1,672 research outputs found

    Multi-Sensor Data Fusion for Robust Environment Reconstruction in Autonomous Vehicle Applications

    Get PDF
    In autonomous vehicle systems, understanding the surrounding environment is mandatory for an intelligent vehicle to make every decision of movement on the road. Knowledge about the neighboring environment enables the vehicle to detect moving objects, especially irregular events such as jaywalking, sudden lane change of the vehicle etc. to avoid collision. This local situation awareness mostly depends on the advanced sensors (e.g. camera, LIDAR, RADAR) added to the vehicle. The main focus of this work is to formulate a problem of reconstructing the vehicle environment using point cloud data from the LIDAR and RGB color images from the camera. Based on a widely used point cloud registration tool such as iterated closest point (ICP), an expectation-maximization (EM)-ICP technique has been proposed to automatically mosaic multiple point cloud sets into a larger one. Motion trajectories of the moving objects are analyzed to address the issue of irregularity detection. Another contribution of this work is the utilization of fusion of color information (from RGB color images captured by the camera) with the three-dimensional point cloud data for better representation of the environment. For better understanding of the surrounding environment, histogram of oriented gradient (HOG) based techniques are exploited to detect pedestrians and vehicles.;Using both camera and LIDAR, an autonomous vehicle can gather information and reconstruct the map of the surrounding environment up to a certain distance. Capability of communicating and cooperating among vehicles can improve the automated driving decisions by providing extended and more precise view of the surroundings. In this work, a transmission power control algorithm is studied along with the adaptive content control algorithm to achieve a more accurate map of the vehicle environment. To exchange the local sensor data among the vehicles, an adaptive communication scheme is proposed that controls the lengths and the contents of the messages depending on the load of the communication channel. The exchange of this information can extend the tracking region of a vehicle beyond the area sensed by its own sensors. In this experiment, a combined effect of power control, and message length and content control algorithm is exploited to improve the map\u27s accuracy of the surroundings in a cooperative automated vehicle system

    Fog Computing for Detecting Vehicular Congestion, An Internet of Vehicles based Approach: A review

    Get PDF
    Vehicular congestion is directly impacting the efficiency of the transport sector. A wireless sensor network for vehicular clients is used in Internet of Vehicles based solutions for traffic management applications. It was found that vehicular congestion detection by using Internet of Vehicles based connected vehicles technology are practically feasible for congestion handling. It was found that by using Fog Computing based principles in the vehicular wireless sensor network, communication in the system can be improved to support larger number of nodes without impacting performance. In this paper, connected vehicles technology based vehicular congestion identification techniques are studied. Computing paradigms that can be used for the vehicular network are studied to develop a practically feasible vehicular congestion detection system that performs accurately for a large coverage area and multiple scenarios. The designed system is expected to detect congestion to meet traffic management goals that are of primary importance in intelligent transportation systems

    Situational Awareness Enhancement for Connected and Automated Vehicle Systems

    Get PDF
    Recent developments in the area of Connected and Automated Vehicles (CAVs) have boosted the interest in Intelligent Transportation Systems (ITSs). While ITS is intended to resolve and mitigate serious traffic issues such as passenger and pedestrian fatalities, accidents, and traffic congestion; these goals are only achievable by vehicles that are fully aware of their situation and surroundings in real-time. Therefore, connected and automated vehicle systems heavily rely on communication technologies to create a real-time map of their surrounding environment and extend their range of situational awareness. In this dissertation, we propose novel approaches to enhance situational awareness, its applications, and effective sharing of information among vehicles.;The communication technology for CAVs is known as vehicle-to-everything (V2x) communication, in which vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) have been targeted for the first round of deployment based on dedicated short-range communication (DSRC) devices for vehicles and road-side transportation infrastructures. Wireless communication among these entities creates self-organizing networks, known as Vehicular Ad-hoc Networks (VANETs). Due to the mobile, rapidly changing, and intrinsically error-prone nature of VANETs, traditional network architectures are generally unsatisfactory to address VANETs fundamental performance requirements. Therefore, we first investigate imperfections of the vehicular communication channel and propose a new modeling scheme for large-scale and small-scale components of the communication channel in dense vehicular networks. Subsequently, we introduce an innovative method for a joint modeling of the situational awareness and networking components of CAVs in a single framework. Based on these two models, we propose a novel network-aware broadcast protocol for fast broadcasting of information over multiple hops to extend the range of situational awareness. Afterward, motivated by the most common and injury-prone pedestrian crash scenarios, we extend our work by proposing an end-to-end Vehicle-to-Pedestrian (V2P) framework to provide situational awareness and hazard detection for vulnerable road users. Finally, as humans are the most spontaneous and influential entity for transportation systems, we design a learning-based driver behavior model and integrate it into our situational awareness component. Consequently, higher accuracy of situational awareness and overall system performance are achieved by exchange of more useful information

    Stuck in Traffic (SiT) Attacks: A Framework for Identifying Stealthy Attacks that Cause Traffic Congestion

    Full text link
    Recent advances in wireless technologies have enabled many new applications in Intelligent Transportation Systems (ITS) such as collision avoidance, cooperative driving, congestion avoidance, and traffic optimization. Due to the vulnerable nature of wireless communication against interference and intentional jamming, ITS face new challenges to ensure the reliability and the safety of the overall system. In this paper, we expose a class of stealthy attacks -- Stuck in Traffic (SiT) attacks -- that aim to cause congestion by exploiting how drivers make decisions based on smart traffic signs. An attacker mounting a SiT attack solves a Markov Decision Process problem to find optimal/suboptimal attack policies in which he/she interferes with a well-chosen subset of signals that are based on the state of the system. We apply Approximate Policy Iteration (API) algorithms to derive potent attack policies. We evaluate their performance on a number of systems and compare them to other attack policies including random, myopic and DoS attack policies. The generated policies, albeit suboptimal, are shown to significantly outperform other attack policies as they maximize the expected cumulative reward from the standpoint of the attacker

    Estimation of Travel Time using Temporal and Spatial Relationships in Sparse Data

    Get PDF
    Travel time is a basic measure upon which e.g. traveller information systems, traffic management systems, public transportation planning and other intelligent transport systems are developed. Collecting travel time information in a large and dynamic road network is essential to managing the transportation systems strategically and efficiently. This is a challenging and expensive task that requires costly travel time measurements. Estimation techniques are employed to utilise data collected for the major roads and traffic network structure to approximate travel times for minor links. Although many methodologies have been proposed, they have not yet adequately solved many challenges associated with travel time, in particular, travel time estimation for all links in a large and dynamic urban traffic network. Typically focus is placed on major roads such as motorways and main city arteries but there is an increasing need to know accurate travel times for minor urban roads. Such information is crucial for tackling air quality problems, accommodate a growing number of cars and provide accurate information for routing, e.g. self-driving vehicles. This study aims to address the aforementioned challenges by introducing a methodology able to estimate travel times in near-real-time by using historical sparse travel time data. To this end, an investigation of temporal and spatial dependencies between travel time of traffic links in the datasets is carefully conducted. Two novel methodologies are proposed, Neighbouring Link Inference method (NLIM) and Similar Model Searching method (SMS). The NLIM learns the temporal and spatial relationship between the travel time of adjacent links and uses the relation to estimate travel time of the targeted link. For this purpose, several machine learning techniques including support vector machine regression, neural network and multi-linear regression are employed. Meanwhile, SMS looks for similar NLIM models from which to utilise data in order to improve the performance of a selected NLIM model. NLIM and SMS incorporates an additional novel application for travel time outlier detection and removal. By adapting a multivariate Gaussian mixture model, an improvement in travel time estimation is achieved. Both introduced methods are evaluated on four distinct datasets and compared against benchmark techniques adopted from literature. They efficiently perform the task of travel time estimation in near-real-time of a target link using models learnt from adjacent traffic links. The training data from similar NLIM models provide more information for NLIM to learn the temporal and spatial relationship between the travel time of links to support the high variability of urban travel time and high data sparsity.Ministry of Education and Training of Vietna

    Improving Vehicular ad hoc Network Protocols to Support Safety Applications in Realistic Scenarios

    Full text link
    La convergencia de las telecomunicaciones, la informática, la tecnología inalámbrica y los sistemas de transporte, va a facilitar que nuestras carreteras y autopistas nos sirvan tanto como plataforma de transporte, como de comunicaciones. Estos cambios van a revolucionar completamente cómo y cuándo vamos a acceder a determinados servicios, comunicarnos, viajar, entretenernos, y navegar, en un futuro muy cercano. Las redes vehiculares ad hoc (vehicular ad hoc networks VANETs) son redes de comunicación inalámbricas que no requieren de ningún tipo de infraestructura, y que permiten la comunicación y conducción cooperativa entre los vehículos en la carretera. Los vehículos actúan como nodos de comunicación y transmisores, formando redes dinámicas junto a otros vehículos cercanos en entornos urbanos y autopistas. Las características especiales de las redes vehiculares favorecen el desarrollo de servicios y aplicaciones atractivas y desafiantes. En esta tesis nos centramos en las aplicaciones relacionadas con la seguridad. Específicamente, desarrollamos y evaluamos un novedoso protocol que mejora la seguridad en las carreteras. Nuestra propuesta combina el uso de información de la localización de los vehículos y las características del mapa del escenario, para mejorar la diseminación de los mensajes de alerta. En las aplicaciones de seguridad para redes vehiculares, nuestra propuesta permite reducir el problema de las tormentas de difusión, mientras que se mantiene una alta efectividad en la diseminación de los mensajes hacia los vehículos cercanos. Debido a que desplegar y evaluar redes VANET supone un gran coste y una tarea dura, la metodología basada en la simulación se muestra como una metodología alternativa a la implementación real. A diferencia de otros trabajos previos, con el fin de evaluar nuestra propuesta en un entorno realista, en nuestras simulaciones tenemos muy en cuenta tanto la movilidad de los vehículos, como la transmisión de radio en entornos urbanos, especialmente cuando los edificios interfieren en la propagación de la señal de radio. Con este propósito, desarrollamos herramientas para la simulación de VANETs más precisas y realistas, mejorando tanto la modelización de la propagación de radio, como la movilidad de los vehículos, obteniendo una solución que permite integrar mapas reales en el entorno de simulación. Finalmente, evaluamos las prestaciones de nuestro protocolo propuesto haciendo uso de nuestra plataforma de simulación mejorada, evidenciando la importancia del uso de un entorno de simulación adecuado para conseguir resultados más realistas y poder obtener conclusiones más significativas.Martínez Domínguez, FJ. (2010). Improving Vehicular ad hoc Network Protocols to Support Safety Applications in Realistic Scenarios [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/9195Palanci

    Creation of general traffic indicators for the city of Lisbon through the crossing of diversified information

    Get PDF
    Tese de mestrado, Engenharia Informática , 2022, Universidade de Lisboa, Faculdade de CiênciasWith the increase in the amount of vehicles and the population in big cities, problems related to traffic jams, traffic congestion and pollution arise with it. A lot of investigation has been done to try and solve or, at least, mitigate this problem. Governments are trying to mitigate traffic congestion and traffic jams by better understanding traffic, its characteristics and its patterns and getting insights about traffic. The purpose of this research is to create general traffic indicators for the city of Lisbon and, to do so, we will apply state of the art methods to a dataset of traffic from the city of Lisbon, provided by Camara Municipal de Lisboa ˆ that contain traffic data from the years of 2019 and 2020. We discuss the several types of data used in this type of problem, the pre-processing techniques used to transform the data, the several state of the art methods used for both prediction of traffic flow, and classification of different traffic situations, and also the performance metrics used to evaluate results. We make an exploratory and a more complex analysis to the provided data and also a discussion about the influence of the Covid-19 pandemic on the data and the problems that this could bring. We explain all the pre-processing and data cleaning techniques we used to handle the data, all the prediction models used, as in LSTM and ARIMA, and all the classification models used, as in Decision Tree Classifier and SVM. For the prediction task, LSTM obtained a mean RMSE of 10.493, while ARIMA got a mean RMSE of 38.722. For the classification task, DTC got a mean accuracy of 96.7%, while SVM got a mean accuracy of 88.6%

    Disruption analytics in urban metro systems with large-scale automated data

    Get PDF
    Urban metro systems are frequently affected by disruptions such as infrastructure malfunctions, rolling stock breakdowns and accidents. Such disruptions give rise to delays, congestion and inconvenience for public transport users, which in turn, lead to a wider range of negative impacts on the social economy and wellbeing. This PhD thesis aims to improve our understanding of disruption impacts and improve the ability of metro operators to detect and manage disruptions by using large-scale automated data. The crucial precondition of any disruption analytics is to have accurate information about the location, occurrence time, duration and propagation of disruptions. In pursuit of this goal, the thesis develops statistical models to detect disruptions via deviations in trains’ headways relative to their regular services. Our method is a unique contribution in the sense that it is based on automated vehicle location data (data-driven) and the probabilistic framework is effective to detect any type of service interruptions, including minor delays that last just a few minutes. As an important research outcome, the thesis delivers novel analyses of the propagation progress of disruptions along metro lines, thus enabling us to distinguish primary and secondary disruptions as well as recovery interventions performed by operators. The other part of the thesis provides new insights for quantifying disruption impacts and measuring metro vulnerability. One of our key messages is that in metro systems there are factors influencing both the occurrence of disruptions and their outcomes. With such confounding factors, we show that causal inference is a powerful tool to estimate unbiased impacts on passenger demand and journey time, which is also capable of quantifying the spatial-temporal propagation of disruption impacts within metro networks. The causal inference approaches are applied to empirical studies based on the Hong Kong Mass Transit Railway (MTR). Our conclusions can assist researchers and practitioners in two applications: (i) the evaluation of metro performance such as service reliability, system vulnerability and resilience, and (ii) the management of future disruptions.Open Acces
    corecore