11 research outputs found

    Human-artificial intelligence approaches for secure analysis in CAPTCHA codes

    Get PDF
    CAPTCHA (Completely Automated Public Turing test to tell Computers and Humans Apart) has long been used to keep automated bots from misusing web services by leveraging human-artificial intelligence (HAI) interactions to distinguish whether the user is a human or a computer program. Various CAPTCHA schemes have been proposed over the years, principally to increase usability and security against emerging bots and hackers performing malicious operations. However, automated attacks have effectively cracked all common conventional schemes, and the majority of present CAPTCHA methods are also vulnerable to human-assisted relay attacks. Invisible reCAPTCHA and some approaches have not yet been cracked. However, with the introduction of fourth-generation bots accurately mimicking human behavior, a secure CAPTCHA would be hardly designed without additional special devices. Almost all cognitive-based CAPTCHAs with sensor support have not yet been compromised by automated attacks. However, they are still compromised to human-assisted relay attacks due to having a limited number of challenges and can be only solved using trusted devices. Obviously, cognitive-based CAPTCHA schemes have an advantage over other schemes in the race against security attacks. In this study, as a strong starting point for creating future secure and usable CAPTCHA schemes, we have offered an overview analysis of HAI between computer users and computers under the security aspects of open problems, difficulties, and opportunities of current CAPTCHA schemes.Web of Science20221art. no.

    Hunting CAPTCHA-solving bots

    Get PDF
    openToday, smart phones have become an integral part of modern human life. By increasing CPU power and energy efficiency of these types of equipment, almost all daily routines and even personal activities of people have become dependent on these devices. By knowing the importance of these equipment in today's human life and crucial role of them to protect personal sensitive information, security and authorized access to these data are indispensable requirement in any new methods in this field of study. Today, CAPTCHAs are used to protect smart phones and computers from robot access, however most of which are broken and hacked by robots and machine learning based method. Therefore, it is necessary to provide more accurate and comprehensive algorithm in order to identify robots and prevent them from entering mobile phones

    Enhancing Online Security with Image-based Captchas

    Get PDF
    Given the data loss, productivity, and financial risks posed by security breaches, there is a great need to protect online systems from automated attacks. Completely Automated Public Turing Tests to Tell Computers and Humans Apart, known as CAPTCHAs, are commonly used as one layer in providing online security. These tests are intended to be easily solvable by legitimate human users while being challenging for automated attackers to successfully complete. Traditionally, CAPTCHAs have asked users to perform tasks based on text recognition or categorization of discrete images to prove whether or not they are legitimate human users. Over time, the efficacy of these CAPTCHAs has been eroded by improved optical character recognition, image classification, and machine learning techniques that can accurately solve many CAPTCHAs at rates approaching those of humans. These CAPTCHAs can also be difficult to complete using the touch-based input methods found on widely used tablets and smartphones.;This research proposes the design of CAPTCHAs that address the shortcomings of existing implementations. These CAPTCHAs require users to perform different image-based tasks including face detection, face recognition, multimodal biometrics recognition, and object recognition to prove they are human. These are tasks that humans excel at but which remain difficult for computers to complete successfully. They can also be readily performed using click- or touch-based input methods, facilitating their use on both traditional computers and mobile devices.;Several strategies are utilized by the CAPTCHAs developed in this research to enable high human success rates while ensuring negligible automated attack success rates. One such technique, used by fgCAPTCHA, employs image quality metrics and face detection algorithms to calculate a fitness value representing the simulated performance of human users and automated attackers, respectively, at solving each generated CAPTCHA image. A genetic learning algorithm uses these fitness values to determine customized generation parameters for each CAPTCHA image. Other approaches, including gradient descent learning, artificial immune systems, and multi-stage performance-based filtering processes, are also proposed in this research to optimize the generated CAPTCHA images.;An extensive RESTful web service-based evaluation platform was developed to facilitate the testing and analysis of the CAPTCHAs developed in this research. Users recorded over 180,000 attempts at solving these CAPTCHAs using a variety of devices. The results show the designs created in this research offer high human success rates, up to 94.6\% in the case of aiCAPTCHA, while ensuring resilience against automated attacks

    Mothers\u27 Adaptation to Caring for a New Baby

    Get PDF
    To date, most research on parents\u27 adjustment after adding a new baby to their family unit has focused on mothers\u27 initial transition to parenthood. This past research has examined changes in mothers\u27 marital satisfaction and perceived well-being across the transition, and has compared their prenatal expectations to their postnatal experiences. This project assessed first-time and experienced mothers\u27 stress and satisfaction associated with parenting, their adjustment to competing demands, and their perceived well-being longitudinally before and after the birth of a baby. Additionally, how maternal and child-related variables influenced the trajectory of mothers\u27 postnatal adaptation was assessed. These variables included mothers\u27 age, their education level, their prenatal expectations and postnatal experiences concerning shared infant care, their satisfaction with the division of infant caregiving, and their perceptions of their infant\u27s temperament. Mothers (N = 136) completed an online survey during their third trimester and additional online surveys when their baby was approximately 2, 4, 6, and 8 weeks old.;First-time mothers prenatally expected a more equal division of infant caregiving between themselves and their partners than did experienced mothers. Both first-time and experienced mothers reported less assistance from their partners than they had prenatally expected. Additionally, they experienced almost twice as many violated expectations than met expectations. Growth curve modeling revealed that a cubic function of time best fit the trajectory of mothers\u27 postnatal parenting satisfaction. Mothers reported less parenting satisfaction at 4 weeks, compared to 2 and 6 weeks, and reported stability in their satisfaction between 6 and 8 weeks. A quadratic function of time best fit the trajectories of mothers\u27 postnatal parenting stress and adjustment to the demands of their baby. Mothers reported more stress and difficulty adjusting to their baby\u27s demands at 4 and 6 weeks, compared to 2 and 8 weeks. A linear function of time best fit the trajectories of mothers\u27 adjustment to home demands, generalized state anxiety, and depressive symptoms. Mothers reported less difficulty meeting home demands, less generalized anxiety, and fewer depressive symptoms across the postnatal period. Mothers\u27 violated expectations were associated with level differences in all aspects of mothers\u27 postnatal adaptation except their adjustment to home demands. Specifically, more violated expectations, in number or in magnitude, were associated with poorer postnatal adaptation. Mothers\u27 violated expectations were not associated with the slope of mothers\u27 postnatal adaptation trajectories. Exploratory models revealed that other maternal and child-related variables also impacted the level and slope of mothers\u27 postnatal adaptation.;Overall, first-time and experienced mothers were more similar than different in regards to their postnatal adaptation. This study suggests that prior findings concerning adults\u27 initial transition to parenthood may also apply to adults during each addition of a new baby into the family unit. Additionally, mothers who reported less of a mismatch between their expectations and experiences concerning shared infant care had fewer issues adapting the postnatal period. Thus, methods to increase the assistance mothers receive from their partner should be sought. Limitations of this study and suggestions for future research are also discussed

    Toward Robust Video Event Detection and Retrieval Under Adversarial Constraints

    Get PDF
    The continuous stream of videos that are uploaded and shared on the Internet has been leveraged by computer vision researchers for a myriad of detection and retrieval tasks, including gesture detection, copy detection, face authentication, etc. However, the existing state-of-the-art event detection and retrieval techniques fail to deal with several real-world challenges (e.g., low resolution, low brightness and noise) under adversary constraints. This dissertation focuses on these challenges in realistic scenarios and demonstrates practical methods to address the problem of robustness and efficiency within video event detection and retrieval systems in five application settings (namely, CAPTCHA decoding, face liveness detection, reconstructing typed input on mobile devices, video confirmation attack, and content-based copy detection). Specifically, for CAPTCHA decoding, I propose an automated approach which can decode moving-image object recognition (MIOR) CAPTCHAs faster than humans. I showed that not only are there inherent weaknesses in current MIOR CAPTCHA designs, but that several obvious countermeasures (e.g., extending the length of the codeword) are not viable. More importantly, my work highlights the fact that the choice of underlying hard problem selected by the designers of a leading commercial solution falls into a solvable subclass of computer vision problems. For face liveness detection, I introduce a novel approach to bypass modern face authentication systems. More specifically, by leveraging a handful of pictures of the target user taken from social media, I show how to create realistic, textured, 3D facial models that undermine the security of widely used face authentication solutions. My framework makes use of virtual reality (VR) systems, incorporating along the way the ability to perform animations (e.g., raising an eyebrow or smiling) of the facial model, in order to trick liveness detectors into believing that the 3D model is a real human face. I demonstrate that such VR-based spoofing attacks constitute a fundamentally new class of attacks that point to a serious weaknesses in camera-based authentication systems. For reconstructing typed input on mobile devices, I proposed a method that successfully transcribes the text typed on a keyboard by exploiting video of the user typing, even from significant distances and from repeated reflections. This feat allows us to reconstruct typed input from the image of a mobile phone’s screen on a user’s eyeball as reflected through a nearby mirror, extending the privacy threat to include situations where the adversary is located around a corner from the user. To assess the viability of a video confirmation attack, I explored a technique that exploits the emanations of changes in light to reveal the programs being watched. I leverage the key insight that the observable emanations of a display (e.g., a TV or monitor) during presentation of the viewing content induces a distinctive flicker pattern that can be exploited by an adversary. My proposed approach works successfully in a number of practical scenarios, including (but not limited to) observations of light effusions through the windows, on the back wall, or off the victim’s face. My empirical results show that I can successfully confirm hypotheses while capturing short recordings (typically less than 4 minutes long) of the changes in brightness from the victim’s display from a distance of 70 meters. Lastly, for content-based copy detection, I take advantage of a new temporal feature to index a reference library in a manner that is robust to the popular spatial and temporal transformations in pirated videos. My technique narrows the detection gap in the important area of temporal transformations applied by would-be pirates. My large-scale evaluation on real-world data shows that I can successfully detect infringing content from movies and sports clips with 90.0% precision at a 71.1% recall rate, and can achieve that accuracy at an average time expense of merely 5.3 seconds, outperforming the state of the art by an order of magnitude.Doctor of Philosoph

    The role of effort in security and privacy behaviours online

    Get PDF
    As more and more aspects of users’ lives go online, they can interact with each other, access services and purchase goods with unprecedented convenience and speed. However, this also means that users’ devices and data become more vulnerable to attacks. As security is often added to tools and services as an after-thought, it tends to be poorly integrated into the processes and part of the effort of securing is often offloaded onto the user. Users are goal-driven and they go online to get things done, protecting their security and privacy might therefore not be a priority. The six studies described in this dissertation examine the role of effort in users’ security and privacy behaviours online. First, two security studies use authentication diaries to examine the user effort required for authentication to organisational and online banking systems respectively. Second, two further studies are laboratory evaluations of proposed mechanisms for authentication and verification. Third, two privacy studies examine the role of effort in users’ information disclosure in webforms and evaluate a possible solution that could help users manage how much they disclose. All studies illustrate the different coping strategies users develop to manage their effort. They show that demanding too much effort can affect productivity, cause frustration and undermine the security these mechanisms were meant to offer. The work stresses the importance of conducting methodologically robust user evaluations of both proposed and deployed mechanisms in order to improve user satisfaction and their security and privacy

    Human-Computer Interaction: Security Aspects

    Get PDF
    Along with the rapid development of intelligent information age, users are having a growing interaction with smart devices. Such smart devices are interconnected together in the Internet of Things (IoT). The sensors of IoT devices collect information about users' behaviors from the interaction between users and devices. Since users interact with IoT smart devices for the daily communication and social network activities, such interaction generates a huge amount of network traffic. Hence, users' behaviors are playing an important role in the security of IoT smart devices, and the security aspects of Human-Computer Interaction are becoming significant. In this dissertation, we provide a threefold contribution: (1) we review security challenges of HCI-based authentication, and design a tool to detect deceitful users via keystroke dynamics; (2) we present the impact of users' behaviors on network traffic, and propose a framework to manage such network traffic; (3) we illustrate a proposal for energy-constrained IoT smart devices to be resilient against energy attack and efficient in network communication. More in detail, in the first part of this thesis, we investigate how users' behaviors impact on the way they interact with a device. Then we review the work related to security challenges of HCI-based authentication on smartphones, and Brain-Computer Interfaces (BCI). Moreover, we design a tool to assess the truthfulness of the information that users input using a computer keyboard. This tool is based on keystroke dynamics and it relies on machine learning technique to achieve this goal. To the best of our knowledge, this is the first work that associates the typing users' behaviors with the production of deceptive personal information. We reached an overall accuracy of 76% in the classification of a single answer as truthful or deceptive. In the second part of this thesis, we review the analysis of network traffic, especially related to the interaction between mobile devices and users. Since the interaction generates a huge amount of network traffic, we propose an innovative framework, GolfEngine, to manage and control the impact of users behavior on the network relying on Software Defined Networking (SDN) techniques. GolfEngine provides users a tool to build their security applications and offers Graphical User Interface (GUI) for managing and monitoring the network. In particular, GolfEngine provides the function of checking policy conflicts when users design security applications and the mechanism to check data storage redundancy. GolfEngine not only prevents the malicious inputting policies but also it enforces the security about network management of network traffic. The results of our simulation underline that GolfEngine provides an efficient, secure, and robust performance for managing network traffic via SDN. In the third and last part of this dissertation, we analyze the security aspects of battery-equipped IoT devices from the energy consumption perspective. Although most of the energy consumption of IoT devices is due to user interaction, there is still a significant amount of energy consumed by point-to-point communication and IoT network management. In this scenario, an adversary may hijack an IoT device and conduct a Denial of Service attack (DoS) that aims to run out batteries of other devices. Therefore, we propose EnergIoT, a novel method based on energetic policies that prevent such attacks and, at the same time, optimizes the communication between users and IoT devices, and extends the lifetime of the network. EnergIoT relies on a hierarchical clustering approach, based on different duty cycle ratios, to maximize network lifetime of energy-constrained smart devices. The results show that EnergIoT enhances the security and improves the network lifetime by 32%, compared to the earlier used approach, without sacrificing the network performance (i.e., end-to-end delay)

    The People Inside

    Get PDF
    Our collection begins with an example of computer vision that cuts through time and bureaucratic opacity to help us meet real people from the past. Buried in thousands of files in the National Archives of Australia is evidence of the exclusionary “White Australia” policies of the nineteenth and twentieth centuries, which were intended to limit and discourage immigration by non-Europeans. Tim Sherratt and Kate Bagnall decided to see what would happen if they used a form of face-detection software made ubiquitous by modern surveillance systems and applied it to a security system of a century ago. What we get is a new way to see the government documents, not as a source of statistics but, Sherratt and Bagnall argue, as powerful evidence of the people affected by racism

    Actas del XVII Congreso Internacional de Interacción Persona-Ordenador

    Get PDF
    [ES]En la presente publicación se recogen los trabajos aceptados como ponencias, en cada una de sus modalidades, para el XVII Congreso Internacional de Interacción Persona-Ordenador (Interacción 2016), que se celebra del 13 al 16 de septiembre de 2016 en Salamanca, dentro del marco del IV Congreso Español de Informática (CEDI 2016). Este congreso es promovido por la Asociación de Interacción Persona-Ordenador (AIPO) y su organización ha recaído en esta ocasión, en el grupo de GRIAL de la Universidad de Salamanca. Interacción 2016 es un congreso internacional que tiene como principal objetivo promover y difundir los avances recientes en el área de la Interacción Persona-Ordenador, tanto a nivel académico como empresarial. En este simposio se presentarán nuevas metodologías, novedosos dispositivos de interacción e interfaces de usuario, así como herramientas para su creación y evaluación en los ámbitos industriales y experimentales

    Cognitive Foundations for Visual Analytics

    Get PDF
    In this report, we provide an overview of scientific/technical literature on information visualization and VA. Topics discussed include an update and overview of the extensive literature search conducted for this study, the nature and purpose of the field, major research thrusts, and scientific foundations. We review methodologies for evaluating and measuring the impact of VA technologies as well as taxonomies that have been proposed for various purposes to support the VA community. A cognitive science perspective underlies each of these discussions
    corecore