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ABSTRACT 
 

MULTI-SENSOR DATA FUSION FOR ROBUST 

ENVIRONMENT RECONSTRUCTION IN AUTONOMOUS 

VEHICLE APPLICATIONS 

 

Abu Hasnat Mohammad Rubaiyat 
In autonomous vehicle systems, understanding the surrounding environment is mandatory for an 
intelligent vehicle to make every decision of movement on the road. Knowledge about the 
neighboring environment enables the vehicle to detect moving objects, especially irregular events 
such as jaywalking, sudden lane change of the vehicle etc. to avoid collision. This local situation 
awareness mostly depends on the advanced sensors (e.g. camera, LIDAR, RADAR) added to the 
vehicle. The main focus of this work is to formulate a problem of reconstructing the vehicle 
environment using point cloud data from the LIDAR and RGB color images from the camera. Based 
on a widely used point cloud registration tool such as iterated closest point (ICP), an expectation-
maximization (EM)-ICP technique has been proposed to automatically mosaic multiple point cloud 
sets into a larger one. Motion trajectories of the moving objects are analyzed to address the issue of 
irregularity detection. Another contribution of this work is the utilization of fusion of color 
information (from RGB color images captured by the camera) with the three-dimensional point 
cloud data for better representation of the environment. For better understanding of the surrounding 
environment, histogram of oriented gradient (HOG) based techniques are exploited to detect 
pedestrians and vehicles. 

Using both camera and LIDAR, an autonomous vehicle can gather information and reconstruct the 
map of the surrounding environment up to a certain distance. Capability of communicating and 
cooperating among vehicles can improve the automated driving decisions by providing extended and 
more precise view of the surroundings. In this work, a transmission power control algorithm is 
studied along with the adaptive content control algorithm to achieve a more accurate map of the 
vehicle environment. To exchange the local sensor data among the vehicles, an adaptive 
communication scheme is proposed that controls the lengths and the contents of the messages 
depending on the load of the communication channel. The exchange of this information can extend 
the tracking region of a vehicle beyond the area sensed by its own sensors. In this experiment, a 
combined effect of power control, and message length and content control algorithm is exploited to 
improve the map’s accuracy of the surroundings in a cooperative automated vehicle system. 
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Chapter 1:  Introduction 

Each year tens of thousands of drivers and passengers die in United States because of road accidents; 

most of the fatal crashes involve more than one vehicle. For many years, researchers are trying to 

develop a fully autonomous system of transportation to reduce on-road fatalities and save lives. An 

autonomous vehicle system (AVS) is a combination of some automated systems where perception, 

decision making, and operation of the automobile are performed by electronics and machinery 

instead of a human driver. This system includes the control of vehicle movements, destination, path 

planning, awareness of vehicle environment, intervehicle communication, emergency awareness etc. 

Successful reconstruction of neighboring environment is a must for safety awareness. Automated 

vehicles use a variety of sensing modalities for the environment reconstruction, including radar, 

lidar, and camera. As the imaging technology has immensely progressed in recent years, cameras are 

widely used in AVS. Small size, low price, and availability of cameras are also other reasons behind 

this. Use of LIDAR point cloud data is the relatively newer addition to the AV system. The main 

working principle of measuring the distance to a target using LIDAR is to illuminate the target with 

a pulsed laser light, and then measure the reflected pulses with a LIDAR sensor (e.g. Velodyne 

HDL-16e, 32e, 64e). Differences in laser return times are used to make digital 3D-representations of 

the target, which contains XYZ information of the points on that target. Analysis of LIDAR data in 

AVS has gained popularity because LIDAR admits computationally more efficient processing and 

enjoys less vulnerability to adversary weather and lighting conditions comparing with the image 

data. Many researchers have used data from these two sensors both separately and combinedly to 

gather the environment knowledge. In this work, we have discussed an approach to vehicle 
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environment reconstruction and understanding based on the fusion of data from these two local 

sensors (i.e. camera and LIDAR). 

Having the knowledge about the surrounding environment is essential in the autonomous vehicle 

system (AVS). Environment related knowledge can be used in the safety applications (e.g. collision 

avoidance, emergency warning) and efficient route planning. Various local sensors, such as cameras, 

LIDAR, or RADAR are mainly used in automated vehicle applications to gather information of its 

surroundings and make necessary driving decisions. But, relying only on these sensors can refrain 

the vehicle from getting complete view of its neighborhood, as these sensors have limitations in 

terms of range and occlusion. One solution to mitigate this issue and expand the reach of local 

information available at each vehicle is the use of short range wireless communication among the 

vehicles. Local sensors in a vehicle can gather its speed, location and destination information, and 

generate a map containing vehicles, pedestrians, road-side infrastructure and other objects in its 

neighborhood. In cooperative vehicle system, vehicles communicate the locally generated maps to 

each other and thus expand their maps. 

Local sensors can supply a rich source of data that can be exploited by intelligent vehicles for 

reconstructing the surrounding environment, however, the cost and accuracy of different sensors 

(e.g., camera vs. LIDAR) would vary [1] [2]. Different image based roadside object detection (e.g. 

pedestrian, vehicle) techniques have been studied in many literatures [3] [4] [5] [6] [7]. Other than 

images, LIDAR-based data (point cloud) has received increasingly more attention in recent years 

due to the advance in both hardware (e.g., from Velodyne HDL-16e, 32e to 64e) and software (i.e., 

point cloud registration [8] [9] [10], segmentation [11] and classification [12]). When compared 

against image data, LIDAR admits computationally more efficient processing and enjoys less 

vulnerability to adversary weather and lighting conditions. Under the context of intelligent vehicles, 
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LIDAR-based approaches have been studied for the detection/tracking of pedestrian [13] [14] curb 

[15] [16] and vehicle [17] [12]. Combination of RGB image and point cloud data has also been 

studied in some articles [18] [19]. 

In the networked vehicular application, dedicated short-range communication (DSRC) is playing the 

leading role as a key technology to enable communication among the vehicles [20]. But the systems 

that depend on the broadcast of information over DSRC networks most of the time suffer from 

scalability challenges [21]. In case of high channel loads, DSRC throughput degrades due to high 

vehicle density, high transmission rate, or large packet size. Some scalable channel load control 

strategies based on the message rate and transmission power control are extensively studied in the 

literature [22] [23] [24] [21] [25] [26]. An adaptive, probabilistic and distance dependent strategy 

was proposed in [27], which controls the length and contents of the message exchanged among 

vehicles based on the communication channel load. But, it can be shown that even for optimum 

message size, performance can degrade if the vehicle does not maintain proper transmission power. 

 

1.1 Literature Survey 

The whole experiment can be divided into two parts: local sensors based environment reconstruction 

and understanding, and proposing a power control algorithm for DSRC based V2V communications. 

Many researchers have worked on both issues. A similar problem to the reconstruction of surface 

from point cloud data has been studied in [28]. This is a classical problem that has been extensively 

studied by computer graphics community. However, in intelligent vehicle system, efficient 

reconstruction and visualization of point cloud data often faces new challenges due to their large size 

and arising from the desire of exploiting structural a priori information (e.g., urban vs. rural 

environment). Because of the moving objects (including the host vehicle) the vehicle environment 
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has the tendency to keep changing. Therefore, registration of multiple point clouds plays a vital role 

in vehicle environment reconstruction from 3D data. The idea of the 3D data registration was 

developed in 1990s based on the seminal work of iterative closest point (ICP) [29]. Since then, many 

variants of ICP techniques have been developed and applied to various data sets (e.g., [9], [10], 

[30]). Most of these existing works have shown good performance on clean and complete datasets. 

The issue of outlier detection or robustness has not been addressed in the open literature as far as we 

know. 

To understand the reconstructed environment, different point cloud clustering and segmentation 

algorithms have been studied in the literatures. Like image data, clustering and segmentation of point 

cloud data can be handy in supporting other high-level tasks such as classification and recognition. 

For clustering and segmentation most of the existing works (e.g., [11], [31], [12], [32]) focused on 

the use of the geometric features/clues. When the objective is to separate moving objects from still 

background (vehicle environment) for scene analysis especially for the purpose of detecting irregular 

events, we argue it is more effective to exploit motion-related information (e.g., trajectory, speed and 

acceleration). 

Several techniques have been proposed to detect pedestrian using both images and 3D point cloud. 

Dalal and Triggs [33] proposed a human detection scheme that uses SIFT-inspired [34] features, 

called histograms of oriented gradients (HOGs), and a linear SVM as a learning method. This 

technique has widely been used by the researchers in pedestrian detection problems. Papageorgiou 

and Poggio [35] exploited the Haar wavelets (HWs) as features to train a quadratic support vector 

machines (SVMs) with front- and rear-viewed pedestrians. Viola and Jones [36], [37] proposed 

AdaBoost cascades (layers of threshold-rule weak classifiers) as a learning algorithm to exploit 

Haar-like features for surveillance-oriented pedestrian detection. In [38] and [39], Gavrila et al. used 



5 
 

image gray-scale pixels as features and a neural network with local receptive fields (NN-LRFs [40]) 

as the learning machine. Zhao and Thorpe used image gradient magnitude and a feedforward neural 

network [41]. All these articles mentioned above used images to extract features. Pedestrian 

detection using 3D LIDAR data has recently received attention [42], [43]. Hegger et al. used Local 

Surface Normals in 3D point cloud for people detection [44]. A layered approach to find pedestrian 

in 3D data has been proposed by Spinello et al. [45]. The main idea of this approach is to subdivide a 

pedestrian into parts defined by different height levels, and learn a highly specialized classifier for 

each part. 

Like the pedestrian, vehicle detection techniques are also applied to both images and 3D point cloud 

[46]. Position and intensity-include HOG based vehicle detection technique has been proposed in 

[47]. Erbs et al. analyzed stixel dynamics to detect moving vehicles from images [48]. Vehicle 

detection from 3D point cloud data has also been discussed in several articles. Li et al. used fully 

convolutional network to detect vehicle from 3D LIDAR data [49]. Eum et al. presented a novel 

method for vehicle detection from airborne LiDAR point clouds based on a decision tree algorithm 

with horizontal and vertical features of the segment [50]. In our experiment, we have used fusion 

based technique (using both camera and LIDAR) for environment understanding. Similar approaches 

have been discussed in the articles [18], [19] for pedestrian and vehicle detection respectively. We 

have proposed to generate a 6D representation of the neighborhood using fusion of camera and 

LIDAR data to understand the environment. 

The second part of this experiment is to propose a transmission power control algorithm combined 

with an adaptive content control algorithm to achieve a more accurate and extended map of the 

neighborhood. DSRC based V2V communication system has been used to maintain the 

communication among the intelligent vehicles. In case of high channel loads the systems that depend 
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on the broadcast of information over DSRC networks most of the time suffer from scalability 

challenges [21], i.e. DSRC throughput degrades due to high vehicle density, high transmission rate, 

or large packet size. Some scalable channel load control strategies based on the message rate and 

transmission power control are extensively studied in the literature [21] [22] [23] [24] [25] [51] [52]. 

An adaptive, probabilistic and distance dependent strategy was proposed in [27], which controls the 

length and contents of the message exchanged among vehicles based on the communication channel 

load. In our experiment, we have adopted this message length and content control scheme. A power 

control algorithm has been coupled with this scheme to achieve an optimum message length that can 

represent the environment map more accurately.  

  

1.2 Contributions 

The main contributions of this experiment can be stated as follows: 

1. A robust point cloud mosaicking technique has been proposed combining iterative closest 

point (ICP) based registration [29] and EM-based background estimation [53]. 

2. Fusion of data from multiple sensors (i.e. camera and LIDAR) has been utilized to 

reconstruct the vehicle environment.  

3. An irregularity detection technique has been proposed based on the motion trajectories of the 

moving objects (e.g. walking pedestrians, moving vehicles). 

4. Histogram of oriented gradient (HOG) based object detection techniques have been used to 

detect pedestrians and vehicles under the context of vehicle environment understanding. 

5. A combination of message content control and adaptive power control algorithm is proposed 

to achieve high level of accuracy in generation of the extended neighborhood map. 
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1.3 Organization of the Thesis 

The whole methodology of this experiment can be organized in two different parts. The first part 

describes the multi-sensor data fusion based vehicle environment reconstruction and understanding 

(Chapter 2: ), and the next part explains the power control algorithm (coupled with adaptive content 

control algorithm) for DSRC vehicle-to-vehicle (V2V) communications system (Chapter 3: ). 

Chapter 2: illustrates the environment reconstruction technique using RGB image and point cloud, 

irregularity detection based on trajectories of moving objects, and HOG based pedestrian and vehicle 

detection techniques. The proposed environment reconstruction and understanding techniques 

mainly use the data from two of the local sensors, camera and LIDAR. LIDAR gives the XYZ 

coordinates of the points on the objects, and camera provides the color information of that points. 

We have used fusion of the data from these two local sensors to reconstruct the map of vehicle 

environment. Like other traditional sensors, these two also have limitations. Objects beyond the 

reach of the sensors cannot be located using the local sensors. To see beyond the range of the sensors 

vehicle-to-vehicle (V2V) communication is used where intelligent vehicles share their map 

information (gathered using local sensors) with each other, and thus update and extend their own 

maps. The accuracy of this map varies with different factors, e.g. transmission power, transmission 

frequency, channel load, message length etc. Chapter 3: discusses about the effects of varying 

transmission power in DSRC based intervehicle communication system, and proposes a power 

control scheme combined with an adaptive message length and content control algorithm to improve 

the map accuracy of the intelligent vehicle system. Result section is included in Chapter 4: . Finally, 

we conclude and mention some future works in Chapter 5: . 
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Figure 2-1: 3D point cloud representation of a scenario 

Chapter 2:  Environment Reconstruction 

2.1 Analysis of Multi-Sensor Data 

To understand the neighborhood, an autonomous vehicle uses different sensors like camera, 

RADAR, LIDAR etc. In this work, data from camera and LIDAR are analyzed to reconstruct the 

vehicle environment. Using camera RGB images of the roads and other objects are captured. LIDAR 

sensor continuously collects a collection of point cloud data surrounding the host vehicle. Each of 

those point cloud data carry partial information about the environment and therefore it is desirable to 

develop a method that can collectively combine multiple point clouds into one whole set. From point 

cloud data, XYZ position of a point on an object can be derived. But for the color information we 

need the RGB image of that object. So, a technique that can combine point cloud data and color 

information, can provide a better representation of the neighboring environment of the host vehicle 

than using the sensor information separately. Figure 2-1 shows a point cloud representation of a 

sample scenario (from KITTI database [54]) in three dimensions. The RGB image of the same 

scenario has been illustrated in Figure 2-2. 
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2.2 Reconstruct Scenario from Multiple Point Clouds 

In KITTI dataset, the point cloud data are collected using a Velodyne laser scanner (LIDAR) which 

is mounted on a moving autonomous vehicle. The LIDAR sensor continuously gathers point cloud 

data of the surrounding environment at 10fps frame rate. Each frame contains partial information of 

the environment. So, we need to come up with an alignment technique to combine these frames into 

one to get an overall image of the surroundings. This environment reconstruction problem is 

analogous to the image mosaicking problem. Unlike image mosaicking, in case of 3D point clouds it 

is often difficult to find salient feature points like corners or SIFT key points to facilitate the 

alignment. The only exception is a Point Feature Histograms (PFH) based technique described in 

[31], but high complexity is a big issue here. In this experiment, we have exploited iterative closest 

point (ICP) [29] based technique to align multiple point cloud simultaneously. 

 

 
Figure 2-2: RGB image of the scenario shown in Figure 2-1 
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2.2.1  Alignment of Multiple Point Clouds: Hierarchical 

Extension of ICP 

Iterative closest point (ICP) [29] and its variants [1] [9] [10] are some of the widely-used tools to 

align two point clouds. To align multiple (N>2) point clouds {P1, P2, …, PN}, an extension of ICP is 

required. One ad-hoc approach is to align first two point clouds and then sequentially group the rest 

of the point clouds with it, e.g. P1 and P2 into P1,2, then group P1,2 and P3 into P1,2,3 and so on. In 

other words, first point cloud P1 is used as the reference and the remaining N-1 point clouds are 

aligned with respect to P1. Problem may arise if N is large or the speed of the vehicle is high; e.g. 

due to the motion of self-driving vehicle, P1 and PN could have little overlap and therefore P1 is not 

an appropriate reference while aligning PN. If the constant speed model is assumed for the vehicle, 

the optimal reference frame derived for aligning both P1 and PN, should be the frame in the middle. 

Applying this argument recursively to the first and second halves of N point clouds, we can obtain 

the following hierarchical extension of ICP algorithm: 

 Perform pairwise alignment to N point clouds and obtain N/2 point clouds after merging; i.e. 

{P1,2, P3,4, …, PN-1, N} 

 Same process is performed on the merged point clouds (newly created) recursively until only 

one is left 

The described hierarchical strategy of extending ICP nicely fits octree-based 3D data representation, 

e.g. Octomap [55]. The main advantage of tree-based representation is it offers great flexibility of 

attaining the tradeoff between complexity and accuracy. 

Speed of the host vehicle has some effects in the performance of the alignment process. As the speed 

of the host vehicle decreases to zero, the overlap among the adjacent point cloud frames (Pi vs. Pi+1) 
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would increase which implies more computations (as more frames would be processed) are required 

for environment reconstruction. To reduce the wastage of computation, one can easily skip pairwise 

alignment when the speed of the vehicle is very low, e.g. instead of processing P1 and P2, we can use 

P1 and P3 or P4 in case of very low vehicle speed (equivalent to temporarily down-sampling the point 

cloud dataset). As the vehicle starts to move faster, less overlap occurs, which can increase the 

probability of misalignment. So, finding the optimal vehicle speed for environment reconstruction is 

necessary to achieve better alignment result.  

In this experiment, error generated by ICP algorithm has been taken into consideration to predict the 

vehicle speed. The basic idea is to find the optimal transformation (translation and rotation) such that 

the matching errors between two consecutive point cloud frames can be minimized. Root mean 

square error (RMSE) is calculated in each iteration of ICP algorithm. In first iteration, zero 

movement of the host vehicle is assumed in between two consecutive point cloud frames. Vehicle 

movement is increased by 0.2m in after iteration. The movement that gives the lowest RMSE is 

considered as the optimal vehicle movement between two frames. Speed of the vehicle can also be 

calculated from this information using velodyne frame rate. Figure 2-3 shows the distribution of 

matching errors (RMSE) in ICP algorithm as a function of vehicle displacement for the alignment of 

two consecutive point cloud frames. Minimum RMSE has been found for the displacement value 

0.5m. So, the optimum movement of the vehicle between these two frames is 0.5m. 

Figure 2-4 illustrates a result of the described alignment technique. Here, we applied the extended 

ICP based alignment process in an urban road for 10 frames. Figure 2-4(a) shows the combined point 

clouds for 10 frames before alignment, the result after alignment has been shown in (b). 
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2.2.2  Distinguish Between Moving and Steady Objects 

The resulting point cloud found after aligning a set of observed point clouds, can be considered as 

the reconstructed environment of the autonomous vehicle. It can be separated in two parts: the steady 

objects (e.g. road, trees, road-side buildings, pole, parked vehicles etc.) as background and moving 

objects (e.g. moving vehicles, motorcycles, walking pedestrians, cyclists etc.) as foreground. Under 

the context of autonomous vehicle applications, these two parts must be distinguished properly to 

understand the surrounding environment. Like the image mosaicking, moving objects can also create 

the interference (outlier-moving points) in point cloud mosaicking. Inspired by previous work on 

robust surface registration [10], a robust outlier (i.e. moving points) detection technique has been 

proposed in this work. Later moving objects are detected by applying a clustering algorithm to the 

moving points. 

Figure 2-3:  Figure 2-3: Distribution of matching errors in ICP algorithm 
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(a) 

 

(b) 

Figure 2-4:  Figure 2-4: Point cloud representation of an urban road (a) before and (b) after alignment 
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2.2.2.1 Remove Points from Ground Level 

To detect moving objects LIDAR data from multiple frames are processed. It is understandable that 

the points on the road surface can be included in the background (steady object). Hence, it is 

unnecessary to apply the moving object detection algorithm to these points. So, in the first step 

unnecessary points from ground level (i.e. road surface) are removed from the LIDAR data frame. 

To be precise, if one uses the Z-values of the point cloud (i.e., the altitude of a point) as the feature, 

road surface can be removed by thresholding the Z-values. That leaves the data points of all the 

objects (both steady and moving) on the road and the roadside environment. Figure 2-5(b) shows the 

result of the ground level removal technique applied to the point cloud shown in (a).  

 

2.2.2.2 Moving Points Detection using Robust EM-ICP 

As mentioned earlier, in point cloud registration or mosaicking interference from the moving objects 

are considered as the outliers. Hence, we have primarily considered the moving points as the outliers 

and applied a robust ICP based alignment technique with outlier rejection to detect those points. The 

main idea is based on the observation that point cloud registration and outlier detection have 

characteristics of chicken-and-egg problem – i.e. solving one problem creates path to the solution to 

the other. In this experiment, classical expectation-maximization (EM) method has been exploited 

into ICP as follows (similar approach is proposed in [56]), 

 E-step: For an estimated transformation, align two point clouds and calculate the closest 

distance for each point. Declare a point to be an outlier if the closest distance is above a pre-

selected threshold. 

 M-step: For a given set of inliers, apply ICP to update the estimate of transformation 

parameters (i.e., translation and rotation). 
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The previous works of EM-ICP [10] [56] were applied to 3D point cloud sets of relatively small size 

(~104). In this experiment, we are dealing with dozens of point clouds each containing around 106 

samples. So, one of the contributions of this work is that this is at least the first experimental work of 

 
(a) 

 
(b) 

Figure 2-5: Bird view of a road in residential area (a) before and (b) after removing the road surface 
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testing the feasibility of EM-ICP on a large 3D dataset, e.g. KITTI dataset [54]. After executing this 

step, we get the moving points between two consecutive frames. Not all the moving points are part 

of actual moving objects. Some points are mistakenly detected and these points are observed in more 

scattered locations than the actual moving points (Figure 2-6). These outliers can be detected by 

exploiting any density-based clustering algorithm. Density-based spatial clustering of applications 

with noise (DBSCAN) [57] has been used to remove these outliers. DBSCAN is a density based 

clustering algorithm widely used in clustering problem for point clouds. It marks points as in same 

cluster that are closely packed together (nearby neighbors) and labels the points as outliers which are 

found in the low-density areas (nearest neighbors are far away). DBSCAN has been applied to the 

moving points found using the EM-ICP technique. Points that are packed in the same cluster, are 

considered to be from same object. So, number of moving objects is equal to the number of clusters. 

The clusters with less or equal than five points are considered as outliers (not moving object) and 

removed from the foreground. The remaining clusters are the actual moving objects that constitute 

the foreground of the reconstructed environment. 

Figure 2-6: Detected moving points between two consecutive point cloud frames 
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Figure 2-7 shows the result of moving object detection technique. Here, a moving cyclist has been 

detected for 4 consecutive frames (total 5 frames are needed, first frame is for reference). 

 

 

2.3 Multi-Sensor Data Fusion 

In the previous sections of this chapter, we have discussed about the reconstruction of the vehicle 

environment using only LIDAR data. This gives us the 3D coordinates of different points from 

different points (both background and foreground). In this section, RGB color information from a 

camera has been combined with the coordinate information of the points to generate a six-

dimensional model of the environment. First three dimensions are XYZ values of the point and last 

three dimensions contain RGB values of that point gathered from the color image. 

 

Figure 2-7: A moving cyclist in multiple frames of a point cloud data sequence 
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The calibration of the velodyne coordinates with the camera has been done following the procedure 

described in the article [54]. A 3D point x in velodyne coordinates is projected to a point y in the 

image of the ith camera using, 

ݕ = ௥ܲ௘௖௧
௜ ܴ௥௘௖௧௜

௩ܶ௘௟௢
௖௔௠ݔ;  ௥ܲ௘௖௧

௜ ∈ ℛଷ௫ସ,ܴ௥௘௖௧௜ ∈ ℛଷ௫ଷ  … … … … (2-1) 

Where, ௥ܲ௘௖௧
௜  and ܴ௥௘௖௧௜  are the projection matrix after rectification and rectifying rotation matrix of 

the camera respectively. Both parameters are used to calibrate the ith camera. Here, ݅ ∈ {0, 1, 2, 3} is 

the camera index; 0 is for left grayscale, 1 is the right grayscale, 2 left color, and 3 right color 

camera. In this experiment, only left color camera (i=2) has been used. ௩ܶ௘௟௢
௖௔௠ is the velodyne to 

camera transformation matrix which is calculated using, 

௩ܶ௘௟௢
௖௔௠ =  ቀܴ௩௘௟௢

௖௔௠ ௩௘௟௢௖௔௠ݐ

0 1
ቁ … … … … (2-2) 

 ܴ௩௘௟௢௖௔௠ ∈ ℛଷ௫ଷ is the rotation matrix: velodyne → camera 

 ݐ௩௘௟௢௖௔௠ ∈ ℛଵ௫ଷ is the translation vector: velodyne → camera 

Values for both these matrices are provided with the KITTI database. Using the transformation 

matrix velodyne coordinates are calibrated with the reference camera. In this dataset, cameras are 

used to capture images in forward direction only. So, LIDAR data points with positive x values are 

projected only to the RGB color image. The fusion of the data from these two sensors (velodyne and 

camera) gives us a more detail model of the vehicle environment that contains both the coordinates 

and color information of the points. Figure 2-8 shows the result of fusing the point cloud shown in 

Figure 2-1 with the RGB image of the same scenario shown in Figure 2-2. 
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2.4 Irregularity Detection 

Irregularities on road can be defined as some actions of the moving objects that can lead to a 

collision in near future. Irregular movements can take different forms in varying vehicle 

environments. On highways, sudden lane change of vehicles and abrupt press of brakes are most 

common irregularities that may result in serious collisions. In rural roads, wild animals such as deer 

crossing the roads often causes accidents especially in low visibility situations. In urban 

environments, irregular events include jaywalking by pedestrians, road sharing by cyclists, careless 

drivers getting out of parking areas, reckless turning at the stop sign and so on. How to tell those 

irregularities from regular moving patterns is a fundamental challenge in autonomous vehicles. 

 In this work, we mainly focus on the irregularities on busy urban roads caused by the pedestrians, 

cyclists (also motorcyclists), and other vehicles. Figure 2-7 shows an example of irregular movement 

 
Figure 2-8: 6D model of the scenario shown in Figure 2-1 
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of a cyclist (highlighted by red color) sharing the road with respect to the host vehicle (HV). A key 

observation behind the detection of irregular events from LIDAR data is to predict those moving 

objects that could result in a potential collision with the HV in the near future [58]. Providing an 

early warning of irregularity is the objective here; and we propose to tackle this problem in two 

steps: detect and tracking moving objects using nearest-neighbor search, and irregularity detection 

from moving objects using linear regression. 

 

2.4.1 Tracking Moving Objects 

As irregularities are mostly caused by the moving objects (vehicles, pedestrians etc.), detecting 

irregularities largely depends on the successful detection and tracking of the moving objects. A 

robust EM-ICP based moving object detection technique has been described in the previous chapter. 

In the last stage of this technique, DBSCAN has been used to pack the moving points into some 

clusters to locate the moving objects. Centroids of these clusters will be used to track those objects in 

the later frames. 

To track the trajectories of the moving objects through multiple frames, Euclidean distance based 

nearest neighbor search technique has been exploited on the centroids of the moving clusters 

detected using DBSCAN [57]. Two centroids from adjacent frames are considered as the centroid of 

the same object if the distance between these two points lies between two empirically set thresholds 

hd and ld . If the calculated distance is larger than hd , two clusters are not the same object. Again, if 

the distance is less than ld , there is no actual movement happened for this object. Only if the 

distance is between these two thresholds, two clusters are recorded as the same object and a 

successful tracking operation is declared. This operation is performed for the next couple of frames 

and the changes in the positions of the moving clusters are used to derive the motion trajectories of 
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the moving objects. In Figure 2-7, moving cyclist (shown in red color) has been detected and tracked 

through multiple frames. Four red colored clusters represent the positions of the cyclist in four 

consecutive frames. Figure 2-9 shows the tracking results of multiple moving objects in the same 

scenario. Here, four moving objects (different colors and labels) have been detected and tracked. 

Motion trajectories can be derived from the detected moving clusters and irregularities can also be 

predicted using these trajectories. 

  

 

 

2.4.2 Predict Irregularities using Linear Regression 

In a previous work [58], a regression based approach has been proposed to understand the motion 

trajectories of walking pedestrians. In this experiment, we have used a similar technique to predict 

 
Figure 2-9: Tracking multiple moving objects from LIDAR data 
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the trajectories of not only pedestrians but also any detected moving objects. Linear regression has 

been exploited over the centroids of the moving clusters to derive the probable trajectories. After the 

processing of each new frame, the positions of the centroids of the moving objects are updated and 

their moving trajectories are recalculated. A critical region Acri is set around the host vehicle based 

on the width and length of the vehicle. The length and width of this critical area are denoted as Lcri 

and Wcri and are evaluated as, 

௖௥௜ܮ = ௩ܮ2 + ௙݀ߟ 
௖ܹ௥௜ = 2 ௩ܹ

… … … … (2-3) 

where, Lv and Wv are the length and width of the host vehicle (HV) respectively. df is the distance 

covered by the HV during the interval of two consecutive frames and η is a tunable constant. Note 

that the position of the LIDAR sensor is in the center of this critical region. 

As the HV is also moving, this critical region will change its position with times. If the motion 

trajectory of any moving object touches or passes through the critical region at any point, then there 

exists a possibility of collision if any of the HV and moving object does not change its direction. 

There is also a region of interest (ROI) based on which, the movements of the detected moving 

objects are monitored. Objects from outside of the ROI, are not considered as a threat. The moment 

that an object enters the ROI, it is tracked and the trajectory is derived. The length Lroi and width Wroi 

of the ROI are also dependent on the dimensions of the HV. The values of these parameters also vary 

with the speeds of the vehicles on the roads, e.g. in highways where the speed limits are high, the 

ROI should be larger than the urban roads with low speed limits. The value of the dimensions of the 

ROI are calculated using following equations, 
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௥௢௜ܮ = 2μܮ௩
௥ܹ௢௜ = 2μ ௩ܹ

… … … … (2-4) 

Where, µ is a constant that can be varied based on the characteristics of the roads (e.g., varying 

speed limit and whether there is the presence of traffic lights). 

In short, the proposed strategy of irregularity detection can be summarized as follows. When an 

object enters the ROI, its motion trajectory is derived using linear regression. Then some possible 

future positions of this object are predicted based on this trajectory. Meanwhile, the critical region 

around the HV is also tracked and monitored (assuming a constant velocity). If their predicted 

trajectories intersect with each other, then a possible collision between them could occur in future 

and the movement of the object is labeled as irregular. Otherwise the event is treated as regular and it 

is safe for the HV to follow the original motion trajectory. The result of this proposed method has 

been shown in Figure 2-10, where irregular movement of a cyclist is detected. Positions of the 

cyclist in different frames are shown using red color and the straight line through the red color 

clusters is the trajectory of its motion. Blue dot is the projected location of the cyclist at the time of 

collision if it continues to follow the current trajectory. Rectangular box with broken lines is the 

projection of the critical region of HV at the collision time, and solid rectangle is the current location 

of HV. The word ‘Critical’ is shown in the current location of the cyclist which indicates the 

necessity of changing the current trajectory of the vehicle. 
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2.5 Vehicle Environment Understanding 

In the previous sections, we have discussed about vehicle environment reconstruction based on 

fusion of 3D point cloud data and RGB color image (which gives a six-dimensional representation of 

the environment). An approach to detect irregularities from extracted moving objects has also been 

addressed. In this section, we will focus on the understanding of different objects in the 

reconstructed environment. As, vehicles and pedestrians are the most important components on the 

roads, prime objective of this section is to present approaches to detect pedestrians and vehicles. For 

both cases, histogram of oriented gradient (HOG) [33] based object detection algorithms have been 

proposed. Therefore, this section is organized in two different parts – first one describes HOG based 

pedestrian detection technique and the other part describes a Position and Intensity – included HOG 

(PIHOG or πHOG) based approach for vehicle detection from the reconstructed environment. 

 
Figure 2-10: Predicted irregular movement of a cyclist (red color object) 
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2.5.1 Pedestrian Detection from Point Cloud 

For detecting the pedestrians, only 3D point cloud has been used instead of 6D XYZ+RGB map. 

Because of the nature of human body shape, color information of a pedestrian in point cloud often 

get corrupted by the background color, which makes the pedestrian difficult to distinguish. The 

proposed method has been conducted in two steps: First, DBSCAN is applied to cluster the points 

into some groups to locate all the different objects and distance map (d-map) is generated for each 

object. Second, HOG features are extracted from the d-maps and a supervised support vector 

machine (SVM) [59] is used to recognize the pedestrians. 

 

2.5.1.1 Clustering and D-map Generation 

In a typical point cloud, XYZ coordinates of each point are given. But, the information of actual 

sources of the points (i.e. which point is part of which object) is absent. To achieve this information, 

density based clustering DBSCAN [57] is exploited. As the points from same object are in very close 

distances from each other, DBSCAN packs these points in the same cluster, i.e. each resulting cluster 

represents a different object. Clusters with very few points (݊ ≤ 5) are considered as outliers. To 

improve the clustering result, points from the ground level (i.e. road surface) are removed before 

applying DBSCAN based on the Z-values of the points (shown in 2.2.2.1). Figure 2-11(b) shows the 

result of DBSCAN clustering applied on the point cloud scenario shown in (a). Different clusters are 

shown using different colors and numbers. These clusters represent different objects detected in this 

scenario. 
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Next step is to take each cluster separately and generate 2D distance-map (d-map) for each cluster. 

D-map consists of the Euclidean distances (݀ =  ඥݔଶ + ଶݕ +  ଶ) of each point from the centerݖ

(0,0,0) of the point cloud coordinate. As the point cloud coordinate is measured based on the location 

of the velodyne sensor, d-map basically gives the distances of the points from the sensor. If the 

projection of a point P(x,y,z) onto the two dimensional d-map is D(r, c), then the location of D is 

measured using following equations, 

ݎ = ௥ܫ  + ௭ܥ) − ×(ݖ ௣ܰ௣௠

ܿ = ௖ܫ  + ൫ܥ௬ − ×൯ݕ ௣ܰ௣௠
… … … … (2-5) 

Where, (ܥ௫ ௬ܥ, ௥ܫ) ,௭) is the centroid of the clusterܥ, ,  .௖) is the location of center pixel in the d-mapܫ

௣ܰ௣௠ is the number pixels per meter, i.e. the number of pixels used in d-map to cover one meter in 

point cloud (in this experiment, ܰ ௣௣௠ = 32). Figure 2-12 shows some sample d-map representations 

of both human and non-human clusters. These generated d-maps are then used to extract HOG 

features. 
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Figure 2-11: Clustering result- (a) original point cloud, (b) clusters are shown in different colors and numbers 
 

 
Figure 2-12: 2D d-maps of (a) pedestrian, and (b) non-human clusters 

 
(a) 

 
(b) 

           
(a) 

    
(b) 
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2.5.1.2 HOG-SVM Based Pedestrian Detection 

The Histogram of Oriented Gradient (HOG) based human detector is one of the most popular and 

successful “human detectors”. Dalal and Triggs introduced it in the article [33]. HOG uses “global” 

feature to describe a human rather than a collection of “local” features, i.e. the image of an entire 

human can be represented by a single feature vector, as opposed to many feature vectors 

representing different parts of the human body. For a typical image, the procedure of the HOG 

feature extraction starts with a sliding detection window that is moved around the image. But, in this 

experiment, we have applied HOG to the d-map image of each cluster separately. Therefore, all the 

d-map images are reshaped to be of same dimensions, but no sliding window is used. For each 

image, a HOG descriptor is computed. This descriptor is then tested using a supervised classifier 

which classifies it as either “human” (i.e. pedestrian) or “non-human”. 

In this proposed method, the common resolution of all d-map images is 32x64 (32 pixels wide, 64 

pixels high). First, the gradient vector [݃௛ ݃௩]் is computed at each pixel (both magnitude and 

angle) of this image, where, ݃௛ and ݃௩ are the gradient of intensities in horizontal and vertical 

directions respectively. This 32x64 image is then divided into some 8x8 blocks with 50% 

overlapping. Further, each block is divided in to four 4x4 cells. Then, the gradient vectors in each 

cell were put in a 9-bin (0~180 degrees) histogram. L2 normalization method is used for normalizing 

the histogram to make it invariant to the illumination change. The feature vector size can easily be 

calculated from the above numbers. The 32x64 image is divided into 7 blocks horizontally and 15 

blocks vertically, for a total of 105 blocks. Each block contains 4 cells with a 9-bin histogram for 

each cell, for a total of 36 values per block. This brings the final feature vector size to 7 blocks 

horizontally x 15 blocks vertically x 4 cells per block x 9-bins per histogram = 3,780.  
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HOG feature vectors are extracted from the manually labelled positive (human) and negative (non-

human) d-map images. These feature vectors are then used to train a support vector machine (SVM) 

[59] classifier with linear kernel. Support Vector Machine (SVM) is a method used for the 

classification of both linear and nonlinear data [60]. A nonlinear mapping is used to transform the 

original training data into a higher dimension, and within this new dimension, it searches for the 

linear optimal separating hyperplane (i.e., a “decision boundary” separating the data points of one 

class from another). If an appropriate nonlinear mapping (to a sufficiently high dimension) can be 

produced, data from two classes can always be separated by a hyperplane. Support vectors 

(“essential” training data points) are used to find this hyperplane. SVM can be of linear and non-

linear kernels. In our experiment, linear SVM has been used to classify two classes (human and non-

human) due to its low complexity. This trained SVM is later used to detect pedestrians in test point 

cloud scenario. 

So, when a point cloud frame is tested, first its ground level points are removed, and all the objects 

are separated using DBSCAN clustering. Then, d-map image is generated for each cluster based on 

the Euclidean distances of the points from the sensor location. HOG features are extracted from 

these two-dimensional images and a trained SVM is used to classify the images (to check whether 

the corresponding cluster is pedestrian or not). Figure 2-13 shows the result of applying HOG-SVM 

based pedestrian detection technique to the point cloud shown in Figure 2-11. 
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Figure 2-13: Detected pedestrian (red colored) in the scenario shown in Figure 2-11 

 

2.5.2 Vehicle Detection using PIHOG 

Similar to pedestrian detection, HOG based technique can also be applied to detect vehicles. But, in 

case of vehicle we have used both point cloud and color information (XYZ + RGB), i.e. the fused 6-

dimensional representation described in section 2.3. As, the appearance of a vehicle is more stable 

than the pedestrian in point cloud, detection of vehicle using color information along with XYZ data 

is not prone to the interference of the background. Again, because of the large and flat shape of the 

vehicle, some drawbacks of the regular HOG based techniques need to be resolved before applying. 

Two drawbacks are mainly taken under consideration [47]: 

1) HOG is basically a histogram; the locations of the gradients are not stored. As a result, two 

completely different cells may have the same histogram. This problem has been explained in 

Figure 2-14. Here, two cells have 16 pixels, and the gradient vector of each pixel has been 

illustrated using the red arrow. For simplicity, all gradients are assumed to have same 
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intensities. Although, the two cells have different gradients, they have the same histogram of 

oriented gradients because both cells have the same number of 45◦ and 135◦ components. 

2) Typical HOG features contain only edge information of an image; intensity information is 

not used in HOG. Only edge based features are not sufficient in case of vehicle detection. 

From the above two points it is clear that, there remains opportunity to further improve the 

performance of vehicle detection by using the image intensity and the location of the gradients. 

Based on these two ideas, Position and Intensity – included HOG (PIHOG or πHOG) has been 

introduced in [47] to detect vehicle in RGB images. In this experiment, PIHOG has been exploited 

on the 6D representation (XYZ+RGB) of the vehicle environment. 

 

Figure 2-14: Two different cells with same histogram of gradients [47] 
 

Before extracting PIHOG features, the 6D map needs to be transposed into a 2D image. In this 

experiment, front view of the map has been used. The basic idea is similar to D-map generation 

described in 2.5.1.1, except in this case RGB color information of the points is used to generate the 
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2D image instead of distance. Also, no clustering algorithm has been used to separate the objects. 

Figure 2-15 illustrates the 2D front view of the vehicle environment shown in Figure 2-8. The goal is 

to develop a technique that will be able to detect the vehicles (can clearly be observed in the figure) 

using PIHOG-SVM combination. The main advantage of using this fused data instead of RGB 

image only is to solve the scaling problem. In regular RGB image, all the objects face this scaling 

effect, i.e. nearer object appears in larger shape, and the appearance of an object gets smaller with 

the distance. But, as the 6D map gets the height information from the z-values of the point cloud, 

objects from different distances appears to have same heights in the 2D transposed image. 

 

Figure 2-15: 2D front view of the 6D map shown in Figure 2-8 
 

2.5.2.1 PIHOG (or πHOG) 

Position and Intensity – included HOG (PIHOG, also written as πHOG) was introduced by Kim et 

al. [47]. To solve the two drawbacks of HOG mentioned in the previous section, PIHOG feature has 

been realized. Beside the regular HOG features it includes the information of the gradient locations 

and pixel intensities. These two extra features have been described in the following subsections. 
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2.5.2.1.1 Position Features 

As illustrated in Figure 2-14, two cells with different gradient vectors can have same histogram (in 

other words, same HOG feature). To make the features more distinguishable, the positions of the 

oriented gradients are taken into consideration as new features. The procedure of extracting this 

feature has been described in this section. Let ݕ,ݔ)ߠ, ܿ) be the orientation of the gradient at (x, y) 

position of the c cell (0 ≤ ߠ ≤  The orientations of the gradients are quantized in T bins and the .(ߨ2

expression of the orientation bin ݕ,ݔ)ܤ, ܿ) is given by, 

,ݕ,ݔ)ܤ ܿ) = ቒ ்ఏ(௫,௬,௖)
ଶగ

ቓ ,         0 ≤ θ ≤ 2π,   ݕ,ݔ)ܤ, ܿ) ∈ {1, … ,ܶ} … … … … (2-6) 

Then the means of x and y positions of the d-th bin has been calculated using the following 

expressions, 

௫,ௗܯ
௖ =

∑ ∑ ௫⫪[஻(௫,௬,௖)ୀௗ]೎೤
೤సభ

೎ೣ
ೣసభ

∑ ∑ ⫪[஻(௫,௬,௖)ୀௗ]೎೤
೤సభ

೎ೣ
ೣసభ

, and ܯ௬,ௗ
௖ =

∑ ∑ ௬⫪[஻(௫,௬,௖)ୀௗ]೎೤
೤సభ

೎ೣ
ೣసభ

∑ ∑ ⫪[஻(௫,௬,௖)ୀௗ]೎೤
೤సభ

೎ೣ
ೣసభ

 … … … … (2-7) 

Where, ܿ ௫ and ܿ ௬ are the width and height of the cell respectively, ⫪ (. ) is an indicator function that 

returns ‘1’ if the argument is true, otherwise, returns ‘0’. After calculating the means for all the 

orientation bins in c-th cell, we get the new features ௖ܲ = ௫ܯ]
௖ ௬ܯ,

௖] (where, ܯ௫
௖ = ௫,ଵܯ]

௖ , … ்,௫ܯ,
௖ ] 

and ܯ௬
௖ = ௬,ଵܯ]

௖ , … ்,௬ܯ,
௖ ]) that deals with the computation of the position part. 

 

2.5.2.1.2 Intensity Features 

In this section, intensity invariant region (IIR) based features are proposed. All the positive vehicle 

images are used to extract the IIR. Let ܸ = ,ଵݏ} ,ଶݏ … ,  ேೡ} be the set of all positive vehicle imagesݏ

and ݏ௜ = ,௜ଵݏ] ,௜ଶݏ … ,  ௜௝ is the intensity of the j-thݏ ,௜ே]் be the i-th positive vehicle image; whereݏ

pixel in the i-th vehicle image. N is the total number pixels in each image, and ௩ܰ is the size of the 
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set of positive images. In this experiment, all the sample images (both positive and negative) are 

resized in to 48x48 images (N = 2304). To determine the IIR across the positive vehicle images, the 

mean and standard deviation of the images are calculated using the following equations, 

ܯ =  ଵ
ேೡ
∑ ௜ݏ = [݉ଵ,݉ଶ, … ,݉ே]்ேೡ
௜ୀଵ … … … … (2-8) 

ߪ = ට ଵ
ேೡ
∑ ௜ݏ) (ܯ− ∘ ௜ݏ) ேೡ(ܯ−
௜ୀଵ = ,ଵߪ] ,ଶߪ …  ே]்… … … … (2-9)ߪ,

where ∘ denotes component-wise multiplication. The main idea of IIR is that, the regions with low 

standard deviations correspond to the regions where all the positive vehicle images have similar 

intensity values. Thus, intensity values in these regions are considered to be unique for the vehicles 

regardless of the colors of the vehicle. These regions are called IIR. For the purpose of feature 

extraction, values of the standard deviation image are divided into K number of intervals. If the 

range of the values of k-th mask ௞ܷ  is given by [ߝ௞,  ௞ାଵ], then the mask can be described byߝ

௞ܷ = ௞ߝ|݆} ≤ ௝ߪ ≤ ,௞ାଵߝ ݆ = 1,2, … ,ܰ} … … … … (2-10) 

Figure 2-16 shows the mean image (a), and the standard deviation image (b) of the positive vehicle 

images. In our experiment, we have used 20 intervals (i.e. K = 20). For feature matrix generation, 

only first five masks (n = 5) have been considered, as low standard deviation values indicate the 

region of similar intensities for all the vehicles. Now, for a test image s, standard normal deviate 

image is computed as, 

ݖ = (ଵ
ఙ

) ∘ ݏ) −  (11-2) … … … … (ܯ

Applying the first n IIR masks ( ଵܷ, ଶܷ, … ,ܷ௡; ݊ = 5) on z, the features correspond to the IIR masks 

can be computed by, 

ℎ௞ = ଵ
|௎ೖ|

∑ ௝௝∈௎ೖݖ  … … … … (2-12) 
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Figure 2-16: (a) Mean, and (b) standard deviation all positive vehicle images 
 

2.5.2.1.3 Formation of PIHOG Features 

The procedure of PIHOG starts like the conventional HOG. A sliding window (40x40 for this 

experiment) is used to take the image segments and the segment is reshaped to size 48x48. Each 

segment is decomposed into C cells (C = 4), and HOG features are extracted from each cell. The 

gradients in a cell are assigned to T bins (T = 9), i.e. dimension of extracted HOG features from each 

window is CT. The position part of PIHOG ௖ܲ (for a cell) is a 2T dimensional vector (T values in 

each of x and y direction). Hence, for a window position part of PIHOG has 2CT dimensions. The 

intensity part of PIHOG in a window consists of n dimensional IIR feature vector ℎ௞  (݇ =

1, 2, … , ݊). After combining all the features, final feature matrix of PIHOG for a window is defined 

as, 

గுைீܨ = ுைீܨ] , ଵܲ, … , ஼ܲ ,ℎଵ, … , ℎ௡] … … … … (2-13) 

where, ܨுைீ  is the conventional HOG feature. The total length of the feature matrix is 3CT+n. 

PIHOG features are extracted from both positive (vehicle) and negative (background, i.e. road, trees, 

buildings etc.) samples. Like pedestrian detection, a linear support vector machine (SVM) has been 

       

(a)      (b) 
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trained using the PIHOG features and later used to detect vehicle from test images. The result of 

PIHOG-SVM based vehicle detection technique (applied to the image in Figure 2-15) has been 

shown in Figure 2-17. 

Like all other sensors, both LIDAR and camera have distance limitations. An autonomous vehicle 

can reconstruct the map of neighboring environment up to a certain distance using these local 

sensors. To extend the map, dedicated short-range communications (DSRC) based vehicle-to-vehicle 

(V2V) communication can be exploited to share the locally generated among the neighboring 

vehicles. 

 

Figure 2-17: Detected vehicles (in red boxes) using PIHOG-SVM 
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Chapter 3:  Power Control in V2V 

3.1 V2V Communications System 

Vehicle-to-vehicle (V2V) communications system is a technology that forms a wireless ad hoc 

network on the roads to allow autonomous vehicles to communicate with each other. Such networks 

are also known as vehicular ad hoc networks (VANETs). Via V2V, Vehicles can communicate each 

other with information of neighboring environment, emergency warning, intersection collision 

warning, cooperative cruise control etc. In this experiment, DSRC based V2V scheme has been used 

for the transmission of locally sensed (RADAR-sensed) neighboring environment information and 

thus generating a more complete and extended map of the neighborhood. 

 

3.1.1 Dedicated Short Range Communication (DSRC) 

Dedicated Short-Range Communications (DSRC) provides a means for low latency communication 

link with 75 MHz of spectrum at 5.9 GHz band allocated by Federal Communications Commission 

(FCC). In this experiment, the main goal of using the vehicle-to-vehicle (V2V) communication is to 

ensure safe, interoperable connectivity so that all the vehicles can achieve the knowledge of the 

environment beyond the range of the local sensors. To facilitate this, V2V communications require a 

safe and secure wireless interface that can communicate within a short delay and perform well even 

in harsh environments. DSRC is specifically designed to facilitate all these requirements. Although 

DSRC is like Wi-Fi technology, it is preferred over Wi-Fi because the number of devices that use the 

unlicensed Wi-Fi channels would make significant interferences that could hamper the safety 

concerns of vehicular applications. Some significant features of DSRC are, 
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• DSRC allocates a specified spectrum dedicated for vehicular safety applications to enable 

secure communication. 

• It allows vehicle to establish communication in a very short time. 

• DSRC is designed for high speed communication (up to 27 Mbps). 

• It employs a robust OFDM modulation scheme to cope with severe environments. 

• DSRC provides interoperability between different automotive manufacturers using 

standardized protocols at different layer 

We have used DSRC based V2V communications to facilitate an interoperable connectivity among 

the neighboring vehicles. The performance of this communication scheme depends on the 

transmitted message size, transmission rate, and transmission power. Article [27] proposed an 

adaptive message length and content control algorithm for cooperative vehicle system. In our 

experiment, we have studied a power control technique coupled with this content control algorithm. 

 

3.2 System Model and Communication Architecture 

Figure 3-1 shows a general model of a cooperative automated vehicle system. In this system, each 

vehicle contains a set of local sensors such as RADAR, LIDAR, cameras etc. to collect information 

of the neighborhood and create a real-time three-dimensional map of the surroundings of that vehicle 

up to the sensing distance of the equipped local sensors. In advanced vehicular system, safety 

applications such as automated crash-avoidance system, pre-collision alert, lane-keep assist, or 

adaptive cruise control system can utilize this map information gathered by local sensors, as these 

kind of safety applications depend only on the information regarding the immediate neighborhood. 

But some other higher-level applications such as long-term trajectory planning, and automated 

driving applications require a larger map than the locally sensed map. For example, a locally sensed 
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map can give information of a neighboring car, but cannot predict the information regarding the next 

intersection that the vehicle will pass within next few seconds. 

Exchange of the locally sensed map information among the vehicles can be the solution to the 

problem to extend the map. Each vehicle contains its own local map generated using locally sensed 

information. If one of the vehicles broadcasts its own local map, it would be useful to other vehicles 

to include the new objects (unknown to their local sensors) to their own maps. A complete map of 

the surroundings can then be generated by combining the observations through local sensor 

collections and the information received through communication channel from other vehicles. The 

information extracted from this updated map will then be broadcast to the neighboring vehicles 

within the communication range. In this method, the coverage map can be expanded so that the 

automated driving applications can get more accurate information. Again, based on the vehicle 

density, the size of the map information to be exchanged among the vehicles can be very large and it 

can easily lead to the congestion in the network of DSRC transceivers. So, a scalable system is 

required which can handle the congestion without affecting the accuracy. 

 

 

Figure 3-1: Cooperative automated vehicle system model 

 

To realize the inter-vehicle communication scalability problem, we have considered the simulation 

environment studied in [22]. A 4-km long highway shown in Figure 3-2 is considered to depict the 
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vehicle movement. It contains three lanes in both directions and a winding section in the middle in 

which the radius of the curvature is 40 meters. The average speeds of the cars within the three lanes 

in each direction are 17 m/s, 18 m/s, and 19 m/s respectively from the rightmost to the leftmost lane. 

Mobility model is generated using traffic simulator SUMO with the modifications described in [22]. 

For propagation loss model, three-log-distance propagation path loss model [61] and Nakagami 

fading model are used. Payload size is 84 bytes, i.e. to include the information of an object in the 

map, 84 bytes are required. 

 

In cooperative vehicle system, communication among the vehicles play the majority roles to extend 

the map information, rather fully rely on the local sensing modalities. In this work, as 

communication architecture, the method proposed in [27] is utilized. This method proposed to 

enhance the map created using local sensors by collecting information from other vehicles through 

communication channel. This updated map is also disseminated to other vehicles. This model 

follows the operation model for cooperative vehicle-safety system described in [23]. Figure 3-3 

shows the functional diagram of the communication architecture in this work. 

 
Figure 3-2: Road topology used in the simulation [22] 
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3.3 Message Length and Content Control Scheme 

For adaptive content control, a distance-based content (DBC) control scheme proposed in [27] is 

used, where a general communication framework was proposed through which vehicles exchange 

information from multi-resolution maps generated using local sensory data (i.e. camera and LIDAR). 

In this approach, a descent-based message-size control algorithm [62] has been exploited that 

updates the optimal message size at iteration t + 1 using: 

)( *1 tt
OPT

t
OPT CBRCBRLL    … … … … (3-1) 

where t
OPTL  represents the message size at iteration t, tCBR  is the resulting observed channel busy 

ratio, and *CBR  is the desired channel busy value for maximum throughput. It is shown in [21] that 

throughput is maximized when CBR is at 0.68, so in this case 68.0* CBR . Here,   is a tunable 

gain that can be adjusted to converge the algorithm. The optimal message is bounded between two 

limits Lmax and Lmin. The maximum message size should not be higher than Lmax, even if CBR is low 

 
Figure 3-3: Scalable communication architecture proposed in [27] 
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enough to support higher message size. Lmin is the minimum message size required to represent an 

arbitrary object in the map, i.e. to transmit a message, a vehicle should have the information about at 

least one object in the map. 

For the selection of message content, a distance r0 is set as a must include distance, i.e. DBC 

includes objects with less distance to transmitter than r0 with probability 1. Beyond this distance, for 

an object located at distance r, the probability of inclusion is calculated by, 











0

01
)Pr(

rrife

rrif
usionObjectIncl

r
 … … … … (3-2) 

where, 
|1|

1ln1

00 rr 
 and 10 0  r .  

The packets formed by DBC are then transmitted using different transmission powers and position 

tracking errors (PTE) are measured to analyze the effect of transmission power on map accuracy. For 

further analysis, channel busy ratio (CBR) and packet error rate (PER) are also observed for those 

transmission powers. Based on the analysis, a power control scheme is proposed, which operates in 

combination with the content control algorithm to give an optimum position tracking accuracy. 

 

3.4 Proposed Power Control Scheme 

In this work, the effect of the changes in transmission power is observed and a power control 

algorithm is proposed based on the observation results. The distance dependent content control 

scheme, discussed in the previous section, is exploited as the congestion control algorithm. In this 

section, effects of changing transmission power have been studied and the power control scheme has 

been described. 
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3.4.1 Effect of Transmission Power on Map Accuracy 

Map accuracy is evaluated based on the actual position tracking error (PTE), i.e. difference between 

mapped-distance (using both from local sensors and communicated information) and actual sender-

receiver distance provided by the simulator mobility model. Map accuracy is inversely proportional 

to PTE, i.e. if the PTE can be kept low, more accurate map can be achieved. 

We performed NS-3 simulations for densities of 125 vehicles/Km and 250 vehicles/Km, and 

calculated 95 percentile PTE for six different transmission powers (1, 5, 10, 15, 20, and 30 dBm). In 

the simulation, radar-sensed data are used up to 120m distance and beyond this distance, 

communication data are used to collect map information. Figure 3-4(a) and (b) shows the position 

tracking error (PTE) plots for 125 vehicles/Km and 250 vehicles/Km respectively using the 

transmission powers mentioned above. Form the figures, we can see that PTE decreases with the 

increment of power until 10 dBm, and begins to increase again after that. That means, accuracy of 

the generated map reduces in higher powers. 

To understand this result we need to look into the information age (IA) vs distance plots for the same 

transmission powers and vehicle densities shown in Figure 3-5. It shows that for high powers (20, 30 

dBm) the information received by a vehicle is older than for low powers, which results in low 

accuracy. For a given loss model, packets transmitted with higher transmission power, travel to 

longer distance, which causes more congestion in the propagation channel, i.e. high channel busy 

ratio (CBR), as shown in Figure 3-6. To keep the channel congestion under a tolerant level (less than 

0.68), the adaptive length control algorithm described in previous section has been used. In case of 

high congestion (for higher transmission powers), this algorithm reduces the packet size (i.e. 

message length). Figure 3-7 shows the results of message length adaptation process based on the 

CBR values for different transmission powers. To reduce the message size, less objects are included 
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in the transmitted packet (i.e. less information is gathered), and the information is updated less 

frequently, which is the main reason behind the older information for higher transmission powers.  

 

 

Figure 3-4: PTE vs distance for (a)125 vehicles/Km, and (b) 250 vehicles/Km 

 

 
(a) 

 
(b) 
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Figure 3-5: Information age vs distance for (a) 125 vehicles/Km, and (b) 250 vehicles/Km 

 

Reduction in packet size also results in low packet error rate (PER). Typically, as more congestion 

occurs for high transmission power, more packets are expected to be lost, i.e. PER should increase. 

But, the congestion control algorithm reduces the message length to keep the channel less congested, 

 
(a) 

 
(b) 
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which causes the less packet loss. So, unlike PTE, in case of higher transmission powers (e.g. 20, 30 

dBm) less PER occurs (Figure 3-8). 

 

 

Figure 3-6: CBR vs time for (a) 125 vehicles/Km, and (b) 250 vehicles/Km 

 

 
(a) 

 
(b) 
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Figure 3-7: Message length vs time for (a) 125 vehicles/Km, and (b) 250 vehicles/Km 

 
 
 

 
(a) 

 
(b) 
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Figure 3-8: PER vs distance for (a) 125 vehicles/Km, (b) 250 vehicles/Km 

 

To summarize this discussion, as more packets travel to longer distance if transmitted with high 

transmission power, PTE increases with the increment of the power. But after a certain level (10 

 
(a) 

 
(b) 
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dBm) it begins to increase again because of more channel congestion due to high transmission 

power. To minimize congestion, message length is reduced that results in less information and 

hampers the map accuracy. Based on these results we have tried to develop an adaptive power 

control scheme coupled with adaptive content control algorithm, which can give optimum message 

length to achieve better map accuracy. 

 

3.4.2 Power Control Strategy 

In previous discussion, it is observed that in case of close distance (less than 250m), packets 

transmitted with 10 dBm transmission power give best result, but beyond this distance 15 dBm gives 

lower PTE. So, in the proposed power control scheme transmission power is varied between these 

two power limits (10dBm ≤ P ≤ 15dBm). Main goal of this scheme is to keep the message length in 

between an optimum range (Lop,min ≤ L ≤ Lop,max) so that the congestion will remain under the tolerant 

level, and at the same time, enough information can be gathered to generate a more accurate map. 

The maximum (Lop,max) and minimum (Lop,min) values of the optimum range of the message length are 

found using the following formula: 

௢௣,௠௜௡ܮ = ௠௔௫ܮ} − ;஻݊×{(ௗߟ×݀) ௢௣,௠௜௡ܮ             ≥  ௠௜௡ … … … … (3-3)ܮ

௢௣,௠௔௫ܮ = ௢௣,௠௜௡ܮ + (ܽ×݊஻); ௢௣,௠௔௫ܮ                      ≤  ௠௔௫ … … … … (3-4)ܮ 

where, d is the vehicle density, ߟௗ is density factor, ݊ ஻ is the number of bytes needed to describe an 

object, and a is a constant to tune the optimum range. NS-3 simulations are conducted for 125 

vehicles/Km and 250 vehicles/Km densities, so here d takes the values 125 and 250 respectively. 

Values used for other parameters are given in Table 3-1. And the transmission power adjustment is 

done at t+1 iteration using: 
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1+ݐܲ =  ቊ
ݐܲ + ܮ ݂݅                 ,1 > ݔܽ݉,݌݋ܮ
ݐܲ − ܮ ݂݅                 ,1 < ݊݅݉,݌݋ܮ

 … … … … (3-5) 

 

Table 3-1: Parameters used in simulation to detect optimum 

Parameter Value 

Density Factor, ߟௗ 0.08 

Bytes per object, ݊஻ 84.0 

Constant, a 6.0 

 

The effect of coupled transmission power and message content control scheme gives us an optimum 

message length that can maintain a less congested communication channel without lowering the map 

accuracy. The results of this approach have been described in the experimental results section. 
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Chapter 4:  Experimental Results and 

Discussions 

4.1 Environment Reconstruction and Understanding 

 As discussed in previous chapters, this experiment is divided in two parts. First part deals with the 

vehicle environment reconstruction and understanding using the fusion of camera and LIDAR data. 

This process is done in several steps: alignment of multiple point cloud sets for environment 

reconstruction, irregularity detection, pedestrian and vehicle detection. Experimental results for all 

these steps have been illustrated in this chapter. 

 

4.1.1 EM-ICP based Environment Reconstruction 

In the first step, we report the environment reconstruction results of the proposed EM-ICP for a 

variety of point clouds – urban vs. rural (refer to Figure 4-1) and road vs. intersection (refer to Figure 

4-2). In each case, we have aligned and combined ten point cloud sets (each set contains around 

200,000 points). It can be observed that the density of the point cloud increases along the moving 

direction of HV. This is consistent with the fact that more overlaps exist in the point clouds in the 

front than behind the vehicle. We have also noticed that the reconstruction of urban environment 

appears to be more accurate than that of rural one. One possible explanation is that man-made 

structures in urban environments (e.g., buildings, traffic signs etc.) better fit the proposed EM-ICP 

algorithm than those natural objects such as trees in rural environments. Similar findings can be 
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found in the previous work on efficient variants of ICP algorithms [63]. To qualitatively evaluate the 

accuracy of our EM-ICP algorithm, we have calculated the x-component of the translation of the HV 

in each frame and compared it with the ground-truth (GT) data supplied by KITTI database [54]. The 

comparison result has been shown in Figure 4-3. 

 

Figure 4-1: Reconstructed vehicle environments from a collection of 10 point clouds- a) urban vs. b) rural 

 

 
Figure 4-2: Reconstructed vehicle environments from a collection of 10 point clouds- a) road vs. b) 

intersection 
 

After the alignment process, foreground (moving objects) is separated from background (stiff 

objects) for further analysis (e.g. irregularity detection). 

  
(a)         (b) 

  
    (a)       (b) 
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4.1.2 Motion Trajectory Analysis and Irregularity Detection 

In this experiment, we report our analysis with the extracted foreground (moving objects) and 

background (still objects). The objective of this analysis is to propose a technique to predict irregular 

movements of the objects. Moving objects will raise a warning if it has the potential of colliding 

with the HV in the near future (i.e., an irregular event). An exemplar result of the proposed 

irregularity detection method is shown in Figure 2-10, where the movement of a cyclist is detected as 

irregular. Some more results have been shown in Figure 4-4, where three different scenarios have 

been illustrated; (a) pedestrians crossing the road, (b) a cyclist, and (c) a moving car. The moving 

objects are shown in red color, and the blue dots are the location of predicted collision with HV if 

the trajectories are not changed. Although, these scenarios are detected as critical, there is no actual 

data of collision as these are some real-life data and the objects changed their trajectories before any 

kind of collision. Hence, we could not compare our predicted results with any ground truth. 

 

 
Figure 4-3: Alignment accuracy comparison (ground-truth is supplied by KITTI [54]) 
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Figure 4-4: Irregularity detection in different scenario (a) pedestrian, (b) cyclist, (c) vehicle 

 
(a) 

 
(b) 

 
(c) 
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4.1.3 Pedestrian Detection Results 

Histogram of oriented gradient (HOG) features extracted from distance maps of the point cloud 

clusters are used to train a linear SVM which is later used to detect pedestrian in test point clouds. 

For the training purpose, total 106 samples have been used (positive 51, negative 55). All the 

samples are the D-maps of the point clouds of pedestrians (positive) and background (negative) 

objects. For the testing purpose, some point cloud sequences from KITTI dataset are applied. All the 

sequences have single or multiple moving pedestrians, and complex background (i.e. multiple non-

human objects like trees, cycles, roadside walls etc.). A sample result has been shown in Figure 2-13. 

Some more results are illustrated in Figure 4-5, where detected pedestrians are shown in red color. 

 

Figure 4-5: Results of HOG-SVM based pedestrian detection 

 

 
(a) 

 
(b) 

 
(c) 
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We have tested the proposed pedestrian detection technique on five scenarios of the KITTI dataset 

(category: raw data). From each scenario, 25 consecutive point cloud frames have been taken (total 

125 frames). For evaluation, ground truth (GT) has been set manually, i.e. an object is manually 

labeled as pedestrian or not. Overall and frame-wise successful detection rates are reported. Number 

of background objects wrongly detected as pedestrians are also recorded. The overall result is shown 

in Table 3-1. Here the sequences are continuous point cloud sets. So, same person can be found in 

multiple consecutive frames. But, same person in different frames are considered as different 

pedestrians, because all the frames are processed independently. For example, in the first sequence, 

all 25 frames contain same person but in different locations. As a result, the total number of 

pedestrians in 25 frames of sequence 1 is calculated as 25, not 1. 

Table 4-1: Overall and frame-wise pedestrian detection accuracy 

Sequence Number of 
Frames 

Number of 
Pedestrians 

(GT) 

Detection 
Accuracy (%) 

Wrongly 
Detected 

(objects/frame) 
1 25 25 84.0 0.48 
2 25 100 71.0 0.52 
3 25 61 81.97 0.44 
4 25 50 78.0 0.56 
5 25 25 100.0 0.32 

Total 125 261 78.93 0.46 

 

4.1.4 Vehicle Detection Results 

Like the pedestrian detection, HOG based features are also used to detect vehicle. But, for vehicles 

position and intensity-included HOG (PIHOG) has been used instead of traditional HOG features. 

Also, instead of using only point cloud information, we have used the six-dimensional environment 

map that is found after the fusion of RGB image and XYZ point cloud information. Later front view 
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of this map has been projected to a 2D RGB image to apply PIHOG. The main advantage of this 

image over regular RGB image (from camera) is that it solves the scaling problem of the regular 

RGB image, as in the projection procedure actual Z-values of the points are used. 

For the training purpose, we have used 48x48 images of vehicles (positive) and background 

(negative) objects cropped from the 2D projection of front view of the map. Total 215 images (102 

positive, 113 negative) have been used in training phase. PIHOG has been applied to these positive 

and negative images to extract features. Similar to pedestrian detection, these features are used to 

train a linear support vector machine (SVM). Then, this trained model has been tested using five 

different scenarios (raw data – city and road environments) from the KITTI dataset. The location of 

the vehicles in these scenarios are labelled manually for evaluation. To extract the features, a 40x40 

sliding window (with 50% overlapping) is used for each frame. This window is reshaped to 48x48 

and PIHOG features are extracted from each window. 

One of the evaluation results has been shown in Figure 2-17. More results have been shown in 

Figure 4-6, where vehicles have been detected (shown in red boxes) from multiple scenarios. The 

results on test data are shown in Table 4-2, where both overall and frame-wise vehicle detection 

results are recorded. Actual number and location of the vehicles (ground truth) are labelled manually 

for the comparison. 25 frames have been used for each sequence (i.e. total 125 frames for all 5 

sequences). The number of successful and wrong detection is recorded for each frame. Detection 

accuracy is shown in percentage, and the wrong detection is expressed in per frame. Here we can see 

that the overall accuracy is around 73%. The reason behind the low accuracy is that we have only 

used the front view of the map, which can miss some vehicle because of occlusion. If other views are 

considered this accuracy can be improved. 
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Figure 4-6: Results of PIHOG-SVM based vehicle detection 
 

Table 4-2: Overall and frame-wise vehicle detection accuracy 

Sequence Number of 
Frames 

Number of 
Vehicles (GT) 

Detection 
Accuracy (%) 

Wrongly 
Detected 

(objects/frame) 
1 25 109 66.06 0.04 
2 25 26 76.92 0.04 
3 25 30 83.33 0 
4 25 26 80.77 0.8 
5 25 60 76.67 0.4 

Total 125 251 73.31 0.256 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 
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4.2 Performance of Power Control Algorithm 

The outcome of the proposed method (power control coupled with content control) is compared to 

other two schemes: 1) No content control, no power control (Baseline), and 2) Distance based 

content control (DBC), but no power control. Both these schemes are simulated in NS-3 using 

10dBm transmission power. Vehicle trajectories of a 4-kilometer long highway detailed in [22] is 

used in NS-3 simulation. Three log-distance propagation path loss [61] (with the path-loss exponents 

of 1.9 = 1ߙ and 3.8 = 3ߙ = 2ߙ, and reference distances of ݀0 = 1, ݀1 = 200, and ݀1 = 500) model is 

assumed for the wireless communication channels in 5.9 GHz DSRC band. For channel fading, 

default ns-3 Nakagami fading model is used with distance-dependent parameter ݉; for distance 

smaller than 80 meters, ݉=1.5; otherwise, ݉=0.75. CSMA/CA with enhanced distributed channel 

access (EDCA) is used as MAC protocol. 

Figure 4-7 illustrates the comparison results among the proposed algorithm and other two schemes 

for two different vehicle densities, (a) 125vehicles/Km and (b) 250 vehicles/Km. The results show 

that the proposed scheme outperforms the baseline in both environments. DBC still gives better 

result for the close distance (less than 225m), but the performance of the (power + content) control 

algorithm is very close. For the distance greater than 225m, combined effect of power and content 

control gives better accuracy than using DBC alone. The reason behind this is that in DBC, closer 

objects get higher priority during inclusion process. In case of channel congestion, it updates 

information of only the neighboring vehicles, not the distant ones, to fit the reduced message size. 

But in the proposed algorithm, transmission power is adjusted to keep the message size greater than 

a certain level, and thus the information of the distant vehicles is also updated. 
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Figure 4-7: PTE comparison among three schemes for vehicle densities (a) 125 vehicles/Km, and (b) 250 
vehicles/Km 

 

 

 
(a) 

 
(b) 
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Chapter 5:  Conclusion and Future Works 

In this work, we have presented a fusion technique that uses both image and point cloud data to 

reconstruct the vehicle environment in autonomous vehicle system. We have proposed a robust EM-

ICP algorithm for reconstructing the vehicle environment from a collection of point clouds. Later, 

RGB color information has been combined with it for better representation of the environment that 

gives a six-dimensional map (RGB+XYZ) of the neighborhood. Moving objects including vehicles, 

pedestrians, and cyclists are detected and tracked through consecutive frames. Based on the analysis 

of moving trajectories, we propose to address the issue of irregularity detection under the context of 

intelligent vehicles and attempt to predict irregular events. Our preliminary experimental results have 

shown successful reconstruction of vehicle environments for a variety of situations (urban and rural, 

road and intersection). We also exploited HOG based object detection techniques to detect 

pedestrians and vehicles. To detect pedestrians, two-dimensional distance-maps of the clusters in a 

point cloud set are calculated and HOG is applied to this map. For vehicle detection, we have used 

the fused map (six-dimensional), and a modified HOG (PIHOG) has been applied to the front view 

(projected in a 2D image) of this map for feature extraction. In both cases, SVM with linear kernel is 

used for evaluation. 

As the local sensors (camera, LIDAR) have range limitation, we have also discussed about a V2V 

communication framework that depends on the exchange of map information to increase the 

visibility of a vehicle. Sometimes, this framework can face the scalability problem because of high 

channel occupancy. To address this issue, performance of a content control strategy has been 

analyzed under different transmission power conditions. Based on these results a combination of 

transmission power and content control schemes has been proposed in this work. This algorithm 
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follows the distance based content control method to deal with the channel congestion, and at the 

same time adjusts the transmission power to maintain an optimum message length to attain an 

accurate map of the neighborhood. The accuracy is shown in the experimental result in terms of 

position tracking error (PTE). 

Along this line of research, possible direction for next steps can be listed as follows:  

 For irregularity detection, we could not measure the accuracy because of unavailability of 

actual irregular data. In future, we need to generate irregular scenarios both in lab and on-

road environments to conduct more experiment with the proposed algorithm. 

 In most of the point cloud sets, it is difficult to detect the objects that are in long distance 

from the HV, as points from distant objects are scattered in the point cloud. As a future work, 

we can develop an interpolation algorithm for point cloud using the fusion of LIDAR and 

image data. 

 In both pedestrian and vehicle detection techniques, only front view (distance of the points 

for pedestrian, and projected front view for vehicle) of the environment has been used. For 

better accuracy, we also need to explore other views. 

 Model based approaches have been used in vehicle and pedestrian detection techniques. In 

recent years, deep learning based approaches have gained popularity in recognition 

problems. We have plans to exploit some deep learning algorithms in vehicle environment 

understanding (e.g. vehicle or pedestrian detection, different types of vehicle classifications 

etc.). 

 Beside pedestrians and vehicles, we need to develop detection techniques for other objects 

on road (e.g. traffic sign, road sign, trees, road divider etc.) for complete understanding of the 

environment. 
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 In this work, we have studied the fusion of local sensors, and V2V communication system 

separately. As a future works, we need to set up a combined experiment that will generate a 

complete map of the environment using local sensors and communicate this map with other 

neighboring vehicles. 
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