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Abstract 

Urban metro systems are frequently affected by disruptions such as infrastructure malfunctions, 

rolling stock breakdowns and accidents. Such disruptions give rise to delays, congestion and 

inconvenience for public transport users, which in turn, lead to a wider range of negative 

impacts on the social economy and wellbeing. This PhD thesis aims to improve our 

understanding of disruption impacts and improve the ability of metro operators to detect and 

manage disruptions by using large-scale automated data.  

The crucial precondition of any disruption analytics is to have accurate information about 

the location, occurrence time, duration and propagation of disruptions. In pursuit of this goal, 

the thesis develops statistical models to detect disruptions via deviations in trains’ headways 

relative to their regular services. Our method is a unique contribution in the sense that it is 

based on automated vehicle location data (data-driven) and the probabilistic framework is 

effective to detect any type of service interruptions, including minor delays that last just a few 

minutes. As an important research outcome, the thesis delivers novel analyses of the 

propagation progress of disruptions along metro lines, thus enabling us to distinguish primary 

and secondary disruptions as well as recovery interventions performed by operators. 

The other part of the thesis provides new insights for quantifying disruption impacts and 

measuring metro vulnerability. One of our key messages is that in metro systems there are 

factors influencing both the occurrence of disruptions and their outcomes. With such 

confounding factors, we show that causal inference is a powerful tool to estimate unbiased 

impacts on passenger demand and journey time, which is also capable of quantifying the 

spatial-temporal propagation of disruption impacts within metro networks. The causal 

inference approaches are applied to empirical studies based on the Hong Kong Mass Transit 

Railway (MTR). Our conclusions can assist researchers and practitioners in two applications: 

(i) the evaluation of metro performance such as service reliability, system vulnerability and 

resilience, and (ii) the management of future disruptions. 
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Chapter 1                                                          

Introduction  

 

 

1.1  Background  

With urbanisation on the rise, there is an ever-growing need for members of city populations 

to use public transport. In serving this growing demand for urban travel, public transport 

provides people with affordable and sustainable access to essential activities such as 

employment, education, health care, shopping and recreation. Metros, also known as subways 

or as rapid transit, have become a vital component of public transport due to their large capacity 

and high-frequency services. In 2017, 178 metro systems worldwide carried a total of 53,768 

million trips (International Union of Public Transport, 2018). One of the main challenges of 

metro systems are frequently occurred disruptions, especially for those have been operated for 

over a century or without adequate maintenance. These disruptions are often caused by 

unpredicted infrastructure malfunctions (e.g., signal failures and track blockage), rolling stock 

breakdowns and accidents, planned maintenance work, and temporal dispatching adjustments 

(Jespersen-Groth et al., 2009). Disruptive incidents can cause service delays, crowding and 

safety issues, which may decrease passenger satisfaction and lead to significant loss of social 

welfare. For instance, the London Underground encountered 7,973 service disrupting incidents 

of above 2 minutes duration between April 2016 and April 2017, causing a total loss of around 

34 million customer hours (Transport for London, 2017; Transport for London, 2019). Thus, 

understanding the dynamics of metro disruptions and their corresponding impacts is an 

important area of research. 

Operators need to monitor disruption occurrences closely in order to reduce their 

detrimental effects. With accurate information on the location, time, duration, and propagation 

process of disruptions, they can assess the reliability and resilience of metro systems 

comprehensively. Thus, the detection of service disruptions is a prerequisite of any further 

research on disruption management. Also, operators may consider investing in new 

technologies to improve metro facilities and mitigate the effect of incidents. For instance, the 

New York City Subway was in a state of emergency in June 2017 after a series of derailments, 
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track fires and overcrowding incidents. The Metropolitan Transportation Authority invested 

over $8 billion to stabilise and modernise the incident-plagued metro system (Metropolitan 

Transportation Authority, 2019). It is apparent that metros are willing to invest in their 

infrastructure systems, but it is often not known how those investments compare in achieving 

improvements. To facilitate project selection, metros are increasingly relying on disaggregate 

performance metrics that reveal the most vulnerable parts of the network. Moreover, effective 

recovery strategies depend on detailed disruption information, such as the affected ridership, 

delayed time and crowding level in stations or trains. For passengers, knowledge of historical 

disruption impacts can also help them reschedule their travel plans. Therefore, a comprehensive 

understanding of disruptions requires us to master the following questions:   

i) How to detect when and where disruptions happened and their durations?  

ii) How to measure the vulnerability of metro systems under disruptions?  

iii) How to quantify the disruption impact on passengers affected? 

Meanwhile, how does the disruption impact spread along the metro network 

spatially and temporally? 

It is worth noting that, we specifically focus on service disruptions which are defined as events 

that interrupt normal train operations for a specific period of time. To distinguish from the 

broader term “incidents” or “anomalies”, the disruptions in this thesis do not include the events 

unrelated to the interruption of train services. For example, the escalator failure or corridor 

congestion in metro stations. 

In recent years, practices in metro disruption detection have been undertaken, using 

manual inspections, social media data or smart card data (Sun et al., 2016; Ji et al., 2018; 

Tonnelier et al., 2018). However, these detection methods either suffer from human errors, 

limited monitoring ability or inaccurate indication of service interruptions. There is a need to 

carry out more reliable and comprehensive detections based on additional sources of 

information about train operations. In metro systems, the growing availability of large-scale 

datasets provides new possibilities to achieve progress in this area. The large-scale automated 

vehicle location (AVL) data can act as an ideal source of new information, which captures 

detailed trajectory data over time for each train on each platform. The train headway extracted 

from AVL data is a straightforward indicator of service provision, and detection via such 

indicator can make up for the limitations of previous studies (Tirachini et al., 2021).  
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In terms of disruption impact and vulnerability measurement, researchers have paid close 

attention to simulation-based analysis that relies on hypothetical disruption scenarios. Again, 

the availability of large-scale datasets provides new possibilities for empirical-based analysis. 

The AVL data and smart card data enable researchers to observe passengers’ behaviour under 

real disruptions, helping avoid unrealistic or oversimplified assumptions. Most of the current 

empirical analysis applies before-after control-impact methods (Silva et al., 2015; Sun et al., 

2016; Yap and Cats, 2020). That is, comparing the disrupted metro system with a baseline 

scenario without disruptions. However, besides the exposure to disruptions, other factors may 

also affect the outcomes of service interruptions, such as weather conditions, real-time 

passenger demand, external mega-events. These factors may even influence the occurrence of 

disruptions at the same time. We illustrate this phenomenon with the following example.  

                            

(a) Example disruption                                                     (b) Before disruption  

                      

(c) Non-disrupted scenario 1                                          (d) Non-disrupted scenario 2 

Figure 1.1: The distribution of confounding factors for an example disruption and for three 
different baseline scenarios. Day_of_week and Time_of_day are two dummy variables 
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Table 1.1: The corresponding metro performances of the disruption and baseline scenarios in 

this illustration 

Performance measure 
Example 
disruption 

 Baselines  

Before 
disruption 

Non-disrupted 
scenario 1 

Non-disrupted 
scenario 2 

Entry ridership /15min 1049 745 1016 1101 

Exit ridership /15min 746 553 921 754 

Average journey time (minute) 36.71 25.66 26.76 28.07 

Average travel speed (km/h) 16.98 22.76 23.18 22.01 

 

Given the example disruption,1 we compare it with two types of baseline scenarios that 

are commonly used in before-after control-impact methods: (i) before the disruption occurrence; 

(ii) the same time and location on a non-disrupted day. In Figure 1.1 and Table 1.1, the potential 

confounding factors and the corresponding metro performances are displayed separately for 

each scenario. Figure 1.1 (a) represents the disruption, the remaining plots represent baseline 

scenarios. Figures 1.1(b) to 1.1 (d) show that although under well-designed baselines, the 

difference in the distribution of the aforementioned confounding factors can be huge. These 

differences are then revealed by the heterogeneous performance measures in Table 1.1. Thus, 

the conventional before-after studies failed to fully control such confounding issues, which can 

lead to biased impact estimations.  

Causal inference2 is a powerful tool to address the above concerns of confoundedness. 

This approach aims to quantify the causality between treatments (or interventions) and 

outcomes of interest. It has been widely studied in the statistics and econometrics literature, 

and has been widely applied in social and biomedical sciences (Imbens and Rubin, 2015). A 

fundamental notion underlying causal inference is the potential outcomes: pairs of outcomes 

defined for the same study unit given different exposure to the treatment, with only one being 

possibly observed. Rubin (1973a, b, 1974, 1977, 1990) proposed the interpretation of causal 

statements as comparisons of potential outcomes. This comparison is feasible when the 

 
1 The example disruption is a real case observed on the Island Line in HK MTR.  
2 In this thesis, causal inference is referred to the Rubin causal model (Rubin, 1973a, b, 1974, 1977, 
1990), which is the dominant approach in modern causal analysis, rather than the graphical-based 
approaches (Pearl, 2000). 
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counterfactual potential outcome of the treated units can be approximated by the observed 

outcomes of control units. In observational studies with confounding problems, the biggest 

attraction of causal inference is that, following some form of assumptions, it can adjust 

treatment and control groups for differences in observed covariates, or pre-treatment variables, 

thus remove all biases in comparisons between treated and control units. Despite the superiority 

of causal modelling, however, such techniques have not yet been used in metro vulnerability 

analysis, especially the evaluation of disruption impacts.   

Therefore, in the thesis, with the growing large-scale datasets and continued 

advancements in statistical/econometric methodologies, we advance the existing literature and 

substantially improve the comprehension of the occurrence and impacts of metro disruptions.  

 

 

1.2  Aims and objectives 

The overall aim of this PhD research is to achieve a comprehensive understanding of metro 

disruptions in their occurrence, severity and impact, and to apply this understanding to support 

the evaluation of metro performances. Within this overall aim, there are three main objectives 

corresponding to the research questions respectively.  

i) Detect metro service disruptions via a data-driven probabilistic unsupervised learning 

approach, with identifying disruption propagation and operator’s intervention.  

• Based on AVL data, we generate the headway series of train services for each 

platform of a given line within a given station.  

• We detect service disruptions from abnormal (overlong) headways, by adopting 

probabilistic Gaussian mixture model methods.  

• We design semi-synthetic simulations to support (finding optimal parameters) and 

validate the GMM-based detection.  

• We identify primary and secondary disruptions, together with the recovery 

interventions from metro operators. The relationships between primary and 

secondary disruptions reveal the spatiotemporal propagation of disruption status. 

• Based on the detection results, we build a reliable database to facilitate the following 

disruption research.  
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ii) Measure the vulnerability of urban metros based on empirical causal effects of 

disruptions.  

• We relax the tacit assumption of random disruptions, and consider the potential 

confounding factors in impact quantification, which includes real-time demand, 

station characteristics and weather conditions. 

• We introduce the causal inference framework into the context of metro disruptions, 

which utilises the benefits of large-scale automated data. We intend to apply 

propensity score matching to estimate the unbiased causal impacts of disruptions on 

station performance.  

• We construct vulnerability measures for metro systems, based on empirical 

disruption impacts.  

 

iii)  Quantify the direct and spillover causal effects of disruptions, and analyse the impact 

propagation in urban metros. 

• For metro networks, we emphasise (i) the presence of interference among connected 

or neighbouring stations; (ii) the threat of confounding caused by non-random 

disruptions.   

• Under the causal inference framework, we relax the tacit assumption that metro 

stations are independent during disruptions and are not affected by disruptions at 

other stations.  

• We apply a novel modified synthetic control method, which fits perfectly with the 

patterns of metro operation and leverages the benefits of large-scale automated data. 

This causal inference approach enables the quantification the spillover effects on all 

non-interrupted stations in the network (indirect disruption impacts).  

• We analyse the spatial and temporal propagation of spillover disruption impacts 

within metro networks.  
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1.3  Structure of thesis 

The rest of the thesis is organised as follows. 

Chapter 2 presents a comprehensive review of the data and existing work in the area of 

metro disruption analysis, including automated large-scale data in public transport, disruption 

detection techniques, metro vulnerability measurement and impact quantification methods. 

Chapter 3 provides a methodological overview of the causal inference literature. We 

discuss the challenges related to confounding and interference, with a brief review of two viable 

causal inference methods. 

Chapter 4 focuses on disruption detection in metro systems. The proposed GMM-based 

detection method is tested in the case study of the Mass Transit Railway (MTR), Hong Kong.  

Chapter 5 develops measures of metro vulnerability based on empirical disruption 

impacts. We introduce a causal inference approach for impact estimation. Based on the 

disruptions detected in Chapter 4, an empirical case study is undertaken on the same metro 

system.  

Chapter 6 quantifies the direct and spillover effects of metro disruptions, via a novel 

modified synthetic control framework. With the disruption data from Chapter 4, a case study 

is also carried out to demonstrate the propagation of disruption impacts within the selected 

metro network.  

Chapter 7 summarises the main findings from the above studies, along with 

recommendations for potential future research. 

 

1.4  Contributions 

The main contributions of this thesis can be summarised as follows: 

i) New research questions  

Our research contributes to developing the understanding of new research questions 

about metro disruption. In the detection chapter, we broaden the research scope to 

identify secondary disruptions (line-level disruption propagation), and to detect the 

recovery interventions of metro operators. For the impact estimation, we raise 

attention to the spillover effects for metro disruptions, which is of the same 

importance as direct impacts but has not been explored empirically.  
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ii) Application of advanced econometric and machine learning methods  

For disruption detection, we apply the probabilistic mixture models (unsupervised 

clustering) instead of deterministic detection algorithms. Wherever applicable, we 

dynamically learn the parameters of the detection model from semi-synthetic 

simulations, rather than subjectively determining parameters. The data-driven 

detection method is effective for any type of disruptions including minor 

interruptions of few minutes.   

For disruption impact estimation, non-randomness of disruption occurrence and 

interference among stations have been ignored in past studies. Before and after 

comparisons fail to control for confounding from non-random disruptions and 

account for the spillover causal effects. To adjust for these potential sources of bias, 

we use advanced econometric methods under the Rubin causal framework, which 

are introduced in the literature of metro disruption analysis for the first time.  

iii) Analysis of unique and new sources of data  

For the detection of metro disruptions, we use high-quality AVL data provided by 

the Hong Kong MTR. To the best of our knowledge, this type of automated data 

has not been used in previous disruption detections in metro systems.3 For the metro 

vulnerability measurement, along with the use of smart card data, we collect the 

unique land-use, demographic and transport facility information of Planning 

Scheme zones in Hong Kong and hourly weather data, to provide new sources for 

confounding factors, and to support the missing metrics imputation. For the research 

of direct and spillover disruption impacts, additionally, we include a unique 

citywide mega-events data, which has not been included in previous impact 

analysis. Such data enables the comparison of the external environment between 

disrupted and control units, leading to more accurate impact estimates than 

previously possible. 

iv) Integrated research design 

 
3 In other sectors of public transport, such as bus and tram, the AVL data have been used to detect 
service delays, disruptions and abnormal routes.  
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The thesis is centred on metro disruptions, with three main research focuses on 

disruption detection, disruption impacts and their role in metro vulnerability, 

respectively. The outputs of the detections are ideal input for impact quantifications. 

The vulnerability measurement can then be regarded as an application of the 

estimated disruption impacts. This integrated research design enables a more 

holistic and in-depth understanding of disruptions in urban metro systems.  

 

 

1.5  Publications  

The core methodology elaborated in Chapters 5 is published as part of the following journal 

article. Early results of this research have been shared with the wider research community 

through the following conference papers and presentations. 

1) Zhang, N., Graham, D.J., Hörcher, D. and Bansal, P., 2021. A causal inference 

approach to measure the vulnerability of urban metro systems. Transportation, 

pp.1-32. 

2) Zhang, N., Graham, D.J. and Carbo, J.M., 2018. Using smart card data to analyse 

the disruption impacts on urban metro systems. 7th Symposium of the European 

Association for Research in Transportation, Athens, Greece. 

3) Zhang, N., Graham, D.J. and Carbo, J.M., 2019. Using smart card data to analyse 

the disruption impacts on urban metro systems. Transportation Research Board 

98th Annual Meeting, No. 19-03762, Washington DC. 

 

The remaining chapters of this thesis are planned to be published as well. Based on 

Chapter 4, the paper named ‘Detecting metro service disruptions via large-scale vehicle 

location data’ has been submitted to Transportation Research Part C. Meanwhile, based on 

Chapter 6, the paper named ‘Quantifying the direct and spillover effects of disruptions in urban 

metro networks’ is under development, and it will be submitted in the near future. 
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Chapter 2              

Literature review  

 

2.1  An introduction to metro disruptions  

2.1.1 Definition of disruptions  

The concept of disruption has been defined in a number of different ways depending on the 

context. Generally, disruption refers to an interruption in the usual way that a system, process, 

or event works.  

In urban metros, disruptions are commonly accepted as events that interrupt the normal 

service of the system. The notion of ‘service’ covers the usage of station facilities to the 

provision of train services. Therefore, disruptions can originate from a wide range of factors 

such as access to station facilities, signal failures, rolling stock blockage, screen doors, 

passenger or driver related behaviours, weather conditions, emergencies (fire or malicious 

attack) and engineering works (Zhang et al., 2016; Yap and Cats., 2020).  

In practice, the scope of metro disruptions can range from single stations, multiple 

stations, line segments and to the entire network. The duration of disruptions ranges from a few 

minutes to several days. The presence of disruption threatens the reliability and robustness of 

metro systems and therefore need to be identified or detected promptly and accurately.  

 

2.1.2 Factors affecting disruption occurrence  

Melo et al. (2011) first analysed the factors that influence the number of incidents across metro 

lines in different areas. They built Poisson regression and negative binomial regression models 

to represent the relationship between the expected number of incidents and the possible 

determinants, finding that factors such as passenger demand, signalling type, line or station 

age, train operation type and rolling stock characteristics can significantly influence the 

likelihood of having incidents, which provides us with the basis for selecting potential 

confounders. Yap and Cats (2020) adopted a supervised learning approach to predict the 

exposure of disruptions. The predictors include general factors such as season, day of the week 
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and time of day, which also contain station-related characteristics and historical disruption 

frequency.  

Other determinants related to human errors and adverse weather conditions have also 

been discussed. Wan et al. (2015) classified the behaviours of metro users and explored their 

effects on metro operation, through questionnaires of passengers and staff. They established 

the importance hierarchy of different types of behaviours in relation to incident involvement. 

In addition, incidents caused by improper driver performance were analysed by Rjabovs and 

Palacin (2017). They used bivariate correlation analysis to assess the inter-dependency of 

system design-related factors and driver-related incidents.  

With global climate change, severe weather events tend to be increasingly frequent. As 

a result, some open metro systems may experience more weather-related disruptions. Also, it 

is important to understand how temperature, rainfall and wind speed affect incident occurrence. 

Brazil et al. (2017) presented an analysis of the role of weather events, temporal effects and 

their resulting interactions. For instance, for the Rapid Transit rail system in Dublin, rain is 

found to be the main cause of disruptions. Significant interactions are found between different 

weather conditions such as rainfall with wind speed. 

 

 

2.2  Large-scale automated data in public transport research 

2.2.1 Smart card data  

The concept of smart card data (SCD) refers to the information collected in automatic fare 

collection systems that have been widely applied in major urban public transport systems. 

Electronic ticketing gained popularity because of its obvious advantages versus paper tickets; 

it is a faster, cheaper, safer and more convenient mean of fare enforcement (Hörcher, 2017). 

As a side product, the smart card data record the time and location of tap-in/tap-out transactions, 

trip fares and the related characteristics of card owners, all of which have been regarded as an 

important information source of passenger’s travel behaviour (Bagchi and White, 2005). 

Therefore, a considerable number of SCD-based studies have been published in the public 

transport field, which mainly focuses on three areas: strategic level for long-term planning, 

tactical level for service adjustment, and operational level for network performance assessment 
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(Pelletier et al., 2011). In this subsection we review SCD studies based on a different typology: 

system perspective and passenger travel behaviour. 

In terms of system planning, smart card data are useful due to the outstanding 

representativeness of passenger demand across networks. Origin-destination matrices, journey 

time reliability metrics and transport capacity rate are mined from smart card data to support 

system planning issues (Chan, 2007; Zhang et al., 2010; Munizaga and Palma, 2012). From the 

perspective of system operation, Bertini and El-Geneidy (2003) demonstrated that archived 

stop-level data can be converted into valuable transit performance measures. The performance 

indicators of system supplies and the statistics on service level can be calculated with smart 

card data spatiotemporally, such as travel speed and time, schedule adherence, vehicle-

kilometres or person-kilometres for every individual run, route, and day (Morency et al., 2007; 

Trépanier et al., 2009). For example, Park et al. (2008) as well as Jang (2010) investigated the 

travel time, transfers, and time distribution of trips for various modes in Seoul. The spatial and 

temporal variability of transit use for various types of cards was also analysed by Morency et 

al. (2007). Utsunomiya et al. (2006) also used smart card data from the Chicago Transit 

Authority to extract information on passengers’ transit usage and access distance. 

The research on passenger behaviour has focused on travel patterns. Macroscopically, 

the movement patterns of passengers across specific regions in urban areas have been 

uncovered (Srinivasan and Ferreira, 2002; Bagchi and White, 2005). By using an 

agglomerative clustering method, Kim et al. (2014) discussed both zones and movement 

patterns. For individual traveller behaviours, mainly regarding regularity and daily patterns, 

Lee and Hickman (2011) defined regular transit users as those making two or more trips during 

typical weekdays and found that travel patterns varied with card type. Ma et al. (2013) 

developed an efficient data mining method to demonstrate the temporal travel patterns and the 

pattern regularity for transit riders in Beijing, which allows transit authorities to evaluate the 

policy performance in public transit systems. 

To conclude, smart card data deliver several advantages in metro system studies 

compared to the traditional survey data. First, it eliminates the sampling error by recording the 

movements of full proportion of passengers, while this completeness can be limited if smart 

cards are used in parallel with other payment methods. Second, it records continuously over a 

long period of time, allowing us to observe temporal fluctuations in travel demand and journey 

time and easily construct panel datasets for specific analysis. 
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2.2.2 Automatic vehicle location data 

Automatic vehicle location (AVL) data is the information collected from the AVL system, 

which continuously monitors the geographic location and status of vehicles operating in an 

urban environment (Riter and McCoy, 1977). In public transport, AVL systems play an 

increasingly important role in bus and train operations.  

In the bus sector, AVL data are mainly used to support real-time fleet management and 

operational control (Riter and McCoy, 1977; Ma et al., 2014). Providing huge amounts of 

accurate, continuous, disaggregated data on bus departure and/or arrival times at bus stops, the 

AVL data enable us to analyse when and where services are not operating as planned (Barabino 

et al., 2015), which shed the light on bus operational performance evaluation. Measures 

including percentile travel times, coefficient of variation (COV) of travel times, and average 

commercial speed and travel time distribution have been proposed to evaluate the reliability of 

bus routes (Yan et al., 2016). Based on AVL data, Ma et al., (2014) created a reliable buffer 

time to measure the vulnerability passengers perceived at bus stations. Barabino et al. (2015) 

integrated the AVL data and passenger patterns to construct a new punctuality measure, 

reflecting the fraction of passengers who will be served promptly after arriving at a bus station. 

From another perspective, AVL data can also be applied to improve the real-time bus 

information system and bus priority at signalised junctions (Horbury, 1999a). Horbury (1999b) 

also illustrated how historical AVL data are used to identify the segments of bus routes and 

estimate passenger arrival rates at stops. 

In the public transport systems that consist of bus and tram, Marra and Corman (2020) 

applied the AVL data to cluster vehicle delays and inversely inferred the existence of 

disruptions. Similarly, in the rail-based transit sector, with scheduled and realised train 

departure and arrival times, AVL data have also been applied to service performance 

measurement and evaluation. Mesbah et al., (2012) carried out the reliability analysis for 

Melbourne tram network. Their outputs include mean and the standard deviation of travel times 

across the network, comparison between actual and scheduled travel times, and coefficients of 

variation.  

In the urban metro systems, the AVL data are usually integrated with smart card data, 

which allows researchers to pair passengers’ trips with train movement trajectories, thus 

enabling passenger to train assignment analysis. The most probably routes used by passengers 

can be inferred from the integrated data. These possible routes are then used to assign 
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passengers to trains. The results of such assignment will help obtain the decomposed journey 

time, transferring choice, and most importantly, the dynamic passenger flow in stations or 

trains, which cannot be achieved with only SCD or AVL data (Gordon et al., 2013; Hörcher et 

al., 2017; Yap et al., 2017; Zhu et al., 2017b). Such analysis on the one hand supports the 

crowding estimation in metro systems (Hörcher et al., 2017). On the other hand, the 

assignments can be combined with disruption impact analysis (Yap et al., 2017).   

 

 

2.3  Metro disruption detection  

In this section, we first review the common algorithms for anomaly detection. Then, in the field 

of transport, the literature on anomaly detection in road traffic has been briefly reviewed. 

Finally, we focus on the previous research on metro disruption detection.  

 

2.3.1 Review of anomaly detection algorithms 

According to Ahmed et al. (2016), the anomaly detection algorithms can generally be classified 

into four types: statistical-based, classification-based, clustering-based and information theory. 

Classification and clustering algorithms are two main branches in machine learning techniques, 

with the latter not relying on pre-labelled data. Statistical methods are usually based on 

underlying distribution, non-parametric model or some statistics, while information theory tries 

to distinguish the anomaly from the normal by understanding their underlying characteristics 

and mechanisms (Zhu, 2019). A summary of typical detection algorithms, their characteristics 

and classical representatives are shown in Table 2.1.  

 

Table 2.1: Summary of important literature on the general anomaly detection algorithms 

Category  Typical algorithms  Representatives  Characteristics  

Statistical-based 
detection  

Probability 
distributions model 
(Normal/Gamma…)  

Vic Barnett and 
Tolewis (1994)  

i). Assume that observed data are 
conformed to a distribution.  
ii). Outliers are identified outside the 
confidence interval.  

Histogram-based 
model  

Kind et al. (2009)  
i). No need to assume the distribution 
of data.  
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ii). Model histogram patterns and 
detect deviations from the histogram 
models.  

Regression model  

Vic Barnett and 
Tolewis (1994) 
Rousseeuw and Leroy 
(2005)  

i). Assume the data follows a specific 
model.  
ii). Outliers are detected based on the 
deviation from estimated regression 
models.  

Mixture model  Eskin (2000)  

i).  Unsupervised with no label data. 
ii). A combination of machine 
learned probability distribution and 
statistical test detection. 

Classification-
based detection  

Bayesian networks  
Kruegel et al. (2003)  
Patcha and Park 
(2007)  

i). A graphical model that encodes 
probabilistic relationships among 
variables of interest.  
ii). Similar results with threshold-
based algorithms, but need higher 
computational requirements.  

Neural networks 
Bishop (1994) 
Augusteijn and Folkert 
(2002) 

i). Supervised learning 
ii). No priori assumptions on the 
properties of data. 
iii). Very small number of 
parameters need to be optimised for 
training networks. 

Rule-based/tree-
based algorithms 

Wong et al. (2002) 

i). Rely on accurate labels 
ii). Proper configuration of rules 
requires precise, laborious and time-
consuming analysis. 

Support vector 
machines 

Davy and Godsill 
(2002) 

i).  Determining optimal hyperplanes 
for separating data from different 
classes. 

Clustering-
based detection 

K-means clustering 
Smith et al. (2002) 
Attar et al. (2014) 

i). Unsupervised learning; does not 
require a priori labelled training data. 
ii). The anomaly score (degree of 
being outlier) is determined based on 
the clustering results. 

Nearest neighbour 
clustering 
 

Eskin et al. (2002) 
Liao and Vemuri 
(2002) 

i). Unsupervised learning. 
ii).  Assume that outliers lie in sparse 
neighbourhoods, and they are distant 
from their nearest neighbours. 

Information 
theoretic 
detection 

Entropy-based 
Bereziński et al. 
(2015) 

i). Able to be used as unsupervised 
learning. 
ii). No assumption about the 
distribution for the sample data.  
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2.3.2 Research on traffic anomaly detection  

In the road traffic sector, anomaly detection has been widely analysed. The concept of anomaly 

includes abnormal traffic conditions such as accidents, congestions (disruption of road services) 

or specific road-related events. The detection methods have evolved from constant human 

observance through CCTV monitors to automatic detection based on sensors and algorithms 

(Mahmassani et al., 1999). The exploited sensor data include inductive loop detectors data 

(Rossi et al., 2015; Zhu et al., 2018), social media data (Gu et al., 2016; Zhang et al., 2018), 

GPS trajectory data (D’Andrea and Marcelloni, 2017; Yu et al., 2020; Zhang et al., 2021), 

camera data (Cano et al., 2009; Sodemann et al., 2012; Riveiro et al., 2017; Santhosh et al., 

2020) and mobile phone data (Steenbruggen et al., 2016; Bolla and Davoli, 2020), among 

others.  

The above practices have shown that the detection of traffic anomalies is a data-specific 

task. Specifically, the choice of detection method depends on the structure and characteristics 

of the data used. For similar detection problems, those experiences in the road sector may guide 

the application of new sensor technologies in urban metros or shed light on developing suitable 

detection algorithms. 

 

2.3.3 Research on metro disruption detection 

In the urban rail sectors, huge efforts have been made to automatically detect faults in railway 

track circuits. Using circuit sensor signals and video images, researchers have developed 

diagnostic algorithms based on neural network, deep learning and Bayesian network to 

automatically detect faults in railway track circuits (Chen et al., 2008; Zhao, Wu and Ran, 2012; 

De Bruin et al., 2017; James et al., 2018; Welankiwar et al. 2018; Wei et al., 2019).   

However, most urban metro systems still rely on manual incident detection methods, 

which rely on reports of manual inspections from metro operators and complaints from 

passengers (Ji et al., 2018). For example, when a disruption occurs in the London Underground, 

the staff involved are required to complete an Incident Reporting Form (IRF). After verification 

by an operational manager, the IRF is entered into the service data system called CuPID, which 

finally generates incident logs (London Datastore, 2018). These traditional detection methods 

suffer from human errors and manpower constraints, leading to missing observations due to 

limited monitoring range in space and time and incorrect records (Ji et al., 2018). Such 

shortcomings of traditional methods have encouraged researchers to explore automatic 



28 
 

disruption detection methods in urban metro systems by leveraging the emergence of large-

scale datasets.  

The first type of new data source is social media. Metro-related social media data include 

reviews or comments made by passengers about metro services. For instance, Ji et al. (2018) 

used Twitter data to detect service disruptions in the Washington Metro. The authors first 

filtered tweets with keywords of metro lines and stations during a given period. Subsequently, 

by mining common complaint vocabulary in these tweets (fail, disrupted, interrupted, and 

injury, among others), they predicted if there was a delay on a specific metro line. Similarly, 

Zulfiqar et al. (2020) used real-time Twitter data to develop an open-source system for the early 

detection of emergencies or criminal events within rail-based transit systems. By tracking the 

emerging information about each particular incident, they are able to track the chronological 

development of threatening events during the day. Compared with conventional incident logs 

data, the social media data can capture passengers’ feedback and complaints promptly and 

cleverly monitor train services throughout the entire network. However, the detection of 

disruptions based on social media data cannot avoid the limitations of human inspections. For 

example, it might be the cases that not all disruptions are mentioned on social media, 

line/station information might be missing, and the posts may contain wrong or fake disruption 

information. Thus, the detection accuracy largely depends on the representativeness and quality 

of metro-related social media data.  

The second type of new data source is automated fare collection or smart card data (SCD). 

SCD provides information about the origin and destination of passengers with timestamps, and 

thus, reveals the journey time and travel behaviour of passengers. Sun et al. (2016) used SCD 

to obtain passenger flows and regarded abnormal changes in passenger flow as a sign of 

disruption occurrence. They assumed that the passenger arrival rate during a specific period 

follows a normal distribution and estimated the distributional parameters via Bayesian 

inference. Subsequently, they considered all observations beyond three standard deviations of 

the mean passenger flow as the disruption indicator. In another study, Tonnelier et al. (2018) 

proposed four approaches for anomaly detection using SCD. The first three approaches inferred 

a daily temporal prototype (that is, a specific pattern of passenger behaviour depending on the 

day of the week) according to entry logs using three different methods: the average, the 

normalised average and a discrete probability density function obtained from the nonnegative 

matrix factorisation algorithm. Next, they obtained anomaly scores by determining the 
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difference between the inferred prototypes of station flow and the real observations of a 

particular day. The fourth approach is a user-based model in which they computed the log 

probability distribution of the entry frequencies at different stations for each passenger. 

Abnormal entry behaviour was detected at the passenger level and aggregated in 

spatiotemporal dimensions. Briand et al. (2019) used the unexpected increases or decreases in 

passenger demand to detect atypical events in the French transit network of the city of Rennes. 

After clustering observations with similar ridership activities, they conducted outlier detection 

based on the boxplot method. Jasperse (2020) also used SCD, but he relied on abnormality in 

journey time rather than demand patterns to identify irregular metro operations. The author 

attempted to detect the propagation of passenger delays in both spatial (that is, through nearby 

stations) and temporal dimensions. However, this study focuses on passenger delays rather than 

train service delays. In metro systems, service delays would generally result in passenger delays. 

But on the contrary, service delays cannot be directly inferred from passenger delays, since 

passenger delays may originate from other factors, such as overcrowding. This distinction is 

crucial. 

In summary, SCD-based methods might omit some service disruptions because abnormal 

passenger behaviour is not highly correlated with the abnormal headways. Such weaker 

correlations can be attributed to the fact that anomalous travel patterns can be caused by many 

other factors apart from service disruptions: (i) inherent fluctuations in the passenger demand 

itself, (ii) weather conditions, (iii) mega-events near metro stations, and (iv) temporary demand 

control measures. Thus, SCD could be useful in detecting ridership related incidents, but the 

detection of service disruptions requires a new data source and method, unless the above causes 

of anomalous travel patterns can be fully controlled. Table 2.2 shows a comparison of recent 

research on metro disruption detection. 

 

 

2.4  Metro vulnerability measurement 

2.4.1 Definition of vulnerability  

Vulnerability is generally understood as the quality of being weak and easily influenced under 

disruptive events. Since the 1990s, this concept has been widely used to characterise the 

performance of transport systems (Mattsson and Jenelius, 2015; Reggiani et al., 2015), which 

is often defined as a measure of susceptibility of the transport system to incidents (Berdica, 
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2002; Jenelius et al., 2006; O’Kelly, 2015). Due to different interpretations of susceptibility, 

the concept of vulnerability is sometimes confused with resilience, reliability and risk. To avoid 

such confusion, Faturechi and Miller-Hooks (2014) have summarised the most agreed 

interrelationship among these concepts (see Figure 2.1). Although there is no clear boundary 

to distinguish each concept, in general reliability tends to emphasise the probability of 

encountering disturbances, while vulnerability tends to emphasise the consequences of 

disturbances. Resilience, on the other hand tends to emphasise the recoverability of transport 

systems.  

 

Figure 2.1: The interrelationship among vulnerability, reliability, risk and resilience [adapted 
from Faturechi and Miller-Hooks (2014)] 
 

In this PhD, the vulnerability of metro systems refers to the extent of degradation in the 

level of service due to service disruptions. Vulnerability metrics are used to measure the 

consequences of service interruptions in the form of performance outputs such as train 

kilometres, passenger volumes or the quality of travel. For operators, such metrics have 

important implications in identifying weak stations or links in metro systems and efficiently 

allocating resources to the most affected areas (Sun et al, 2015; Chopra et al, 2016). Given the 

rising interest in utilising vulnerability metrics in disruption prevention and management, 

obtaining an accurate measure of such metrics is crucial. 

 

2.4.2 Methods of vulnerability measurement 

Traditionally, there are two types of method used to build vulnerability indicators for metro 

systems: topology-based methods and system-performance-based methods.  
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Topological methods rely on complex network theory to convert the metro network into 

a scale-free graph, in which nodes represent metro stations, edges represent links between 

directly connected stations and the weight associated with each edge is computed based on 

travel time or distance (Derrible and Kennedy, 2010; Zhang et al., 2011; Mattsson and Jenelius, 

2015). The changes in the system’s connectivity are reflected in graphs by removing nodes or 

links, and vulnerability is entirely governed by the topological structure. For instance, the 

location importance of metro stations or links is indicated by the number of edges connected 

to a specific node and the fraction of shortest paths passing through the given node/edge (Yang 

et al., 2015; Sun and Guan, 2016; Sun et al., 2018; Zhang et al., 2018b). Network-level 

efficiency is indicated by the average of reciprocal shortest path length between any origin-

destination (OD) pair. Such global indicators capture the overall reachability as well as the 

service size of a metro system (Sun et al., 2015; Yang et al., 2015).  

System-performance-based analyses not only consider the network topology but also 

incorporate real data on metro operations (e.g., ridership distribution) into vulnerability 

measurement (M’cleod et al., 2017; Mattsson and Jenelius, 2015). For instance, Cats and 

Jenelius (2014) introduced a dynamic-stochastic setting to extend the topological measures of 

betweenness centrality and link importance. Sun et al. (2018) use a ridership-based indicator – 

a sum of flows in edges connected with the given node – to complement the topological 

measures by integrating passengers’ travel preferences. Other studies use passenger delay and 

demand loss as vulnerability indicators (Rodríguez-Núñez and García-Palomares, 2014; 

Adjetey-Bahun et al., 2016; M’cleod et al., 2017; Cats and Jenelius; 2018; Nian et al., 2019). 

Specifically, the network-level passenger delay can be calculated based on changes in the 

weighted average of travel time between all OD pairs due to disruptions where weights are 

station-level passenger loads. Jiang et al. (2018) suggest integrating land use characteristics 

around stations into vulnerability measurement because metro systems interact with the 

external environment during incidents. 

To quantify vulnerability based on the aforementioned indicators of the system’s 

performance, almost all previous studies adopt simulation-based approaches and assume 

hypothetical disruption scenarios. The simplest disruption scenario involves a single station or 

link closure, assuming one node or edge in the graph is out of service. This incident affects the 

topology structure and passengers’ route choice and the differences in the corresponding 

performance indicators under normal and disrupted scenarios are quantified to measure 
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vulnerability (Sun et al., 2015). More complex disruption scenarios include the closure of two 

or more non-adjacent stations, failure of an entire line, and sequential closure of stations until 

the network crashes (Adjetey-Bahun et al., 2016; Chopra et al., 2016; Sun and Guan, 2016; 

Zhang et al., 2018a; Zhang et al., 2018b). Ye and Kim (2019) discussed the case of partial 

station closure. Cats and Jenelius (2018) also moved beyond the complete failures and 

investigated the partial capacity degradation at line level and link level. 

Simulation-based studies gained popularity because they do not require incident data and 

can flexibly control simulation settings to imitate a wider range of possible situations. 

However, researchers have to make many assumptions to infer passengers’ response to virtual 

disruptions. Without observing passengers’ movements during real incidents, the validity of 

the simulation assumptions is questionable. For example, while quantifying passenger delay 

indicators, Rodríguez-Núñez and García-Palomares (2014) and Adjetey-Bahun et al. (2016) 

assume that all passengers have the same travel speed and they do not change their destinations 

under disruptions unless there is no available route. However, in reality, passengers can travel 

at different speeds, leave the metro system, change their destinations, or reroute during 

disruptions. As a result, especially for system-based analyses, vulnerability metrics obtained 

from simulation-based studies may not reflect the true changes in the level of service due to 

disruptions. There is, therefore, scope to improve vulnerability measurement by empirically 

estimating the impact of disruptions. The advantage of empirical-based methods is that the 

aforementioned assumptions are no longer needed, and the estimated impacts of disruptions 

are more reliable. However, a drawback of empirical studies is that they require high-quality 

and sufficient data. Table 2.3 shows a comparison of recent vulnerability studies and illustrates 

the contribution of this research. 

 

 

2.5   Disruption impact estimation  

2.5.1 Simulation-based research 

The simulation-based studies quantify the impacts of hypothetical disruption scenarios, with 

no need for real disruption data. Generally, for metro systems, this part of the literature is 

overlapped with that of simulation-based vulnerability measurement because vulnerability is 

defined as the susceptibility to incidents (see Section 2.4.2).  
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In recent years, the simulation-based research of metro vulnerability has evolved from 

pure complex network theory to system-performance based analysis. Therefore, the latest 

studies in this area started to the model the response of individual passengers under simulated 

disruptions. Shelat and Cats (2017) proposed an indicator of local link criticality to quantify 

the spatial propagation effects of link disruptions. The public transport network assignment 

model based on stochastic user equilibrium was developed to calculate such criticality. Since 

the last ten years, a mesoscopic public transport operations and assignment model called 

BusMezzo has become a powerful tool to dynamically simulate individual travel decisions, 

especially for the route choice (Toledo et al., 2010; Cats, 2013). Multiple studies on disruption 

impacts have been conducted based on BusMezzo. For example, in short-horizon and 

unplanned disruption scenarios, Cats and Jenelius (2014) simulated the disruption impacts as 

changes in passengers’ welfare and operational costs of rolling stock, based on stochastic and 

dynamic trip assignments. Malandri et al. (2018) analysed the spill-over effects of public 

transport disruptions via the passenger volume over capacity ratio (VOC), which intended to 

indicate the crowding level throughout the network. They used simulated disruption scenarios 

to measure the change of VOC at individual trip level. Based on the transfer inference algorithm 

and hypothetic disruptions, Yap et al. (2021) conducted experiments to evaluate the impacts of 

different train rescheduling strategies on the disruption propagation from the regional train 

network to other public transport modes (Yap et al., 2017). In addition, Leng et al. (2018) and 

Paulsen et al. (2018) applied another agent-based simulation software (MATsim) to analyse 

rail disruption impacts on passenger delays in the metropolitan areas of Zürich and Copenhagen, 

respectively. 

However, without empirical observation of real disruptions, the great number of 

assumptions on passengers and virtual interruptions can be the main problem for simulation-

based studies.  

 

2.5.2 Empirical research 

In an urban rail transit context, early attempts to analyse disruption impact relied on survey 

data. Rubin et al. (2005) conducted a stated preference survey to understand the psychological 

and behavioural reactions of travellers to the bombing incident that occurred in London in July 

2005. They considered passengers’ reduced intention of travelling via the London 

Underground after the attack as the key indicator. Since stated willingness may not reflect real 
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travel behaviour, Zhu et al. (2017a) performed a revealed preference survey to investigate 

travellers’ reactions to transit service disruptions in the Washington D.C. Metro. By comparing 

their actual travel choices before and during the metro shutdown, they found a 20% reduction 

in demand. Results from such surveys are usually presented as the percentage change in 

passengers’ preferences for travel modes, departure time, and destinations. Although this 

information is useful, we still need detailed information about delays or demand losses to 

quantify true disruption impacts. Furthermore, there are inherent limitations of survey-based 

studies. For instance, repeated observations of a respondent are difficult to collect over a long 

period because of constraints associated with cost, manpower, recording accuracy, and privacy 

protection of respondents (Kusakabe and Asakura, 2014). Moreover, a survey sample cannot 

cover all passengers, which may lead to biased estimates of disruption impact if the sample is 

not representative of the population. 

With the wide use of automated fare collection facilities in metro systems, smart card 

data have become a powerful tool for research related to transit operations and travel behaviour 

(Pelletier et al., 2011). Compared to survey data, the key advantages of smart card data are 

accurate, cost-effective, and continuous observations for each passenger within the system for 

a long time (Kusakabe and Asakura, 2014). Therefore, researchers have started using smart 

card data to analyse disruption impacts. For instance, Sun et al. (2016) conducted passenger 

assignment based on smart card data. They estimated the disruption impact as the differences 

between the assignment results under real incidents and normal conditions, in terms of ridership 

distribution and journey time across all OD pairs. This study does not require extra assumptions 

about passengers’ reaction because their actual locations and movements have been revealed 

from smart card data. However, they conventionally assume that metro disruptions occur 

randomly. In reality, factors such as travel demand, signalling type, passenger behaviour, 

operating years, rolling stock characteristics and weather conditions can have a significant 

influence on the likelihood of metro failures (Melo et al., 2011; Wan et al., 2015; Brazil et al., 

2017). These confounding factors may also affect the corresponding impact of disruptions 

(Imbens and Rubin, 2015). This is a particularly important consideration because, under non-

random disruptions, the impact estimated from before-after comparison will be biased. 

Some researchers also adopt prediction-based approaches to quantify disruption impact 

via smart card data. Silva et al. (2015) used past disruptions to predict the exit ridership and 

passenger behaviour for unseen scenarios, such as station closure and line segment closure. 
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Similarly, Yap and Cats (2020) applied supervised learning approaches to predict the passenger 

delay caused by incidents. These prediction-based studies still cannot disentangle the causal 

effect of disruptions and can result into biased estimates due to the existence of confounding 

factors.  

In a very recent empirical study, the above research gaps have been bridged by Zhang et 

al. (2021a).  Based on large-scale smart card data, they proposed to use propensity score 

matching methods to quantify the causal effects on service performance indicators, which 

allows for the non-random occurrence of disruptions and adjusts for potential bias caused by 

confounding factors. Nevertheless, the design of their causal inference framework still suffers 

from some limitations. First, metro stations are assumed to be independent and there is no 

interference between different stations. In other words, the disruption impacts are restricted to 

the station where it occurred, so other parts of the network are considered not to be affected. 

This assumption oversimplifies the connections between stations in metro networks. Adjacent 

stations are linked by metro lines and successive train movements; thus, disruption impact can 

actually spread along metro lines and influence the entire network. Previous empirical-based 

studies have concentrated on the direct impacts of disruptions, while the propagation of indirect 

impacts (spillover effects) has not yet been explored empirically. Second, the outputs of 

propensity score matching methods are the average causal impacts of all disruptions observed 

during the given study period. The proposed framework is not suitable for estimating the causal 

effects of individual disruption. 
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Table 2.2: A comparison of recent research on metro disruption detection 

Research Source data Detection indicator Detection method 

Detection accuracy 
Disruption 

propagation 

Recovery 

intervention No human 

errors 

True service 

disruption 

Sun et al., 2016 Smart card data Boarding ridership 

Three-standard-deviation 

rule with Bayesian 

inference 

√    

Ji et al., 2018 Twitter data 
Complain/delay 

vocabulary in tweets 

Multitask supervised 

learning 
 √   

Tonnelier et al., 

2018 
Smart card data Entry logs 

Anomaly scores 

compared to baseline 
√    

Briand et al., 

2019 
Smart card data Passenger demand Boxplot  √    

Jasperse, 2020 Smart card data Passenger delay 

Hierarchical clustering 

and probabilistic 

classification 

√  *4  

Zulfiqar et al., 

2020 
Twitter data 

Crime/emergency 

vocabulary in tweets 

Based on keywords and 

dynamic query expansion  
    

Our approach 
Vehicle 

location data 
Service headway 

Probabilistic Gaussian 

mixture model 
√ √ √ √ 

 
4 Jasperse (2020) analysed the spread of passenger delays, rather than the propagation of train service delays. 
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Table 2.3: A comparison of recent research on metro vulnerability 

Research 

Vulnerability metrics or 
disruption impacts Analysis approach Smart card  

or 
OD data 

Land use Non-random 
disruptions Topology-

based 
System 

performance-based 
Simulation-

based 
Empirical  

(real incidents) 

Derrible and Kennedy, 2010 √  √     
Zhang et al., 2011 √  √     
Yang et al., 2015 √  √     

Chopra et al, 2016 √  √     
Zhang et al., 2018a √  √     
Zhang et al., 2018b √  √     
Ye and Kim, 2019 √  √     

Rodríguez-Núñez and 
García-Palomares, 2014  √ √  √   

Adjetey-Bahun et al., 2016  √ √  √   
M’cleod et al., 2017  √ √  √   

Cats and Jenelius, 2018  √ √     
Cats and Jenelius, 2014 √ √ √  √   

Sun et al., 2015 √ √ √  √   
Sun and Guan, 2016 √ √ √  √   

Sun et al., 2018 √ √ √  √   
Lu, 2018 √ √ √  √   

Jiang et al., 2018  √ √  √ √  
Sun et al., 2016  √  √ √   

Zhang et al., 2021a  √  √ √ √ √ 



38 
 

2.6   Research gaps 

We conclude this section with a summary of the potential research gaps identified in the 

literature. 

Disruption detection: 

i). For the detection of service (operational) disruption in metro systems, methods 

based on incident logs and social media data can be unreliable due to inevitable 

human errors and missing observations. Recent SCD-based methods capture 

abnormal passenger behaviour as an indicator of disruption occurrence, but they 

might not detect service disruptions due to the lack of one-to-one association 

between service delays and abnormality in passenger behaviour.  

ii). Previous detection methods rarely pay attention to the propagation of disruption 

across space (that is, along metro lines) and time. Neither the SCD nor the social 

media data contain effective information to identify the disruption propagation. 

SCD can capture passenger delay propagation, but it does not translate into the 

measure of service delay propagation.    

 

Metro vulnerability measurement: 

iii). Previous studies on vulnerability metrics of transit systems are largely based on 

simulation approaches. These studies do not account for the actual behaviour of 

passengers under disruptions. Basing analyses on empirical data, rather than 

simulations, obviates the need for making potentially unrealistic assumptions about 

passengers’ movement.  

 

Disruption impact quantification: 

iv). In urban metro systems, disruption occurrences can be non-random. Therefore, 

empirical studies on quantifying disruption impacts should account for this non-

randomness to eliminate confounding biases in estimation. 

v). Besides the interrupted location, disruption impacts can spread to other functioning 

stations in the metro network. Therefore, under the causal inference framework, 

empirical studies on quantifying disruption impacts should account for such 
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interference among stations. That is, the assumption on independent stations needs 

to be relaxed. 

vi). Empirical-based impact analyses published so far have not explored the propagation 

of indirect impacts (spillover effects) throughout metro networks. 

 

In this PhD research, gaps (i) and (ii) serve as a basis for Chapter 4 in the literature. Chapter 5 

shows that both improvements (iii) and (iv) can be made by adopting causal inference methods 

and using the empirical disruption impacts to generate vulnerability measures. Finally, in 

Chapter 6 we implement the research ideas (iv) and (v) under the causal inference framework, 

to explore the spillover effects of disruptions and their spatiotemporal propagation within metro 

networks. 
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Chapter 3                               

Methodological background: Causal inference 

methods 

 

According to the review in Chapter 2, there are two key gaps in the literature of empirical 

vulnerability measurement and disruption impact estimation. The first is confounding issues 

caused by non-random disruption occurrence, and the second is the interference among stations 

in metro networks. To fill these gaps, an important contribution of the thesis is to apply novel 

causal models via large-scale automated data to improve the evaluation of disruption impacts. 

This chapter provides the fundamental knowledge of causal inference framework and a review 

of the literature on techniques for the aforementioned research gaps. The objectives of Chapter 

3 are to highlight the importance of causal inference methods and to facilitate the understanding 

of specific techniques that are used for vulnerability measurement in Chapter 5 and impact 

quantification in Chapter 6.  

In recent decades, causal inference has been widely studied in social and biomedical 

sciences, contributing to the discovery of how actions or interventions (commonly referred to 

as treatments) affect outcomes of interest (Imbens & Rubin, 2015, Bojinov et al., 2020). 

Statisticians and econometricians leverage this powerful tool to determine causality in many 

fields, such as urban economics, public health, and a wide range of public policy decisions. 

However, such techniques have not been applied in metro disruption analysis. Therefore, in 

Section 3.1 we first provide a general overview of the literature on the causal inference 

framework.   

Meanwhile, the two research gaps identified above also imply methodological challenges 

in causal inference. First, the issue of confounding is a common concern in observational 

studies. With appropriate assumptions and assignment mechanisms, the bias from 

confoundedness can be eliminated.  The second is the interference issue which is a more 

challenging problem since it violates a basic assumption for the majority of causal inference 

methods: the stable unit treatment value assumption (SUTVA). In Section 3.2, we discuss the 
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viable solutions to these two challenges in detail. Further contextual discussion of the proposed 

solutions in this chapter is presented in Chapter 5 and Chapter 6. 

 

 

3.1   The basic framework 

3.1.1 Potential outcomes 

The fundamental notion underlying the Rubin causal model (RCM) is that causality behind a 

𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 (or intervention) is applied to a 𝑢𝑢𝑡𝑡𝑢𝑢𝑡𝑡 (Imbens & Rubin, 2015). The unit 𝑢𝑢 can be a 

physical object, a person or a collection of objects/persons, at a particular point in time. For 

unit 𝑢𝑢, let 𝑊𝑊𝑖𝑖 indicate the treatment enrolment, and 𝑌𝑌𝑖𝑖 denote the outcomes (results or effects of 

the treatment on a response variable) of interest. The potential outcomes for a binary treatment 

are defined as (Imbens and Wooldridge, 2009): 

                                𝑌𝑌𝑖𝑖(𝑊𝑊𝑖𝑖) = 𝑌𝑌𝑖𝑖(0) × (1 −𝑊𝑊𝑖𝑖) + 𝑌𝑌𝑖𝑖(1) × 𝑊𝑊𝑖𝑖,                                 (3.1) 

 𝑌𝑌𝑖𝑖 = �𝑌𝑌𝑖𝑖
(0)        𝑢𝑢𝑖𝑖 𝑊𝑊𝑖𝑖 = 0

𝑌𝑌𝑖𝑖(1)        𝑢𝑢𝑖𝑖 𝑊𝑊𝑖𝑖 = 1 .                                                    

𝑌𝑌𝑖𝑖(1) denotes the outcomes that unit 𝑢𝑢 would attain if it is exposed to the treatment (𝑊𝑊𝑖𝑖 = 1); 

conversely 𝑌𝑌𝑖𝑖(0) denotes the outcomes that would be attained if unit 𝑢𝑢  did not receive the 

treatment (𝑊𝑊𝑖𝑖 = 0). Since the unit 𝑢𝑢 can be either treated or not, the two potential outcomes are 

counterfactual and only one will be ultimately observed. 𝑌𝑌𝑖𝑖 denotes the observed outcome. The 

causal effect of a treatment involves the comparison of these two corresponding potential 

outcomes at the unit level, which is defined as 𝑌𝑌𝑖𝑖(1) − 𝑌𝑌𝑖𝑖(0).  

Although the definition of causal effects does not require more than one unit, learning 

about causal effects typically requires multiple units. In order to exploit the presence of 

multiple units, the stable unit treatment value assumption (SUTVA) is introduced by Rubin 

(1978). First, the potential outcomes for any unit does not vary with the treatments assigned to 

other units. Second, for each unit there is no hidden variation of treatment that leads to different 

potential outcomes. Thus, under SUTVA the average treatment effect on the treated units 

(ATET) is 

                                𝜏𝜏𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝐸𝐸[𝑌𝑌𝑖𝑖(1) − 𝑌𝑌𝑖𝑖(0)|𝑊𝑊𝑖𝑖 = 1].                                    (3.2) 
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‘The fundamental problem of causal inference’ (Holland, 1986) is therefore a missing data 

problem that the missing potential outcomes associated with the unrealised treatment need to 

be imputed.  

 

3.1.2 The assignment mechanism 

The second ingredient of the RCM is the assignment mechanism, which is defined as the 

conditional probability of receiving the treatment, and formulated as a function of potential 

outcomes and unit-specific background attributes, satisfying  

0 < Pr(𝑊𝑊𝑖𝑖|𝑋𝑋𝑖𝑖,𝑌𝑌𝑖𝑖(0),𝑌𝑌𝑖𝑖(1)) < 1. 

The attributes for unit 𝑢𝑢,  also referred to as pre-treatment covariates, are denoted by vector 𝑋𝑋𝑖𝑖 

with 𝑘𝑘-component row. Such covariates can explain some of the variation in outcomes and the 

key characteristic is that they are unaffected by the treatment assignment. 

Generally, based on different assumptions, there are three classes of assignment 

mechanism: randomized experiments, unconfounded assignment and other assignment 

mechanisms. The first class is randomized experiments, where the probability of assignment 

to treatment does not vary with potential outcomes:  

𝑊𝑊𝑖𝑖 ⫫ �𝑌𝑌𝑖𝑖(0),𝑌𝑌𝑖𝑖(1)�. 

This assignment mechanism has a known function of covariates controlled by the researcher. 

The statistical analysis of such experiments is straightforward, but experimental evaluations 

have traditionally been rare in economics and transport fields (Imbens and Wooldridge, 2009). 

The second class of assignment mechanics is under the unconfounded assumption, where 

the assignment probabilities are conditional independent to the potential outcomes, given 

covariates 𝑋𝑋𝑖𝑖 (Rosenbaum and Rubin, 1983), 

𝑊𝑊𝑖𝑖 ⫫ �𝑌𝑌𝑖𝑖(0),𝑌𝑌𝑖𝑖(1)� � 𝑋𝑋𝑖𝑖. 

Unconfounded assignments have been widely used in observational studies, incorporated in 

approaches such as outcome regressions, propensity score matching and weighting (Heckman 

et al., 1998).  One of the most popular approaches is propensity score matching, which is 

discussed in the next section.  

The final class of assignment mechanisms consists of all remaining mechanisms with a 

certain amount of dependence on potential outcomes. Relaxing the unconfounded mechanism 
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may lead to biased causal estimates. The representative solutions for this problem include 

differences-in-differences (Ashenfelter,1978; Ashenfelter and Card; 1985), instrumental 

variables (Angrist et al., 1996) and regression discontinuity (Thistlewaite and Campbell, 1960; 

Cook, 2008). However, in this thesis, those methods are not applicable in the context of metro 

disruptions.  

 

 

3.2   Challenges and viable methods for disruption impact analysis  

In this PhD, we aim to introduce the causal inference framework to urban metro systems. 

Therefore, the study units are metro stations at a specific time of day, and the treatments are 

defined according to whether they receive disruptions. As mentioned at the beginning of this 

Chapter, there are two major concerns in estimating disruption impacts: (i) non-random 

occurrence of disruptions, and, (ii) metro stations are connected and therefore the outcomes 

interact with each other.  The non-randomness of disruptions implies that some station 

covariates can influence both the disruption occurrence and the outcomes, ignoring which may 

lead to biased causal estimates. Fortunately, this challenge can be resolved by applying 

unconfounded assignment: propensity score matching in case of the present thesis. Section 

3.2.1 discusses the rationale behind and briefly reviews this method.  The second challenge 

originated from the presence of interference among station-level outcomes, which violates the 

SUTVA. In Section 3.2.2, we summarise possible solutions that incorporate the interactions 

among units, specifically discuss the synthetic control methods.  

 

3.2.1 Treating confoundedness 

Under confoundedness, by adjusting for differences in pre-treatment covariates and outcomes, 

the bias in comparisons between treated and control units can be obviated. That is the main 

idea of unconfounded assignment, conditional on the covariates, the treatment assignments are 

independent of the potential outcomes. Matching is one of the prominent approaches based on 

unconfounded assignment, which pairs each treated unit with an untreated unit with the same 

value on observed attributes. The causal effects are then estimated from the comparison within 

the matched pairs. Matching estimators have been widely applied in settings where (i) the 

interest is in the average treatment effect for the treated, and (ii) there is a large reservoir of 
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potential controls (Rubin, 1973a, b; Rosenbaum, 1989; Rubin and Thomas, 2000; Heckman et 

al., 1998).  

In practice, considering the difficulty in comparing high-dimensional covariates, a single 

index (propensity score or also referred to as balancing score) is proposed to represent all the 

covariates. Mathematically, the propensity score is described as a function of the covariates 

(Imbens, 2000)  

                                𝑊𝑊𝑖𝑖 ⫫ �𝑌𝑌𝑖𝑖(0),𝑌𝑌𝑖𝑖(1)�  �  𝑡𝑡(𝑋𝑋𝑖𝑖).                                          (3.3) 

When the conditional independence assumption, SUTVA and overlap (common support) 

assumption, 0 < 𝑃𝑃𝑡𝑡(𝑊𝑊𝑖𝑖 | 𝑋𝑋𝑖𝑖) < 1, are all held, the average treatment effect of the treated can 

be derived as  

                             𝜏𝜏𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝐸𝐸[𝑌𝑌𝑖𝑖(1) − 𝑌𝑌𝑖𝑖(0)|𝑊𝑊𝑖𝑖 = 1] = 1
𝑁𝑁
∑ �𝑌𝑌�𝑖𝑖(1) − 𝑌𝑌�𝑖𝑖(0)�𝑁𝑁
𝑖𝑖=1 ,               (3.4) 

𝑌𝑌�𝑖𝑖(0) =
1
𝑀𝑀

� 𝑌𝑌𝑗𝑗 ,
𝑗𝑗∈𝐽𝐽𝑀𝑀(𝑖𝑖)

 

where 𝑌𝑌�𝑖𝑖(0) denotes the missing potential outcome for unit 𝑢𝑢. 𝐽𝐽𝑀𝑀(𝑢𝑢) represents a collection of 

indices of the closest M control units matched for the current treated unit. The composition of 

𝐽𝐽𝑀𝑀  is determined by matching algorithms. Five commonly used matching algorithms are 

outlined below. In general, the performance of different algorithms largely depends on the 

structure of the data used (Stuart, 2010). A contextual discussion of the propensity score 

matching methods (Imbens and Wooldridge, 2009) is further presented in Chapters 5. 

Nearest neighbour matching: 

Units from the comparison group with the closest propensity score are chosen as matches for 

given treated units. This is one of the most straightforward matching methods (Rubin, 1973a).  

Optimal matching: 

Optimal matching, one complication of nearest neighbour matching, takes into account the 

overall set of matches when choosing individual matches, minimising the total distance within 

matched pairs (Gu and Rosenbaum, 1993; Rosenbaum, 2002). 

Caliper and radius matching: 
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This is a generalised form of nearest neighbour matching. Given a tolerance on the maximum 

propensity score distance, this matching scheme uses not only the nearest neighbour but all 

comparison members within the tolerance level (Smith, 1997; Rubin and Thomas, 2000). 

Subclassification and interval matching: 

The idea is to partition the common support of the propensity score into a set of strata. Within 

each stratum, the treatment effects are evaluated as the difference between the outcome of 

treated and all comparison individuals (Rosenbaum and Rubin, 1985). 

Kernel and local linear matching: 

These are nonparametric matching estimators using a weighted average of all untreated 

individuals to construct the counterfactual outcome of each treated individual. The closer to 

the propensity score of treated units, the greater the weight is (Heckman et al., 1998). 

 

3.2.2 Treating interference 

In the classical potential outcomes framework, the SUTVA plays an important role. It assumes 

that there is no interference between units. However, in many experimental and observational 

studies, where units interact with each other physically or socially, interference is likely to be 

present and the SUTVA is no longer plausible (Kuang et al., 2020). With such interference, the 

assigned treatment on one unit can have direct effects on its own and spillover effects on the 

potential outcomes of other units. For example, in the context of metro networks, adjacent 

stations are connected by tracks and continuous train services. When one disruption occurs in 

a station, the adverse impacts such as delays and crowding can spread to the entire network via 

metro lines. The presence of interference among stations implies that an individual disruption 

may affect the performances of all stations in the system. In practice, both direct and spillover 

effects are of great interest for metro operators. Thus, estimating causal effects in the presence 

of interference becomes an inevitable challenge. 

To address interference issues under the causal inference framework, one general 

solution is to redefine the unit of interest and try to eliminate the interactions among the newly 

defined units, e.g., by aggregation (Imbens and Wooldridge, 2009). Out of the ordinary in this 

area, a series of novel studies view interference or interactions as the primary object of interest, 

rather than as a nuisance. These possible solutions rely on specifying the interactive 
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relationships among units and possibly modelling the interference mechanism, which can be 

summarised into two directions (Kuang et al., 2020). 

The first direction targets the partial interference assumption (Sobel, 2006): when study 

units are partitioned into non-overlapping clusters or groups, interference exists only within 

each cluster/group and there is no interference between clusters/groups (Hudgens and Halloran, 

2008; Forastiere et al., 2016; Kang and Imbens; 2016; Rigdon and Hudgens, 2015; Grossi et 

al., 2020). In the other direction, researchers have considered relaxing the partial interference 

assumption to account for a more general structure of interference (van der Laan, 2014; 

Forastiere et al., 2016; Liu et al., 2016; Aronow and Samii, 2017; Forastiere et al., 2021). New 

designs of the interference structure have been proposed, for example Verbitsky-Savitz and 

Raudenbush (2012) allowed the potential outcomes of one unit to depend on a function of the 

treatment assignments of all other units. Aronow and Samii (2017) and van der Laan (2014) 

limited the interference in immediate neighbours and ruled out the influence from other units. 

An (2018) developed a treatment diffusion network to measure the treatment interference 

between treated and control units.  

The causal inference methods involved in the above literature include randomised 

experiments (Rosenbaum, 2007; Aronow, 2012; Basse and Feller, 2018), inverse probability 

weighted (IPW) (Hudgens and Halloran, 2008; VanderWeele et al., 2012; Liu et al., 2016), 

matching (An, 2018) and synthetic control (Cao and Dowd, 2019; Grossi et al., 2020). Next, 

we specifically discuss synthetic control methods, which can properly relax the non-

interference assumption with simple modifications.  

Synthetic control methods were originally proposed by Abadie and Gardeazabal (2003) 

and Abadie et al. (2010). The main idea of this method is that a combination of unaffected units 

often provides a more appropriate comparison than any single unaffected unit alone. Therefore, 

to quantify causality, a treated unit is compared with a synthetic control unit, which is the 

weighted average of the unaffected units from the corresponding “donor pool”. The donor pool 

is a group of unaffected units that have similar pre-treatment characteristics as the treated units. 

Formally, let 𝑗𝑗 denote 𝐽𝐽 + 1 units 𝑗𝑗 = 1, 2, … , 𝐽𝐽 + 1, the first unit (𝑗𝑗 = 1) is set to be the treated 

unit and the donor pool (𝑗𝑗 =  2, … , 𝐽𝐽 + 1) is a collection of untreated units, not affected by the 

treatment. For time span 𝑇𝑇 periods, given the first 𝑇𝑇0 periods are before the treatment. The 

effect of the treatment on the affected unit in period 𝑡𝑡 is defined as (Abadie, 2021) 
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                           𝜏𝜏1𝑡𝑡 = 𝑌𝑌1𝑡𝑡𝐼𝐼 − 𝑌𝑌1𝑡𝑡𝑁𝑁    𝑡𝑡 > 𝑇𝑇0,                                                (3.5) 

𝑌𝑌�1𝑡𝑡𝑁𝑁 = �𝑐𝑐𝑗𝑗

𝐽𝐽+1

𝑗𝑗=2

𝑌𝑌𝑗𝑗𝑡𝑡 

where for each unaffected unit 𝑗𝑗 , at time 𝑡𝑡 , 𝑌𝑌1𝑡𝑡𝑁𝑁  denotes the potential outcomes without 

treatment. 𝑌𝑌1𝑡𝑡𝐼𝐼  defines the potential outcomes under the treatment. A synthetic control (defined 

as a weighted average of the units in the donor pool) is represented by a 𝐽𝐽 × 1 vector of weights 

𝑪𝑪 = (𝑐𝑐2, … , 𝑐𝑐𝐽𝐽+1)′. Given a set of non-negative weights 𝑽𝑽 = (𝑣𝑣1, … , 𝑣𝑣𝑘𝑘)′, optimal synthetic 

control 𝑪𝑪∗ = (𝑐𝑐2∗, … , 𝑐𝑐𝐽𝐽+1∗)′ is obtained from the following minimization problem: 

              min
𝑪𝑪
‖𝑿𝑿𝟏𝟏 − 𝑿𝑿𝟎𝟎𝑪𝑪‖ = �∑ 𝑣𝑣ℎ�𝑋𝑋ℎ1 − 𝑐𝑐2𝑋𝑋ℎ2 − ⋯− 𝑐𝑐𝐽𝐽+1𝑋𝑋ℎ𝐽𝐽+1�

2𝑘𝑘
ℎ=1 ,              (3.6) 

𝑠𝑠𝑢𝑢𝑐𝑐ℎ 𝑡𝑡ℎ𝑎𝑎𝑡𝑡 �𝑐𝑐𝑗𝑗

𝐽𝐽+1

𝑗𝑗=1

= 1,    𝑐𝑐𝑗𝑗 > 0, 

where 𝑋𝑋1𝑗𝑗, . . . ,𝑋𝑋𝑘𝑘𝑗𝑗 denote a set of 𝑘𝑘 predictors of the outcomes for unit 𝑗𝑗. Vector 𝑿𝑿𝟏𝟏, denotes 

the predictors for the treated unit. 𝑿𝑿𝟎𝟎 = [𝑿𝑿𝟐𝟐, … ,𝑿𝑿𝑱𝑱+𝟏𝟏] represent the corresponding predictors 

for the 𝐽𝐽 untreated units. Given, the synthetic control weights 𝑪𝑪(𝑽𝑽), the choice of 𝑽𝑽 can be 

determined by minimising the following mean squared prediction error: 

                     min
𝑽𝑽

 ∑ �𝑌𝑌1𝑡𝑡 − 𝑤𝑤�2(𝑉𝑉)𝑌𝑌2𝑡𝑡 − ⋯− 𝑤𝑤�𝐽𝐽+1(𝑉𝑉)𝑌𝑌𝐽𝐽+1𝑡𝑡�
2𝐴𝐴0

𝑡𝑡=𝑡𝑡0+1 ,                         (3.7) 

where 𝑡𝑡0 is the length of the initial training periods within the pre-treatment periods 𝑇𝑇0. The 

remaining periods belong to a subsequent validation period. Both weights 𝑽𝑽 and 𝑪𝑪 are selected 

by best fitting the outcomes and predictors of the treated unit using pre-treatment data (training 

and validation periods).  

It is worth noting that generally the synthetic control methods follow the SUTVA, where 

untreated units are not affected by the treatment. This is because, under normal circumstances, 

the weighted average of post-treatment control units (in the donor pool) is used to predict the 

counterfactual outcomes of the treated units. In the presence of interference, post-treatment 

controls will be contaminated by the spillover effects, resulting in a biased estimator of the 

counterfactual potential outcomes, which implies a biased estimate of causal effects.  However, 

with simple improvements to the design of the donor pool or the specification of the 

interference mechanism, the modified synthetic control methods can be unbiased and thus relax 
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the SUTVA. For instance, Cao and Dowd (2019) proposed to assume that the treatment effects 

and the spillover effects are linear in some unknown parameters. With the known structure of 

interference, they obtained asymptotically unbiased estimators for the treatment and spillover 

effects. Grossi et al. (2020) generalised synthetic control group methods under the partial 

interference assumption. 

In this thesis, we introduce a novel and intuitive modification of the donor pool design.  

With large-scale automated data on both disrupted and normal days, all control units in the 

donor pool are selected from the days without any disruption. That is, control units in the donor 

pool would not be affected by any treatment, which therefore results in unbiased direct and 

indirect causal estimates under interference. A contextual discussion of our modified synthetic 

control method is further presented in Chapter 6. 
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Chapter 4                  

Detecting metro service disruptions via large-scale 

vehicle location data 

 

Urban metro systems are often affected by disruptions such as infrastructure malfunctions, 

rolling stock breakdowns and accidents. The crucial prerequisite of any disruption analytics is 

to have accurate information about the location, occurrence time, duration and propagation of 

disruptions. To pursue this goal, in the present chapter we detect the abnormal deviations in 

trains’ headways relative to their regular services by using Gaussian mixture models (GMM). 

Our method is a unique contribution in the sense that it proposes a novel, probabilistic, 

unsupervised clustering framework and it can effectively detect any type of service 

interruptions, including minor delays of just a few minutes. In contrast to traditional manual 

inspections and other detection methods based on social media data or smart card data, which 

suffer from human errors, limited monitoring coverage, and potential bias, our approach uses 

information on train trajectories derived from automated vehicle location (train movement) 

data. As an important research output, this chapter delivers innovative analyses of the 

propagation progress of disruptions along metro lines, which enables us to distinguish primary 

and secondary disruptions as well as recovery interventions performed by operators.  

 

 

4.1   Introduction  

With high-frequency services and large capacity, metros (also known as subways or rapid 

transit) play a vital role in transporting the urban population. However, large-scale urban metro 

systems are vulnerable to service disruptions, which cause passenger delays, crowding 

concerns and can negatively affect passenger satisfaction with metro operations. These 

disruptions are often caused by unpredicted infrastructure malfunctions (e.g., signal failures 

and track blockages), rolling stock breakdowns and accidents, planned maintenance work, and 

temporal dispatching adjustments (Jespersen-Groth et al., 2009). To quantify and improve a 

system’s reliability, metro operators need accurate information on the disruption location, 
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occurrence time, duration and network propagation. This information can also help operators 

prepare an effective recovery plan, an essential input to disruption management and future 

maintenance planning. Providing service disruption information to metro users in real-time is 

also an integral component of the advanced passenger information system. With the latest 

updates regarding the detected disruptions, delayed status and expected recovery time, 

passengers are better able to reschedule their trips under unexpected disruptions. Considering 

that the reliability of metro services and the information regarding disruptions are critical for 

both metro operators and passengers, this research develops a data-driven method to detect 

abnormal deviations in trains’ headways relative to their regular services due to both sudden 

disruptions and planned interventions.  

Traditionally, to detect disruptions urban metro operators rely on reports from manual 

inspections and complaints from passengers. Such detection results usually suffer from human 

errors and are restricted to a limited monitoring range in both space and time due to resource 

constraints (Ji et al., 2018). Therefore, recent studies have used two new data sources to identify 

disruptions. First, Ji et al. (2018) and Zulfiqar et al. (2020) leverage social media data such as 

tweets with the keywords of metro lines, stations and common complaint vocabulary to predict 

disruptions. Although social media data can capture a significant amount of passengers’ 

feedback and cleverly monitor metro disruptions in spatiotemporal dimensions, human errors 

cannot be circumvented in this approach. Second, a few studies have mined automated fare 

collection or smart card data (SCD) to capture abnormal passenger behaviour and assume that 

uncommon travel patterns such as anomalous change of station ridership and extra journey 

time are good indicators of incident occurrence (Sun et al., 2016; Tonnelier et al., 2018; Briand 

et al., 2019; Jasperse, 2020). However, such indicators may not be ideal for detecting service 

disruptions because, instead of train interruptions, other factors can also significantly affect 

passenger behaviour and corresponding demand measures. For instance, adverse weather 

conditions and external mega-events (e.g., concerts or sports matches) may cause demand 

fluctuations.  
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Figure 4.1: The relationship between abnormal demand and service disruption – example of a 
busy station, MTR. Relative changes in entry and exit ridership are derived by comparison with 
the average ridership under normal services.  
 

To validate this hypothesis with data, we plot the changes in entry and exit ridership 

relative to the mean ridership against service delay time (that is, deviation from the scheduled 

headway) in Figure 4.1 for a busy station on a densely used line of the Hong Kong Mass Rapid 

Transit (MRT). The figure shows that both entry and exit ridership may change substantially 

even if there is no service delay. This trend implies that demand fluctuations might be caused 

by factors other than service disruptions. Conversely, the passenger demand appears to remain 

normal (with minor variations) even under ten-minute-long train disruptions. We also observe 
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a similar trend if we replace service delay time with journey time deviation. Although SCD are 

useful in detecting demand-related incidents in the system, an aberrant change in demand or 

journey time is not necessarily a sign of service disruption. Therefore, there is a need to explore 

the potential of other emerging datasets and methods to detect service disruptions. We focus 

on service (train) delays because information on the propagation of such delays is more useful 

in informing the corresponding control measure as it can be directly integrated with schedule 

optimisation models. Historical delay data have been applied to optimise timetables, 

disturbance-recovery strategies, and energy consumption of metro systems (Yang et al., 2019; 

Li et al., 2020).  

This research proposes a novel approach to detect service disruptions using large-scale 

vehicle location data. The deviation in headway relative to the scheduled headway is used as 

the indicator of disruption occurrence, which is free of human errors and would enable an 

analyst to investigate service disruptions across spatial and temporal dimensions. The proposed 

method involves two steps – (i) split the day into 30-minute intervals and detect whether the 

platform is disrupted during a specific interval, and (ii) identify the propagation of disruption 

across the metro line over time.   

First, we apply a Gaussian mixture model (GMM) on the headway deviations to identify 

a cluster of abnormal headways. This approach solves the detection problem within an 

unsupervised learning framework and obviates the need for subjective definition of outliers. 

The GMM not only fits the distribution of outliers well, but also provides the probability that 

a station will be interrupted at a given interval. To convert the disruption probabilities into final 

detection decisions, the optimal probability threshold (i.e., minimum probability of observation 

to fall in the abnormal cluster to be called disrupted) is learned from a simulation-based method 

rather than subjectively determined.  

Second, by merging the detection output of the first step with the train trajectory data at 

the line level, propagation of the disruption across the connected stations is identified. In this 

way, we can identify the station with the origin of disruption (i.e., primary disruption) and the 

extent of the spill-over interruption on downstream/upstream platforms (i.e., secondary 

disruption). Our approach involves a smart screening algorithm, followed by visualisation of 

disruptions on the space-time diagram of train movement. These diagrams also reveal the 

recovery interventions performed by metro operators, such as dispatching adjustments or 

rescheduling. The knowledge of secondary disruptions and recovery interventions is hard to 
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obtain from traditional inspections or other data-driven detection methods. The former reflects 

the impact of the primary disruption on the service provision of downstream stations, which is 

essential to comprehensively evaluate line-level reliability. The latter reflects the ability of 

operators to restore normal services under disruptions. Quantifying recoverability plays a key 

role in assessing metro resilience.   

In the case study, we apply the proposed method to detect service disruptions in the Hong 

Kong MTR and display the results of a densely used metro line. Compared to manual incident 

logs, we have detected all disruptions (over 5 minutes) and 96% of minor incidents (between 

2 to 5 minutes).  In terms of the validation via simulated detections, across all stations of the 

studied line under both minor and mixed disruption scenarios, the average detection accuracy 

is above 0.99. Specifically, the average precision is nearly uncompromised, and the average 

recall rate is over 0.9. The detection results contain detailed information of historical 

disruptions, including their occurrence time and location, lasting duration as well as the 

propagation of service delays along metro lines. Such information is the foundation for further 

research on disruption impacts and management, with which operators can optimise recovery 

strategies and dynamic scheduling. Accurate service delay information also improves the 

evaluation of service reliability. 

The rest of the chapter is organised as follows. Section 4.2 presents the probabilistic 

framework used to detect train service interruptions. Section 4.2.1 demonstrates GMM, 

followed by Section 4.2.2 which explains the screening algorithm and space-time diagram 

approach to identify secondary disruptions and recovery interventions. In Section 4.3, we 

present an empirical analysis to detect disruptions in the Hong Kong MTR. Results are then 

discussed in Section 4.4. Finally, conclusions and future work are summarised in Section 4.5. 

The sensitive analysis of detections is presented in Appendix A.  

 

 

4.2   Methodology 

Our detection approach has two stages. First, in Section 4.2.1, we demonstrate how Gaussian 

mixture models (GMMs) can be applied to probabilistically detect platform-level metro service 

disruptions. Second, in Section 4.2.2, we analyse the line-level disruption propagation to 
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identify the primary source and secondary spread of the disruption. Figure 4.2 details all steps 

of the proposed detection framework. 

 

 

Figure 4.2: Flowchart of the chapter’s methodological framework 

 

4.2.1 Probabilistic detection with Gaussian mixture models 

This section describes GMMs and motivates their application in detecting abnormal headways. 

The train service analysis to extract the observed headways from the AVL data and scheduled 

headways from the timetable is presented in the first subsection. GMM specification, its 

parameterisation, and the maximum-likelihood estimation are described in the next subsection. 

The procedure of applying the GMM-based model to detect service disruptions is presented in 

then the subsequent subsection. Finally, the last subsection details a simulation-based 

algorithm to derive optimal thresholds of disruption probabilities to designate a station to be 

disrupted.  

 

Train service analysis 

In urban metro systems, train services are planned according to a timetable defined by operators. 

Headway, the inverse of train frequency or the distance between two successive trains 
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measured in time or space, is the key measure of service quality.5 Under regular operating 

conditions, the observed headway is similar to the scheduled headway with some natural 

deviation. However, when train services are interrupted, the difference between the observed 

and scheduled headway is likely to exceed an acceptable level. Thus, abnormal (overlong) 

headway can be regarded as an indicator of the service disruption occurrence.  

As shown in Figure 4.2, the observed headway series (denoted by 𝐻𝐻) are extracted from 

the AVL data for each platform. The scheduled headway series (𝑆𝑆) are obtained from service 

timetables. We define the gap between observed and scheduled headways by 

𝑮𝑮𝒅𝒅𝒅𝒅
𝒂𝒂𝒍𝒍𝒑𝒑 = 𝑯𝑯𝒅𝒅𝒅𝒅

𝒂𝒂𝒍𝒍𝒑𝒑 − 𝑺𝑺𝒅𝒅𝒅𝒅
𝒂𝒂𝒍𝒍𝒑𝒑,                                                  (4.1) 

where vector 𝑯𝑯𝒅𝒅𝒅𝒅
𝒂𝒂𝒍𝒍𝒑𝒑 denotes the observed train headways on platform 𝑝𝑝 (𝑝𝑝 = 1, … ,𝑃𝑃) of line 𝑙𝑙 

(𝑙𝑙 = 1, … , 𝐿𝐿) at station 𝑎𝑎 (𝑎𝑎 = 1, … ,𝐴𝐴) on a given day 𝑑𝑑 (𝑑𝑑 = 1, … ,𝐷𝐷) during time interval 

𝑡𝑡 (𝑡𝑡 = 1, … ,𝑇𝑇). The vector 𝑯𝑯𝒅𝒅𝒅𝒅
𝒂𝒂𝒍𝒍𝒑𝒑 stacks the headways of trains departing from platform 𝑝𝑝 in 

time interval 𝑡𝑡. We use the same indices for 𝑺𝑺𝒅𝒅𝒅𝒅
𝒂𝒂𝒍𝒍𝒑𝒑 and 𝑮𝑮𝒅𝒅𝒅𝒅

𝒂𝒂𝒍𝒍𝒑𝒑. Considering that headways vary at 

different stations and lines during a given time interval and platforms can be located at the 

corresponding station and line, we focus on identifying service disruptions at platform-interval 

level. We merge multiple days of observations by segmenting the day into multiple predefined 

time intervals. The length of interval can be determined based on the magnitude and variation 

in scheduled headway on the given platform. One should specifically ensure that within each 

time interval, (i) there are adequate headway observations, and (ii) the corresponding scheduled 

headway remains close in the interval. On these grounds, we set the interval length of 30 

minutes in the case study of the Hong Kong MTR (that is, 𝑇𝑇 = 36 for 18 service hours). For 

the entire study period of 𝐷𝐷  days, 6  the platform-interval level headway deviation data is 

stacked in a vector as follows: 

                                                     𝑮𝑮𝒅𝒅
𝒂𝒂𝒍𝒍𝒑𝒑 = �𝑮𝑮𝟏𝟏𝒅𝒅

𝒂𝒂𝒍𝒍𝒑𝒑,𝑮𝑮𝟐𝟐𝒅𝒅
𝒂𝒂𝒍𝒍𝒑𝒑, … ,𝑮𝑮𝑫𝑫𝒅𝒅

𝒂𝒂𝒍𝒍𝒑𝒑  �.                                         (4.2) 

Thus, the detection problem involves the identification of abnormal headway deviations for 

each platform-interval across all days.  

 

 
5 In this research, we define time as the unit of measurement, so headway here represents the tip-to-tip 
time from the departure of one train to the departure of the next train on a platform. 
6 Please note that we only focus on weekdays in this study, which have similar headways across 
different days of the week.  
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GMM and disruption identification   

The GMM is a probabilistic model to identify subpopulations or clusters of observations with 

similar characteristics within a population (Peel and McLachlan, 2000). For example, in the 

context of this study, GMM can endogenously identify clusters of regular and abnormal 

headway deviations. There are two motivations behind using GMM to detect abnormal 

(overlong) headways. First, without true labels (normal and abnormal) on the headway 

deviation data, this detection problem is an unsupervised learning problem. Moreover, due to 

the nature of unexpected incidents or failures, the headway data is expected to contain relatively 

fewer anomalous observations (i.e., small subpopulation with abnormal characteristics). Since 

higher headway deviations indicate more severe disruption, such monotonicity can assist in 

naturally grouping even fewer abnormal headways into the right-most cluster (that is, with the 

highest cluster mean; see Figure 4.3). Thus, GMM can address this unsupervised learning 

problem by systematically separating abnormal headways from other clusters of regular 

headways. Second, GMM is probabilistic, and thus we can obtain the probability of each 

headway observation to belong to the right-most cluster. In other words, the GMM-based 

detection method provides the probability of a platform being disrupted during a specific 

interval.  

Compared to the deterministic detection methods based on empirical rules (e.g., three 

standard deviations away from the mean), the GMM-based method does not require the analyst 

to define subjective thresholds to characterise a headway to be abnormal. However, the 

threshold on the probability of a headway gap belonging to the right-most cluster is required in 

the GMM-based model to identify the disrupted headways. Such thresholds can be learned 

through a semi-synthetic simulation (see Selecting parameters through simulation for 

details). The data-dependent probabilistic thresholds in GMM perform better than the 

subjective thresholds in deterministic models in detecting minor abnormalities because the 

former is normalised but the latter suffers from scale of standard deviation. For example, when 

the standard deviation of the observed headway is longer than 5 minutes, minor or moderate 

service interruptions (i.e., those under 10 minutes) cannot be identified using a deterministic 

rule in which headways beyond two standard deviations of the mean are designated as outliers. 
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Figure 4.3: An illustration of the right-most cluster in GMM 

 

We succinctly discuss one-dimensional GMM formulation in the context of this study. A 

Gaussian mixture density of an observation 𝐺𝐺𝑖𝑖𝑡𝑡
𝑎𝑎𝑙𝑙𝑝𝑝is a weighted sum of 𝑀𝑀 component densities:  

     𝑝𝑝�𝐺𝐺𝑖𝑖𝑡𝑡
𝑎𝑎𝑙𝑙𝑝𝑝� = ∑ 𝑤𝑤𝑗𝑗 𝑝𝑝𝑗𝑗�𝐺𝐺𝑖𝑖𝑡𝑡

𝑎𝑎𝑙𝑙𝑝𝑝�𝑀𝑀
𝑗𝑗=1 ,                                           (4.3) 

where 𝐺𝐺𝑖𝑖𝑡𝑡
𝑎𝑎𝑙𝑙𝑝𝑝 (𝑢𝑢 = 1, … ,𝑁𝑁) is an observation of vector 𝑮𝑮𝒅𝒅

𝒂𝒂𝒍𝒍𝒑𝒑 (the headway deviations belonging 

to a specific platform-interval across all days), 𝑤𝑤𝑗𝑗 is the mixture weight of the 𝑗𝑗𝑡𝑡ℎ component, 

and 𝑝𝑝𝑗𝑗(. ) is the Gaussian density of the 𝑗𝑗𝑡𝑡ℎ component with mean 𝜇𝜇𝑗𝑗 and variance 𝜎𝜎𝑗𝑗2: 

 𝑝𝑝𝑗𝑗(𝐺𝐺𝑖𝑖𝑡𝑡
𝑎𝑎𝑙𝑙𝑝𝑝) = 1

𝜎𝜎𝑗𝑗√2𝜋𝜋
exp�−

�𝐺𝐺𝑖𝑖𝑖𝑖
𝑎𝑎𝑙𝑙𝑝𝑝−𝜇𝜇𝑗𝑗�

2

2𝜎𝜎𝑗𝑗
2 �.                                   (4.4) 

The mixture weights satisfy the following conditions:  

∑ 𝑤𝑤𝑗𝑗 = 1𝑀𝑀
𝑗𝑗=1  and  0 ≤ 𝑤𝑤𝑗𝑗 ≤ 1.                                          (4.5) 

The log likelihood function of observation for platform-interval can thus be written as: 

log 𝑝𝑝�𝑮𝑮𝒅𝒅
𝒂𝒂𝒍𝒍𝒑𝒑� = ∑ log�∑ 𝑤𝑤𝑗𝑗 𝑝𝑝𝑗𝑗�𝐺𝐺𝑖𝑖𝑡𝑡

𝑎𝑎𝑙𝑙𝑝𝑝�𝑀𝑀
𝑗𝑗=1 �𝑁𝑁

𝑖𝑖=1 .                               (4.6) 

Here �𝜇𝜇𝑗𝑗 ,𝜎𝜎𝑗𝑗 ,𝑤𝑤𝑗𝑗  �
𝑗𝑗=1
𝑀𝑀

 are the identified parameters in GMM, which are obtained by maximising 

the loglikelihood presented in Equation (4.6). Since direct maximisation of the loglikelihood 

is cumbersome, we resort to an expectation-maximisation (EM) algorithm to maximise the 

loglikelihood (Dempster et al., 1977; Bansal et al., 2018). The probability of the headway 

𝝁𝝁𝟏𝟏 𝝁𝝁𝟐𝟐 𝝁𝝁𝟑𝟑 

𝜎𝜎1 𝜎𝜎2 𝜎𝜎3 
𝑮𝑮𝒅𝒅
𝒂𝒂𝒍𝒍𝒑𝒑 

Cluster 1 

Cluster 2 

The right-most cluster 
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difference �𝐺𝐺𝑖𝑖𝑡𝑡
𝑎𝑎𝑙𝑙𝑝𝑝� belonging to the 𝑗𝑗𝑡𝑡ℎ component is obtained using the estimated parameters 

and Bayes rule.    

 

The procedure of applying the GMM-based detection model 

Figure 4.4 displays the procedure of GMM-based detections. Note that the distribution of the 

right-most cluster (with the highest mean headway gap) depends on the variation in input 

headway deviations 𝑮𝑮𝒅𝒅
𝒂𝒂𝒍𝒍𝒑𝒑. Since disruptions do not occur often, composition of the headway 

gap data for different platform-intervals can inherently be of two types – (i) all regular 

observations with the headway deviations close to zero; (ii) both normal and abnormal headway 

deviations. While training GMM with the first type of data, the mean and standard deviation 

of the right-most cluster is likely to be small (e.g., zero to one minute). However, since we 

always focus on the right-most cluster to identify the service disruptions, the right-most cluster 

with a narrow tail and negligible mean headway deviation can be wrongly identified as a cluster 

of disrupted instances. GMM is likely to perform well for the second type of data, but we also 

want to circumvent the false detection of abnormal headways (that is, disruptions) in the first 

type of data.    

To avoid the false detection of disruptions, we first check whether the data have potential 

disrupted observations (type II) or not (type I). If the maximum of the headway gap data is 

lower than the acceptable headway deviation, we conclude that the platform experiences no 

disruption during a specific interval (type I) and therefore GMM estimation is not required. It 

is worth noting that the acceptable headway deviation for each platform during a specific 

interval depends on the scheduled headway. For instance, if the scheduled headway at a metro 

platform in peak hours is 2 minutes, then service delays of approximately 1 to 2 minutes are 

acceptable, but 10-minute delays are not. On the other hand, at another platform, where the 

scheduled headway is 20 minutes, the 10-minute delay can be treated as an acceptable headway 

deviation. The acceptable headway deviation also depends on the metro operator’s aspirations 

to provide a reliable service. We discuss the selection of acceptable headway deviations in 

Section 4.4. GMM is applied only on type II datasets.  

In addition to the probability threshold for the right-most cluster, the number of clusters 

(𝑀𝑀) needs to be selected to apply GMM for disruption detection. The number of subpopulations 

is often selected based on the Silhouette score and Bayesian information criterion (Lord et al., 
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2017), but in the context of this research, the choice of the number of clusters should not depend 

on statistical criteria. Specifically, we should ensure that the right-most cluster only contains 

the potential anomalies to avoid or minimise false disruption detections (see Figure 4.3). Thus, 

the number of clusters and the optimal threshold on the probability of a headway deviation 

belonging to the right-most (abnormal) cluster are selected using semi-synthetic simulations. 

The simulation design is presented in the next subsection.   

Figure 4.4: The procedure of applying the GMM-based detections 

 

Selecting parameters through simulation 

Instead of subjectively selecting the probability threshold and the number of clusters, we adopt 

a simulation-based grid-search method. The main idea is to use the empirical distribution of 

the headway deviation data to simulate new data and label a certain proportion (e.g., 1%-5%) 

of the simulated headway deviation as disrupted observations. The data-generating process can 

be changed by varying the percentile of empirical deviation data used for the simulation (see 

Section 4.4.2 and Appendix A). With the labelled disruption data, the problem is translated into 

a supervised learning problem and the GMM’s prediction accuracy can be tested under 

different combinations of the number of clusters and probability threshold. The proposed model 

selection method consists of the following steps for each platform-interval: 
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i). Derive a sample from the empirical cumulative distribution function of the observed 

headway deviations for a platform-interval, to generate the undisrupted simulation 

dataset. Calculate the proportion of the potential abnormal deviations (over 

acceptable level) in the given type II input data, and use this proportion to generate 

labelled disruptions. 

ii). Run GMM-based detection models on the simulated headway deviation data for 

different number of clusters (e.g., ranging from 2 to 20) and threshold probabilities 

(e.g., {0.99, 0.98, 0.97, … , 0.75}).  

iii). For each combination of the number of clusters and probability threshold, compute 

performance measures: precision, recall, F1 score and accuracy.7 Precision is the 

ratio of correctly detected disruptions to the total detected disruptions. Recall is the 

ratio of correctly detected disruptions to all the labelled disruptions. F1 score is the 

weighted average of precision and recall. Accuracy is the ratio of correctly detected 

observations to the total observations. To mitigate the simulation noise, repeat step 

(i) and (iii) 1000 times and obtain the average value of performance measures. 

iv). Now create a two-way table of performance measures with rows indicating the 

number of clusters, and columns indicating the optimal threshold probability and 

the corresponding average value of performance measures. This two-way table is 

used to identify the optimal number of clusters.  

v). Finally, select the best combination of the two parameters (cluster number and 

threshold probability) obtained in step (iv), and use them to conduct the GMM on 

the observed deviations data.  

 

4.2.2 Secondary disruption and recovery intervention identification 

The GMM-based detection method provides information on the location, time and duration of 

disruptions. In this section, we use this output to find the linkages between the detected 

 
7 Formulas of the performance measures: 

 𝑃𝑃𝑡𝑡𝑡𝑡𝑐𝑐𝑢𝑢𝑠𝑠𝑢𝑢𝑎𝑎𝑡𝑡 = 𝐴𝐴𝑇𝑇𝑇𝑇𝑇𝑇 𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑡𝑡𝑖𝑖𝑝𝑝𝑇𝑇𝑝𝑝
𝐴𝐴𝑇𝑇𝑇𝑇𝑇𝑇 𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑡𝑡𝑖𝑖𝑝𝑝𝑇𝑇𝑝𝑝 + 𝐹𝐹𝑎𝑎𝑙𝑙𝑝𝑝𝑇𝑇 𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑡𝑡𝑖𝑖𝑝𝑝𝑇𝑇𝑝𝑝

 ,                  𝑅𝑅𝑡𝑡𝑐𝑐𝑎𝑎𝑙𝑙𝑙𝑙 = 𝐴𝐴𝑇𝑇𝑇𝑇𝑇𝑇 𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑡𝑡𝑖𝑖𝑝𝑝𝑇𝑇𝑝𝑝
𝐴𝐴𝑇𝑇𝑇𝑇𝑇𝑇 𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑡𝑡𝑖𝑖𝑝𝑝𝑇𝑇𝑝𝑝 + 𝐹𝐹𝑎𝑎𝑙𝑙𝑝𝑝𝑇𝑇 𝑛𝑛𝑇𝑇𝑛𝑛𝑎𝑎𝑡𝑡𝑖𝑖𝑝𝑝𝑇𝑇𝑝𝑝

 ,      

 𝐹𝐹1 𝑠𝑠𝑐𝑐𝑎𝑎𝑡𝑡𝑡𝑡 = 2 × 𝑅𝑅𝑇𝑇𝑅𝑅𝑎𝑎𝑙𝑙𝑙𝑙 × 𝑃𝑃𝑇𝑇𝑇𝑇𝑅𝑅𝑖𝑖𝑝𝑝𝑖𝑖𝑝𝑝𝑛𝑛
𝑅𝑅𝑇𝑇𝑅𝑅𝑎𝑎𝑙𝑙𝑙𝑙 + 𝑃𝑃𝑇𝑇𝑇𝑇𝑅𝑅𝑖𝑖𝑝𝑝𝑖𝑖𝑝𝑝𝑛𝑛

 ,                   𝐴𝐴𝑐𝑐𝑐𝑐𝑢𝑢𝑡𝑡𝑎𝑎𝑐𝑐𝐴𝐴 = 𝐴𝐴𝑇𝑇𝑇𝑇𝑇𝑇 𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑡𝑡𝑖𝑖𝑝𝑝𝑇𝑇𝑝𝑝 + 𝐴𝐴𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑇𝑇𝑛𝑛𝑎𝑎𝑡𝑡𝑖𝑖𝑝𝑝𝑇𝑇𝑝𝑝
𝐴𝐴𝑇𝑇𝑇𝑇𝑇𝑇 𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑡𝑡𝑖𝑖𝑝𝑝𝑇𝑇𝑝𝑝 + 𝐹𝐹𝑎𝑎𝑙𝑙𝑝𝑝𝑇𝑇 𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑡𝑡𝑖𝑖𝑝𝑝𝑇𝑇𝑝𝑝+ 𝐴𝐴𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑇𝑇𝑛𝑛𝑎𝑎𝑡𝑡𝑖𝑖𝑝𝑝𝑇𝑇𝑝𝑝+ 𝐹𝐹𝑎𝑎𝑙𝑙𝑝𝑝𝑇𝑇 𝑛𝑛𝑇𝑇𝑛𝑛𝑎𝑎𝑡𝑡𝑖𝑖𝑝𝑝𝑇𝑇𝑝𝑝

 .     
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disruptions at consecutive platforms along a metro line. We categorise disruptions into two 

types: primary disruption and secondary disruption. Primary disruption means that the service 

interruption is originated at the given platform during a specific period. In contrast, secondary 

disruption at a platform is caused by a primary disruption at one of the upstream or 

downstream8 platforms along the metro line. As discussed earlier, this is the first novel analysis 

to apply such categorisations and to identify the spillover of interruption status. Since metro 

systems reboot every day, we analyse metro line operations on a specific day of disruption(s) 

using the following steps:   

i) Pool the GMM-based detection results on all platforms of a metro line (with the 

same direction of train services) on the specific day.  

ii) Sort all disruption records based on the start time of disruptions. Mark the first 

record as a primary disruption. For the next record, if (i) the platform is downstream 

to the primary disruption location (follow the train direction); (ii) the start time of 

the disruption is slightly later; and (iii) the train ID and trip ID are the same, this 

record is marked as a secondary disruption. However, for the next record, if the 

platform is downstream to a primary disruption location (follow the train direction) 

and the start time of disruption is slightly later, but the train ID and trip ID are not 

the same, this record is marked as a secondary disruption with an intentional 

dispatching intervention from the operator. Such interventions aim to restore 

normal services and reduce the impact of delays on passenger waiting time. Repeat 

this process until the upcoming record breaks the spatiotemporal continuity of start 

time and downstream location conditions.   

iii) Repeat step (ii) until all disruption records are marked as either primary disruption, 

secondary disruption, or secondary disruption with intentional dispatching 

intervention.  

iv) Merge the daily disruption records obtained in step (iii) with the corresponding train 

trajectory data to visualise disruptions and the train movement using the space-time 

diagram.      

 

 

 
8 Train delays may spread in the opposite direction, upstream to the disrupted station as well, due to queueing or 
dispatching interventions. 
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4.3   Data and case study 

The Mass Transit Railway (MTR) is the urban and suburban rail operator of Hong Kong, and 

the member of the Community of Metros facilitated by the Transport Strategy Centre at 

Imperial College. In 2019, the MTR served 95 stations and 11 lines, connecting the urbanised 

areas of Hong Kong Island, Kowloon, and the New Territories. The MTR network, as shown 

in Figure 4.5, is one of the busiest metro systems in the world, by the end of 2019 it had carried 

over 1.9 billion passengers (Mass Transit Railway, 2019). In this PhD, all the proposed 

empirical research has been tested on the Hong Kong MTR system.  

In this chapter, to illustrate the detailed process of disruption detection, we select a 

densely used line to carry out the case study. This line has 16 stations with tracks of a total 

length of 16.9 km. Being the link between major commercial centres of Mong Kok, Tsim Sha 

Tsui and the Central District, it is constantly busy and crowded. We detect service disruptions 

that occurred in both upward and downward directions. During the study period (54 weekdays 

from 01/01/2019 to 31/03/2019, excluding holidays and days of incomplete data), the 

scheduled headway of the given line ranges from 2 to 10 minutes with an average of around 3 

minutes. We choose 30 minutes as the interval to group the headway data of each platform, 

which also ensures that each platform-interval group has sufficient headway observations. The 

daily service time of the selected line starts at 6:00 and ends at 24:00, which is thus divided 

into 36 intervals to conduct GMM-based detections. Therefore, taking account of 16 stations 

with two platforms and 36 intervals for each platform, our dataset is aggregated into a total of 

1152 platform-interval groups. We also identify secondary disruptions and recovery 

intervention from metro operators. Finally, information on the detected disruptions is collected 

to support the remaining studies in this PhD. 

The following data are used to detect and evaluate the service disruptions. We conducted 

data processing and analysis using open-source R software (version 4.1.1). 

Automated vehicle location (AVL) data  

The AVL data from 01/01/2019 to 31/03/2019 are provided by the MTR. Public holidays 

including the New Year and the Spring Festival are excluded. We consider this duration as our 

study period. The AVL data contain information on train ID, trip ID, the timestamp of train 

movements (including precise departure and arrival times), and the location of train movements 

(including station, line and directions). The resolution of time stamps exacts to one second. By 
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using the AVL data, we can extract headway series from the consecutive train movements on 

each platform.  

Timetable schedules  

The scheduled arrival and departure time of train services on the selected line, provided by the 

MTR. We utilise this information to extract scheduled headways.  

Incident logs 

The manual inspection record of incidents, including information such as occurrence time, 

location, cause and duration of disruptions, provided by the MTR. Incident logs are used to 

validate our detection results.   

Pseudonymised smart card data (SCD) 

The SCD contain information on the time and location of tap-in and tap-out transactions 

throughout the system, recording individual trips. In this research, the role of SCD is 

constrained to illustrating the limitations of the demand-based disruption detection methods.  
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Figure 4.5: The MTR system map
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4.4   Results and discussion 

The results are presented in four steps. First, we illustrate the method of screening input data 

and how to identify platform-intervals where the possibility of disruptions cannot be excluded. 

Second, we showcase the simulation approach to the optimisation of key hyper-parameters of 

the proposed GMM method. The third subsection presents the final outputs of the GMM 

disruption detections. The results in the first three steps are presented through a sample dataset 

from a randomly selected platform of the studied metro line, in the initial stage of the morning 

peak period. Finally, Section 4.4.4 demonstrates disruption propagation through the 

identification of secondary disruptions and dispatching interventions along the entire line. 

 

4.4.1 Input data check: screening potential disruptions (Type II) 

At an example station, northbound, 7:30–8:00 a.m., the scheduled headways on this platform-

interval range between 2 and 4 minutes. To guarantee the reliable service of early peak hours 

in the morning, we determine that the acceptable headway deviations should be lower than 75% 

of the scheduled headway. This threshold is set arbitrarily, based on the intuition that if no train 

is delayed by more than another scheduled headway, including a 25% safety gap, then it is very 

unlikely that significant disruptions happened within the 30-minute interval. Figure 4.6(a) to 

4.6(d) display the histogram of the observed headway deviations under different scheduled 

headways. The dashed lines represent the 75% boundaries defined above. In plots (a) and (d), 

there are observed headway deviations above the acceptable level, which means that the input 

is type II and we cannot exclude the presence of disruptions. Therefore, we proceed to the next 

step of our analysis.  
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(a) Scheduled headway = 2 min                                  (b) Scheduled headway = 3.25 min 

 

(c) Scheduled headway = 3.75 min                            (d) Scheduled headway = 4.17 min                 

 

Figure 4.6: The histogram of observed headway deviations for different scheduled headways 
from the given platform-interval of the example station  
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4.4.2 Optimal number of GMM clusters and probability threshold 

Before applying detection models, we run semi-synthetic simulations to obtain the optimal 

values of two critical parameters: the number of clusters in our GMM approach and the 

probability threshold above which observations in the right-most cluster indicate a disruption 

(see Section 4.2.1).  

 

Figure 4.7: Histogram of overall headway deviations observed from the given platform-interval. 
Observations below the 95th percentile are used to generate the simulation data 
 

Figure 4.7 shows the overall distribution of headway deviations regardless of schedules. 

The graph shows that 95% of the headway deviations are less than 1.5 minutes. We first 

generate a synthetic dataset of undisrupted headway deviations, which is drawn from the 

empirical distribution of the observed deviations truncated at the 95th percentile. We ensure 

that the sample size of the synthetic data matches with that of the empirical data. Subsequently, 

a certain proportion of disruptions are generated based on a log-normal distribution. The mean 

 of the lognormal distribution 𝜇𝜇𝑝𝑝𝑠𝑠𝑛𝑛 is set according to the scheduled headway, and the standard 

deviation 𝜎𝜎𝑝𝑝𝑠𝑠𝑛𝑛 is set to achieve the varied lengths of disruptions. These disruptions are then 

randomly allocated and added to the original synthetic deviations, thus forming the disrupted 

headway deviations.  

Used to generate synthetic headway deviations 
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In the present example, 5% of the observed headway deviations are above the acceptable 

level. We choose this proportion to generate disruptions. For the distribution of disruption 

durations, the 𝜇𝜇𝑝𝑝𝑠𝑠𝑛𝑛 is set as 1.2 times the scheduled headway, and the standard deviation 𝜎𝜎𝑝𝑝𝑠𝑠𝑛𝑛 

is set to be 0.3. Finally, the disrupted synthetic deviations range between 1.5 and 6 minutes. 

Figure 4.8 displays the empirical distribution of an example synthetic dataset. The grey bars 

represent undisrupted headway deviations while the orange bars indicate disrupted data items. 

In Appendix A, we perform robustness checks regarding the chosen percentile for the sampling 

of undisrupted observations. We also perform sensitivity analysis relative to the proportion of 

disruptions in the data generating process and different station-time-interval pairs. 

 

 
Figure 4.8: Histogram of a sample synthetic headway deviations for the given platform-interval. 
The proportion of the disrupted synthetic deviations is 5%    
 

Table 4.1: The two-way table of simulation performance (averages of 1000 runs) and optimal 

GMM parameters  

Number of 
clusters (𝑀𝑀) 

Precision  Recall Accuracy Optimal 
threshold 

2 0.152 0.998 0.725 1.000 
3 0.176 0.996 0.769 1.000 
4 1.000 0.813 0.991 0.933 
5 1.000 0.871 0.994 0.958 
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6 1.000 0.896 0.995 0.960 
7 1.000 0.907 0.995 0.965 
8 1.000 0.923 0.996 0.974 
9 1.000 0.930 0.997 0.982 
10 1.000 0.931 0.997 0.980 
11 1.000 0.914 0.996 0.975 
12 1.000 0.937 0.997 0.984 
13 1.000 0.946 0.997 0.994 
14 1.000 0.943 0.997 0.991 
15 1.000 0.947 0.997 0.994 
16 1.000 0.912 0.996 0.979 
17 1.000 0.903 0.995 0.968 
18 1.000 0.890 0.995 0.959 

 

With pre-defined labels of service status, in simulation we have transformed the 

disruption detection task into a supervised learning problem. For a wide range of possible 

combinations of the GMM cluster number and the probability threshold, we calculate the 

precision, recall, and accuracy of detection. The simulation is then repeated 1,000 times to 

obtain the average performance metrics for every combination of parameters. Table 4.1 

summarises these metrics (each row represents the average results of 1000 simulations) for the 

dataset visualised above. Due to limited space, three performance measures (precision, recall, 

accuracy) and the optimal probability thresholds for the given cluster number are compared in 

the table, with cluster numbers ranging from 2 to 18.  

We find that, when the number of clusters is set to 15 and the probability threshold is 

0.994, both the detection precision rate and overall accuracy reach their maximum values 

(above 0.997). The balance between the precision and recall rate also reaches the best. Figure 

4.9 shows how the right-most cluster changes under different choice of cluster numbers. As the 

GMM clusters increase from 2 to 30, the right-most cluster gradually shifts to the right of x-

axis with higher mean and lower standard deviations. Meanwhile, the probability of all 

disrupted headway deviations belonging to the right-most cluster keeps increasing until the 

number of clusters reaches 15. When the cluster number continues to grow, such probability 

starts to drop as the less spread right-most cluster tends to cover fewer disruptions. Thus, in the 

formal GMM-based detections, the optimal 15 clusters and the 0.994 probability threshold are 

applied for the platform-interval we consider in this example.   
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Figure 4.9: Changes in the right-most clusters of the estimated GMM, under different number 
of clusters (𝑀𝑀). Each solid line represents the distribution of the right-most cluster for a given 
cluster number       

 

4.4.3 GMM detection results 

Figure 4.10 presents the GMM detection results of the above example in the form of a three-

dimensional plot. The y-axis of the 3D plot represents observed headway deviations in the 

given platform-interval, the x-axis represents the corresponding scheduled headways, and the 

z-axis represents the probability of belonging to the right-most cluster (refer to Section 4.2.1). 

The colour of scatter points indicates detection decisions. The grey points refer to normal 

headway deviations that are within the corresponding acceptable levels. Their disruption 

probabilities are less than 22%. The yellow points tend to include all possible outliers, with the 

disruption probability ranging from 10% to 99%. To achieve the highest detection accuracy, 

we rely on the optimised probability threshold. In this case, only two observations (highlighted 

in purple) are above 0.994, and they are finally identified as disruptions.  

In terms of the entire line, we compare our detection results with manual incident logs 

from the Hong Kong MTR. For medium to severe interruptions that are between 5 minutes and 

𝑴𝑴 = 𝟐𝟐 

𝑴𝑴 = 𝟏𝟏𝟏𝟏 

𝑴𝑴 = 𝟑𝟑𝟎𝟎 
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several hours long, all reported disruptions have been detected by the proposed GMM method. 

For minor service interruptions that range from 2 minutes to 5 minutes, 96% of them have been 

successfully identified. The remaining undetected minor incidents are generally of very short 

duration (just over 2 minutes), especially when compared to their scheduled headway. Our 

data-driven detection also provides more supplementary results that may have been omitted in 

human inspections.  

As for the validation via simulated detections, in all stations of the selected line under 

both minor and mixed disruption scenarios,9 the average detection accuracy is above 0.99. 

Specifically, the average precision is nearly uncompromised, and the average recall rate is over 

0.9. The corresponding sensitivity analysis is demonstrated in Appendix A.   

 

Figure 4.10: Final detection results of the given platform-interval: probabilities of belonging to 
the disrupted cluster and the optimal threshold.10 The purple dots represent the identified 
disruptions  

 
9 The simulated minor disruptions range from 1.5 to 8 minutes. The mixed disruptions are referred to 
as a mixture of minor interruptions and severe interruptions (over a few hours).  
10 The same detections were applied to all platform-intervals in the selected metro line.  

Example station: 
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4.4.4 Secondary disruptions and recovery interventions 

In this subsection, we demonstrate how to apply the algorithm presented in Section 4.2.2 to 

identify secondary disruptions. Since the MTR system closes after midnight and reopens the 

next morning, the identification is implemented on a daily basis. After the first step of pooling 

disruptions into the level of the entire line and partitioning based on date, Table 4.2 shows a 

sample of the detected disruptions during two off-peak periods (10:30–11:30 and 20:00–

21:00). Considering the average scheduled headway of the line is around 3.5 minutes in these 

periods, we focus on detected disruptions over 4 minutes.  

 

Table 4.2: A sample of selected disruption records with the corresponding category 

identification results 

Disruption ID Start time Station ID Train ID Duration (min) Category 

18 10:48:44 2 42 00:09:48 Primary  
19 10:52:03 5 53 00:04:33 Intervention 
20 10:52:05 3 42 00:10:09 Secondary 
21 10:55:57 4 42 00:08:22 Secondary 
22 10:59:41 5 42 00:06:58 Secondary 
23 11:02:06 6 42 00:06:35 Secondary 
24 11:03:55 7 42 00:06:34 Secondary 
25 11:05:05 11 53 00:04:59 Intervention 
26 11:05:50 8 42 00:06:38 Secondary 
27 11:07:30 9 42 00:06:46 Secondary 
28 11:07:53 12 53 00:05:09 Intervention 
29 11:09:14 10 42 00:07:02 Secondary 
30 11:09:51 13 53 00:05:09 Intervention 
31 11:11:32 14 53 00:05:08 Intervention 
32 11:13:09 11 42 00:04:57 Secondary 
33 11:13:33 15 53 00:04:58 Intervention 
34 11:14:44 16 53 00:04:58 Intervention 
35 11:16:07 12 42 00:04:46 Secondary 
36 11:18:05 13 42 00:04:47 Secondary 
37 11:19:45 14 42 00:04:42 Secondary 
38 11:21:36 15 42 00:04:47 Secondary 
39 11:22:46 16 42 00:04:47 Secondary 
40 13:32:14 2 40 00:04:04 Primary 
… … … … … … 

118 20:24:10 2 70 00:06:49 Primary 
119 20:26:17 4 44 00:04:43 Intervention 
121 20:27:38 3 70 00:07:12 Secondary 
122 20:28:10 5 44 00:04:58 Secondary 
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In the second step we sort these detection records by start time, as shown in Table 4.2. 

Figure 4.11 visualises the disruptions and their categories with the corresponding train 

trajectory data in a space-time diagram. The first record (Disruption 18) is marked as the initial 

primary disruption. When moving to the next record, Disruption 19 starts slightly later than the 

primary one (within the regular time of a full journey) and the platform location is downstream, 

but their train IDs are not the same. Thus, this record is marked as a secondary disruption with 

an intentional dispatching intervention from the operator. Then, moving to the third record, 

compared with the primary one, Disruption 20 satisfies all three conditions of a secondary 

disruption; it starts later, at a downstream station, with the same train ID. We repeat the above 

procedure until we encounter a new record that breaks the temporal and spatial proximity. For 

instance, after Disruption 39, the location of Disruption 40 is once again at Station 2 and it 

occurs nearly two hours later. In this case, Disruption 40 will be marked as a primary disruption 

again. We repeat the screening steps until all the records are processed.   

 

Figure 4.11: Spatial-temporal train movement diagram with detected disruptions and their 
categories. The propagation process of two primary disruptions 
 

The identification results within the two sample periods are showed separately in Figure 

4.11. The horizontal axis represents the arrival and departure time of trains at each platform, 
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while the vertical axis shows the location of and distance between the stations along the line. 

The black solid lines are the trajectories of train movement, and the bold lines are detected 

disruptions. We confirm that both detections and secondary identification results match well 

with train trajectories, which is in line with the law of interruption propagation. For example, 

in Figure 4.11(a), a primary disruption occurred at 10:48:44 at Station 2. On the one hand, this 

disruption spreads downstream along the line until the terminal station. On the other hand, 

metro operators act promptly at Stations 4, 5, and 11 to increase the dwell time of the last train 

preceding the disrupted one, thus avoiding further bunching effects. Due to these interventions, 

after Station 5, the disrupted train does not accumulate further delays. Similarly, in Figure 

4.11(b), a primary disruption occurred at 20:24:10 at Station 2. Then, immediate interventions 

take place at Stations 4 and 5 to slow down the previous train and relieve the delayed one from 

excessive passenger load. No further delays are identified after the primary disruption 

spreading to Station 5, and the train services return to normal.  

This visual analysis indicates that the proposed detection framework is valid and highly 

effective for identifying disruptions and their categories. Furthermore, Figure 4.11 also 

illustrates how identifying secondary disruptions can contribute to practical metro operations. 

In the space-time diagram of train movements, by labelling the secondary disruptions due to 

interventions, operators can easily locate the interventions used for mitigating delays, such as 

adjusting the dwell time of upstream trains. More importantly, with automated disruption 

classification, the operator can disentangle the frequency and severity of primary disruptions 

from subsequent time loss due to delay propagation and dispatching measures. This 

information is essential for both preparing recovery plans and analysing the resilience of metro 

systems. 

 

4.5   Conclusions and future work 

Service disruptions cause various challenges in urban metro systems, including delays, 

crowding, and declining passenger satisfaction. Operators need to monitor disruption 

occurrences closely in order to reduce their detrimental effects. With accurate information on 

the location, time, duration, and propagation process of disruptions, they can comprehensively 

assess the reliability and resilience of metro systems. Thus, the detection of service disruptions 

is a prerequisite of any further research on disruption management.  



75 
 

This research proposes a novel, probabilistic, unsupervised clustering framework to 

quantify the probability of an observed train headway being identified as abnormal. In contrast 

to traditional manual inspections and other detection methods based on social media data or 

smart card data, which suffer from human errors, limited monitoring coverage, and potential 

bias, our approach uses information on train trajectories derived from automated vehicle 

location (train movement) data. The proposed GMM approach assumes that the observed 

headway distributions are composed of a disrupted and multiple undisrupted subcomponents, 

where disruptions belong to the right-most subcomponent with the highest mean headway 

deviation. Our approach estimates the probability that a headway deviation observation belongs 

to the right-most cluster. We develop a simulation algorithm to infer the threshold probability, 

above which the headway observations are classified as disruptions. Finally, we extend the 

detection framework from the platform level to entire metro lines. We distinguish three 

categories of service delays: primary disruptions, secondary delays of the disrupted train at 

downstream stations, and delays of other trains due to dispatching interventions. To the best of 

our knowledge, this is the first study in the literature which identifies secondary disruptions 

and the operator’s recovery interventions using automated data and algorithms.  

The proposed method is applied in the Hong Kong MTR with the case study of a densely 

used line. This illustrative application indicates that the detection accuracy of our method is 

very high. In all simulated scenarios for the entire selected line, the average precision is nearly 

uncompromised and the average detection accuracy is above 0.991. For minor service delays 

in the range of 1.5 to 8 minutes, the average recall rate is over 0.90. Even though the proposed 

simulation framework is based on simple assumptions and idealised conditions, these results 

highlight promising prospects for practical adaption. 

Let us conclude this chapter by acknowledging some of the present limitations of the 

proposed method. In daily metro operations, service disruptions can be caused by unexpected 

infrastructure malfunctions (e.g., signal failures and track blockages), rolling stock breakdowns 

and accidents, planned maintenance works, or temporal dispatching adjustments. The fact that 

we cannot obtain the cause of service disruptions from automated train movement data is 

clearly a limitation of our data-driven detection method, as compared to manual data collection. 

Indeed, the main reason for this limitation is that we perform the detection only based on one 

data source. In line with this limitation, our future research will focus on merging more data 
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sources to infer the cause of disruptions, such as manual incident logs, smart card data, news, 

and data from social media. 
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Chapter 5                                

A causal inference approach to measure the 

vulnerability of urban metro systems 

 

Transit operators need vulnerability measures to understand the level of service degradation 

under disruptions. This chapter contributes to the literature with a novel causal inference 

approach for estimating station-level vulnerability in metro systems. The empirical analysis is 

based on large-scale data on historical incidents and population-level passenger demand. This 

analysis thus obviates the need for assumptions made by previous studies on human behaviour 

and disruption scenarios. We develop four empirical vulnerability metrics based on the causal 

impact of disruptions on travel demand, average travel speed and passenger flow distribution. 

Specifically, the proposed metrics based on the irregularity in passenger flow distribution 

extends the scope of vulnerability measurement to the entire trip distribution, instead of just 

analysing the disruption impact on the entry or exit demand (that is, moments of the trip 

distribution). The unbiased estimates of disruption impact are obtained by adopting a 

propensity score matching method, which adjusts for the confounding biases caused by non-

random occurrence of disruptions. In applying the proposed framework to the Hong Kong Mass 

Transit Railway (MTR), we learn that the vulnerability of a metro station depends on the 

location, topology, and other characteristics. The core methodology elaborated in this chapter 

has been published as part of 

Zhang, N., Graham, D. J., Hörcher, D., & Bansal, P. (2021). A causal inference approach 

to measure the vulnerability of urban metro systems. Transportation, 1-32. 

 

5.1   Introduction  

Disruptions occur frequently in urban metro systems, causing delays and overcrowding, which 

can lead to safety hazards and losses in social productivity. Operators may consider investing 

in new technologies to improve metro facilities and to mitigate the effect of incidents. However, 

it is often not known how those investments compare in achieving improvements. To facilitate 

project selection, metros are increasingly relying on disaggregate performance metrics that 
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reveal the most vulnerable parts of the network. Performance can be measured in various ways. 

Popular examples are risk, resilience, reliability and vulnerability related metrics. These 

concepts are often conflated by researchers as well as by practitioners. Interested readers can 

refer to Faturechi and Miller-Hooks (2015) and Reggiani et al. (2015) to understand the most 

agreed relationship among these concepts. In this research, we focus on the vulnerability of 

urban metro systems, for which the performance measures of interest are passenger demand, 

average travel speed and passenger flow distribution.  

Since the 1990s, the concept of vulnerability has been widely used to characterise the 

performance of transport systems (Mattsson and Jenelius, 2015; Reggiani et al., 2015); 

vulnerability is often defined as a measure of susceptibility of the transport system to incidents 

(Berdica, 2002; Jenelius et al., 2006; O’Kelly, 2015). In this study, the vulnerability of metro 

systems refers to the extent of degradation in the level of service due to service disruptions. 

Service disruptions are defined as events that interrupt normal train operations for a specific 

period of time.11 Disruptions should be distinguished from the broader term ‘incidents’, as 

incidents might not always affect services. Examples of such incidents include elevator failure 

or corridor congestion in metro stations. Vulnerability metrics can measure the consequences 

of service interruptions, in the form of performance outputs such as train kilometres, passenger 

volumes or the quality of travelling. For operators, such metrics have important implications 

in identifying weak stations or links in metro systems and efficiently allocating resources to 

the most affected areas. Given the rising interest in utilising vulnerability metrics in disruption 

prevention and management, obtaining an accurate measure of such metrics is crucial. 

Traditionally, vulnerability in urban metros is investigated based on complex network 

theory and graph theory. Complex network theory converts metro networks into graphs, which 

enables the quantitative measurement of vulnerability in metro systems (Derrible and Kennedy, 

2010; Yang et al., 2015; Chopra et al, 2016). The adoption of graph theory has facilitated the 

evolution of vulnerability indicators from simply capturing the characteristics of network 

topology to also considering travel demand patterns and their land use dependencies (Jiang et 

al., 2018). However, most of these studies rely on simulation-based approaches to quantify 

vulnerability in hypothetical disruption scenarios. These simulation experiments are based on 

assumptions, both in terms of passenger behaviour and the type and scale of disruptions (Cats 

 
11 Five minutes to ten minutes are commonly used thresholds to define disruptions. Different metro 
systems around the world adopt several thresholds, primarily based on the regular frequency of 
operations. 
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and Jenelius, 2014; Sun et al., 2015; Sun and Guan, 2016; Cats and Jenelius, 2018; Lu, 2018; 

Sun et al., 2018). With an empirical approach, such assumptions can be avoided, and thus more 

reliable metrics of vulnerability can be achieved using historical evidence.  

The empirical approach is rare but not unique in the literature. The exception we are 

aware of is Sun et al. (2016), who first detect incidents based on abnormal ridership and use 

the real incidents data to assess the influence of disruptions on the Beijing Subway. However, 

their method has some limitations. First, they assume the occurrence of incidents to be random, 

which is a strict and unrealistic assumption, as we demonstrate in this study. Also, the abnormal 

ridership may not be a reliable indicator of incidents if the fluctuations in ridership are merely 

manifestations of changes in travel demand due to external factors. 

This research proposes a novel alternative methodology to quantify vulnerability, by 

empirically estimating the causal impact of service disruptions on travel demand, average travel 

speed and passenger flow distribution at the station level. The application of a propensity score 

matching method (PSM) accounts for the non-randomness of disruptions and ensures the 

unbiasedness of causal estimates. What makes this method attractive is that it gives a clear 

criterion by which to select the control group. The PSM balances the distribution of 

confounding factors between the disrupted and normal units by matching them based on 

propensity scores. Such design ensures the estimated disruption impacts to be unbiased. We 

make this approach scalable for the entire network, including stations where disruptions are 

not observed, by predicting the level of vulnerability at these stations with an advanced 

machine learning algorithm. In this way, we eliminate the need for ad hoc assumptions 

regarding passenger behaviour and the nature of disruptions. 

In this chapter, we use the Hong Kong MTR as a case study and apply the methodology 

with large-scale automated fare collection and incident data. The station-level vulnerability is 

heterogeneous across the network, depending on the considered performance metrics. In terms 

of the demand loss and gross speed loss (overall delay), the most affected stations are more 

likely to be found in Hong Kong’s urban areas. When considering average speed loss 

(individual delay) and irregularity in relative passenger flows, the most affected stations are 

scattered around suburban and extended urban areas due to lack of alternative routes. These 

results can potentially aid the investment decisions of metro operators. 
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The rest of chapter is organised as follows. Section 5.2 outlines the empirical framework 

used to compute vulnerability metrics. More specifically, this section discusses the proposed 

causal inference approach to estimate the unbiased disruption impact, which is the key input in 

building vulnerability metrics. Section 5.3 then describes the case study and data sources. 

Results are discussed in Section 5.4. Finally, Section 5.5 concludes and highlights the potential 

avenues for future research. 

 

5.2   Methodology 

From a methodological point of view, our empirical approach has three stages. First, we apply 

a causal inference method to estimate the impact of disruptions on station-level travel demand 

and travel speed (see Section 5.2.1). Then, in Section 5.2.2, we construct vulnerability metrics 

based on the disruption impact estimated in the first stage. Finally, the third stage imputes12 

missing vulnerability metrics for non-disrupted stations using machine learning algorithms. 

Figure 5.1 illustrates all steps of the proposed empirical framework. 

 
12 In Statistics, “imputation” is the process of replacing missing data with substituted values. Here we 
retrieve these missing values based on a relationship between vulnerability metrics and covariates of 
the disrupted stations. 
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Figure 5.1: Flowchart of the chapter’s methodological framework 

 

5.2.1 Causal inference method to estimate disruption impacts 

To evaluate the impact of a disruption on a metro system, we use Rubin’s potential outcome 

framework to establish causality (Rubin, 1974). As introduced in Section 3.2.1, we define 

metro disruptions as ‘treatments and the objective of our analysis is to quantify the causal effect 

of treatments on ‘outcomes’ related to system performance.13 Specifically, we are interested in 

estimating the station-level causal effects of disruptions on (i) travel demand, (ii) travel speed 

of passengers, and (iii) passenger flow distributions from/to a station. From the literature, we 

know that factors such as passenger demand, weather conditions, network topology and 

 
13 In causal inference, ‘treatment’ means the intervention or exposure assigned to (or encountered by) 
study units, and ‘outcomes’ means the observed results or effects of the intervention on a response 
variable of interest. In the context of this study, service disruptions that occurred at metro stations are 
the ‘treatment’, and ‘outcomes’ are the performance of metro services as measured by indicators such 
as travel demand, journey speed, and passenger flow distribution. 
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engineering design influence the likelihood of disruption occurrence (Brazil et al., 2017; Melo 

et al., 2011; Wan et al., 2015). Therefore, the assignment of the treatment is not random. This 

is important to our study because the factors associated with the assignment of the treatment 

are also likely to affect the outcomes of interest, and are thus potential confounders in the 

estimation of impacts. Since previous studies on disruption impact have ignored the non-

randomness of treatments, their estimated impact may be biased.  

We adopt propensity score matching (PSM) methods to address this issue, which 

potentially eliminates such confounding biases. The propensity score is defined as the 

conditional probability that a unit receives treatment given its baseline confounding 

characteristics. If the observed characteristics sufficiently capture the sources of confounding, 

then the propensity score can be used to consistently estimate impacts given conditional 

independence between treatment assignment and outcomes (e.g., conditional on the propensity 

score) (Imbens and Rubin, 2015). This index is obtained by estimating a relationship between 

treatment assignment and baseline confounding characteristics using a regression model. The 

estimated propensity score is then used to form various semi-parametric estimators of the 

treatment effect such as weighting, regression, and matching. In this section, we first provide 

a contextual formulation of PSM and then describe how we apply PSM to quantify the causal 

impact of disruptions on the performance of metro systems. 

 

Propensity score matching (PSM)  

The system-level impact, which averages the impact of all disruptions that occurred in the 

metro system, is too generic to represent network vulnerability. Thus, we focus instead on 

estimating station-level disruption impacts. We define study unit 𝑢𝑢 as the observation of a metro 

station within a 15-minute interval. The treatment variable, denoted by 𝑊𝑊𝑖𝑖𝑡𝑡 ∈ {0, 1}, records 

whether study unit 𝑢𝑢 at time 𝑡𝑡 is observed in a disrupted (𝑊𝑊𝑖𝑖𝑡𝑡 = 1) or undisrupted state (𝑊𝑊𝑖𝑖𝑡𝑡 =

0). To quantify disruption impacts, we define outcomes of interest as the changed travel 

demand, flow distribution and average speed of trips that start from the given study unit, 

denoted by 𝑌𝑌𝑖𝑖𝑡𝑡. 

                                𝑌𝑌𝑖𝑖𝑡𝑡(𝑊𝑊𝑖𝑖𝑡𝑡) = 𝑌𝑌𝑖𝑖𝑡𝑡(0) × (1 −𝑊𝑊𝑖𝑖𝑡𝑡) + 𝑌𝑌𝑖𝑖𝑡𝑡(1) × 𝑊𝑊𝑖𝑖𝑡𝑡                           (5.1) 

 𝑌𝑌𝑖𝑖𝑡𝑡 = �𝑌𝑌𝑖𝑖𝑡𝑡
(0)        𝑢𝑢𝑖𝑖 𝑊𝑊𝑖𝑖𝑡𝑡 = 0

𝑌𝑌𝑖𝑖𝑡𝑡(1)        𝑢𝑢𝑖𝑖 𝑊𝑊𝑖𝑖𝑡𝑡 = 1                                                     

𝑢𝑢 = 1, … ,𝑡𝑡    𝑡𝑡 = 1, … ,𝑇𝑇, 
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where 𝑡𝑡 is the total number of stations within the metro system, and 𝑇𝑇 is the total number of 

time intervals during the study period (for example, T=4 if the study period is 1 hour). 𝑌𝑌𝑖𝑖𝑡𝑡(0) 

and 𝑌𝑌𝑖𝑖𝑡𝑡(1)  are counterfactual potential outcomes, only one of which is observed. The 

propensity score, denoted by e(𝑋𝑋𝑖𝑖𝑡𝑡), is obtained by regressing  𝑊𝑊𝑖𝑖𝑡𝑡 on confounding factors, 

denoted by 𝑋𝑋𝑖𝑖𝑡𝑡. We discuss potential confounding factors in the empirical case study in Section 

5.3.   

To derive valid causal inference using PSM, our model needs to satisfy three key 

assumptions. The first is the conditional independence assumption (CIA), 

𝑊𝑊𝑖𝑖𝑡𝑡 ⊥ (𝑌𝑌𝑖𝑖𝑡𝑡(0),𝑌𝑌𝑖𝑖𝑡𝑡(1)) | 𝑋𝑋𝑖𝑖𝑡𝑡,                                            (5.2) 

which states that conditional on the observed confounding factors 𝑋𝑋𝑖𝑖𝑡𝑡, the treatment assignment 

should be independent of the potential outcomes. The advantages of the propensity score stems 

from the fact that this conditional independence can be achieved by just conditioning on a 

scalar rather than high-dimensional baseline covariates (Rosenbaum and Rubin, 1983). Thus, 

the CIA based on the propensity score can be written as 

𝑊𝑊𝑖𝑖𝑡𝑡 ⊥ (𝑌𝑌𝑖𝑖𝑡𝑡(0),𝑌𝑌𝑖𝑖𝑡𝑡(1))| e(𝑋𝑋𝑖𝑖𝑡𝑡).                                         (5.3) 

The second assumption requires common support in the covariate distributions by 

treatment status: 

0 < 𝑝𝑝𝑡𝑡(𝑊𝑊𝑖𝑖𝑡𝑡 = 1|𝑋𝑋𝑖𝑖𝑡𝑡 = 𝑥𝑥) < 1        for all 𝑥𝑥,                             (5.4)                           

which states that the conditional distribution of 𝑋𝑋𝑖𝑖𝑡𝑡 given 𝑊𝑊𝑖𝑖𝑡𝑡 = 1  should overlap with that of 

the conditional distribution of 𝑋𝑋𝑖𝑖𝑡𝑡 given 𝑊𝑊𝑖𝑖𝑡𝑡 = 0. This assumption can be tested by comparing 

the distributions of propensity scores between treatment and control groups. 

The third assumption, also known as the stable unit treatment value assumption 

(SUTVA), requires that the outcome for each unit be independent of the treatment status of 

other units (Graham et al., 2014).  

If all three assumptions hold and the outcome variable is entry demand or travel speed, 

the average treatment effect of disruptions (ATET) on a station 𝑢𝑢 can be derived using the 

following equations (Imbens and Wooldridge, 2009) 

𝜏𝜏𝑖𝑖𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = �̂�𝜏𝑖𝑖𝑚𝑚𝑎𝑎𝑡𝑡𝑅𝑅ℎ = 1
𝐴𝐴𝑑𝑑
∑ �𝑌𝑌�𝑖𝑖𝑡𝑡(1) −  𝑌𝑌�𝑖𝑖𝑡𝑡(0)�𝐴𝐴𝑑𝑑
𝑡𝑡=1 ,                           (5.5) 
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𝑌𝑌�𝑖𝑖𝑡𝑡(1) = 𝑌𝑌𝑖𝑖𝑡𝑡 , 

𝑌𝑌�𝑖𝑖𝑡𝑡(0) =
1
𝑀𝑀

� 𝑌𝑌𝑖𝑖𝑡𝑡𝑐𝑐 
𝑡𝑡𝑐𝑐 ∈𝐽𝐽𝑀𝑀(𝑖𝑖𝑡𝑡)

 ,  

𝑢𝑢 = 1, … ,𝑡𝑡       𝑡𝑡 = 1, … ,  𝑇𝑇𝑑𝑑, 

where 𝑡𝑡 ∈ {1, … ,𝑇𝑇𝑑𝑑}  denotes all the disrupted time intervals of station 𝑢𝑢  during the study 

period and 𝑌𝑌𝑖𝑖𝑡𝑡𝑐𝑐 is the outcome of the control unit 𝑡𝑡𝑅𝑅  corresponding to station 𝑢𝑢 disrupted or 

treated at time 𝑡𝑡.  𝐽𝐽𝑀𝑀(𝑢𝑢𝑡𝑡) is a set of indices of the closest 𝑀𝑀 control units (in terms of propensity 

scores) for station 𝑢𝑢 disrupted at time 𝑡𝑡, during the same 15-minute interval but on a different 

day.14 Thus, �̂�𝜏𝑖𝑖𝑚𝑚𝑎𝑎𝑡𝑡𝑅𝑅ℎ represents the average of the difference between the outcomes of treated 

and matched control units.  

When the outcome variable is trip distribution, ATET can be expressed as 

𝜏𝜏𝑖𝑖𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = �̂�𝜏𝑖𝑖𝑚𝑚𝑎𝑎𝑡𝑡𝑅𝑅ℎ = 1
𝐴𝐴𝑑𝑑
∑ � 𝑑𝑑𝑢𝑢𝑖𝑖 �𝑌𝑌�𝑖𝑖𝑡𝑡(1), 𝑌𝑌�𝑖𝑖𝑡𝑡(0)��𝐴𝐴𝑑𝑑
𝑡𝑡=1 ,                        (5.6) 

𝑌𝑌�𝑖𝑖𝑡𝑡(1) = 𝑌𝑌𝑖𝑖𝑡𝑡 = � 𝑡𝑡1𝑖𝑖𝑡𝑡1 ,  𝑡𝑡1𝑖𝑖𝑡𝑡2 , … ,  𝑡𝑡1𝑖𝑖𝑡𝑡𝑘𝑘 �, 

𝑌𝑌�𝑖𝑖𝑡𝑡(0) =
1
𝑀𝑀

� 𝑌𝑌𝑖𝑖𝑡𝑡𝑐𝑐 
𝑡𝑡𝑐𝑐∈𝐽𝐽𝑀𝑀(𝑖𝑖𝑡𝑡)

= �
1
𝑀𝑀

� � 𝑡𝑡0𝑖𝑖𝑡𝑡𝑐𝑐
1 �

𝑡𝑡𝑐𝑐∈𝐽𝐽𝑀𝑀(𝑖𝑖𝑡𝑡)

 , … ,
1
𝑀𝑀

� � 𝑡𝑡0𝑖𝑖𝑡𝑡𝑐𝑐
𝑘𝑘 �

𝑡𝑡𝑐𝑐∈𝐽𝐽𝑀𝑀(𝑖𝑖𝑡𝑡)

�   ,  

𝑢𝑢 = 1, … ,𝑡𝑡           𝑘𝑘 = 1, … ,𝑡𝑡          𝑡𝑡 = 1, … ,  𝑇𝑇𝑑𝑑, 

where for a treated or disrupted unit, 𝑌𝑌𝑖𝑖𝑡𝑡 denotes the distribution of trips made from (outward) 

and to (inward) station 𝑢𝑢 at time 𝑡𝑡,  𝑡𝑡1𝑖𝑖𝑡𝑡𝑘𝑘  denotes the ridership from the disrupted station 𝑢𝑢 to 

station 𝑘𝑘 in case of outward flow (or from station 𝑘𝑘 to station 𝑢𝑢 in case of inward flow) at time 

𝑡𝑡 . Correspondingly, 𝑌𝑌𝑖𝑖𝑡𝑡𝑐𝑐 denotes a composite distribution which averages the ridership 

distribution of all closest 𝑀𝑀 control units during the same 15-minute duration, but on a different 

day.  𝑡𝑡0𝑖𝑖𝑡𝑡𝑐𝑐
𝑘𝑘  denotes the ridership between station 𝑢𝑢 and station 𝑘𝑘 for a non-disrupted period 𝑡𝑡𝑅𝑅 in 

the control group. 𝑑𝑑𝑢𝑢𝑖𝑖(𝑎𝑎, 𝑏𝑏)  is a function to calculate the distance between discrete 

distributions 𝑎𝑎 and 𝑏𝑏. In the context of this study, we consider three distance functions: 

𝑑𝑑𝑢𝑢𝑖𝑖1 �𝑌𝑌�𝑖𝑖𝑡𝑡(1), 𝑌𝑌�𝑖𝑖𝑡𝑡(0)� = �∑ �  𝑡𝑡1𝑖𝑖𝑡𝑡𝑘𝑘 − 1
𝑀𝑀
∑ � 𝑡𝑡0𝑖𝑖𝑡𝑡𝑐𝑐

𝑘𝑘 �𝑡𝑡𝑐𝑐∈𝐽𝐽𝑀𝑀(𝑖𝑖𝑡𝑡) �
2

𝑛𝑛
𝑘𝑘=1 ,                  (5.7) 

 
14 Please note that the study period of this study is 54 days. Therefore, we observe the same station 
across multiple days (see Section 5.3 for details).  
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𝑑𝑑𝑢𝑢𝑖𝑖2 �𝑃𝑃(𝑌𝑌�𝑖𝑖𝑡𝑡(1)), 𝑃𝑃 �𝑌𝑌�𝑖𝑖𝑡𝑡(0)�� = 1
√2

× �∑ ��𝑃𝑃𝑖𝑖𝑡𝑡𝑘𝑘(1) −�𝑃𝑃𝑖𝑖𝑡𝑡𝑘𝑘(0)�
2

𝑛𝑛
𝑘𝑘=1 ,            (5.8) 

𝑑𝑑𝑢𝑢𝑖𝑖3 �𝑃𝑃(𝑌𝑌�𝑖𝑖𝑡𝑡(1)) || 𝑃𝑃 �𝑌𝑌�𝑖𝑖𝑡𝑡(0)�� = ∑ �𝑃𝑃𝑖𝑖𝑡𝑡𝑘𝑘(1) × log �𝑃𝑃𝑖𝑖𝑖𝑖
𝑘𝑘(1)

𝑃𝑃𝑖𝑖𝑖𝑖
𝑘𝑘(0)

�� ,𝑛𝑛
𝑘𝑘=1                   (5.9) 

𝑃𝑃 �𝑌𝑌�𝑖𝑖𝑡𝑡(1)� = �𝑝𝑝𝑖𝑖𝑡𝑡1 (1), … ,𝑝𝑝𝑖𝑖𝑡𝑡𝑘𝑘 (1) �, 

𝑃𝑃 �𝑌𝑌�𝑖𝑖𝑡𝑡(0)� = �𝑝𝑝𝑖𝑖𝑡𝑡1 (0), … ,𝑝𝑝𝑖𝑖𝑡𝑡𝑘𝑘 (0) �, 

𝑝𝑝𝑖𝑖𝑡𝑡𝑘𝑘 (1) =
 𝑡𝑡1𝑖𝑖𝑡𝑡𝑘𝑘

∑ � 𝑡𝑡1𝑖𝑖𝑡𝑡𝑘𝑘 �𝑛𝑛
𝑘𝑘=1

 , 

𝑝𝑝𝑖𝑖𝑡𝑡𝑘𝑘 (0) =  
1
𝑀𝑀∑  (𝑡𝑡0𝑖𝑖𝑡𝑡𝑐𝑐

𝑘𝑘 )  𝑡𝑡𝑐𝑐∈𝐽𝐽𝑀𝑀(𝑖𝑖𝑡𝑡)

∑ �1
𝑀𝑀∑  (𝑡𝑡0𝑖𝑖𝑡𝑡𝑐𝑐

𝑘𝑘 )𝑡𝑡𝑐𝑐∈𝐽𝐽𝑀𝑀(𝑖𝑖𝑡𝑡) �𝑛𝑛
𝑘𝑘=1

, 

where 𝑑𝑑𝑢𝑢𝑖𝑖1(. )  represents the Euclidean distance, which directly aggregates the difference 

between each element of the input distributions without normalising. The latter two functions 

compare the probability mass functions 𝑃𝑃(𝑌𝑌�𝑖𝑖𝑡𝑡(1))  and 𝑃𝑃(𝑌𝑌�𝑖𝑖𝑡𝑡(0)).  𝑑𝑑𝑢𝑢𝑖𝑖2(. )  represents the 

Hellinger distance and 𝑑𝑑𝑢𝑢𝑖𝑖3(. ) represents Kullback–Leibler divergence (also known as relative 

entropy). Each distance function has its strength and weakness, which we highlight in Section 

5.4 while discussing results of the empirical study.  

In the next subsection, we explain how the causal inference framework introduced in 

Equations (5.1), (5.5) and (5.6) can be implemented in the present application. Following the 

framework summarised in Figure 5.1, we first provide details of the propensity score model, 

followed by a description of our matching algorithms and the estimation of disruption impacts. 

  

Application of PSM 

To predict the propensity score, i.e., the probability of encountering disruptions at a metro 

station within a 15-minute interval conditional on the baseline confounding characteristics, we 

use the logistic regression model with a linear link function:  

e(𝑋𝑋𝑖𝑖𝑡𝑡) = 𝑝𝑝𝑡𝑡�𝑊𝑊𝑖𝑖𝑡𝑡 = 1�𝑋𝑋𝑖𝑖𝑡𝑡 = 𝑥𝑥{𝑅𝑅}� = 𝑝𝑝(𝑢𝑢𝑡𝑡)                                    (5.10) 

𝑙𝑙𝑎𝑎𝑙𝑙 �
𝑝𝑝(𝑢𝑢𝑡𝑡)

1 − 𝑝𝑝(𝑢𝑢𝑡𝑡)
� = 𝛼𝛼 + 𝛽𝛽𝑥𝑥{𝑅𝑅}       𝑢𝑢 = 1, … ,𝑡𝑡    𝑡𝑡 = 1, … ,𝑇𝑇, 
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where 𝛼𝛼 is the intercept and 𝛽𝛽 is the vector of regression coefficients related to the vector of 

confounding factors 𝑥𝑥{𝑅𝑅}. In our empirical study, a station with a higher number of incidents in 

the past is more likely to encounter a new disruption in the future, just like the black spot on 

highways. To account for this temporal correlation among disruption occurrence, we ensure 

that confounding factors contain the history of past disruptions that occurred in the study 

period. 

Additionally, we consider a more advanced generalised additive model (GAM), in which 

the logarithm of the odds ratio is modelled via semi-parametric smoothing splines. A GAM has 

the potential to uncover flexible relationships between the likelihood of disruption occurrence 

and confounding factors. The GAM with temporal correlation is presented in Equation (5.11): 

e(𝑋𝑋𝑖𝑖𝑡𝑡) = 𝑝𝑝𝑡𝑡�𝑊𝑊𝑖𝑖𝑡𝑡 = 1�𝑋𝑋𝑖𝑖𝑡𝑡 = 𝑥𝑥{𝑅𝑅}� = 𝑝𝑝(𝑢𝑢𝑡𝑡),                                       (5.11) 

𝑙𝑙𝑎𝑎𝑙𝑙 �
𝑝𝑝(𝑢𝑢𝑡𝑡)

1 − 𝑝𝑝(𝑢𝑢𝑡𝑡)
� = 𝛼𝛼 + 𝑖𝑖�𝑥𝑥{𝑅𝑅};𝛽𝛽�      𝑢𝑢 = 1, … ,𝑡𝑡     𝑡𝑡 = 1, … ,𝑇𝑇, 

where  𝑖𝑖(𝑥𝑥{𝑅𝑅};𝛽𝛽)  is a flexible spline function of baseline characteristics. After estimating 

propensity scores, we check the common support (overlap) assumption to ensure the effective 

matching and reliability of the propensity score estimates (Lechner, 2001).  

The next step is matching. Every treated unit 𝑢𝑢 at time 𝑡𝑡 is paired with 𝑀𝑀 similar control 

units based on the value of their propensity scores and time-of-day characteristics. Since there 

is no theoretical consensus on the superiority of matching algorithms, we adopt two commonly 

used approaches: subclassification matching and nearest neighbour matching. We then 

compare them with different replacement conditions and pairing ratios, finally select the one 

that balances the greatest disparity among the mean of confounding factors. It is also necessary 

to check the conditional independence assumption after matching. We conduct balancing tests 

to check whether the disrupted units and the matched units are statistically similar across the 

domain of confounders. If significant differences are found, we try another specification of the 

propensity score model and repeat the above-discussed procedure.  

In the last step, we estimate station-level disruption impact using Equations (5.5) and 

(5.6). Given the matched pairs, the treatment effect for a station at a specific period is estimated 

as the difference between outcomes of the treated unit and its matched control units. Then the 

average station-level disruption impact is obtained by averaging these differences across all 
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disrupted periods. We separately estimate the average treatment effects for three measures of 

metro performance:  

i). Entry ridership: the number of passengers who enter the study unit. 

ii). Average travel speed: the average of the speed of all trips that start from the study unit. 

For each trip, speed is computed as travel distance divided by observed journey time. 

Whereas journey time is directly obtained using the automated fare collection (AFC) data, 

travel distance (track length) of the most probable route is derived using the shortest path 

algorithm.15 Passengers who left the system and used other transport modes to reach their 

final destination are not included in the computation of this metrics. If the origin station is 

entirely closed and no passenger can continue trips by metro, then the average speed will 

be zero. If the origin station is partially closed, this metrics reflects the average speed of 

passengers who remain in the system. 

iii).  Distribution of passenger flow: the distribution of completed trips that start from 

(outward flow) and arrive to (inward flow) the study units. 

 

5.2.2 Constructing vulnerability metrics 

We propose four station-level vulnerability metrics that are constructed from the empirical 

estimates of disruption impacts on the above-discussed performance measures. 

i). The loss of travel demand is expressed as  

𝑑𝑑𝑖𝑖 =  −𝜏𝜏𝑖𝑖𝐴𝐴𝐴𝐴𝐴𝐴(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝐴𝐴),                                               (5.12) 

where 𝜏𝜏𝑖𝑖𝐴𝐴𝐴𝐴𝐴𝐴(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝐴𝐴) (calculated using Equation 5.5) denotes the station-level change in the 

number of entry passengers due to service disruptions. 𝑑𝑑𝑖𝑖 is the loss of demand from external 

passengers who have not entered the metro system during a 15-minute interval due to 

disruption.  

ii). The loss of average travel speed quantifies the decline in the level of service 

experienced by each passenger at a metro station (individual delay), which is expressed 

as    

 
15 For future research, conditional on the availability of vehicle location data, the shortest path algorithm can be 
replaced by the passenger-train assignment algorithm (Hörcher et al., 2017; Zhu and Goverde, 2019) to infer the 
most likely path chosen by passengers. 
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𝑠𝑠𝑎𝑎𝑝𝑝𝑛𝑛𝑖𝑖 =  𝜏𝜏𝑖𝑖𝐴𝐴𝐴𝐴𝐴𝐴(𝑠𝑠𝑝𝑝𝑡𝑡𝑡𝑡𝑑𝑑),                                              (5.13)     

where 𝜏𝜏𝑖𝑖𝐴𝐴𝐴𝐴𝐴𝐴(𝑠𝑠𝑝𝑝𝑡𝑡𝑡𝑡𝑑𝑑) (calculated using Equation 5.5) denotes the decrease in the average travel 

speed of trips starting from station 𝑢𝑢 during a 15-minute disruption period. By definition, 𝑠𝑠𝑎𝑎𝑝𝑝𝑛𝑛𝑖𝑖 

accounts for the changes in both travel distance and journey time of passengers.  

iii). The loss of gross travel speed reflects the loss of passenger kilometres per unit time, 

which is expressed as: 

𝑠𝑠𝑛𝑛𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖 =  𝜏𝜏𝑖𝑖𝐴𝐴𝐴𝐴𝐴𝐴(𝑠𝑠𝑝𝑝𝑡𝑡𝑡𝑡𝑑𝑑) × 𝑡𝑡𝑖𝑖,                                       (5.14) 

where 𝑡𝑡𝑖𝑖  denotes the average entry ridership of all disrupted 15-minute intervals at the 

corresponding station. Thus, 𝑠𝑠𝑛𝑛𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖 denotes the total decrease in average travel speed for all 

passengers who start their journeys from station 𝑢𝑢 during a 15-minute service disruption. 

iv). The irregularity in passenger flow reflects the degree of deviation in the distribution of 

trips from/to the disrupted station as compared to regular conditions, which is expressed 

as: 

𝑖𝑖𝑖𝑖 =  𝜏𝜏𝑖𝑖𝐴𝐴𝐴𝐴𝐴𝐴(𝑖𝑖𝑙𝑙𝑎𝑎𝑤𝑤)                                                 (5.15)     

where 𝜏𝜏𝑖𝑖𝐴𝐴𝐴𝐴𝐴𝐴(𝑖𝑖𝑙𝑙𝑎𝑎𝑤𝑤)  (calculated using Equation 5.6) denotes the average irregularity in flows 

that start from or arrive at station 𝑢𝑢 during a 15-minute disruption period. This metrics extends 

the scope of vulnerability measurement in terms of the entire distribution of entry/exit 

ridership, instead of just analysing the disruption impact on the entry or exit demand (that is, 

moments of the trip distribution).  

 

5.2.3 Imputing missing vulnerability metrics 

Some stations may not encounter any disruptions within the study period. Thus, the empirical 

disruption impact and the vulnerability metrics cannot be estimated directly for these stations. 

To predict the missing metrics of non-disrupted stations, we propose to apply the extreme 

gradient boosting (XGBoost) algorithm (Chen and Guestrin, 2016).  

For a given dataset 𝐸𝐸 = �(𝑥𝑥𝑖𝑖
{𝑝𝑝},𝐴𝐴𝑖𝑖)�  ( 𝑢𝑢 = 1, … ,𝑡𝑡;  𝑥𝑥𝑖𝑖

{𝑝𝑝} ∈ ℝ𝑚𝑚 ,𝐴𝐴𝑖𝑖 ∈ ℝ ) with 𝑡𝑡 

observations, 𝑡𝑡  features, a vector of features 𝒙𝒙{𝒔𝒔}  and a corresponding variable 𝐴𝐴 . Let 𝐴𝐴�𝑖𝑖 

denote the prediction output given by an ensemble model using 𝐵𝐵 addictive functions  
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𝐴𝐴�𝑖𝑖 = 𝜙𝜙 �𝑥𝑥𝑖𝑖
{𝑝𝑝}� =  ∑  𝑖𝑖𝑏𝑏 �𝑥𝑥𝑖𝑖

{𝑝𝑝}�𝐵𝐵
𝑏𝑏=1 ,                                          (5.16)     

where 𝑖𝑖𝑏𝑏  is a regression tree,  𝑖𝑖𝑏𝑏 �𝑥𝑥𝑖𝑖
{𝑝𝑝}� denotes the score given by the 𝑏𝑏𝑡𝑡ℎ  tree to the 𝑢𝑢𝑡𝑡ℎ 

observation. To learn the set of functions, we minimise the following regularised objective: 

ℒ(𝜙𝜙) =  ∑ 𝐿𝐿(𝐴𝐴𝑖𝑖 , 𝐴𝐴�𝑖𝑖)𝑖𝑖 +    ∑ Ω(𝑖𝑖𝑏𝑏),𝐵𝐵                                       (5.17)     

Ω�𝑖𝑖𝑏𝑏� = 𝛾𝛾𝑇𝑇+
1
2 𝜆𝜆‖𝑤𝑤‖

2, 

where 𝐿𝐿(∙) is the loss function that measures how well the model fits on training data. Ω(∙) 

denotes the regularisation term that measures the complexity of the model and prevents 

overfitting problems. 𝑇𝑇  denotes the number of leaves in the tree, and 𝑤𝑤  denotes the leaf 

weights. 𝛾𝛾 and 𝜆𝜆 are parameters controlling the penalty for 𝑇𝑇 and 𝑤𝑤, respectively.  

An iterative method is used to minimise the objective function in Equation (5.17). Let 

𝐴𝐴�𝑖𝑖
{𝑡𝑡} be the prediction of the 𝑢𝑢𝑡𝑡ℎ instance at the 𝑧𝑧𝑡𝑡ℎ iteration. We greedily add 𝑖𝑖𝑧𝑧 to minimise 

the following objective: 

ℒ (𝑧𝑧) =  ∑  𝑛𝑛
𝑖𝑖=1 𝐿𝐿 �𝐴𝐴𝑖𝑖  , 𝐴𝐴�𝑖𝑖

(𝑧𝑧−1) +  𝑖𝑖𝑧𝑧(𝑥𝑥𝑖𝑖
{𝑝𝑝})� +  Ω(𝑖𝑖𝑧𝑧).                         (5.18)     

This function can be simplified by using the Taylor expansion, 

ℒ (𝑧𝑧) ≃  ∑  𝑛𝑛
𝑖𝑖=1 �𝐿𝐿�𝐴𝐴𝑖𝑖  , 𝐴𝐴�𝑖𝑖

(𝑧𝑧−1)� + 𝑙𝑙𝑖𝑖 𝑖𝑖𝑧𝑧 �𝑥𝑥𝑖𝑖
{𝑝𝑝}� + 1

2
ℎ𝑖𝑖  𝑖𝑖𝑧𝑧

2 �𝑥𝑥𝑖𝑖
{𝑝𝑝}�� +  Ω(𝑖𝑖𝑧𝑧)           (5.19)     

where 𝑙𝑙𝑖𝑖 = 𝜕𝜕𝑠𝑠�𝑖𝑖(𝑧𝑧−1)𝐿𝐿(𝐴𝐴𝑖𝑖 , 𝐴𝐴�(𝑧𝑧−1))  denotes the first order gradient statistics, and ℎ𝑖𝑖 =

𝜕𝜕
𝑠𝑠�𝑖𝑖

(𝑧𝑧−1)
2 𝐿𝐿(𝐴𝐴𝑖𝑖 , 𝐴𝐴�(𝑧𝑧−1)) denotes the second order. Letting 𝐼𝐼 = 𝐼𝐼𝐿𝐿 ∪ 𝐼𝐼𝑅𝑅, 𝐼𝐼𝐿𝐿 and 𝐼𝐼𝑅𝑅 be the instance 

sets of the left and right nodes after the tree split from the given node, the loss reduction can 

be derived as  

ℒ𝑝𝑝𝑝𝑝𝑙𝑙𝑖𝑖𝑡𝑡 = 1
2
�
�∑ 𝑛𝑛𝑖𝑖𝑖𝑖∈𝐼𝐼𝐿𝐿 �

2

∑ ℎ𝑖𝑖+𝜆𝜆𝑖𝑖∈𝐼𝐼𝐿𝐿
+

�∑ 𝑛𝑛𝑖𝑖𝑖𝑖∈𝐼𝐼𝑅𝑅 �
2

∑ ℎ𝑖𝑖+𝜆𝜆𝑖𝑖∈𝐼𝐼𝑅𝑅
− (∑ 𝑛𝑛𝑖𝑖𝑖𝑖∈𝐼𝐼 )2

∑ ℎ𝑖𝑖+𝜆𝜆𝑖𝑖∈𝐼𝐼
� − 𝛾𝛾.                            (5.20)     

The XGBoost is a scalable system for learning tree ensembles, which applies the 

regularised objective for better models compared to general gradient boosting algorithms. 

Interested readers are referred to Chen and Guestrin (2016) for details of this algorithm, who 

explain the reasons behind its superior prediction accuracy as compared to other competing 

machine learning methods. For this vulnerability imputation problem, the objective is 

predicting the missing impacts for non-disrupted stations based on their 
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characteristics/surrounding facilities and those of disrupted stations. A key property of such 

problem is the small sample size of predictors, given the size of metro systems which typically 

range between tens to few hundred of stations (up to 472) and the naturally low disruption rate. 

The selected XGBoost method is well suited to small samples, flexible, easy to use and can 

provide more accurate results than most prediction methods. However, the performance of 

machine learning models always depends on the characteristics of the input data. Also 

considering that the field of machine learning is evolving rapidly, we encourage readers to 

explore state-of-the-art alternatives to XGBoost and to test different prediction algorithms to 

find the most suitable algorithm for their data. 

 

 

5.3   Data and case study  

As mentioned in Section 4.3, the case study in this chapter is also based on the MTR system.  

Considering the data availability, we focus on four urban lines, including the Island Line, Tsuen 

Wan Line, Kwun Tong Line and Tseung Kwan O Line, with a total of 49 stations (as shown in 

Figure 5.2). The following data are collected to estimate the station-level vulnerability metrics. 

We conducted data processing and analysis using open-source R software (version 4.1.1). 

Pseudonymised AFC data 

The MTR provided automated fare collection data from 01/01/2019 to 31/03/2019. Excluding 

holidays and days of incomplete data, we consider 54 weekdays as our study period. The AFC 

data contain information on transaction date and time, entry and exit locations, encrypted card 

ID, and ticket type. The resolution of time stamps exacts to one second. By using AFC data, at 

each station we compute entry/exit ridership, passengers’ average journey time, average travel 

speed and the distribution of inward/outward flows.   

Incident logs and disruption detection results 

The MTR provided incident information data during this study period. By combing incident 

logs and the detection results from Chapter 4, we construct an accurate database of service 

disruptions, which includes their occurrence time, location and duration.  

MTR network topology information 



91 
 

We collect data on station coordinates, topology structure and the length of tracks between 

adjacent stations from DATA.GOV.HK and ArcGIS open databases.16  

Weather data 

We collect temperature (°C), wind speed (km/h) and rain status (cm) from the web portals: 

Time and Date / Weather Underground of Hong Kong. 17  Based on hourly historical 

observations, we estimate weather conditions for all selected stations at 15-minute intervals 

during the study period. 

MTR station characteristics 

These station-level features include daily ridership, station age, rolling stock age, sub-

surface/deep-tube stations and terminal/origin stations. We also obtain supplementary factors, 

which capture the characteristics of the affected areas around metro stations. To compute these 

factors, we define the affected area as a circular area with a radius of 500 metres around the 

station (see Figure 5.3). The demographics and transport facility information are collected from 

the open database Esri China (HK), and land use information is collected from the Planning 

Scheme Area of Outline Zoning Plans in Hong Kong.18 To calculate these supplementary 

factors, for land use we select all Statutory Plan Zones whose boundaries are within the 500-

metre radius of the affected area. Then, the related statistics of the selected Statutory Plan Zones 

are averaged with the weights according to their areas in the circle. For transport facilities, we 

directly count the number of facilities covered in the affected area. Figures 5.3 and 5.4 illustrate 

the calculation processes. 

To construct the causal inference framework for the MTR, our study units are the 

observations of metro stations during each consecutive 15-minute interval throughout any 

service day. We define metro disruption as the state when scheduled train services are 

interrupted for at least 5 minutes at a station. Over the study period, the four urban lines of the 

MTR encountered 106 disruptions lasting from 5 minutes to over 24 hours. The aim of causal 

 
16 Source: https://data.gov.hk/en-data/dataset/mtr-data-routes-fares-barrier-free-facilities. 
   Source: https://www.arcgis.com/home/item.html?id=eae269a6d8d045bea911a13d7f134a74. 
17 Source: https://www.timeanddate.com/weather/hong-kong/hong-
kong/historic?month=1&year=2019. 
   Source: https://www.weather.org.hk/english/wxreport.html. 
18 Source: https://opendata.esrichina.hk/. 
    Source: https://opendata.esrichina.hk/datasets/esrihk::hong-kong-outline-zoning-plans-land-use-
zonings-1/explore?location=22.358476%2C114.143402%2C10.98. 
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inference is to estimate the unbiased impact of these observed disruptions (i.e., treatment) on 

system-performance measures (outcome). The treatment status 𝑊𝑊𝑖𝑖𝑡𝑡 is assigned according to the 

aforementioned disruption database. To match the disruption duration with the timeframe of 

study units, we define the following rule to assign the treatment status: if a disruption occurs 

within a 15-minute interval 𝑡𝑡 of a given station 𝑢𝑢, we regard this study unit as disrupted (i.e., 

𝑊𝑊𝑖𝑖𝑡𝑡 = 1), regardless of whether disruptions start or end in the middle or last for the entire 15-

minute interval. Conversely, if the station is under normal service during the entire 15-minute 

interval, we regard this study unit as non-disrupted (i.e., 𝑊𝑊𝑖𝑖𝑡𝑡 = 0). The treatment outcomes 𝑌𝑌𝑖𝑖𝑡𝑡 

are presented as three station-level performance indicators: entry ridership, average travel 

speed and flow distribution.  

As discussed earlier, metro disruptions may not occur randomly. We list all potential 

confounding factors for the MTR in Table 5.1, which may be used in estimating the propensity 

score model (Section 5.2.1). These confounders are selected according to the literature and 

expertise, including travel demand, weather conditions, engineering design, time of day and 

past disruptions (Brazil et al., 2017; Melo et al., 2011; Wan et al., 2015). Table 5.1 also shows 

available covariates for the imputation of missing vulnerability metrics in Stage 3 (Section 

5.2.3), which not only include some of confounders, but also include supplementary factors of 

the MTR station characteristics.  

 

Table 5.1: Available covariates for PSM (stage 1) and vulnerability imputation (stage 3) 

Variable Description Stage 1 Stage 3 

Real-time travel demand   

15-minute entry ridership The number of passengers that enter a station 
within 15 minutes before the study unit. 

  

15-minute exit ridership The number of passengers that exit a station 
within 15 minutes before the study unit. 

 
 

 

Average travel demand and speed   

Daily entry ridership The daily average number of passengers that 
enter a station during the study period.  

  

Daily exit ridership  The daily average number of passengers that 
exit a station during the study period. 

  

Daily travel speed The daily average speed of passengers that 
start their trips from the study unit. 
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Weather conditions  

Temperature Atmospheric temperature around study units. 
Observations range from 15℃ to 27℃.   

Wind speed The wind speed around study units, ranging 
from 4 to 44 km/h. 

  

Rain status Rain precipitation around study units, 
ranging from 0 to 4 mm/h. 

  

Engineering design characteristics  

Rail connectivity Dummy variable, representing whether the 
station is connected to other rail systems. 

  

Overground Dummy variable, representing whether the 
station is on surface or closed deep in tube. 

  

Terminal Dummy variable, representing whether the 
station is an origin or terminal station. 

  

Number of lines The number of lines within the given station.   

Average adjacent distance The average distance between the given 
station and its adjacent stations (km). 

  

Station age Age of the oldest metro line served by the 
station. 

  

Rolling stock age Average age of all rolling stocks operated in 
the given station. 

  

Time of day Time of day divided into five intervals; AM 
peak: 7:30 to 10:30, PM peak:  16:30 to 
19:30 

  

Past disruptions   

Number of past disruptions 
occurred in the study period 

Representation of the temporal correlation of 
disruption occurrence. 

  

Station supplementary factors    

Socio-economic characteristics  

Population density* The density of population within the district 
to which the given station belongs. 

  

Land use characteristics  

Residential area* Area of residential buildings (103 m2)   

Commercial area* Area of commercial buildings (103 m2)   

Industrial area* Area of industrial buildings (103 m2)   

Open-space area* Area of open spaces (103 m2)   
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Road area (m2) * Area of major roads (103 m2)   

Pedestrian area (m2) * Area of pedestrians (103 m2)   

Transport accessibility measures  

Bus* Number of bus stops around the station   

Bicycle* Number of bicycle parking spaces    

Car* Number of metered car parking spaces    

*Computed for the affected area around each station 
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Figure 5.2: The four urban lines that we study in the MTR network (highlighted in colour)
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Figure 5.3: Station affected areas that are used to calculate the supplementary factors surrounding metro stations. The radius of each circle is 500 
meters 

Radius=500m 
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Figure 5.4: Examples of the distribution of land use and transport facilities in Hong Kong 

 

(a) Residential areas (b) Commercial areas 

(c) Major roads (d) Bus stops 
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5.4   Results and discussions 

From 01/01/2019 to 31/03/2019, excluding holidays and days of incomplete data, our 

analysis covers 54 weekdays. The MTR system is open for 18 hours per day, from 6:00 a.m. 

until midnight, which is divided into 72 intervals of 15 minutes. Based on the assumption 

of exchangeability of weekdays (Silva et al., 2015), we generate a panel dataset for the 49 

stations with a total of 49×54×72=190,512 study units. Although the PSM method is a data-

hungry method, the untreated pool (control group) is large enough to ensure adequate 

matches for treated units. Specifically, the ratio of the number of control and treatment units 

is around 190:1. 

 

5.4.1 Propensity score models 

We initially include three key baseline covariates – past disruptions, time of day and real-

time travel demand – in the logistic regression. We then iteratively add one of the remaining 

covariates at a time from potential confounders listed in Table 5.1, and conduct the 

likelihood ratio test to determine whether the additional covariate should be included in the 

final specification. The Generalised additive models (GAM) have also been tested, but we 

do not observe any improvement in the model fit. A high proportion of dummy variables (5 

out of 10) may limit the gains from a flexible spline specification of the link function. The 

estimation results of the logistic regression model are summarised in Table 5.2. 

 

Table 5.2: Estimation results of the propensity score model (logistic regression) 

Confounders Coef.  S.E. 

Intercept -3.672*** 0.901 

Past disruptions 0.560*** 0.057 

Time 0 (6:00–7:30) (1) 0.010 0.495 

Time 1 (7:30–10:30) (1) 0.977*** 0.259 

Time 2 (10:30–16:30) (1) -0.223 0.393 

Time 3 (16:30–19:30) (1) 1.431*** 0.279 

Temperature (℃) -0.282*** 0.045 

Rain (mm/h) 0.784*** 0.209 

Overground (1) 1.985*** 0.488 

Pre 15-minute entry ridership 3.088e-04*** 1.099e-04 
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Overground*wind speed (km/h) 0.114*** 0.036 

McFadden’s pseudo R-squared 0.193 

Note: (1) represents dummy variables 

          The base dummy for the time of day is Time 4 (19:30-24:00). 

          ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01. 

The role of propensity score models is to establish a comprehensive index to represent 

all confounding factors, rather than predicting treatment assignment.19 While noting that the 

logistic regression model does not reveal the causal effect of covariates on the likelihood of 

disruption occurrence, we succinctly discuss the multivariate correlations uncovered by this 

model. The coefficients of time dummies indicate that incidents are more likely to occur in 

peak hours. Positive signs on coefficients of the remaining confounders (except for 

‘Temperature’ and ‘Time 2’) confirm that all these factors increase the probability of 

encountering a disruption. Specifically, surface stations are more susceptible to the 

surrounding environment than those in tubes. We find statistically significant interaction 

effects between wind speed and overground dummy. The accumulated number of past 

disruptions increases the probability of encountering another disruption.20 Conclusively, the 

propensity score model reveals that the occurrence of metro disruptions is non-random, 

which, in turn, also justifies the application of causal inference methods in estimating 

disruption impacts. 

Alternatively, the estimated propensity score model can be viewed as a binary 

classifier that conditionally predicts whether or not metro disruptions occur. To illustrate its 

diagnostic ability, we compute the area under the receiver operating characteristic curve: 

AUC= 0.830, which again indicates that the occurrence of metro disruptions is non-random.  

 

 
19  The propensity score is the conditional probability of receiving treatment, given a set of 
confounding covariates.  
20  Please note that disruption frequency is only used in stage 1 to calculate propensity scores 
which support the matching process. The aim of such design is to remove the bias caused by 
different frequency of past disruptions in impact quantification. While, the disruption severity in 
this research, as an important output, is measured as the average impacts of all observed 
disruptions.  
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5.4.2 Matching results 

Before the estimated propensity scores are utilised for matching, we inspect the common 

support condition (Assumption 2 of the PSM method). Figure 5.5 presents the propensity 

score distributions for both disrupted and normal observations. The histograms display 

apparent overlap between the treatment and control groups, even for large propensity scores. 

There is no treated unit outside the range of common support, which means we do not need 

to discard any observations. We thus conclude that the overlap assumption is tenable in this 

empirical study. 

Figure 5.5: Histogram of the normalised propensity scores (common support check).21 Red 
and green colour represent the control group and disruptions respectively  
 

The PSM method aims to balance the distribution of confounders between the 

treatment and control groups after the matching stage. To assess the quality of matching, 

we perform balance tests for three algorithms: subclassification matching, nearest neighbour 

matching with replacement (𝑀𝑀 = 1) and nearest neighbour matching with replacement 

(𝑀𝑀 = 2), where M is the number of matched control units for each treatment unit. It is worth 

noting that the proposed matching scheme not only conditions on the estimated propensity 

scores, but also condition on the location and time of day of the treatment (disruption). We 

 
21 Due to a higher share of the control group, the frequency in Figure 5.5 ranges up to 95,000 for 
lower propensity scores. However, we truncate frequency at 15 to clearly show the validity of the 
overlap condition across the entire domain of the propensity score. 
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find that nearest neighbour matching with replacement (𝑀𝑀 = 1 ) performs the best, 

improving the overall balance of all confounding factors by 78.5%. This improvement 

indicates that within matched pairs, the difference of propensity scores and date-related 

characteristics between treatment and control units has been reduced by 78.5%, compared 

with the original data before matching.  

 

5.4.3 Imputation of missing vulnerability metrics 

During the study period, 12 out of 49 stations did not encounter any service disruptions. We 

apply the extreme gradient boosting (XGBoost) algorithm to predict the missing 

vulnerability metrics of these stations. The input features of the model are indicated in the 

‘Stage 3’ column of Table 5.1, consisting of station-level supplementary factors and a subset 

of confounding factors. For each vulnerability metrics, the XGBoost algorithm is 

implemented using the ‘xgboost’ package of R (Chen et al., 2021). In terms of model 

settings, we consider the maximum depth of each tree to be 18. We summarise the prediction 

performance of the XGBoost algorithm in Table 5.3 and benchmark it against three 

competing methods: linear regression, random forests and support vector machines. 

 

Table 5.3: Comparison of prediction accuracy of different imputation methods 

Vulnerability 
metrics  

Performance 
measures 

Imputation methods 

Linear 
regression 

Random 
forests 

Support vector 
machines 

XGBoost 

Demand loss  

MAE 19.093 11.114 13.313 1.415 
RMSE 22.549 14.004 24.114 1.942 
RAE 0.781 0.454 0.544 0.058 
RSE 0.471 0.182 0.538 0.003 

Avg. travel speed 
loss 

MAE 0.564 0.276 0.326 0.021 
RMSE 0.748 0.407 0.735 0.028 
RAE 0.656 0.321 0.379 0.024 
RSE 0.379 0.112 0.366 0.001 

Gross travel speed 
loss 

MAE 1091.812 677.771 727.564 41.272 
RMSE 1485.499 925.377 1760.853 55.420 
RAE 0.715 0.443 0.476 0.027 
RSE 0.367 0.142 0.515 0.001 

Irregularity in flow 
(Euclidean-entry) 

MAE 22.582 12.057 12.679 0.902 
RMSE 28.530 15.856 35.221 1.138 
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RAE 0.683 0.364 0.383 0.027 
RSE 0.241 0.074 0.367 0.001 

Irregularity in flow 
(Hellinger-entry) 

MAE 0.007 0.016 0.009 0.001 
RMSE 0.009 0.020 0.013 0.001 
RAE 0.250 0.597 0.346 0.027 
RSE 0.071 0.368 0.164 0.001 

Irregularity in flow 
 (KL-entry) 

MAE 0.130 0.195 0.141 0.012 
RMSE 0.177 0.264 0.290 0.016 
RAE 0.481 0.719 0.522 0.046 
RSE 0.224 0.497 0.598 0.002 

 

Four measures are considered to benchmark the performance of XGBoost against 

other methods – mean absolute error (MAE), root mean squared error (RMSE), relative 

absolute error (RAE), and relative squared error (RSE). Whereas MAE measures the 

average magnitude of the errors in predictions, RMSE represents the standard deviation of 

the unexplained variance (Willmott and Matsuura, 2005). A better prediction model 

produces lower values for each of these performance measures. The results in Table 5.3 

indicate that the XGBoost algorithm outperforms other competing methods with the lowest 

MAE, RMSE, RAE and RSE for all vulnerability metrics. 

 

5.4.4 The MTR insights 

The estimated vulnerability metrics vary across stations in the MTR system (of the four 

urban lines). We first discuss results for loss of entry demand, loss of average travel speed, 

and loss of gross travel speed metrics. For 49 stations in the first quarter of 2019, during a 

15-minute period of service disruption, the loss of station entry demand ranges from 0 to 

119.7 passengers, the loss of average travel speed ranges from 0 to 6.47 kilometres/hour, 

and the loss of gross travel speed ranges from 0 to 12319.1 passenger-kilometres/hour. The 

spatial distributions of these vulnerability metrics are visualised in Figures 5.6(a) to 5.6(c). 

For the demand loss and gross speed loss, a large proportion of vulnerable stations are in 

Hong Kong central urban areas, while a small number of vulnerable stations are also located 

in suburban areas. Conversely, for the loss of average travel speed, the most vulnerable 

stations are scattered around Hong Kong extended urban areas. These stations usually have 

only one metro line (internal alternatives) and have very limited access to other transport 

modes (external alternatives) compared to central urban areas. When passengers encounter 
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disruptions, to continue their trips they need to wait longer in the system until train services 

are recovered. In other words, due to a lack of alternative routes,22 passengers at these 

stations tend to experience more individual delays.   

We firstly sort all 49 stations based on demand and speed loss metrics; the top 5 

stations are presented in Table 5.4. In terms of demand loss and gross speed loss, stations 

such as Kowloon Bay and Kwun Tong are among the leading vulnerable stations. However, 

based on the loss of average travel speed metrics, the most vulnerable stations are Heng Fa 

Chuen, LOHAS Park and Chai Wan in Hong Kong east coast areas, where passengers suffer 

the longest delays due to a lack of alternative routes. The above rankings based on different 

vulnerability metrics can assist metro operators in preparing effective plans for ridership 

evacuation and service recovery.  

Table 5.4 also presents normalised vulnerability metrics for these top 5 stations, which 

is the relative percentage change as compared to the undisrupted performance measure 

(baseline). Note that all baseline situations for these three metrics are calculated by using 

the average across undisrupted observations. We find that the rankings based on relative 

vulnerability metrics can be different to those based on absolute metrics, especially for the 

loss of travel demand and gross speed. In the western part of the Island Line, stations such 

as Kennedy Town, HKU and Sheung Wan can lose up to 32.0% of their normal demand and 

74.85% of the overall travel speeds, due to service interruption. In terms of relative metrics 

of average travel speed, the same top three vulnerable stations – Heng Fa Chuen, LOHAS 

Park and Chai Wan – experienced decreases in average travel speed by 32.1%, 18.8% and 

15.0%, respectively.  

We propose three distance measures for the irregularity in flow metrics: Euclidean 

distance (ED), Hellinger distance (HD) and Kullback–Leibler (KL) divergence for both 

outward (from) and inward (to) flows. ED directly compares the difference between each 

element of the trip distribution, where the element represents the ridership between a 

specific station and the disrupted station. Thus, ED reflects changes in the magnitude as 

well as in the proportion of the flow of each element because it is not normalised. HD and 

KL divergence, meanwhile, are normalised measures as they compare the difference 

between probability mass function of trip distributions, which only capture changes in the 

 
22  There can be two types of alternative routes under disruptions – within the metro system 
(interchange to use other operated lines) and outside of it (in the form of other modes). 
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proportion of trips completed between the disrupted and non-disrupted stations. Unlike ED, 

HD and KL divergence would not be useful measures if disruption leads to a decrease in 

ridership across all stations by the same proportion. HD and KL divergence are similar in 

principle, but the latter can be interpreted as the change in relative entropy, which is 

meaningful in the context of disruptions in metro systems. As an analogy with the concept 

of entropy in thermodynamics, we may interpret the extra entropy in metro systems as an 

additional generalised cost (in terms of time and congestion costs) that passengers have to 

pay under disruptions. 

We plot the spatial distribution of all these distance measures in Figures 5.6(d) to 5.6(f). We 

also sort all 49 stations based on ED, HD and KL divergence; the top 5 vulnerable stations 

are presented in Table 5.5. We find that the station rankings for outward flow (i.e., the entry 

ridership distribution) based on ED are similar to those obtained based on gross speed loss 

metrics. They also share a similar spatial distribution of vulnerable stations. As for the 

distribution of inward flow (i.e., the exit ridership distribution), the most affected stations 

are mostly busy stations in central business districts (CBD). However, station rankings 

based on HD and KL divergence show contrasting results. For both inward (exit) and 

outward (entry) flow distributions, suburban stations are more severely affected than urban 

stations on a normalised scale. The top two stations based on HD and KL divergence are 

LOHAS Park and Po Lam, both being located in the east end of the Tseung Kwan O Line.  

(a) The loss of travel demand (passengers) 
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(b) The loss of average travel speed (km/h) 

 

 

(c) The loss of gross travel speed (passengers*km/h) 
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(d) The irregularity in flow distribution from/to the disrupted station (ED) 

 

(e) The irregularity in flow distribution from/to the disrupted station (HD) 

 

(f) The irregularity in flow distribution from/to the disrupted station (KL divergence) 

Figure 5.6: Spatial distribution of station-level vulnerability metrics in the MTR (four urban 
lines).  Each dot represents a metro station

Outward  Inward  

Outward  Inward  

Outward  Inward  



107 
 

Table 5.4: Top 5 vulnerable stations based on demand loss and speed loss vulnerability metrics 

Station 

Demand loss 

in passenger/15-

minute 

(% of baseline) 

Station 

Avg. travel speed loss 

in km/h  

(% of baseline) 

Station  

Gross travel speed loss 

in passenger-km/h  

(% of baseline) 

Cheung Sha Wan 119.67 (14.34%) Heng Fa Chuen                  6.47 (32.05%) Central                        12319.1 (29.53%) 

Mong Kok 116.50 (5.98%) LOHAS Park 4.33 (18.84%) Tsim Sha Tsui 8973.9 (22.47%) 

Sham Shui Po 107.36 (8.25%) Chai Wan                       3.37 (14.97%) Causeway Bay                   7984.8 (23.02%) 

Fortress Hill                  103.33 (20.74%) HKU 3.26 (14.93%) Kowloon Bay                    4276.4 (14.00%) 

Yau Ma Tei 98.00 (9.00%) Kwai Hing 2.40 (10.49%) Chai Wan                       3964.4 (25.85%) 

 

Table 5.5: Top 5 vulnerable stations based on irregularity in flow vulnerability metrics  

Station 
ED 
(outwar
d)  

Station 
ED 
(inward) 

Station 
HD 
(outward) 

Station 
HD 
(inward) 

Station 
KL  
(outward) 

Station  
KL  
(inward) 

Central                        313.06 Wan Chai                       213.29 LOHAS Park 0.204 Po Lam 0.238 Quarry Bay                     1.82 Ho Man Tin 2.01 
Admiralty                      265.37 Causeway Bay                   175.40 Tai Wo Hau 0.199 LOHAS Park 0.221 Tai Wo Hau 1.41 Kwai Hing 2.00 
Causeway Bay                   193.58 Tsim Sha Tsui 174.63 Quarry Bay                     0.197 Heng Fa 

Chuen                  
0.220 Kennedy 

Town 
1.22 Ngau Tau Kok                   1.59 

Tsim Sha Tsui 148.54 Kwun Tong                      117.94 Fortress Hill                  0.189 Admiralty                      0.215 Hang Hau 1.20 Tin Hau                        1.49 
Heng Fa Chuen                  101.16 Kowloon Bay                    116.91 Wan Chai                       0.183 HKU 0.206 Sheung Wan                     1.18 HKU 1.41 

Note: ED: Euclidean distance, HD: Hellinger distance, KL: Kullback–Leibler divergence.
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5.5   Conclusions and future work 

Disruptions occur frequently in urban metro systems, causing delays, crowding and substantial 

loss of social welfare. Operators need accurate estimates of vulnerability measures to identify 

bottlenecks in metro networks. We propose a novel causal inference framework to estimate 

station-level vulnerability metrics in urban metro systems and empirically validate it for the 

Hong Kong MTR. In contrast to previous simulation-based studies, which largely assume 

virtual disruption scenarios and necessitate the adoption of unrealistic assumptions regarding 

passenger behaviour, our approach relies on real disruption data and avoids making behavioural 

assumptions by leveraging automated fare collection data. We also illustrate that disruptions 

can occur non-randomly, which further justifies the importance of the proposed causal 

inference framework in obtaining the unbiased estimate of disruption impacts.  

The proposed empirical framework consists of three stages. First, we conduct propensity 

score matching methods and estimate unbiased disruption impacts (average of all observed 

disruptions) at the station level. The estimated impacts are subsequently used to establish 

vulnerability metrics. In the last stage, for non-disrupted stations, we impute their vulnerability 

metrics by using the extreme gradient boosting (XGBoost) algorithm. We propose three 

empirical vulnerability metrics at station level, which are loss of travel demand, loss of average 

travel speed and loss of gross travel speed. The demand loss metrics reflects the amount of 

passenger who (i) switched to other transport modes, (ii) switched their departure time, trip 

origin or destination, (iii) or ended their trip, before entering the disrupted metro system. In 

other words, it implies the demand for alternative transport services during disruptions, which 

can guide metro operators to prepare effective service replacement plans. The two speed-

related metrics reflect the degradation in the level of service for passengers who still use the 

metro system under disruptions. These metrics provide essential information for service 

recovery to mitigate the adverse influence on passengers and the overall performance of 

stations. The proposed irregularity in flow metrics extends the scope of vulnerability 

measurement to the changes in trip distribution. This irregularity metrics can be used to reflect 

the level of disorder within metro systems.  

Results of the case study of the MTR in 2019 indicate that the effect of service disruption 

is heterogeneous across metro stations, and it depends on the location of a station in the network 

and other station-level characteristics. In terms of the travel demand loss and gross speed loss 

(overall delay), the most affected stations are more likely to be found in Hong Kong central 
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urban areas. On the other hand, considering average speed loss (individual delay), the most 

affected stations are scattered around the suburban or extended urban areas (e.g., LOHAS Park 

and Kwai Hing) due to a lack of alternative routes.  

Disruption impact estimates are probabilistic relative to the sample data, that is, causal 

estimates and vulnerability metrics estimates have sampling distribution. Since our analysis is 

based on the data of the MTR from January 1 to March 31, 2019, the results of our case study 

reflect the vulnerability status of MTR for this specific period. If we use data from other 

periods, the estimates of vulnerability metrics might change due to inherent temporal variations 

in travel demand and incidents. Therefore, to improve the generalisability of vulnerability 

metrics estimates, the study period needs to be sufficiently long for the sample to be 

representative of the population. That is, a sample should capture supply-side interruptions as 

much as possible, including service disruptions due to maintenance. In addition, the sample 

should also reflect the possible fluctuations of travel demand.   

The proposed methodology to obtain the unbiased estimates of disruption impact thus 

provides crucial information to metro operators for disruption management. More specifically, 

it helps with identifying the bottlenecks in the network and with preparing targeted plans to 

evacuate ridership as well as to recover services in case of disruptions. The direct integration 

of the estimated vulnerability metrics in preparing these target plans remains an avenue for 

future research. It is worth noting that the proposed framework can be applied to other metro 

systems conditional on the availability of the required data on incident logs, confounding 

characteristics and performance outcomes. Future empirical studies can also incorporate other 

context-specific and relevant confounders or outcome indicators in their analysis. For example, 

they can explore the disruption impacts on interchange passengers if the required datasets are 

available. We do not include this part of ridership in our MTR case study because it cannot be 

directly derived from the AFC data. A more advanced assignment algorithm is required to 

identify passengers’ routes by matching AFC data with vehicle location data and reproduce the 

spatiotemporal flow distribution in the metro network.  

In line with the limitations of this study, there are three potential directions for future 

research. First, stations surrounding the disrupted stations may also be affected due to indirect 

propagation, but this study does not account for such spillover effects. Modelling 

spatiotemporal propagation disruption impacts requires significant methodological 

developments, which would be an important improvement over the current method. For 
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instance, recent developments in Bayesian nonparametric sparse vector autoregressive models 

(Billio et al., 2019) can be adapted to model the spatiotemporal effect of service disruptions in 

transit networks. Second, the proposed vulnerability metrics can reveal static disruption 

impacts at different stations, but passengers need real-time service information to reschedule 

their trips. Thus, the current framework can be extended to update the vulnerability metrics 

dynamically. Considering the interaction between information provision and how it influences 

passengers’ decisions under disruptions, this advancement would improve the dissemination 

of the incident alerts to passengers in real time. Finally, by merging data from other travel 

modes (e.g., bus, urban rails, shared bike or taxi) with metro datasets, we can estimate multi-

modal vulnerability metrics in the same causal inference framework and understand the 

characteristics of the mode shift due to disruptions. In a potential extension of our method to 

multi-modal transport systems, the lost demand would not include passengers who shift to other 

public transport modes due to metro disruptions. Compared to metro-only vulnerability 

metrics, multi-modal demand loss metrics would focus on passengers who cancel their trips 

entirely or switch to private transport modes. Therefore, for metro stations linked to multi-

modal hubs, the multi-model demand loss metrics might be lower than the metro-only metrics. 

The magnitude of this gap would depend on the attractiveness of alternative public transport 

services compared to private modes. 
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Chapter 6                              

Quantifying the direct and spillover effects of 

disruptions in urban metro networks 

 

As mentioned in the previous chapter, urban metro systems are often affected by disruptions, 

causing delays, crowding and decline in passenger satisfaction. To mitigate such adverse 

impacts, it is important for metro operators to comprehensively understand disruption impacts. 

Therefore, this chapter proposes to utilise modified synthetic control methods to quantify the 

direct and spillover causal effects of disruptions. We relax the non-interference assumption and 

allow disruption impacts to propagate in metro networks. The proposed method is unique in 

the sense that the weighted average of unaffected observations is used to simulate the 

counterfactual outcomes of disruptions. Such a framework enables the estimation of the 

indirect impacts on other non-disrupted stations. This research also delivers an innovative 

analysis of the propagation progress of disruption impacts along metro lines.  

 

 

6.1   Introduction 

In urban metro systems, to manage disruptions and mitigate their adverse influence, it is 

important for operators to measure and understand disruption impacts. Effective recovery 

strategies need detailed information on the affected ridership, delayed time and crowding level 

in stations or trains. For passengers, updates of real-time disruption impacts can also help them 

reschedule travel plans. Therefore, in this chapter, we focus on accurately quantifying 

disruption impacts and analysing their spatiotemporal propagation across the metro network. 

In the literature, the empirical-based studies have analysed the disruption impacts via 

survey data and smart card data. However, most of the studies tacitly assume that metro 

disruptions occur randomly. Ignoring the existence of factors that can influence both disruption 

occurrence and the corresponding outcomes, their estimates of disruption impacts are not 

causal and can be biased. Zhang et al. (2021a) relaxed this assumption and avoided such 

confounding bias by applying the propensity score matching methods. Although this recent 
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research is conducted under the casual inference framework, there are still some limitations. 

First, they focused on the direct disruption impacts, which are restricted to the stations where 

disruptions occurred, assuming that other parts of the network would not be affected. In reality, 

however, with the presence of interference among connected stations, disruption impacts can 

spread along metro lines and influence the entire network. To the best of our knowledge, the 

propagation of indirect impacts (spillover effects) in metro systems has not yet been explored 

empirically23. Second, their station-level outputs are the average impacts of all disruptions that 

occurred in the study period, from which the influence of individual disruptions is hard to be 

distinguished. 

We propose a new approach to quantify the direct and indirect causal effects of metro 

disruptions on system performances, where the measures of interest are passenger demand, 

average travel speed and journey time. The modified synthetic control method is unique in the 

way that it allows interference among metro stations, and the weighted average of unaffected 

observations (synthetic control) is used to simulate the counterfactual outcomes of disruptions. 

Under the setting that disruptions are regarded as a treatment or intervention, we determine the 

optimal weights by best approximating the outcomes and predictors (attributes) of the treated 

unit using pre-treatment data. The proposed framework can not only be applied to the disrupted 

station, but also to other affected stations in the network, thus enabling the analysis of spillover 

effects of disruptions and their spatiotemporal propagation.  

A case study of four urban lines in the Hong Kong Mass Transit Railway (MTR) has 

been conducted, focusing on the selected disruption on the Island Line. This application 

indicates that the synthetic controls outperform the before-after comparison and the simple 

average of control units. In terms of the direct disruption impacts, the exit ridership of the 

interrupted station drops by 50%, with an increase of over 11 minutes in the average journey 

time per trip and a maximum of 9 km/h decrease in the average travel speed. For other stations 

in the MTR network, the impacts of this disruption spread throughout the entire Island Line 

and reach further stations on another two connected lines. With the increase of propagation 

distance, the magnitude of disruption impacts gradually decreases. Two hours after the 

disruption, the service of the entire network returns to normal.  

 
23 The spillover effects of public transport disruptions have been analysed based on various 
simulation-based methods. Section 2.5.1 reviews the related literature in detail.   
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The rest of the chapter is organised as follows. Section 6.2 presents the synthetic control 

framework and the method of weight choice. In Section 6.3, we detail the case study on the 

Hong Kong MTR with an example of disruption impacts propagation. Results are then 

discussed in Section 6.4. Finally, Section 6.5 concludes and discusses limitations and future 

work for this research. 

 

 

6.2  Methodology 

To measure the impact of disruptions on a metro system, we use Rubin’s potential outcome 

framework to establish causality (Rubin, 1974). As introduced in Section 3.2.2, We define 

metro disruptions as ‘treatments (or interventions)’ and the objective of our analysis is to 

quantify the direct and indirect causal effect of treatments on ‘outcomes’ related to service 

performance. Specifically, we are interested in estimating station-level impacts on (i) travel 

demand, (ii) journey time and (iii) the travel speed of passengers. From the literature, most of 

the empirical research concentrates on direct disruption impacts. The performance of other 

stations is tacitly assumed to be independent of the disrupted stations.  However, metro stations 

are connected by tracks and consecutive train services, meaning that disruption impacts can 

propagate along lines to the entire network. Moreover, due to the non-random occurrence of 

metro disruptions, confoundedness needs to be considered in real estimations (Zhang et al. 

2021a). To address these issues, we adopt a modified synthetic control method, which relaxes 

the non-interference assumptions and also eliminates potential confounding biases. 

 

6.2.1 The modified synthetic control method 

In this research, we define the study unit as the status of a metro station 𝑎𝑎 = 1, … ,𝐴𝐴 on a given 

day 𝑑𝑑 = 1, … ,𝐷𝐷   during interval 𝑡𝑡 = 1, … ,𝑇𝑇 . We consider 15-minute-long intervals. The 

station is considered to be treated in case it encounters service disruptions of above five 

minutes in the 15-minute interval. The treatment assignment, denoted by 𝑊𝑊𝑎𝑎𝑑𝑑𝑡𝑡 ∈ {0,1}, records 

whether the station 𝑎𝑎 has been exposed to disruptions during interval 𝑡𝑡 on day 𝑑𝑑. Under the 

Consistency Assumption 24  (Imbens and Rubin 2015), we use 𝑌𝑌𝑎𝑎𝑑𝑑𝑡𝑡(𝑊𝑊𝑎𝑎𝑑𝑑𝑡𝑡)  to denote the 

 
24 The assumption that there are no hidden versions of treatment.  
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potential outcomes, which are defined as the passenger demand, average journey time and 

average travel speed. 

𝑌𝑌𝑎𝑎𝑑𝑑𝑡𝑡(𝑊𝑊𝑎𝑎𝑑𝑑𝑡𝑡) = 𝑌𝑌𝑎𝑎𝑑𝑑𝑡𝑡(0) × (1 −𝑊𝑊𝑎𝑎𝑑𝑑𝑡𝑡) + 𝑌𝑌𝑎𝑎𝑑𝑑𝑡𝑡(1) × 𝑊𝑊𝑎𝑎𝑑𝑑𝑡𝑡 ,                         (6.1) 

𝑌𝑌𝑎𝑎𝑑𝑑𝑡𝑡 = �𝑌𝑌𝑎𝑎𝑑𝑑𝑡𝑡
(0)        𝑢𝑢𝑖𝑖 𝑊𝑊𝑎𝑎𝑑𝑑𝑡𝑡 = 0

𝑌𝑌𝑎𝑎𝑑𝑑𝑡𝑡(1)        𝑢𝑢𝑖𝑖 𝑊𝑊𝑎𝑎𝑑𝑑𝑡𝑡 = 1, 

where 𝑌𝑌𝑎𝑎𝑑𝑑𝑡𝑡(0)  and 𝑌𝑌𝑎𝑎𝑑𝑑𝑡𝑡(1)  are counterfactual potential outcomes, only one of which is 

observed. Causal inference studies commonly make the stable unit treatment value assumption 

(SUTVA), which requires that the outcome for each unit should be independent of the treatment 

status of other units (Graham et al., 2014). However, due to interference between stations in 

the metro network, SUTVA is unlikely to hold. We illustrate how this modified synthetic 

control method could estimate causal effect in the absence of SUTVA. 

To create the synthetic control, we utilise the observations on days when no disruption 

in the entire metro network as the donor pool. 𝒅𝒅𝑵𝑵  is a set of such undisrupted days with 

cardinality 𝐽𝐽. This design of the donor pool benefits from the fact that metro automated data 

contain observations from multiple days. To quantify the impact of a disruption that starts at 

station 𝑎𝑎𝐼𝐼 = 1, … ,𝐴𝐴 , on day 𝑑𝑑𝐼𝐼 = 1, … ,𝐷𝐷 , at time 𝑇𝑇𝐼𝐼𝐼𝐼 = 1, … ,𝑇𝑇  and ends at time 𝑇𝑇𝐼𝐼𝐴𝐴 =

𝑇𝑇𝐼𝐼𝐼𝐼, … ,𝑇𝑇, we construct a vector of outcomes 𝒑𝒑. We assume that this disruption has no effect 

on outcomes before the treatment period 𝑇𝑇𝐼𝐼𝐼𝐼. Conversely, after 𝑇𝑇𝐼𝐼𝐼𝐼, all stations in the network 

can be affected by this disruption. 

𝒑𝒑 = {𝒑𝒑𝟏𝟏,𝒑𝒑𝟐𝟐, … ,𝒑𝒑𝑨𝑨}                                                         (6.2) 

where 𝒑𝒑𝒂𝒂 is the vector of outcomes for station 𝑎𝑎 during time intervals 𝑡𝑡 = 𝑇𝑇𝐼𝐼𝐼𝐼, … ,𝑇𝑇 on the 

disrupted day  𝑑𝑑𝐼𝐼  and 𝐽𝐽  undisrupted days (i.e., 𝐽𝐽 + 1 days). Since we stack the data of the 

treated day followed by undisrupted days,  𝑝𝑝𝑎𝑎𝑗𝑗𝑡𝑡 = 𝑌𝑌𝑎𝑎𝑑𝑑𝐼𝐼𝑡𝑡(𝑊𝑊𝑎𝑎𝑑𝑑𝐼𝐼𝑡𝑡)  for 𝑗𝑗 = 1  and  𝑝𝑝𝑎𝑎𝑗𝑗𝑡𝑡 =

 𝑌𝑌𝑎𝑎𝑑𝑑𝑗𝑗𝑡𝑡(𝑊𝑊𝑎𝑎𝑑𝑑𝑗𝑗𝑡𝑡)  for 𝑗𝑗 = 2, … , 𝐽𝐽 + 1,  𝑑𝑑𝑗𝑗 ∈ 𝒅𝒅𝑵𝑵 . Note that 𝑊𝑊𝑎𝑎𝑑𝑑𝐼𝐼𝑡𝑡 = 1  if 𝑡𝑡 ≥ 𝑇𝑇𝐼𝐼𝐼𝐼  and 𝑊𝑊𝑎𝑎𝑑𝑑𝐼𝐼𝑡𝑡 = 0 

otherwise.  

The main idea behind the proposed method is to use the untreated and unaffected units 

(from the donor pool) to construct a ‘synthetic’ control unit, of which the characteristics 

approximate that of the treated unit. Therefore, the counterfactual outcome of the treated unit 

can be estimated by the outcomes of the synthetic control unit. For a station-interval pair of the 

treated/affected station 𝑎𝑎, we create a synthetic control by weighted combination of the same 

station-interval pair on 𝐽𝐽  undisrupted days. The counterfactual outcome is defined as a 
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weighted average of the outcomes of units in the donor pool, where 𝑪𝑪𝒂𝒂 = (𝑐𝑐𝑎𝑎2, … , 𝑐𝑐𝑎𝑎𝐽𝐽+1)′ is a 

𝐽𝐽 × 1 vector of non-negative weights that sum to one (see the next subsection for the weight 

computation details). The modified synthetic control estimators of the counterfactual outcomes 

(𝑌𝑌�𝑎𝑎𝑑𝑑𝐼𝐼𝑡𝑡
𝑁𝑁 ) and causal effect estimate (�̂�𝜏𝑎𝑎𝑑𝑑𝐼𝐼𝑡𝑡) are, respectively, 

𝑌𝑌�𝑎𝑎𝑑𝑑𝐼𝐼𝑡𝑡
𝑁𝑁 = ∑  𝑐𝑐𝑎𝑎𝑗𝑗 ⋅ 𝑌𝑌𝑎𝑎𝑑𝑑𝑗𝑗𝑡𝑡(0)𝐽𝐽+1

𝑗𝑗=2       𝑡𝑡 = 𝑇𝑇𝐼𝐼𝐼𝐼, … ,𝑇𝑇,                                    (6.3) 

�̂�𝜏𝑎𝑎𝑑𝑑𝐼𝐼𝑡𝑡 = 𝑌𝑌𝑎𝑎𝑑𝑑𝐼𝐼𝑡𝑡 −  𝑌𝑌�𝑎𝑎𝑑𝑑𝐼𝐼𝑡𝑡
𝑁𝑁       𝑡𝑡 = 𝑇𝑇𝐼𝐼𝐼𝐼, … ,𝑇𝑇.                                          (6.4) 

With the above settings, during the given disruption, the direct causal effects on the 

treated station 𝑎𝑎𝐼𝐼 is derived as 

𝜏𝜏𝑎𝑎𝐼𝐼𝑑𝑑𝐼𝐼𝑡𝑡 = 𝑌𝑌𝑎𝑎𝐼𝐼𝑑𝑑𝐼𝐼𝑡𝑡(1) − ∑  𝑐𝑐𝑎𝑎𝐼𝐼𝑗𝑗 ⋅ 𝑌𝑌𝑎𝑎𝐼𝐼𝑑𝑑𝑗𝑗𝑡𝑡(0)𝐽𝐽+1
𝑗𝑗=2        𝑡𝑡 = 𝑇𝑇𝐼𝐼𝐼𝐼, … ,𝑇𝑇𝐼𝐼𝐴𝐴 .                       (6.5) 

After the disruption, the remaining impacts (indirect) on station 𝑎𝑎𝐼𝐼 is derived as 

𝜏𝜏𝑎𝑎𝐼𝐼𝑑𝑑𝐼𝐼𝑡𝑡 = 𝑌𝑌𝑎𝑎𝐼𝐼𝑑𝑑𝐼𝐼𝑡𝑡(0) − ∑  𝑐𝑐𝑎𝑎𝐼𝐼𝑗𝑗 ⋅ 𝑌𝑌𝑎𝑎𝐼𝐼𝑑𝑑𝑗𝑗𝑡𝑡(0)𝐽𝐽+1
𝑗𝑗=2        𝑡𝑡 = 𝑇𝑇𝐼𝐼𝐴𝐴 + 1, … ,𝑇𝑇,                   (6.6) 

where 𝑌𝑌𝑎𝑎𝐼𝐼𝑑𝑑𝐼𝐼𝑡𝑡(1 𝑎𝑎𝑡𝑡 0) denotes the observed outcome of the treated unit on the disrupted day in 

interval 𝑡𝑡.  𝑐𝑐𝑎𝑎𝐼𝐼𝑗𝑗 denotes the weight of the 𝑗𝑗𝑡𝑡ℎ day in the corresponding donor pool for station 

𝑎𝑎𝐼𝐼, and 𝑌𝑌𝑎𝑎𝐼𝐼𝑑𝑑𝑗𝑗𝑡𝑡(0) denotes the observed outcomes for the same station-interval pair on the 𝑗𝑗𝑡𝑡ℎ 

day. 

Similarly, the indirect causal effects (spillover effects) of the disruption at station 𝑎𝑎𝐼𝐼 on 

the performance of other station 𝑎𝑎𝑂𝑂 (𝑎𝑎𝑂𝑂 ∈ 1, … ,𝐴𝐴 ∖ 𝑎𝑎𝐼𝐼) is derived as 

𝜏𝜏𝑎𝑎𝑂𝑂𝑑𝑑𝐼𝐼𝑡𝑡 = 𝑌𝑌𝑎𝑎𝑂𝑂𝑑𝑑𝐼𝐼𝑡𝑡(0) − ∑  𝑐𝑐𝑎𝑎𝑂𝑂𝑗𝑗 ⋅ 𝑌𝑌𝑎𝑎𝑂𝑂𝑑𝑑𝑗𝑗𝑡𝑡(0)𝐽𝐽+1
𝑗𝑗=2        𝑡𝑡 = 𝑇𝑇𝐼𝐼𝐼𝐼, … ,𝑇𝑇,                        (6.7) 

where 𝑌𝑌𝑎𝑎𝑂𝑂𝑑𝑑𝐼𝐼𝑡𝑡(0) denotes the observed outcomes for the affected units of other stations (non-

treated), during and after the given disruption.  𝑐𝑐𝑎𝑎𝑂𝑂𝑗𝑗  and  𝑌𝑌𝑎𝑎𝑂𝑂𝑑𝑑𝑗𝑗𝑡𝑡(0) denote the weight and 

outcomes of the 𝑗𝑗𝑡𝑡ℎ day in the corresponding donor pool for station 𝑎𝑎𝑂𝑂. Figure 6.1 illustrates 

the design of the modified synthetic control framework for metro disruptions.  
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Figure 6.1: Schematic overview of the modified synthetic control method for metro disruptions. 
The donor pool consists of observations from non-disrupted days. 𝑎𝑎𝑝𝑝  represent any other 
station in the network, it can be upstream, downstream or a surrounding station to the 
disruption. 

 

6.2.2 The choice of weights 

A naïve example is that of equally assigning weights  𝑐𝑐𝑎𝑎𝑗𝑗 = 1/𝐽𝐽  to each of the units in a 

comparison control group (donor pool). The estimator for 𝜏𝜏𝑎𝑎𝑑𝑑𝐼𝐼𝑡𝑡 is 

�̂�𝜏𝑎𝑎𝑑𝑑𝐼𝐼𝑡𝑡 = 𝑌𝑌𝑎𝑎𝑑𝑑𝐼𝐼𝑡𝑡 −  1
𝐽𝐽
∑ 𝑌𝑌𝑎𝑎𝑑𝑑𝑗𝑗𝑡𝑡
𝐽𝐽+1
𝑗𝑗=2       𝑡𝑡 = 𝑇𝑇𝐼𝐼𝐼𝐼, … ,𝑇𝑇,                                    (6.8) 

where the synthetic control is the simple average of all the units in the donor pool.  

In this research, we apply the method proposed by Abadie and Gardeazabal (2003) and 

Abadie et al. (2010) to determine the choice of weights 𝑪𝑪𝒂𝒂. For each unit 𝑗𝑗 in the donor pool 

corresponding to station 𝑎𝑎 at time 𝑡𝑡, we first observe a set of 𝑘𝑘 predictors of the outcomes, 

denoted by 𝑋𝑋𝑎𝑎𝑡𝑡𝑗𝑗1, … ,𝑋𝑋𝑎𝑎𝑡𝑡𝑗𝑗𝑘𝑘 . The 𝑘𝑘 × 1  vectors 𝑿𝑿𝒂𝒂𝒅𝒅𝟏𝟏, … ,𝑿𝑿𝒂𝒂𝒅𝒅𝑱𝑱+𝟏𝟏  collect the values of such 

predictors for units 𝑗𝑗 = 1, … , 𝐽𝐽 + 1, individually. The 𝑘𝑘 × 𝐽𝐽 matrix 𝑿𝑿𝒂𝒂𝒅𝒅𝟎𝟎 = �𝑿𝑿𝒂𝒂𝒅𝒅𝟐𝟐, … ,𝑿𝑿𝒂𝒂𝒅𝒅𝑱𝑱+𝟏𝟏� 

represents the predictors for the 𝐽𝐽  unaffected units within this donor pool (Abadie, 2021). 
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Predictors 𝑿𝑿 are defined not to be influenced by the treatments (interruptions) and with a 

certain amount of influence on the outcomes. Thus, to account for the non-randomness of 

disruption occurrence, we include partial confounding factors of metro disruptions when 

selecting predictors, such as weather conditions and pre-intervention values of outcome 

variables.  

Then, weights 𝑪𝑪𝒂𝒂 are determined according to whether the resulting synthetic control can 

best resemble the values for the predictors of the treated unit (𝑗𝑗 = 1) before disruption. That is, 

given a set of non-negative constants 𝑽𝑽𝒂𝒂 = (𝑣𝑣𝑎𝑎1, … , 𝑣𝑣𝑎𝑎𝑘𝑘), the optimal synthetic control 𝑪𝑪𝒂𝒂∗ =

(𝑐𝑐𝑎𝑎2
∗, … , 𝑐𝑐𝑎𝑎𝐽𝐽+1

∗)′ is obtained from the following minimisation problem: 

min
𝑪𝑪𝒂𝒂

 ‖𝑿𝑿𝒂𝒂𝒅𝒅𝟏𝟏 − 𝑿𝑿𝒂𝒂𝒅𝒅𝟎𝟎 ∙ 𝑪𝑪𝒂𝒂‖ = ��𝑣𝑣𝑎𝑎𝑡𝑡ℎ�𝑋𝑋𝑎𝑎𝑡𝑡1ℎ − 𝑐𝑐𝑎𝑎2 ∙ 𝑋𝑋𝑎𝑎𝑡𝑡2ℎ − ⋯− 𝑐𝑐𝑎𝑎𝐽𝐽+1 ∙ 𝑋𝑋𝑎𝑎𝑡𝑡(𝐽𝐽+1)ℎ�
2

𝑘𝑘

ℎ=1

, 

such that  ∑ 𝑐𝑐𝑎𝑎𝑗𝑗 = 1,       𝑐𝑐𝑎𝑎𝑗𝑗 > 0 𝐽𝐽+1
𝑗𝑗=2                                         (6.9) 

where the positive constants 𝑣𝑣𝑎𝑎1, … , 𝑣𝑣𝑎𝑎𝑘𝑘 reflect the relative importance of the 𝑘𝑘 predictors. To 

determine the value of weights 𝑽𝑽𝒂𝒂 and 𝑪𝑪𝒂𝒂, we follow the steps below (Abadie, 2021). 

i). Divide the pre-intervention periods (before disruption occurs) into an initial training 

period (𝑡𝑡 = 1, … , 𝑡𝑡0) and a subsequent validation period (𝑡𝑡 = 𝑡𝑡0 + 1, … ,𝑇𝑇𝐼𝐼𝐼𝐼 − 1). The 

lengths of the training and validation periods can be application specific.  

ii). With training period data on the predictors, compute the synthetic control weights 

𝑪𝑪𝒂𝒂�(𝑽𝑽𝒂𝒂) according to the optimisation as Equation (6.9).   

iii). In the validation period, the mean squared prediction error (MSPE) of this synthetic 

control with respect to 𝑌𝑌𝑎𝑎𝑑𝑑𝐼𝐼𝑡𝑡
𝑁𝑁  is: 

min
𝑽𝑽𝒂𝒂

  ∑ �𝑌𝑌𝑎𝑎𝑑𝑑𝐼𝐼𝑡𝑡 − 𝑐𝑐𝑎𝑎�2(𝑽𝑽𝒂𝒂) ⋅ 𝑌𝑌𝑎𝑎𝑑𝑑2𝑡𝑡 − ⋯−  𝑐𝑐𝑎𝑎�𝐽𝐽+1(𝑽𝑽𝒂𝒂) ⋅ 𝑌𝑌𝑎𝑎𝑑𝑑𝐽𝐽+1𝑡𝑡�
2𝐴𝐴𝐼𝐼𝐼𝐼−1

𝑡𝑡=𝑡𝑡0+1 .        (6.10) 

Minimise the MSPE in Equation (6.10) with respect to 𝑽𝑽𝒂𝒂. 

iv). With the validation period data on the predictors, use the resulting 𝑽𝑽𝒂𝒂∗ to calculate 

weights 𝑪𝑪𝒂𝒂∗ = 𝑪𝑪𝒂𝒂(𝑽𝑽𝒂𝒂∗), according to Equation (6.9). 
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6.3   Data and case study 

In this chapter, the case study is also based on the Hong Kong MTR, focusing on the four urban 

lines (the Island Line, Tsuen Wan Line, Kwun Tong Line and Tseung Kwan O Line) with 49 

stations (refer to Section 5.3). Figure 5.3 displays the partial network that we study. The 

following data are used to estimate the direct and spillover causal effects of disruptions. We 

conducted data processing and analysis using open-source R software (version 4.1.1). 

Pseudonymised smart card data 

The Hong Kong MTR provided smart card data from 01/01/2019 to 31/03/2019. The smart 

card data contain information on the time and location of tap-in and tap-out transactions 

throughout the system, recording individual trips. Based on the data, we compute entry and 

exit ridership, passenger’s average journey time and average travel speed for each target 

station. The resolution of time stamps exacts to one second. 

Incidents logs and disruption detection results 

The MTR provided incident information data during this study period. By combing incident 

logs and the detection results from Chapter 4, we construct an accurate database of service 

disruptions, which includes their occurrence time, locations and durations.  

Weather data 

We collect temperature (°C), wind speed (km/h) and rain status (cm) from the web portals: 

Time and Date / Weather Underground of Hong Kong. Based on the hourly historical 

observations, we estimate weather conditions for all selected stations at 15-minute intervals 

(refer to Section 5.3). 

Mega events in Hong Kong 

From 01/2019 to 03/2019, we collect the information – including the location and event time  

- of three types of mega-events held in Hong Kong: concerts, sports matches and exhibitions. 

Data sources include official news and government records.25  

In this case study, historical disruption data are obtained from the aforementioned 

disruption database. Minor disruptions that lasted less than five minutes are excluded from the 

impact estimation. During the study period, 106 disruptions (of over 5 minutes) were observed 

 
25 https://www.mevents.org.hk/en/index.php. 
  https://www.lcsd.gov.hk/tc/programmes/programmeslist/mqme_prog.html. 
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on the four urban lines. Considering a primary disruption can spread along metro lines and lead 

to service interruption at other stations (secondary disruptions), the impacts of these two types 

of disruptions will be superimposed on each other and hence will be virtually indistinguishable. 

Thus, the causal effects estimated via the synthetic control framework are the integrated 

impacts from both the primary disruption and its corresponding secondary disruptions. For 

each individual primary disruption, we implement synthetic control methods to quantify its 

station-level effects (direct and spillover) on four performance measures: entry/exit ridership, 

average journey time and average travel speed. Refer to Section 5.2.1 for a detailed definition 

of all measures. 

The daily service time of the four lines starts at 6:00 and ends at 24:00, a time period 

which is then divided into 72 intervals of 15 minutes each. During the day of a disruption, the 

synthetic control is implemented for each 15-minute interval at the 49 stations, respectively. 

The estimation results of disruption impacts are discussed in the next subsection.  

 

 

6.4   Results and discussion 

During the study period from 1/1/2019 to 31/3/2019, our analysis covers 54 weekdays, 

excluding holidays and days of incomplete data. The results of the case study are presented 

through a randomly selected disruption, which occurred during evening peak hours at Chai 

Wan station (westbound), Island Line, and lasted for 27 minutes. First, we illustrate the design 

of synthetic control methods and how to choose the predictors and weights in the context of 

metro disruption. The second subsection presents the results of synthetic control estimation of 

four outcome measures for the disrupted station. Convincing evidence is found to support the 

validity of synthetic control. Finally, we visualise the spillover effects of the selected disruption 

spatially and temporally. 

 

6.4.1 Modified synthetic control design 

As mentioned, the time of a service day is divided into 72 intervals of 15 minutes each, and the 

metro station in each 15-minute interval (station-interval) is our study unit. On Monday 

11/3/2019, the selected disruption occurred at 17:41 and ended at 18:08. Thus, Chai Wan 
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station is interrupted (treated) during this period (time interval: 47 to 48),26 while the other 48 

stations on the four urban lines were still functioning on this day. Please note that within the 

entire network, no other disruption occurred on the same day.27 Under the proposed framework, 

a treated station-interval is compared with the synthetic control unit, which consists of the 

unaffected units from the same station at the same time but on different dates (donor pool). In 

this case study, 13 weekdays with no disruption are used to construct donor pools (refer to 

Section 3.2). Therefore, when we choose the predictors of metro performances, there is no need 

to consider station characteristics and time of day. The predictors are selected mainly based on 

factors that change with date. Possible predictors for all four outcome measures are summarised 

in Table 6.1.  

As for the optimisation of weights, we divide the pre-intervention periods (time intervals: 

1 to 46) into a training period (first 23 intervals) and a subsequent validation period (last 23 

intervals). With the data in the above two periods, weights of predictors and donor pools are 

determined so that the outcomes and predictors in the treated station-interval are best replicated 

by the synthetic counterpart before treatment. For the disrupted station (Chai Wan), the 

estimation results of weights and causal impacts are discussed in the next subsection.  

 

 

 

 

 

 

 

 

 

 

 

 

 
26 After matching the disruption duration with time intervals, the selected disruption occurred at the 
end of interval 46 for approximately 3 minutes. Such an impact can be neglected, so we set this 
disruption to start from interval 47.  
27 If multiple disruptions occur on the same day, the synthetic control methods can only quantify their 
joint impacts rather than the individual impact. 
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Table 6.1: Potential predictors of metro performance 

Category Predictors Description 

Pre-intervention 
outcomes  
(15-minutes) 

Entry ridership 
The number of passengers that enter the study unit 
before the disruption starts. 

Exit ridership 
The number of passengers that exit the study unit 
before the disruption starts. 

Average journey time 
The average journey time of passengers that enter the 
study unit before the disruption starts. 

Average travel speed 
The average travel speed of passengers that enter the 
study unit before the disruption starts. 

Weekday  Day of week 
Dummy variable, representing whether it is on the 
same day of the week as the disrupted date.  

Weather 
conditions 

Temperature 
Atmospheric temperature around study units, ranging 
from 15℃ to 27℃. 

Wind speed 
The wind speed around study units, ranging from 4 to 
44 km/h. 

Rain status 
Rain precipitation around study units, ranging from 0 
to 4 mm/h. 

External events 

Concert 
Dummy variable, representing whether there is a 
concert held in Hong Kong.  

Sports 
Dummy variable, representing whether there is a 
sports match held in Hong Kong. 

Exhibition 
Dummy variable, representing whether there is a large 
exhibition held in Hong Kong. 

Overall-mega 
Dummy variable, representing whether there are 
external mega-events held in Hong Kong. 

 

 

6.4.2 Synthetic control results of the disrupted station 

For Chai Wan station, the synthetic control estimations are displayed in Figure 6.2, which 

compares the trajectory of four outcome measures before and after the disruption at Chai Wan 

station and (i) a modified synthetic control, (ii) a simple average of the station-intervals in the 

donor pool and (iii) a constant value before disruption. This figure shows that a synthetic 

control (weight average) can closely approximate the trajectory of four outcome measures for 

Chai Wan station before the disruption occurrence, while the simple average sometimes fails. 

The naive before-and-after comparison cannot capture the changes in the trajectory at all.  
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 (a) 

 

 (b) 
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(c) 

 

 (d) 

Figure 6.2: Results of synthetic control estimation and causal effects on the disrupted station – 
with comparison of other impact quantification methods 
 

Table 6.2 reports the mean value of average speed predictors before the disruption, 

columns (1) to (4) represent 𝑿𝑿𝒂𝒂𝑰𝑰𝟏𝟏 observed on 11/3/2019, 𝑿𝑿𝒂𝒂𝑰𝑰𝟎𝟎𝑪𝑪𝒂𝒂𝑰𝑰
∗ for the synthetic control,  
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𝟏𝟏
𝑱𝑱
𝑿𝑿𝒂𝒂𝑰𝑰𝟎𝟎  for the simple average of donor pool and 𝑿𝑿𝒂𝒂𝑰𝑰𝟒𝟒  for a single unit in the donor pool 

(observed on 11/2/2019). The results in Table 6.2 illustrate that the synthetic control provides 

a rather accurate approximation of the value of the predictors for the disrupted date. In contrast, 

the simple average and the single control unit both lose accuracy in the reproduction of 

predictors prior to the disruption. Meanwhile, we also validate the approximation of the pre-

intervention outcomes as shown in Table 6.3. For all metro performance measures, the 

synthetic control outperforms the other two methods, which is in line with the above analysis.  

 

Table 6.2: Mean values of predictors for average speed measures before the disruption occurred 

Predictors Disrupted station Synthetic control Average control Single control 
Entry ridership 796.956 795.012 794.309 809.311 
Exit ridership 532.089 532.551 527.815 537.822 

Ave journey time (min) 25.945 25.954 25.960 25.475 
Ave speed (km/h) 23.040 23.035 23.034 22.947 

Day of week (dummy) 1 0.152 0.154 0 
Temperature (℃) 19.272 20.995 22.051 18.235 

Wind (km/h) 7.244 10.463 13.460 13.444 
Rain (mm) 0.133 0.126 0.087 0 

Overall mega 0 0.421 0.612 0.822 

 

Table 6.3: Mean square prediction errors of four outcome measures before the disruption 

Outcome 

measures 

Mean square prediction error (S.E.) 

Synthetic control Average control Single control 

Entry ridership 844.869 (204.994) 1874.413 (530.373) 2436.478 (579.482) 

Exit ridership 1844.911 (416.405) 2356.370 (644.580) 5171.478 (1185.877) 

Ave journey time 0.496 (0.093) 1.632 (0.410) 2.524 (0.467) 

Ave speed 0.038 (0.018) 0.140 (0.029) 0.270 (0.062) 

 

Table 6.4 displays the final synthetic control weights of the disrupted station 𝑪𝑪𝒂𝒂𝑰𝑰∗. In the 

table, weights in a column reflect the contribution of each normal day in the donor pool 𝒅𝒅𝑵𝑵 to 

the synthetic control of the disruptive day. For different outcome measures, the distribution of 

weights is different. Generally, dates 16/1/2019, 05/3/2019 and 25/3/2019 tend to carry greater 

weights, while the remaining dates are also more or less helpful for the synthetic control.  
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Table 6.4: Synthetic control weights of the disrupted station (for four outcome measures) 

𝒅𝒅𝑵𝑵 Entry ridership Exit ridership Ave journey time Ave speed 

09/1/2019 - 0.005 0.064 0.006 
16/1/2019 0.323 0.124 0.231 0.006 
11/2/2019 - 0.005 0.116 0.186 
13/2/2019 0.001 0.004 0.022 0.297 
21/2/2019 - 0.229 0.024 0.098 
28/2/2019 - - 0.025 0.006 
05/3/2019 0.177 0.211 0.040 0.193 
13/3/2019 - - 0.025 0.006 
14/3/2019 - - 0.346 0.008 
20/3/2019 - - 0.019 0.006 
25/3/2019 0.499 0.422 0.036 0.179 
26/3/2019 - - 0.030 0.006 
28/3/2019 - - 0.022 0.006 
 

In terms of the direct disruption impacts on Chai Wan station, for passenger demand, the 

selected disruption significantly reduced the exit ridership (50%) during the service 

interruption. There is only a small impact on the entry ridership, with a decrease of just 5% 

during the disruption. With regards to the average journey time, this disruption dramatically 

increases the passenger delay by over 11 minutes per trip. Therefore, the average travel speed 

also experiences a sharp drop by up to 9 km/h. However, when the disruption is over, with the 

resumption of train services, impacts on exit ridership, average journey time and average speed 

reach their turning point and are gradually reduced to zero.  

 

6.4.3 Spillover disruption effects and propagation 

In this subsection, we use average travel speed as an example to illustrate how the impacts of 

this disruption spread to the other 48 stations spatially and temporally. In the same manner as 

implementing the proposed framework for the disrupted station, we obtained the weights and 

synthetic control estimations for other non-disrupted stations in the metro network (see 

Appendix C for more details). At different time intervals after the disruption occurred, Figure 

6.3 visualises the spatial distribution of the impacts on average travel speed. The points in the 

plot represent metro stations, and their colour indicates the magnitude of speed decrease. 
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Severe decreases of more than 5 km/h are marked in red. No effect or minor decreases below 

1 km/h are marked in blue, with three levels of orange, yellow and green in between.  

The disruption occurred at the origin station of the Island Line, westbound. In the first 

15 minutes of the disruption, Figure 6.3(a) shows that the second station in the downstream 

direction has been severely affected, and the impacts spread from the third to the seventh station. 

Then, during the next 15 minutes, as shown in Figure 6.3(b), the disruption impacts continue 

to propagate along the Island Line until the tenth station, with the first four stations all in severe 

delay. Eventually, the connected Tseung Kwan O Line starts to be affected. After this point, 

the disruption is over and train services are restored. In Figure 6.3(c), we find the speed 

decrease in the first four stations is declining to a moderate level. On the other hand, following 

the downstream direction the disruption impacts run through the entire Island Line and even 

spread to partial stations on the Tsuen Wan line. In Figure 6.3(d), another 30 minutes later, the 

spillover effects on the top two-thirds of the Island Line continue to drop until there is virtually 

no impact on the originally disrupted station. For the stations left, the spillover effects reach 

the highest level. Finally in Figure 6.3(e), one hour after the disruption, the average travel speed 

at most stations has returned to normal.  

Based on the progress of impact propagation as described above, we conclude some 

insights. A disruption first affects its adjacent stations, then following the direction of train 

movement, such influence spreads along the metro line where it occurred. The propagation of 

spillover effects takes time, with impacts on downstream stations lagging behind that on 

upstream stations. Meanwhile, the magnitude of disruption impacts gradually decreases, as it 

spreads. Lines directly connected to the disrupted line are more likely to be affected. For 

example, in this case study, passengers on the Kwun Tong Line experience less drop in travel 

speed. Moreover, an interesting finding is that interchange stations with more than two metro 

lines are more resistant to the disturbance from disruptions, especially for journey time and 

travel speed. A possible explanation is that passengers in interchange stations have access to 

alternative routes to continue their trips, thus reducing the probability of waiting and overall 

waiting time.  
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Figure 6.3: Spillover effects on average travel speed at different time periods. The star symbol 
indicates the location of the example disruption.  
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6.5   Conclusions and future work 

Service disruptions pose various challenges for urban metro systems, including delays, 

crowding, and declining passenger satisfaction. To mitigate these adverse impacts and build 

effective recovery strategies, detailed information on disruptions is required. For passengers, 

updates on real-time disruption impacts can also help them reschedule travel plans. Thus, it is 

important for operators and passengers to comprehensively understand disruption impacts. 

This study proposes a novel causal inference framework to quantify the direct and 

spillover effects of disruptions on passenger demand, average journey time and average travel 

speed. In contrast to previous empirical-based studies, which assume disruptions occur 

randomly and only focus on direct impacts, our approach not only accounts for the existence 

of confounding factors but also explores the wider propagation of disruption impacts. The 

proposed synthetic control framework relaxes the non-interference assumption; thus, 

disruption impacts that spread along lines throughout the entire network can be captured. Our 

approach compares the treated station-interval with a synthetic control unit which consists of 

the unaffected units within the donor pool (from the same station at the same time but on 

different dates). We obtain optimal weights by minimising the difference between the treated 

unit and the synthetic control regarding the pre-intervention predictors and outcomes of interest. 

Finally, we extend the estimation framework from direct impacts to spillover effects, by 

implementing the modified synthetic control framework on both disrupted and non-disrupted 

stations.  To the best of our knowledge, this is the first empirical study that estimates indirect 

disruption impacts and analyses the propagation of such effects.  

The proposed method is applied in a case study of four urban lines in the Hong Kong 

MTR, with a selected disruption on the Island Line. This illustrative application indicates that 

the modified synthetic controls provide a rather accurate approximation of the characteristics 

of the treated units. For the disrupted station itself, during disruptions the exit ridership drops 

by 50%, the average journey time increases by over 11 minutes per trip, and the passenger 

speed reduces by up to 9 km/h. For other stations in the metro network, the impacts of this 

disruption spread through the Island Line and reach part of the Tseung Kwan O Line and Tsuen 

Wan Line.  

Let us conclude the chapter by acknowledging some of the limitations of the proposed 

method. The effectiveness of the modified synthetic control method heavily relies on the input 

data for a number of reasons. First, there must be sufficient days without disruptions, otherwise, 
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the donor pool will fail due to a lack of relevant data. Second, there need to have sufficient pre-

treatment data. With a small number of pre-treatment periods, close or even perfect fit of the 

predictor values for the treated unit may be spuriously attained (Abadie, 2021), which leads to 

difficulties in the impact estimation of early-morning disruptions. Finally, if multiple primary 

disruptions occur on the same day, the synthetic control framework will estimate the joint 

impacts of all disruptions rather than their individual impacts.  

As for future works, it could be a great idea to extend the research scope to individual-

level impacts and incorporate sophisticated passenger-to-train assignment algorithms into the 

impact estimation. 
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Chapter 7                      

Conclusions 

 

 

7.1   Main findings and contributions 

This thesis presents new insights into understanding disruptions in urban metro systems. To 

achieve this aim, the research objectives are listed in Section 1.3. This section revisits these 

objectives and summarises the relevant findings and contributions. 

i) Detect metro service disruptions via a data-driven probabilistic unsupervised 

learning approach, with identifying disruption propagation and operator’s 

intervention.  

Chapter 4 focused on the first objective. The main contribution of this research is a 

probabilistic GMM-based detection approach with large-scale AVL data. We used the AVL 

data to observe the headway of train services at platform level. The deviations between the 

observed headway and scheduled headway are the input of detection. Abnormal (overlong) 

headway deviations are regarded as a sign of service interruption. Compared with other 

indicators from social media data and smart card data, detection based on abnormal headway 

deviations is straightforward, comprehensive and more accurate. The GMM-based detection 

method is unique in the sense that it is a probabilistic unsupervised clustering approach, 

revealing the probability of each observed headway being disrupted. The parameters used in 

the detection are dynamically learned from the semi-simulations based on observed headway 

deviations, rather than being subjectively determined. This design improves the applicability 

of our detection model to different stations and time of day (various distributions of headway 

data). The empirical case study on a densely used line of the MTR showed the validity of this 

data-driven detection method. Benchmarked with both manual inspection logs and simulation 

scenarios, our detection model is highly effective for any type of service disruption.  

Another notable output of this research is the analysis of secondary disruptions and 

recovery interventions. By merging the detection results with the train movement trajectories 

that are also obtained from the AVL data, we identified the relationship among the platform-
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level abnormal headway deviations. These spatial and temporal links reveal the propagation 

progress of the interruption of services along metro lines. Furthermore, such links also enable 

the metro operators to perform effective interventions for service recovery.   

 

ii) Measure the vulnerability of urban metros based on empirical causal effects of 

disruptions.  

The second objective is to construct reliable vulnerability metrics based on empirical 

disruption impacts. This objective has been addressed in Chapter 5. This chapter’s contribution 

is the introduction of the causal inference framework into metro disruption analysis. Compared 

to previous studies with tacit random disruption assumptions, the proposed propensity score 

matching methods successfully adjust for the source of confounding bias in the estimation of 

disruption impacts, such as weather conditions, time of day, real-time demand and frequency 

of historical disruptions. The proposed causal inference framework is combined with large-

scale smart card data and the detected disruptions from the AVL data. We carried out a system-

based analysis of metro vulnerability based on metro AVL data.   

The empirical evidence in this chapter justifies the relaxation of the assumption on random 

disruption occurrence, i.e. the statistically significant influence of the above confounding 

factors on disruptions as a treatment. This finding in return illustrates the rationale of applying 

causal inference methods. From the estimated causal impacts, new and more reliable empirical 

insights into the vulnerability measurement are provided. The results of the case study suggest 

that vulnerability metrics are heterogeneous across metro stations, depending on their location 

and other station related characteristics. For the MTR in 2019, in terms of the travel demand 

loss and gross speed loss (overall delay), the most affected stations are more likely to be found 

in Hong Kong urban areas. Conversely, considering average speed loss (individual delay), the 

most affected stations are scattered around the suburban and extended urban areas due to a lack 

of alternative routes.  

 

iii) Quantify the direct and spillover causal effects of disruptions, and analyse the 

impact propagation in urban metros. 
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The third objective has been addressed in Chapter 6. A key contribution of this chapter 

is that we modified the classic synthetic control methods to relax the non-interference 

assumption (SUTVA). Under the potential outcomes framework and considering the existence 

of confounding factors, the proposed modification lies in the novel design of the donor pool.  

We utilised the feature that metro systems reboot every day, and the panel structure of the 

large-scale datasets (multi-day observations). The modified donor pool consists of observations 

on days when no disruption occurred in the entire metro network, which eliminates the bias in 

synthetic controls caused by interference.   

In practice, this chapter contributes to the literature by quantifying the indirect disruption 

impacts based on empirical evidence. In the presence of interference, the modified synthetic 

control framework is suitable for both disrupted stations and other indirectly affected stations. 

For the first time, we empirically explored the direct and spillover causal effects of disruptions 

in a metro network, and carried out a novel analysis of spatiotemporal propagation of disruption 

impacts. The case study used an example disruption of 27 minutes on the Island Line to 

illustrate the proposed method. The empirical results reveal that the disruption impacts spread 

throughout the entire Island Line and reached some further stations on other connected lines. 

With the increase of propagation distance, the magnitude of disruption impacts gradually 

decreased.  

 

7.2   Potential applications  

There are a number of potential applications of the research presented in the thesis, which can 

be broadly categorised into applications related to transport operations and practical policy-

making. The transferability of the proposed methods to other public transport modes has also 

been discussed. 

i) Operations related applications 

• Service disruption database – Reliable detection results from Chapter 4 could be used 

to construct a high-quality database of service disruptions, including the information of 

occurrence location and time, duration, and disruption propagation status (primary or 

secondary). Disruptions in the range of two minutes to several days could be recorded, 

especially a large number of minor delays in train operations, with precision exact to 
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second.  Such databases have the potential to be the cornerstone of any disruption 

related performance monitoring or policy assessment.   

• Metro performance evaluation - Results from the Chapter 4 to Chapter 6 could be 

used in development of useful key performance indicators based on large-scale 

automated data. 

Reliability  

Based on the AVL data and the detection results from Chapter 4, the service reliability 

could be measured by new indicators such as the frequency of abnormal headway, the 

average train interruption time or the duration between two severe disruptions.   

Vulnerability 

As discussed in Chapter 5, metro vulnerability could be measured by empirical 

disruption impacts (Zhang et al., 2021a). Besides the proposed metrics related to direct 

impacts, new metrics could be developed to account for spillover effects or propagation 

characteristics.    

Resilience  

Based on the results of recovery intervention identification from Chapter 4, indicators 

such as response time after disruption, the number of interventions and effective rate 

imply the ability of metro operators to mitigate adverse disruption impacts, so-called 

recoverability. From the system perspective, such recoverability may be measured by a 

new indicator: recovery time from the end of disruption to services fully restored.  

Metro benchmarking   

The integrated research design of this thesis is applicable and scalable to the majority 

of metro systems in the globe, with automatic fare collection system and automatic 

vehicle location system. The proposed performance indicators enable the smart 

benchmarking based on big data.  

• Disruption management – With the comprehensive analytics of metro disruptions, 

from their occurrence to corresponding impacts, the findings in this thesis could support 

the prevention of future disruptions and prediction of disruption impacts.  

Prediction of disruption occurrence and duration  

Mainly based on the detection results from Chapter 4 (offline – historical disruption 

data), and the supplementary information such as passenger demand, weather 
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conditions, external events, topological and station characteristics, advanced machine 

learning techniques could be applied to predict the probability and duration of future 

disruptions. Such knowledge could be used as a reliable input for timetable recovery or 

train rescheduling after disruptions.  

Disruption impact prediction - offline    

With the above-mentioned datasets, the estimated historical disruption impacts could 

be used to predict passenger delays, demand loss or crowding caused by future 

disruptions.   

• Passenger information provision (online service) – The proposed detection method 

in Chapter 4 and the impact quantification method in Chapter 6 could be applied to 

provide real-time information of disruptions to passengers. The frequency of 

information updates will be determined by the minimum interval of GMM detection 

and impact estimation, for example per 15 minutes. Such short-term information of 

train delays and passenger delays could be incorporated into the online route planners 

(Cats and Jenelius, 2014; Drabicki et al., 2021).   

To provide alerts on disruption occurrence and severity, the required database 

includes static data such as metro topology, facility status, service schedules and station 

characteristics, as well as dynamic data such as passenger demand, weather conditions 

and external events.  For monitoring a single platform, the running time on a laptop 

featuring 2.80 GHz CPU and 16 GB RAM can be less than 5 minutes. When the 

proposed application is equipped with high performance computing facilities and 

parallel design to handle multiple platforms, it would be suitable for monitoring large 

metro networks under the expected information refresh rate.  

 

ii) Applications in practical policy-making 

• Appraisal of metro investments – The vulnerability metrics derived in Chapter 5 are 

important inputs in the economic appraisal of metro projects, particularly for the 

investments in system maintenance and facility upgrades. Such disaggregate 

performance metrics could reveal the most vulnerable parts of the network, and guide 

the allocation of resources to achieve the maximum improvements. In important 
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intermediate step in achieving this goal is to transform the vulnerability metrics into 

monetary valuations of loss of social welfare. 

 

iii) Transferability to other public transport modes 

• Disruption detection – The feasibility depends on whether the distribution of headway 

deviations of other modes has similar characteristics to that of the metro. Since metro 

systems use fully enclosed lines, dedicated tracks and signals, the independent 

operation ensures less variation in train headway under normal conditions, unless 

service disruption occurs. For similar modes, such as light rail and commuter rail, the 

GMM-based detection method is suitable. However, for other public transport modes 

operated on urban roads, such as bus, tram and taxi, their service headway may 

experience large variations due to different road conditions. In this case, the 

probabilistic detection method may not be applicable.  

• Impact estimation/vulnerability measurement – the proposed causal inference 

methods can be easily transferred to other transport modes, provided that there are 

enough relevant data of these modes, such as disruption occurrence, performance 

measures, weather conditions and system characteristics. 

 

7.3   Future research  

A number of potential avenues for future research related to the work in this thesis are 

summarised below.  

For disruption detection, the indicator of service interruptions is overlong headway, 

which is extracted from the AVL data. Since the AVL data only contain information on train 

locations and the inherent characteristics of trains, there is no way to infer the cause of 

disruption from it. This is a limitation of our data-driven detection method, as compared to 

manual inspections. A feasible solution is to include more sources of data in the detection 

process, such as the manual inspection logs, social media data, news and smart card data. Future 

research may focus on merging the AVL-based detection results with these new data to infer 

the reason for disruptions. 
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For disruption impact estimation, this thesis concentrates on station-level impacts rather 

than impacts on the individual level. The journey time and travel speed measures are the 

averages of all passengers that enter a station in a 15-minute interval. Inspired by Yap et al. 

(2017, 2021), it is worth focusing on individual-level impacts. By merging the AVL data and 

smart card data, we can infer the most possible route (with transfer choice) for each passenger 

within the metro network via passenger to train assignment algorithms (Hörcher et al., 2017; 

Zhu et al., 2017b). With such information, the disruption impacts could be estimated for 

individual passengers, especially under the synthetic control framework. It would be interesting 

to integrate sophisticated assignments into the proposed causal inference framework.  

For both impact estimation and vulnerability measurement, this research only considers 

the disruption impacts within metro systems. This is due to limited access to the SCD and AVL 

data of other public transport modes. If possible, it would be interesting to extend these studies 

to other transport modes. For example, by merging data from other public transport modes (e.g., 

bus, urban rails, shared bike or taxi) with metro datasets, we could estimate multi-modal 

vulnerability metrics in the same causal inference framework and understand the characteristics 

of the mode shift due to disruptions. It would also be interesting to analyse the propagation of 

disruption impacts between different modes (Yap et al., 2021).  

For the application of a modified synthetic control framework, it is worth mentioning 

that the data requirements of this method are relatively high. First, the construction of the donor 

pool requires a certain numbers of unaffected study units. In the context of this research, this 

would mean that there have to be a sufficient number of days where no disruption occurs in the 

entire metro system. However, in some cases, this condition may not be met. The insufficient 

donor pool will lead to biased estimates. It would be interesting to analyse how the composition 

of the donor pool influences the estimation of disruption impacts. Second, the credibility of 

synthetic control estimators partially depends on sufficient pre-treatment information (Abadie, 

2021). Thus, for disruptions that occurred within the first fifteen-minute interval, there is no 

such pre-treatment data. It would be necessary to prepare alternative solutions for this particular 

case.  
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Appendix A                       

Supplementary Material: Chapter 4 

 

A.1  Robustness check against percentile of headway deviations in 

simulation 

As mentioned in Section 4.4.2, the percentile of observed headway deviations, which we use 

to construct undisrupted observations in the simulation, affects the composition of the synthetic 

samples and detection accuracy. The higher the percentile is, the more overlap will be between 

the disrupted and regular headway deviations, potentially leading to lower detection accuracy. 

To evaluate the robustness of our GMM-based model in terms of this concern, we test for the 

following percentiles: 96, 97, 98, 99. The proportion of simulated disruptions in the sample 

data is kept at 5%.   

 

Table A.1: Robustness check against the choice of deviation percentile in simulation 

Percentile choice 
5% Disruptions  

Precision  Recall Accuracy Optimal 
threshold 

96 percentile 1.000 0.945 0.997 0.994 
97 percentile 1.000 0.942 0.997 0.989 
98 percentile 1.000 0.937 0.996 0.968 
99 percentile 1.000 0.935 0.995 0.956 

 

Table A.1 summarises the changing trend of performance measures. Although the overall 

accuracy and recall rate continue to drop when the percentile increases, their minimum values 

are still over 0.99 and 0.93, respectively. Such results indicate that the proposed detection 

model is robust, even if the simulated deviations are generated from different percentile of 

empirical data. 
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A.2 Sensitivity analysis of detection accuracy 

 

Besides the mentioned example station (1) and time interval (7:30-8:00) in Section 5, we select 

another suburban station (2) of the studied metro line and an additional evening-peak interval 

(17:00-17:30) to make the validation more comprehensive. In validation, two types of 

disruptions are considered. The first type is minor disruption that follows log-normal 

distribution and ranges between 1.5 to 8 minutes. The second type also follows log-normal 

distribution but includes a wider range of headway deviations, consisting of both minor 

interruptions and more severe interruptions of few hours. The empirical headway deviation 

distribution is truncated at the 95th percentile, when simulating undisrupted observations. 

Under different combinations of stations, disruption types and disruption rates, the 

performance measures of detection are presented in Table A.2. 

 

Table A.2: Results of sensitivity analysis for two example stations (1000 runs) 

Disruption 
type 

Station 
(Northbound) 

Time 
Disruption 

rate 

Performance measures 

Ave. 
precision 

Ave. 
recall 

Ave.  
F-score 

Ave. 
accuracy 

Minor 
interruptions  
(< 8 minutes) 

 

Example 1 

7:30-
8:00 

1% 1 0.9441 0.9678 0.9995 
2% 1 0.9453 0.9752 0.9989 
5% 1 0.9465 0.9720 0.9974 

17:00-
17:30 

1% 1 0.9999 1 1 
2% 1 0.9999 0.9999 1 
5% 1 0.9998 0.9999 1 

Example 2 

7:30-
8:00 

1% 1 0.9033 0.9393 0.9992 
2% 1 0.9074 0.9425 0.9983 
5% 1 0.9157 0.9543 0.9960 

17:00-
17:30 

1% 1 0.9823 0.9899 0.9998 
2% 1 0.9839 0.9910 0.9997 
5% 1 0.9870 0.9934 0.9994 

Mixed 
interruptions 
(minor - few 

hours) 

 

Example 1 

7:30-
8:00 

1% 1 0.9934 0.9963 0.9999 
2% 1 0.9931 0.9962 0.9999 
5% 1 0.9928 0.9960 0.9999 

17:00-
17:30 

1% 1 1 1 1 
2% 1 0.9999 1 1 
5% 1 0.9999 0.9999 0.9999 

Example 2 
7:30-
8:00 

1% 1 0.9917 0.9950 0.9999 
2% 1 0.9916 0.9960 0.9999 
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5% 1 0.9916 0.9956 0.9996 

17:00-
17:30 

1% 1 0.9973 0.9985 1 
2% 1 0.9973 0.9984 0.9999 
5% 1 0.9972 0.9984 0.9999 

 
 

We find that the detection performance varies slightly in each platform-interval, due to the 

different composition of headway deviation data. Overall, the detection is effective for both 

minor and mixed disruptions, under any given disruption rate.  
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Appendix B Supplementary Material: Chapter 5 

 

B.1  Balance improvements under different matching methods 

Table B.1: Means of confounding factors before and after matching 

Confounding factors 

Mean value 
Balance 
before 

matching 

t-Test 
p-value 

Mean value  
Balance 

after 
matching* 

t-Test* 
p-value 

Improvement
* 
% 

Treatment 
Control 
before 

matching 

Control 
after matching 

 

  Subclassification NN=2, W NN=1, W  
Past disruptions 2.030 1.631 0.399 0.006 1.835 1.882 1.950  0.080* 0.681* 79.9* 

Time 1 (7:30-10:30) 0.333 0.333 0 1 0.333 0.333 0.333  0* 1* 0* 

Time 3 (16:30-19:30) 0.323 0.323 0 1 0.323 0.323 0.323  0* 1* 0* 

Temperature 20.444 21.179 -0.735 0.008 21.046 20.575 20.531  0.113* 0.7128 84.6* 
Rain 0.153 0.067 0.086 0.121 0.078 0.093 0.132  0.021* 0.784* 75.6* 
Overground 0.394 0.394 0 1 0.394 0.394 0.394  0* 1* 0* 

Pre-15 min entry ridership 1249.394 1206.966 42.428 0.769 1213.667 1226.384 1231.980  17.414* 0.906* 59.0* 

Overground*Wind speed 4.687 5.241 -0.554 0.560 5.016 4.350 4.479  0.208* 0.893* 62.5* 

Note: * denotes the results responding to nearest neighbour matching 1:1, with replacement.   
          NN - nearest neighbour matching, W – with replacement.  
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Appendix C                         

Supplementary Material: Chapter 6 

 

C.1 Estimated spillover effects on average travel speed over time 

  
(1) Heng Fa Chuen (2) Shau Kei Wan                   

  
(3) Sai Wan Ho                     (4) Tai Koo                        
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(5) Quarry Bay                     (6) North Point                    

  
(7) Fortress Hill                  (8) Tin Hau                        

  
(9) Causeway Bay                   (10)  Wan Chai                       
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(11)  Admiralty                      (12)  Central                        

  
(13)  Sheung Wan                     (14)  Sai Ying Pun 

  
(15)  HKU (16)  Kennedy Town 
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(17)  Tsim Sha Tsui (18)  Jordan 

  
(19)  Yau Ma Tei (20)  Mong Kok 

  
(21)  Prince Edward (22)  Sham Shui Po 
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(23)  Cheung Sha Wan (24)  Lai Chi Kok 

  
(25)  Mei Foo (26)  Lai King 

  
(27)  Kwai Fong (28)  Kwai Hing 
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(29)  Tai Wo Hau (30)  Tsuen Wan 

  
(31)  Tiu Keng Leng (32)  Yau Tong 

  
(33)  Lam Tin                        (34)  Kwun Tong                      
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(35)  Ngau Tau Kok                   (36)  Kowloon Bay                    

  
(37)  Choi Hung                      (38)  Diamond Hill                   

  
(39)  Wong Tai Sin                   (40)  Lok Fu                         
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(41)  Kowloon Tong                   (42)  Shek Kip Mei                   

  
(43)  Ho Man Tin (44)  Whampoa 

  
(45)  Tseung Kwan O (46)  Hang Hau 
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(47)  Po Lam (48)  LOHAS Park 

Figure C.1: The spillover effects of the example disruption on other 48 stations in the MTR 


