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Abstract—Vehicular congestion is directly impacting the 

efficiency of the transport sector. A wireless sensor network for 

vehicular clients is used in Internet of Vehicles based solutions 

for traffic management applications. It was found that vehicular 

congestion detection by using Internet of Vehicles based 

connected vehicles technology are practically feasible for 

congestion handling. It was found that by using Fog Computing 

based principles in the vehicular wireless sensor network, 

communication in the system can be improved to support larger 

number of nodes without impacting performance. In this paper, 

connected vehicles technology based vehicular congestion 

identification techniques are studied. Computing paradigms that 

can be used for the vehicular network are studied to develop a 

practically feasible vehicular congestion detection system that 

performs accurately for a large coverage area and multiple 

scenarios. The designed system is expected to detect congestion to 

meet traffic management goals that are of primary importance in 

intelligent transportation systems. 

 

Index Terms—Vehicular Congestion, Connected vehicle, Fog 

Computing, Internet of Vehicles, Intelligent transportation 

Systems, Traffic density, Wireless sensor network. 

 

I. INTRODUCTION 

EHICUALR congestion is a global phenomenon. It is 

impacting the efficiency of the transport sector by 

introducing delays which cause increases in travel time and 

leads to increased fuel consumption and associated vehicular 

emissions [1], [2], [3]. Vehicular congestion causes loss in 

productivity and the monetary loss is estimated to be as high 

as 160 billion dollars per year in the U.S alone [3].  Of the 

total cost, 85 % of the economic cost of congestion is due to 

loss of work hours caused by increased travel time, 13 % of 

the loss is attributed to fuel wastage and increased vehicular 

emissions is responsible for the remaining 2 % of the loss [2].  

  Vehicular congestion is expected to severely worsen in 

magnitude due to rapid increase in the number of vehicles. In 

a study conducted by IBM, it was estimated that current global 

vehicular population is over a billion and is expected to  
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double by the year 2020 [3]. To enhance the efficiency of the 

transportation sector and reduce the associated economic and 

environmental consequences, an accurate real-time vehicular 

traffic congestion identification system is required to be used 

in effective traffic management schemes that improve traffic 

flow and utilization of road infrastructure. 

  Vehicular congestion is quantified by using the traffic 

density estimate metric which is the number of vehicles per 

unit area [4]. The traffic density estimation techniques use 

parameters  that include road occupancy rates, difference of 

incoming and outgoing traffic in an observation area, traffic 

flow estimation and motion detection and tracking to identify 

congestion [5]. 

  Vehicular congestion detection using traffic density 

estimation is performed by using contact and non-contact 

based sensing techniques [4], [5], [6], [7]. In contact based 

techniques, the number of vehicles passing the sensory node  

are detected by loop detectors and pressure pads [8], [9].  

Contact based methods are not reliable as accuracy is 

dependent on maintenance of sensing apparatus and results are 

valid for a small coverage area [5], [8]. Thus, contact based 

techniques are not suitable for estimating traffic density in a 

large observation area as it would incur high deployment and 

maintenance costs of sensory infrastructure. 

  Traffic density estimation for detecting vehicular congestion 

using non-contact based sensing techniques deploy 

surveillance camera, microphones and connected vehicle 

technology (CVT) [4], [5], [7], [8]. Surveillance cameras 

based non-contact techniques capture the traffic stream. 

Segmentation and motion tracking algorithms are applied on 

vehicle objects in the video sequence to extract motion related 

parameters which are processed by classifiers to determine 

congestion levels [10]. In microphone based sensing 

technique, cumulative acoustic signals are acquired that 

contain components of engine noise, idle engine noise and tire 

noise [11]. Traffic congestion is determined based on the 

proportion of the above mentioned components in the input 

signal [11].  

  Non-contact traffic density estimation for congestion 

detection based on connected vehicle technology use the 

Internet of Vehicles (IoV) approach. IoV are Internet of 

Things (IoT) based solutions for vehicular clients designed to 

achieve the road safety and traffic management goals of 

intelligent transportation systems (ITS) [12], [13], [14].  

  A wireless sensor network (WSN) is used in the CVT based 
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IoV approach. The WSN contains vehicular nodes which 

function as sensory nodes. Stationary waypoints and 

infrastructure related nodes function as roadside units (RSUs)  

which is the link with the network infrastructure and a handler 

node operating as the centralized server [14], [15], [16]. The 

WSN uses vehicle to vehicle (V2V) communication for 

exchanging data between vehicular sensory interfaces and 

vehicle to infrastructure communication (V2I) for exchange of 

data between vehicular nodes and RSUs [13], [17]. Parameters 

collected from the vehicular sensory nodes include vehicle 

position, direction and route, frequency of braking events, 

surface area of vehicles and average velocity and acceleration 

of vehicle node [2], [3], [18]. The collected parameters are 

processed by the traffic density estimation algorithms for 

identifying congestion on the processing node which varies 

across IoV architectures being used [4], [6], [7], [19]. 

  Results from non-contact based techniques such as 

microphone and surveillance cameras are not reliable as the 

results are dependent on environmental conditions [4], [11]. 

Moreover, results from surveillance cameras are not in real-

time due to computationally intensive nature of the image 

processing algorithms used for segmentation and tracking of 

traffic stream [10]. 

  Results obtained from CVT based technique are not affected 

by weather and environmental conditions. Additionally, the 

sensory data is ready for processing in real time. Mobile 

nature of the sensory nodes used in CVT based approach 

enables this technique to be used for large deployment areas 

with low costs and higher reliability of the inputs [4], [20]. 

Thus, CVT based techniques for congestion identification are 

reliable and are suitable for usage in an effective traffic 

management system [2],  [19], [21]. 

  Vehicular networks require collection and processing of large 

amounts of data in real-time. The information being 

exchanged is time-sensitive due to high mobility of the nodes 

and the communication links have limited bandwidth. The 

network is also required to be context location aware [22]. By 

the year 2020, it is estimated that  there will be up to 152 

million active connected vehicles that will generate more than 

30 TB of data every day [16]. Thus, the communication 

system has to be robust for a practically feasible solution that 

meets Quality of Service (QoS) and Quality of Performance 

(QoP) requirements [15], [16].  

  Distributed cloud computing based approaches of Fog 

Computing are used in conjunction with cloud computing to 

optimize communication in the WSN by reducing the number 

of data exchange events [23]. Fog computing uses localized 

computing and lightweight algorithms to process sensor data 

at edge devices which optimizes the capacity of the 

communication and computational components of the system 

[24]. In this study, Fog Computing for IoV systems are studied 

for developing a practically feasible solution for detecting 

vehicular congestion. 

  Remainder of this paper is organized as follows: In section II, 

multiple cloud architectures suitable for WSNs are studied and 

compared. In section III, vehicular Fog based cloud computing 

architecture for IoV applications is studied. In section IV 

vehicular congestion detection using CVT based WSN and 

Fog Computing based principles are studied. Results from the 

studied literature is discussed in section V and a conclusion is 

drawn in section VI. 

II. VEHICULAR COMPUTING MODELS 

 The wireless sensor network in an IoV system acquire 

physical world data from the underutilized onboard sensors of 

the vehicles which function as mobile probes for applications 

such as Advanced Vehicle Control and Safety Systems 

(AVCSS), Advanced Traffic Management Systems (ATMS), 

Advanced Traveler Information Systems (ATIS), Advanced 

Public Transportation. Systems (APTS) ,Commercial Vehicle 

Operation Systems (CVOS), urban surveillance and 

environmental monitoring [16], [18], [25], [26], [27], [28]. 

The WSN shares storage, computational and communication 

resources to maximize utilization and effectively perform the 

processing of the large voluminous sensory information for  

the desired application [29]. Components of the vehicular 

WSN are summarized in Fig 1. 

 

 
 

Fig. 1.  Components of the vehicular WSN in IoV cloud based 

approach which are shared to maximize utilization and 

increase responsiveness for the application ([29]). 

 

Vehicles which function as the mobile probes contain 

sensors in a package referred as the onboard unit (OBU) [13]. 

The OBU contains the communication apparatus. 

Communication interfaces include inter vehicle 

communication channel for V2V communication and V2I 

communication for connectivity between the vehicle and RSU 

with remote handler [14]. 

The sensors included in the OBU include safety related 

distance and night vision sensors, kinetics related sensors for 

tracking motion related parameters such as speed and 

acceleration and positioning apparatus such as GPS for 

monitoring applications [18]. The OBU also contains storage 

and computing resources to process sensory information 

locally [16]. 

The WSN network architecture aims to optimally utilize the  

communication and computational resources by collaborative 

sharing and the cloud computing services types realized in 

vehicular networks include Network as a service (NaaS), 

Cooperation as  a service (Coaas), Computation as a service 

(COaaS), storage as a service (STaaS), sensing as a service 

(SEaaS) [13],  [29]. NaaS is used to facilitate communication 

links between the nodes and the remote handler, SEaaS is used 

for real time monitoring of physical world related parameters, 

COaaS and STaaS is used for optimally exploiting the 
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underutilized computational capability of the vehicular probes 

and CaaS is used for mutual collaboration between vehicular 

nodes [13], [29]. Cloud based services for multiple 

applications in the IoV based system are handled through web 

sockets, Restful and Java APIs and protocols that include 

Constrained Application Protocol (CoAP), Message Queue 

Telemetry Transport (MQTT) and Advanced Message 

Queuing protocol (AMQP) [13], [30]. Architecture of the 

vehicular cloud in IoV based approach is summarized in Fig 2. 

 

 
 

Fig. 2.  Architecture of the vehicular WSN in IoV cloud based 

approach ([13]). 

 

Multiple computing paradigms exist to realize vehicular 

sensor networks. This includes vehicular cloud computing 

(VCC), vehicles using cloud (VuC), mobile cloud computing 

(MCC) and vehicular Fog Computing (VFC). In the following, 

computing paradigms are studied for application in vehicular 

networks for IoV based solutions and a comparison is 

summarized in table I.  

 

A. Vehicle using Cloud (VuC) 

  In the Vehicle using Cloud (VuC) approach, a group of 

connected client vehicles avail the services of the conventional 

cloud through the internet [29]. This enables a vehicle to 

access a wide pool of configurable processing and storage 

resources in the data centre which are useful for applications 

such as real time traffic monitoring [13], [29]. VuC based 

systems are least prone to limitations of storage and 

processing resources as they are shared between all clients 

[13]. VuC based networks cannot be formed autonomously 

between vehicles for mutual collaboration for processing of 

sensory data [13]. VuC is prone to large communication 

delays due to limited bandwidth related constraints of the data 

link with the remote  data centre and makes it unsuitable for 

deployment in applications with highly mobile nodes such as 

for vehicular clients [15].  

 

B. Mobile Cloud Computing (MCC) 

In Mobile Cloud Computing (MCC) based systems storage 

and computation operations of mobile nodes are outsourced to 

other entities [22]. Storage and computations are performed on 

lightweight cloudlet servers placed on the edge of the network 

[23]. 

 MCC enables other mobile nodes to access and benefit 

from the information related to the  stored data and 

computations being performed  by a central entity such as a 

RSU for vehicular applications [13]. Low cost solutions can 

be developed by using MCC which increase utilization of 

shared resources and have nodes with low power 

consumption, storage and computational capability [13], [15]. 

MCC enables mobile devices to access powerful 

computational resources, but is not practical for real-time 

applications as it involves time consuming uploading of data 

to the handler on a client-server connection and the reliability 

is dependent on the performance of the communication 

infrastructure [15].  

 

C. Vehicular Cloud Computing(VCC) 

Vehicular Could Computing based networks contain an 

autonomous group of connected vehicles that  from a cloud to 

dynamically share their sensing, communication, storage and 

computation resources [15], [29], [31]. The shared resources 

are made available in areas with high concentration of 

vehicular nodes such as traffic intersections and parking lots. 

The flexible and dynamic resources are shared between 

vehicles by using peer to peer and client server connections 

over inter vehicle communication interfaces [13]. The 

approach aims to utilize the increasing computational and 

sensing capability of onboard computers in vehicles which are 

getting increasingly sophisticated.  

  Autonomous and self-organized nature of the network 

makes it ideal for mobile environments based on traffic 

distribution [15]. This enables VCC based systems to resolve 

unexpected events on demand in real-time and makes it well 

suited for applications such as congestion detection and traffic 

management [31]. Additionally, stationary vehicles at major 

parking lots such as at airports and shopping malls can be 

utilized as data centers for processing large scale vehicular 

sensory data [31].  

  The storage and computation resources in VCC is 

independent of traffic distribution [13]. Additionally large 

number of vehicles in the networks can increase latencies and 

influence reliability of the system as the communication link's 

bandwidth is also a constraint [13], [15]. 

 

D. Fog Computing (FC) 

  Edge sensory devices lack adequate storage, bandwidth, 

computational capability and are powered by a battery based 

power source. IoT based systems depend heavily on powerful 

server infrastructure contained in the cloud to provide large 

elastic resources [22]. The solution introduces large round trip 

times for communication between the sensory nodes and the 
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server and deems it unsuitable for deployment in time 

sensitive applications such as for vehicular networks for 

transportation related applications [15], [22]. The centralized 

approach is unsuitable for systems with large geo distribution 

of sensory nodes and high mobility [23]. Thus, a scalable 

solution is required that does not negatively influence the 

responsiveness and reliability of the sensory nodes that 

operate on the network end points.  

  Fog computing based approach is evolving with the increase 

in the number of IoT devices and services and is used in 

conjunction with traditional  cloud computing which was first 

proposed by Cisco in 2012 [23]. Fog computing is a 

distributed computing based approach where the Fog layer is 

an intermediate layer in the three-layer framework. The first  

layer in a Fog system contains edge devices equipped with 

sensors and raw processing capability of the collected data 

[24], [32]. The Fog computing level nodes process and store 

data to make neighborhood level decisions and the cloud 

computing level is used for wide area level advanced decision 

making [32], [33]. 

  The Fog layer is used in-between the IoT sensors and cloud 

servers which functions as a local cloud for nodes at the edge 

of the network [22], [23]. This is done to bring elastic 

resources such as computations and storage provided by the 

traditional cloud  closer to the edge devices distributed over a 

large coverage area with mobility support [22]. 

  Having a cloud like infrastructure closer to the edge devices 

helps to minimize network traffic and amount of information 

being processed on the central cloud is reduced [33]. Thus, 

IoT services can be offered to a large number of devices over 

a wide coverage area with low latency and high bandwidth 

with high QoS and QoP [23]. 

  Nodes at the Fog layer have limited resources and this 

directly impacts the fault tolerance capability of the Fog layer 

nodes [34]. Additionally short range communication 

technologies such as Wi-Fi and ultra-wideband (UWB) are 

used for exchanging data between the Fog Nodes and edge 

devices which are prone to interference [34]. This challenge 

can be addressed for vehicular applications by using 

Dedicated Short Range Communication (DSRC) based 

wireless communication technology which is less prone to 

interference [35].  

The decentralized approach of the distributed Fog 

computing approach makes it suitable for a wide range of 

applications ranging from healthcare to smart grid, augmented 

reality and vehicular networks [33].Various computing models 

studied in this section are compared in table I. 

  
TABLE I 

COMPARISON OF CHARACTERISTICS OF COMPUTING MODELS ([13], [15], [22], 

[33]) 

 
Characteristic VuC MCC VCC FC 

Storage 

resources 

Unlimited Low Medium 

sized 

High 

Computational 

capability 

Unlimited Low Medium size High 

Architecture Centralized Centralized Autonomous Distributed 

Mobility 

support 

Limited Yes Yes Yes 

Response time High  High Low Low 

  From the above compared computing models, VuC has 

unlimited storage and processing capability as it is backed by 

configurable resources. Fog Computing based systems has 

high storage and processing capability provided by the fog and 

cloud layer.  VCC based systems have lower storage and 

processing capability when compared to FC and VuC. MCC 

based systems have the lowest storage and computational 

capability.  

  VuC based systems with large storage and computational 

resources and centralized architecture have the lowest support 

for mobile nodes and have high response time. This makes 

VuC based system unsuitable for vehicular traffic detection 

applications. 

  Whereas, MCC has a centralized architecture with support 

for mobile nodes. MCC suffers from high response times and 

limited storage and computational capability. This makes 

MCC unsuitable for applications for vehicular traffic 

detection.  

  Mobility support along with low response time in VCC and 

FC based systems make them suitable for usage in vehicular 

congestion detection applications. Fog computing based 

systems have higher storage and processing capabilities. The 

optimized communication and usage of lightweight algorithms 

in Fog computing give it an edge over VCC. This makes Fog 

computing best suited for vehicular congestion detection 

applications which require scalable solutions with fast 

processing.  

III. VEHICULAR CLOUD AND FOG COMPUTING 

   The system in a connected vehicle technology based 

approach with Fog computing contains three layers which are 

the data generation, fog and cloud layer [16]. The edge 

devices part of the data generation layer gather sensory data 

and consume IoV services are the OBUs placed in the vehicles 

[3] [18]. Sensors used in the mobile probes at the network 

edge include speed sensors, distance sensors, radars, 

accelerometer, gyroscope, GPS, tilt sensors and image and 

audio sensors for surface analysis [4], [28], [36], [37]. Sensory 

information from the vehicle's ECU is also acquired from the 

OBD II interface [27]. Sensory data is preprocessed to make 

decisions applicable for the vehicle that gathers the sensory 

information.  

The Fog nodes in the IoV system are the stationary 

waypoints contained in the RSU and act like a bridge between 

the data generation layer contained in the vehicle sensor 

probes and the cloud.  Data is exchanged using V2V and V2I 

communication which use long and short range wireless 

communication technologies such as ZigBee, Wi-Fi, 

Dedicated Short Range Communication (DSRC) and Wireless 

Access for Vehicular Environments (WAVE) [30], [36]. Data 

flow in the entire environment is real time or event driven 

which influences the availability of resources and services in 

the system [23]. A publish/subscribe based model using Fog 

Computing for IoV systems is proposed in [38]. Fog nodes 

collaborate using techniques that include cluster based on the 

homogeneity of the nodes, master-slave and peer to peer (P2P) 

[23]. The Fog nodes process the data sent by the vehicles to 

make local area based decisions and report processed data to 
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cloud servers. [16].  

 The cloud based servers perform computationally intensive 

operations on the information sent by the RSUs to make 

holistic decisions such as managing and controlling of road 

infrastructure for a large area and provide centralized control 

from a remote location [16]. The architecture used in Fog 

Computing for vehicular networks is summarized in Fig 3. 

 

 
 

Fig. 3. Three layer architecture used in Fog Computing for 

vehicular networks (From [16]). 

   

  In [2], a traffic management system using Fog Computing 

principles is developed where the entire city is divided into 

regions and independent RSU units with storage, processing 

and wireless communication capabilities functioning as Fog 

nodes are responsible for detecting and controlling congestion 

in its area of interest in the region. The size of the area of 

interest is limited by the range of the radio in the RSU and 

vehicles exchange sensory information with the nearest RSU 

[2]. A similar architecture is used in [3] for a route 

management mechanism based traffic control system. 

IV. VEHICULAR NETWORKS BASED VEHICULAR CONGESTION 

DETECTION 

  Vehicular congestion is identified by observing the 

average speed of the traffic stream and the traffic density 

metric, which is the number of vehicles per unit area of length 

such as vehicles/cell and vehicle/km/lane [4]. The average 

speed and traffic density related information is used by 

classifiers to group traffic into various fuzzy sets and is also  

used to identify congestion levels ranging from free flow, 

slight to severe [39]. Classifiers used to identify congestion 

levels include Naive Bayes, K-nearest neighbor, learning 

vector quantization (LVQ) and support vector machine 

(SWM) [4], [5], [40].  

Driving patterns of motorists are highly unpredictable 

which depends on multiple parameters and varies for every 

situation and traffic condition [41]. This makes neural 

networks based machine learning tools ineffective for 

congestion detection and handling. This is however not true 

for autonomous vehicles as reaction to external events can be 

predicted accurately and thus machine learning techniques can 

be used for scenarios with autonomous vehicles [41].  

Traffic density is estimated in connected vehicle technology 

by applying algorithms in the RSU on the preprocessed 

sensory data collected from the vehicular sensory probes by 

using the communication channels of the vehicular network in 

the IoV system. The techniques used in the algorithms to 

identify congestion by using the traffic density metric include 

vehicle kinetics analysis, motion detection and tracking, 

average traffic velocity estimation, road occupancy rate 

estimation and traffic flow rate estimation [4], [5]. In this 

section, various traffic density estimation techniques using 

connected vehicle technology are studied for identification of 

vehicular congestion. 

 

A. Estimation using Statistical Methods 

  Statistical methods based traffic density is performed by 

selecting a volunteer probe vehicle [42], [43], [40]. Statistical 

distributions based on the number of vehicles in the 

neighborhood are applied on the data collected by the probe 

and is used to determine the maximum likely-hood estimate 

[4], [7]. The global traffic density estimate can be determined 

by using the local traffic density estimate [7]. A cluster of 

vehicles with direct communication links can be used as the 

probes to improve the estimation. Statistical method based 

estimation is best suited for scenarios where the inter-vehicle 

distance follows an exponential distribution [7].  

In [44], a window time based histogram model approach is  

used to develop an unique traffic density estimation technique 

for urban areas. The technique aims to reduce the amount of 

sensory data collected to make the estimation. The histogram 

based approach is adopted to reduce the data set required to be 

analyzed to observe characteristics that are dynamic in nature 

of individual lanes. Sensory systems are used to collect 

density patterns for an observation period segmented into 

sampling events. The histogram used in this approach is a 

probability distribution function representing the relation 

between number of vehicles in an observation window and its 

corresponding probability. Knuth's rule, an optimized version 

of the Bayesian fitness function is used in this approach to 

model. A similar lightweight histogram based approach is also 

developed in [43], to predict periodically, the level of 

congestion per lane prior to its occurrence. 

In [40], statistical methods are applied on GPS data 

collected from sensory nodes to detect traffic congestion. The 

collected GPS data is processed to identify on and off road 
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traffic and average speed is computed for the nodes in the data 

set by using the Haversine formula. The K-Means algorithm is 

used to classify the identified clusters based on the centroid of 

the cluster group. The classified clusters groups are processed 

using an algorithm based on the Naive Bayes method to 

identify congestion levels. 

The performance of statistical methods based traffic density 

estimation improves with increase in traffic density. This 

makes statistical methods based traffic density estimation poor 

for scenarios with low traffic densities and ideal for urban 

areas which experience high traffic volumes [4], [10]. The 

performance of statistical methods based congestion 

identification can be improved by increasing the sampling size 

and frequency along with increasing the monitoring area 

covered in a cluster group. This increases the overhead on the 

communication apparatus and directly impacts the 

effectiveness of the CVT based technique, especially in 

scenarios with extremely high traffic volumes [4]. 

  

B. Estimation using V2V Communication  

  Neighbor discovery based approach is used in V2V based 

traffic density estimation technique to mutually exchange 

sensory information between peers and identify local traffic 

densities  [4] . This limits the coverage area of V2V based 

traffic density estimation technique to one-hop neighbor [7].   

In [4], a three phase approach is developed for estimating 

traffic density by using V2V communication and one-hop 

neighbor discovery. The algorithm computes the local traffic 

density estimate by using one-hop density and average speed 

of the neighbors which is propagated to the following vehicles 

in the traffic stream through one-hop broadcasting. In [45], a 

similar approach is adopted with adaptive broadcasting. The 

broadcasting event only occurs if the traffic density estimate 

of the vehicles is higher than its peer which optimizes the 

number of packets being exchanged over the V2V 

communication channel. 

In [46], traffic density estimation is based on stopping times 

of vehicles and mobility patterns.  The local traffic density is 

computed by taking the relationship between the number of 

neighboring vehicles and distance in the front and rear of the 

vehicle. Accuracy of the estimation by this algorithm is 

heavily dependent on determining the distance on the front 

and rear ends of the vehicles. 

 

C. Estimation using V2I Communication  

Traffic density estimation techniques using V2I based 

methods collect periodic sensory data by using V2I 

communication interfaces from multiple probes which are the 

OBUs mounded on vehicles. Centralized processing is 

performed on the collected data to estimate the traffic density 

of the road segment. This gives V2I based techniques much 

larger coverage area when compared to V2V based techniques 

[4].  

A traffic density function is used in V2I based methods. The 

function is a polynomial where the coefficients used are 

derived from topographic feature of the city where the system 

is to be deployed. The topographical features of the city that 

are studied to compute the coefficients of the polynomial 

include average lanes/street, street lengths and street/junction 

ratio [1], [6]. Vehicles send beacon messages periodically to 

the RSUs which are handled using queues [47]. The average 

beacons received from every vehicle is used by the traffic 

density estimation polynomial [1]. Accuracy of V2I based 

estimation technique is improved by including additional 

information in the beacon messages such as speed change and 

lane change events [4].  

V. DISCUSSION 

Vehicular congestion detection techniques involve contact 

based techniques which have an accuracy dependent on 

maintenance of the sensory infrastructure and non-contact 

methods. Performance of noncontact based traffic density 

estimation techniques using surveillance cameras and 

microphones are influenced by environmental factors and 

results are not in real-time as they rely on computationally 

intensive image processing and acoustic processing. It was 

found that contact based traffic density estimation using 

embedded loop detectors has an accuracy of 80% and the 

accuracy obtained with 20% of the traffic stream equipped 

with connected vehicle technology was 85% [8], [48]. IoV 

based systems using CVT are best suited for vehicular 

congestion detection applications that are time sensitive and 

require high accuracy of sensory data.  

Accuracy levels of traffic density estimation suing V2V and 

V2I based techniques are in acceptable limits. The accuracy 

levels vary for different scenarios depending on the 

topographic features of the area being monitored. The error 

level in estimation of traffic density of -4.86% is achieved 

using V2V based technique with an estimation polynomial of 

order 3 [7]. Whereas the error in traffic density estimation by 

using V2I based methods with a Taylor series density 

approximation function is 8.34% [7].   

The coverage area of the more accurate V2V based 

techniques is narrow which makes it unsuitable for congestion 

handling. Whereas V2I based techniques have wide coverage 

areas and are suitable for congestion handling [4]. Higher 

accuracy levels of 98 % and wide coverage areas can be 

achieved by combining V2V and V2I based traffic density 

estimation techniques [7]. 

Various computing paradigms exist that can be deployed in 

the IoV system for congestion detection using CVT. The 

requirements for IoV systems for congestion detection where 

large amounts of data are collected for processing include low 

response time, low communication latency, support for 

mobility and location awareness. The above requirements are 

fulfilled by VCC and VFC based approaches. However, VFC 

based approach uses lightweight algorithms and optimized 

communication with the servers to improve response time of 

the system and support a larger number of devices. A three tier 

Fog Computing based approach was used for a smart home 

application  in [24] and it was found that network traffic can 

be reduced by 95%. by using Fog Computing principles. 
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Additionally communication latencies in the Fog Computing 

based systems is limited to a few tens of milliseconds [34]. 

This makes vehicular fog computing most suitable for 

deployment in traffic density estimation applications for 

congestion detection where data is required to be collected 

periodically from a large number of vehicular sensory probes 

to offer a wider coverage area. 

Extremely low communication latencies with support for 

mobility and distributed architecture offered by Fog 

Computing based approach can be beneficial for applications 

that require tracking and controlling of  vehicles with high 

accuracy. Deployment of Fog Computing based principles in 

systems such as vehicular platooning and autonomous control 

of intelligent vehicles can be investigated in future works  

[37], [49], [50]. 

 Research on security risks and mitigation of threats in 

vehicular fog computing is at its initial stages which makes 

security a challenge as most security mechanisms can only 

handle threats posed by passive attacks [16]. 

VI. CONCLUSION 

  Loss in productivity due to the economic and ecological 

consequences of traffic congestion is directly impacting the 

quality of human life. Vehicular congestion is identified by 

using traffic density metric. CVT based traffic density 

estimation techniques have high accuracy and real-time 

congestion detection capabilities which makes it practically 

feasible to be used in traffic management schemes. 

  Traffic status is identified in Intent of Vehicles based 

solutions by using CVT. Novel algorithms are used to classify 

and process sensory data collected from vehicles to identify 

congestion levels. IoV systems require support for mobility 

and location awareness for exchange of time sensitive 

information over limited bandwidth which makes distributed 

computing paradigm of  Fog computing most suitable 

architecture for the vehicular WSN. Network traffic and 

communication latencies can be reduced significantly by 

deploying Fog Computing based principles in the IoV system 

which enables the solution to handle larger number of 

vehicular clients without compromising Quality of Service and 

Quality of Performance. 
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