µ(?X) = Xi, µ(?Y ) = Yi and µ(?Z) = Zi. Finally, a complete
set of mappings can be given as {{?X → Xi, ?Y → Yi, ?Z → Zi}}.

Now, variables appearing in the VIEW BY clause are referred to as object
variable7 and is denoted as Ov such that Ov ∈ V . In the current scenario Ov =
{?X}. The remaining variables are referred to as attribute variables and are
denoted as Av where Av ∈ V such that Ov ∪Av = V and Ov ∩Av = ∅.

Example 2. An alternate query for the query in Listing 1.1 with the VIEW BY

clause can be given as:

SELECT ?band ?instrument ?origin WHERE {
?band rdf:type dbpedia-owl:Band.

?band dbpprop:origin ?origin.

?band dbpedia-owl:bandMember ?member .

?member dbpedia-owl:instrument ?instrument .

?instrument dcterms:subject dbpedia8:Category:String instruments.}
VIEW BY ?band

Here, V={?band, ?instrument, ?origin} then the evaluation of the SELECT
query [[({?band, ?instrument, ?origin}, P )]] will generate the mappings shown
in Table 1. Accordingly, dom(µi) = {?band, ?instrument, ?origin}. Here, µ1(?band)
= RHCP , µ1(?instrument) = Banjo and µ1(?origin) = US. In the current
example, we have, Ov = {?band} because it appears in the VIEW BY clause
and Av = {?instrument, ?origin}. Figure 1a shows the generated view when
Ov = {?band} and in Figure 1b, we have; Ov = {?instrument}.
7 The object here refers to the object in FCA.
8 http://dbpedia.org/resource/

97



?band ?instrument ?origin

µ1 RHCP Banjo US

µ2 Disturbed Bass Guitar US
...

...
...

...

Table 1: Generated Mappings for SPARQL Query Q

2.2 Designing a Formal Context (G,M,W, I)

The results obtained by the query are in the form of set of tuples, which are then
organized as a many-valued context. If Ov = {?X} then µ(?X) = {Xi}i∈{1,...,k},
where Xi denote the values obtained for the object variable and the correspond-
ing mapping is given as {{?X → Xi}}. Finally, G = µ(?X) = {Xi}i∈{1,...,k}. Let
Av = {?Y, ?Z} then M = Av and the attribute values W = {µ(?Y ), µ(?Z)} =
{{Yi}, {Zi}}i∈{1,...,k}. The corresponding mapping for attribute variables are
{{?Y → Yi, ?Z → Zi}} Consider an object value gi ∈ G and an attribute
value wi ∈ W then we have (gi, “?Y ′′, wi) ∈ I iff ?X(gi) = wi, i.e., the value of
gi for attribute ?Y is wi, i ∈ {1, . . . , k} as we have k values for ?Y .

Obtaining Binary Context (G,M, I): Afterwards, a conceptual scaling used for
binarizing the many-valued context, in the form of (G,M, I). Finally, we have
G = {Xi}i∈{1,...,k}, M = {Yi} ∪ {Zi} where i ∈ {1, . . . , k} for object variable
Ov = {?X}.
Example 3. In the example Ov = {band}, Av = {instrument, origin}. The
answers obtained by this query are organized into a many-valued context as
follows: the distinct values of the object variable ?band are kept as a set of
objects, so G = {RHCP, Disturbed, . . . }, attribute variables provide M =
{instrument, origin}, W1 = {Banjo, BassGuitar, . . . } and W2 = {US, UK,
France . . . } in a many-valued context. The obtained many-valued context is
shown in Table 2. Following the above defined procedure a many-valued con-
text is conceptually scaled to obtain a binary context shown in Table 3. The
corresponding concept lattice is shown in Figure 1(a).

Band Instrument Origin

RHCP Banjo US

Disturbed Bass Guitar US

Alcest Bass Guitar France

The Solution Banjo Sweden, US

Chrome Hoof Cuatro UK

Ensamble Gurrufio Cuatro Venezuela

Table 2: Many-Valued Context representing the answer tuple (Xi, Yi, Zi).

Band Banjo Bass Guitar Cuatro US Sweden UK France Venezuela

RHCP × ×
Disturbed × ×
Alcestr × ×
The Solution × × ×
Chrome Hoof × ×
Ensamble Gurrufio × ×

Table 3: Formal Context KDBpedia.
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2.3 Building a Concept Lattice

Once the context is designed, the concept lattice can be built using an FCA
algorithm. This step is straight forward as soon as the context is provided. In
the current implementation we use AddIntent [8] which is an incremental con-
cept lattice construction algorithm. In case of large data iceberg lattices can be
considered [6]. The use of VIEW BY clause activates the process of LBVA, which
transforms the SPARQL query answers (tuples) to a formal context Kanswers

through which a concept lattice is obtained which is referred to as a Lattice-Based
View. A view on SPARQL query in section 1, i.e, a concept lattice corresponding
to Table 3 is shown in Figure 1a. At the end of this step the concept lattice is
built and the interpretation step can be considered.

2.4 Interpretation Operations over a Concept Lattice

Navigation Operation and Knowledge Discovery: The obtained concept
lattice can be navigated for searching and accessing particular LOD elements.
It is possible to drill down from general to specific concepts according to some
constraints. For example, in order to search for bands in US playing Banjo, the
concept lattice in Figure 1(a) is explored levelwise. First the broader concept
contains all the bands from US, RHCP, The Solution, Disturbed. Then, the
children concepts contain more specific concepts with the instruments Banjo

and Bass Guitar. According to the initial constraint, the attribute concept of
Banjo can be selected returning two objects namely RHCP, The Solution. Next,
to check which instruments are played in music originating from US, another
concept lattice can be explored, where objects correspond to instruments shown
in Figure 1(b). The results in this case is the set of objects Bass Guitar, Banjo.

FCA provides a powerful means for data analysis and knowledge discovery.
Iceberg lattices provide the top most part of the lattice filtering out only general
concepts. The concept lattice is still explored levelwise depending on a given
threshold. Then, only concepts whose extent is sufficiently large are explored,
i.e., the support of a concept corresponds to the cardinal of the extent. If further
specific concepts are required the support threshold of the iceberg lattices can
be lowered and the resulting concept lattice can be explored levelwise.

Another way of interpreting the data is provided by Duquenne-Guigues ba-
sis of implications which takes into account a minimal set of implications which
represent all the association rules that can be generated for a given formal con-
text. For example, DG-basis of implications according to the formal context in
Table 3 state that all the bands which play Banjo are from US (rule: Banjo →
US). Moreover, the rule Venezuela → Cuatro suggests that all the bands from
Venezuela play Cuatro. This rule states that Cuatro is widely used in the folk
music of Venezuela.

3 Experimentation

Several experiments were conducted on real datasets. These datasets include
DBpedia, Yago [7], which is a knowledge base automatically extracted from
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Wikipedia (infoboxes, categories), Wordnet and Geonames. The experiment was
also tested on the biomedical data such as Sider9 and Drugbank10. Sider keeps
the information about the medicines along with their side effects. Drugbank
keeps the detailed information about the drugs such as drug category and target
proteins. These experiments provide qualitative and quantitative evaluation to
our approach. These experiments are not discussed in the current paper due to
lack of space. However, the software, a detailed technical report along with the
visualization of the SPARQL query views can be accessed online11.

4 Conclusion and Discussion

In LBVA, we introduce a classification framework for the set of tuples obtained as
a result of SPARQL queries over LOD. We introduce a classification framework
based on FCA for organizing a view, i.e., the set of tuples resulting from a
SPARQL query. In this way, the view is organized as a concept lattice that
can be navigated where information retrieval and knowledge discovery can be
performed. For future work, we are interested in working with several object
variable allowing to deal with more complex relations, with the help of Relational
Concept Analysis (RCA). In addition, here only binary contexts are taken into
account. It is possible to go beyond this limitation in using another variation of
FCA which is the formalism of pattern structures.
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