29,259 research outputs found

    Molecular determinants of acute kidney injury

    Get PDF
    BACKGROUND: Acute kidney injury (AKI) is a condition that leads to a rapid deterioration of renal function associated with impairment to maintain electrolyte and acid balance, and, if left untreated, ultimately irreversible kidney damage and renal necrosis. There are a number of causes that can trigger AKI, ranging from underlying conditions as well as trauma and surgery. Specifically, the global rise in surgical procedures led to a substantial increase of AKI incidence rates, which in turn impacts on mortality rates, quality of life and economic costs to the healthcare system. However, no effective therapy for AKI exists. Current approaches, such as pharmacological intervention, help in alleviating symptoms in slowing down the progression, but do not prevent or reverse AKI-induced organ damage. METHODS: An in-depth understanding of the molecular machinery involved in and modulated by AKI induction and progression is necessary to specifically pharmacologically target key molecules. A major hurdle to devise a successful strategy is the multifactorial and complex nature of the disorder itself, whereby the activation of a number of seemingly independent molecular pathways in the kidney leads to apoptotic and necrotic events. RESULTS: The renin-angiotensin-aldosterone-system (RAAS) axis appears to be a common element, leading to downstream events such as triggers of immune responses via the NFB pathway. Other pathways intricately linked with AKI-induction and progression are the tumor necrosis factor alpha (TNF) and transforming growth factor beta (TGF) signaling cascades, as well as a number of other modulators. Surprisingly, it has been shown that the involvement of the glutamatergic axis, believed to be mainly a component of the neurological system, is also a major contributor. CONCLUSIONS: Here we address the current understanding of the molecular pathways evoked in AKI, their interplay, and the potential to pharmacologically intervene in the effective prevention and/or progression of AKI

    Lipid Peroxidation and Depressed Mood in Community-Dwelling Older Men and Women

    Get PDF
    It has been hypothesized that cellular damage caused by oxidative stress is associated with late-life depression but\ud epidemiological evidence is limited. In the present study we evaluated the association between urinary 8-iso-prostaglandin\ud F2a (8-iso-PGF2a), a biomarker of lipid peroxidation, and depressed mood in a large sample of community-dwelling older\ud adults. Participants were selected from the Health, Aging and Body Composition study, a community-based longitudinal\ud study of older persons (aged 70–79 years). The present analyses was based on a subsample of 1027 men and 948 women\ud free of mobility disability. Urinary concentration of 8-iso-PGF2a was measured by radioimmunoassay methods and adjusted\ud for urinary creatinine. Depressed mood was defined as a score greater than 5 on the 15-item Geriatric Depression Scale and/\ud or use of antidepressant medications. Depressed mood was present in 3.0% of men and 5.5% of women. Depressed men\ud presented higher urinary concentrations of 8-iso-PGF2a than non-depressed men even after adjustment for multiple\ud sociodemographic, lifestyle and health factors (p=0.03, Cohen’s d = 0.30). This association was not present in women\ud (depressed status-by-sex interaction p = 0.04). Our study showed that oxidative damage may be linked to depression in\ud older men from a large sample of the general population. Further studies are needed to explore whether the modulation of\ud oxidative stress may break down the link between late-life depression and its deleterious health consequences

    Urinary proteomics for prediction of mortality in patients with type 2 diabetes and microalbuminuria

    Get PDF
    Background: The urinary proteomic classifier CKD273 has shown promise for prediction of progressive diabetic nephropathy (DN). Whether it is also a determinant of mortality and cardiovascular disease in patients with microalbuminuria (MA) is unknown. Methods: Urine samples were obtained from 155 patients with type 2 diabetes and confirmed microalbuminuria. Proteomic analysis was undertaken using capillary electrophoresis coupled to mass spectrometry to determine the CKD273 classifier score. A previously defined CKD273 threshold of 0.343 for identification of DN was used to categorise the cohort in Kaplan–Meier and Cox regression models with all-cause mortality as the primary endpoint. Outcomes were traced through national health registers after 6 years. Results: CKD273 correlated with urine albumin excretion rate (UAER) (r = 0.481, p = <0.001), age (r = 0.238, p = 0.003), coronary artery calcium (CAC) score (r = 0.236, p = 0.003), N-terminal pro-brain natriuretic peptide (NT-proBNP) (r = 0.190, p = 0.018) and estimated glomerular filtration rate (eGFR) (r = 0.265, p = 0.001). On multivariate analysis only UAER (β = 0.402, p < 0.001) and eGFR (β = − 0.184, p = 0.039) were statistically significant determinants of CKD273. Twenty participants died during follow-up. CKD273 was a determinant of mortality (log rank [Mantel-Cox] p = 0.004), and retained significance (p = 0.048) after adjustment for age, sex, blood pressure, NT-proBNP and CAC score in a Cox regression model. Conclusion: A multidimensional biomarker can provide information on outcomes associated with its primary diagnostic purpose. Here we demonstrate that the urinary proteomic classifier CKD273 is associated with mortality in individuals with type 2 diabetes and MA even when adjusted for other established cardiovascular and renal biomarkers

    Urinary proteomics for prediction of mortality in patients with type 2 diabetes and microalbuminuria

    Get PDF
    Background: The urinary proteomic classifier CKD273 has shown promise for prediction of progressive diabetic nephropathy (DN). Whether it is also a determinant of mortality and cardiovascular disease in patients with microalbuminuria (MA) is unknown. Methods: Urine samples were obtained from 155 patients with type 2 diabetes and confirmed microalbuminuria. Proteomic analysis was undertaken using capillary electrophoresis coupled to mass spectrometry to determine the CKD273 classifier score. A previously defined CKD273 threshold of 0.343 for identification of DN was used to categorise the cohort in Kaplan–Meier and Cox regression models with all-cause mortality as the primary endpoint. Outcomes were traced through national health registers after 6 years. Results: CKD273 correlated with urine albumin excretion rate (UAER) (r = 0.481, p = <0.001), age (r = 0.238, p = 0.003), coronary artery calcium (CAC) score (r = 0.236, p = 0.003), N-terminal pro-brain natriuretic peptide (NT-proBNP) (r = 0.190, p = 0.018) and estimated glomerular filtration rate (eGFR) (r = 0.265, p = 0.001). On multivariate analysis only UAER (β = 0.402, p < 0.001) and eGFR (β = − 0.184, p = 0.039) were statistically significant determinants of CKD273. Twenty participants died during follow-up. CKD273 was a determinant of mortality (log rank [Mantel-Cox] p = 0.004), and retained significance (p = 0.048) after adjustment for age, sex, blood pressure, NT-proBNP and CAC score in a Cox regression model. Conclusion: A multidimensional biomarker can provide information on outcomes associated with its primary diagnostic purpose. Here we demonstrate that the urinary proteomic classifier CKD273 is associated with mortality in individuals with type 2 diabetes and MA even when adjusted for other established cardiovascular and renal biomarkers

    Clinical relevance of biomarkers of oxidative stress

    Get PDF
    SIGNIFICANCE Oxidative stress is considered to be an important component of various diseases. A vast number of methods have been developed and used in virtually all diseases to measure the extent and nature of oxidative stress, ranging from oxidation of DNA to proteins, lipids, and free amino acids. Recent Advances: An increased understanding of the biology behind diseases and redox biology has led to more specific and sensitive tools to measure oxidative stress markers, which are very diverse and sometimes very low in abundance. CRITICAL ISSUES The literature is very heterogeneous. It is often difficult to draw general conclusions on the significance of oxidative stress biomarkers, as only in a limited proportion of diseases have a range of different biomarkers been used, and different biomarkers have been used to study different diseases. In addition, biomarkers are often measured using nonspecific methods, while specific methodologies are often too sophisticated or laborious for routine clinical use. FUTURE DIRECTIONS Several markers of oxidative stress still represent a viable biomarker opportunity for clinical use. However, positive findings with currently used biomarkers still need to be validated in larger sample sizes and compared with current clinical standards to establish them as clinical diagnostics. It is important to realize that oxidative stress is a nuanced phenomenon that is difficult to characterize, and one biomarker is not necessarily better than others. The vast diversity in oxidative stress between diseases and conditions has to be taken into account when selecting the most appropriate biomarker. Antioxid. Redox Signal. 00, 000-000

    Assessment of Metabolic Parameters For Autism Spectrum Disorders

    Get PDF
    Autism is a brain development disorder that first appears during infancy or childhood, and generally follows a steady course without remission. Impairments result from maturation-related changes in various systems of the brain. Autism is one of the five pervasive developmental disorders (PDD), which are characterized by widespread abnormalities of social interactions and communication, and severely restricted interests and highly repetitive behavior. The reported incidence of autism spectrum disorders (ASDs) has increased markedly over the past decade. The Centre for Disease Control and Prevention has recently estimated the prevalence of ASDs in the United States at approximately 5.6 per 1000 (1 of 155 to 1 of 160) children. Several metabolic defects, such as phenylketonuria, are associated with autistic symptoms. In deciding upon the appropriate evaluation scheme a clinician must consider a host of different factors. The guidelines in this article have been developed to assist the clinician in the consideration of these factors
    corecore