457 research outputs found

    Characteriation of Mediterranean Aleppo pine forest using low-density ALS data

    Get PDF
    Los espacios forestales son una fuente de servicios, tanto ambientales como económicos, de gran importancia para la sociedad. La caracterización de estos ambientes ha requerido tradicionalmente de un laborioso trabajo de campo. La aplicación de técnicas de teledetección ha proporcionado una visión más amplia a escala espacial y temporal, a la par que ha generado una reducción de los costes. La utilización de sensores óptico-pasivo multiespectrales y de sensores radar posibilita la estimación de parámetros forestales, si bien el desarrollo de sensores LiDAR, como el caso de los escáneres láser aeroportados (ALS), ha mejorado la caracterización tridimensional de la estructura de los bosques. La disponibilidad pública de dos coberturas LiDAR, generadas en el marco del Plan Nacional de Ortofotografía Aérea (PNOA), ha abierto nuevas líneas de investigación que permiten proporcionar información útil para la gestión forestal. La presente tesis utiliza datos LiDAR aeroportados de baja densidad para estimar diversas variables forestales, con ayuda de trabajo de campo, en masas forestales de Pino carrasco (Pinus halepensis Miller) en Aragón. La investigación aborda dos cuestiones relevantes como son la exploración de las metodologías más adecuadas para estimar variables forestales considerando escalas locales y regionales, teniendo en cuenta las posibles fuentes de error en el modelado; y, además, analiza la potencialidad de los datos LiDAR del PNOA para el desarrollo de aplicaciones forestales que valoricen las áreas forestales como recursos socio-económicos. La tesis se ha desarrollado según la modalidad de compendio de publicaciones, incluyendo cuatro trabajos que dan respuesta a los objetivos planteados. En primer lugar, se realiza un análisis comparativo de distintos modelos de regresión, paramétricos y no paramétricos, para estimar la pérdida de biomasa y las emisiones de CO2 en un incendio, mediante la utilización de datos LiDAR-PNOA y datos ópticos del satélite Landsat 8. En segundo lugar, se explora la idoneidad de distintos métodos de selección de variables para estimar biomasa total en masas de Pino carrasco utilizando datos LiDAR de baja densidad. En tercer lugar, se cuantificó y cartografió la biomasa residual forestal en el conjunto de masas de Pino carrasco de Aragón y se evaluó el efecto de diversas características de la tecnología LiDAR y de las variables ambientales en la precisión de los modelos. Finalmente, se analiza la transferibilidad temporal de modelos para estimar a escala regional siete variables forestales, utilizando datos LiDAR-PNOA multi-temporales. A este respecto, se compararon dos enfoques que permiten analizar la transferibilidad temporal: en primer lugar, el método directo ajusta un modelo para un determinado punto en el tiempo y estima las variables forestales para otra fecha; por otra parte, el método indirecto ajusta dos modelos diferentes para cada momento en el tiempo, estimando las variables forestales en dos fechas distintas. Los resultados obtenidos y las conclusiones derivadas de la investigación indican que la técnica basada en coeficientes de correlación de Spearman y el método de selección por todos los subconjuntos constituyen los métodos de selección de métricas LiDAR más apropiados para la modelización. El análisis de métodos de regresión para la estimación de variables forestales indicó que su idoneidad variaba de acuerdo con el tamaño y complejidad de la muestra. El método de regresión linear multivariante arrojó mejores resultados que los métodos no-paramétricos en el caso de muestras pequeñas. Por el contrario, el método Support Vector Machine produjo los mejores resultados con muestras grandes. El incremento de la densidad de puntos y de los valores de penetración de los pulsos LiDAR en el dosel, así como la presencia de ángulos de escaneo pequeños, incrementó la exactitud de los modelos. De forma similar, el incremento de la pendiente y la presencia de arbustos en el sotobosque implican una reducción en la exactitud de los modelos. En la estimación de variables forestales utilizando datos LiDAR multi-temporales, aunque la utilización del enfoque indirecto arrojó generalmente una mayor precisión en los modelos, se obtuvieron resultados similares con el enfoque directo, el cual constituye una alternativa óptima para reducir el tiempo de modelado y los costes de realización de trabajo de campo. La fusión de datos LiDAR y datos óptico-pasivos ha evidenciado la conveniencia de los métodos aplicados para cuantificar las emisiones de CO2 a la atmósfera generadas por un incendio. Esta metodología constituye una alternativa adecuada cuando no existen datos multi-temporales LiDAR. La estimación de variables de inventario forestal, así como de diversas fracciones de biomasa, como la biomasa total y la biomasa residual forestal, proporciona información valiosa para caracterizar las masas forestales mediterráneas de Pino carrasco y mejorar la gestión forestalForest ecosystems provide environmental and economic services of great importance to the society. The characterization of these environments has been traditionally accomplished with intense field work. In comparison, the application of remote sensing tools provides a greater overview over large spatial and temporal scales while minimizing costs. Although optical data and Synthetic Aperture Radar (SAR) allow estimating forest stand variables, the development of LiDAR sensors such as Airborne Laser Scanner (ALS) have improved three-dimensional characterization of forest structure. The availability of two ALS public data coverages for the Spanish territory, provided by the National Plan for Aerial Ortophotography (PNOA), opens new research opportunities to generate useful information for forest management. This PhD Thesis used low-density ALS-PNOA data to estimate different forest variables, with support in fieldwork, in the Aleppo pine (Pinus halepensis Miller) forests of Aragón region. The addressed research is relevant mainly for two reasons: first, the examination of suitable methodologies and error sources in forest stand variables prediction at local (small area) and regional scales (large area), and second, the application of ALS data to the characterization of forest areas as a socio-economic reservoir. This PhD Thesis is a compendium of four scientific papers, which sequentially answer the objectives established. Firstly, a comparative analysis of different parametric and non-parametric models was performed to estimate biomass losses and CO2 emissions using low-density ALS and Landsat 8 data in a burnt Aleppo pine forest. Secondly, we assess the suitability of variable selection methods when estimating total biomass in Aleppo pine forest stands using low-density ALS data. In the third manuscript, the quantification and mapping of forest residual biomass in Aleppo pine forest of Aragón region and the assessment of the effect of ALS and environmental variables in model accuracy were accomplished. Finally, the temporal transferability of seven forest stands attributes modelling using multi-temporal ALS-PNOA data in Aleppo pine forest at regional scale was explored. In this case, the temporal transferability was assessed comparing two methodologies; the direct and indirect approach. The first one fits a model for one point in time and estimates the forest variable for another point in time. The indirect approach adjusts two models in different points in time to estimate the forest variables in two different dates. The results derived from this research indicated that Spearman’s rank and All Subset Selection are the most appropriate methods in the ALS metrics selection step commonly applied in modelling. The suitability of the regression methods depends on the sample size and complexity. Thus, multivariate linear regression outperformed non-parametric methods with small samples while support vector machine was the most accurate method with larger samples. Model accuracy increased with higher point density and canopy pulse penetration, while decreasing with wider scan angles. Furthermore, the presence of steep slopes and shrub reduced model performance. In the case of forest stand variables prediction using multi-temporal ALS data, although the indirect approach produced generally a higher precision, the direct approach provided similar results, constituting a suitable alternative to reduce modelling time and fieldwork costs. The fusion of ALS and passive optical data have evidenced the suitability of this information for quantifying wildfire CO2 emissions to atmosphere, constituting a good alternative when multi-temporal ALS data is not available. The estimation of forest inventory variables as well as different biomass fractions, such as total biomass and forest residual biomass, provided valuable information to characterize Mediterranean Aleppo pine forests and improve forest management.<br /

    Data assimilation of forest variables predicted from remote sensing data

    Get PDF
    Forest information for management planning is today gathered through a combination of field inventories and remote sensing, but the available flow of remote sensing data over time is not yet utilized for continuously improving predictions of forest variables. In the thesis, the utility of data assimilation, in particular the Extended Kalman filter, for forest variable prediction is investigated. This is an iterative algorithm, where data are repeatedly merged and forecasted. The test site was a forest estate in southern Sweden (Lat. 58°N Long. 13°E). Data assimilation of remote sensing predictions of canopy surface models from digital aerial photogrammetry in paper I and predictions based on interferometric synthetic aperture radar in paper II provided a marginally improved accuracy. This gain was, however, far from the theoretical potential of data assimilation. The reason for this was suggested to be correlation of errors of subsequent predictions across time, i.e. residuals from different predictions over a certain forest area had a similar size and sign. In paper III these error correlations were quantified, and an example of the importance of considering them was given. In paper IV, it was shown that classical calibration could be applied to counteract regression toward the mean, and thus reduce the error correlations. In paper V, it was shown that data assimilation applied to a time series of data from various remote sensing sensors could be used to, over time, improve initial predictions based on aerial laser scanning data. It was also shown how the combination of classical calibration and a suggested modified version of the extended Kalman filter, that accounted for error correlations, contributed to these promising results

    Remote sensing for the Spanish forests in the 21st century: a review of advances, needs, and opportunities

    Get PDF
    [EN] Forest ecosystems provide a host of services and societal benefits, including carbon storage, habitat for fauna, recreation, and provision of wood or non-wood products. In a context of complex demands on forest resources, identifying priorities for biodiversity and carbon budgets require accurate tools with sufficient temporal frequency. Moreover, understanding long term forest dynamics is necessary for sustainable planning and management. Remote sensing (RS) is a powerful means for analysis, synthesis, and report, providing insights and contributing to inform decisions upon forest ecosystems. In this communication we review current applications of RS techniques in Spanish forests, examining possible trends, needs, and opportunities offered by RS in a forestry context. Currently, wall-to-wall optical and LiDAR data are extensively used for a wide range of applications-many times in combination-whilst radar or hyperspectral data are rarely used in the analysis of Spanish forests. Unmanned Aerial Vehicles (UAVs) carrying visible and infrared sensors are gaining ground in acquisition of data locally and at small scale, particularly for health assessments. Forest fire identification and characterization are prevalent applications at the landscape scale, whereas structural assessments are the most widespread analyses carried out at limited extents. Unparalleled opportunities are offered by the availability of diverse RS data like those provided by the European Copernicus programme and recent satellite LiDAR launches, processing capacity, and synergies with other ancillary sources to produce information of our forests. Overall, we live in times of unprecedented opportunities for monitoring forest ecosystems with a growing support from RS technologies.Part of this work was funded by the Spanish Ministry of Science, innovation and University through the project AGL2016-76769-C2-1-R "Influence of natural disturbance regimes and management on forests dynamics. structure and carbon balance (FORESTCHANGE)".Gómez, C.; Alejandro, P.; Hermosilla, T.; Montes, F.; Pascual, C.; Ruiz Fernández, LÁ.; Álvarez-Taboada, F.... (2019). Remote sensing for the Spanish forests in the 21st century: a review of advances, needs, and opportunities. Forest Systems. 28(1):1-33. https://doi.org/10.5424/fs/2019281-14221S133281Ungar S, Pearlman J, Mendenhall J, Reuter D, 2003. Overview of the Earth Observing-1 (EO-1) mission. IEEE T Geosci Remote 41: 1149−1159.Valbuena R, Mauro F, Arjonilla FJ, Manzanera JA, 2011. Comparing Airborne Laser Scanning-Imagery Fusion Methods Based on Geometric Accuracy in Forested Areas. Remote Sens Environ 115(8): 1942-1956.Valbuena R, Mauro F, Rodríguez-Solano R, Manzanera JA, 2012. Partial Least Squares for Discriminating Variance Components in GNSS Accuracy Obtained Under Scots Pine Canopies. Forest Sci 58(2): 139-153.Valbuena R, De Blas A, Martín Fernández S, Maltamo M, Nabuurs GJ, Manzanera JA, 2013a. Within-Species Benefits of Back-projecting Laser Scanner and Multispectral Sensors in Monospecific P. sylvestris Forests. Eur J Remote Sens 46: 401-416.Valbuena R, Maltamo M, Martín-Fernández S, Packalen P, Pascual C, Nabuurs G-J, 2013b. Patterns of covariance between airborne laser scanning metrics and Lorenz curve descriptors of tree size inequality. Can J Remote Sens 39(1): 18-31.Valbuena R, Packalen P, García-Abril A, Mehtätalo L, Maltamo M, 2013c. Characterizing Forest Structural Types and Shelterwood Dynamics from Lorenz-based Indicators Predicted by Airborne Laser Scanning. Can J For Res 43: 1063-1074.Valbuena R, Maltamo M, Packalen P, 2016a. Classification of Multi-Layered Forest Development Classes from Low-Density National Airborne LiDAR Datasets. Forestry 89: 392-341.Valbuena R, Maltamo M, Packalen P, 2016b. Classification of Forest Development Stages from National Low-Density LiDAR Datasets: a Comparison of Machine Learning Methods. Revista de Teledetección 45: 15-25.Valbuena R, Hernando A, Manzanera JA, Martínez-Falero E, García-Abril A, Mola-Yudego B, 2017a. Most Similar Neighbour Imputation of Forest Attributes Using Metrics Derived from Combined Airborne LIDAR and Multispectral Sensors. Int J Digit Earth 11 (12): 1205-1218.Valbuena R, Hernando A, Manzanera JA, Görgens EB, Almeida DRA, Mauro F, García-Abril A, Coomes DA, 2017b. Enhancing of accuracy assessment for forest above-ground biomass estimates obtained from remote sensing via hypothesis testing and overfitting evaluation. Eco Mod 622: 15-26.Valbuena-Rabadán M, Santamaría-Pe-a J, Sanz-Adán F, 2016. Estimation of diameter and height of individual trees for Pinus sylvestris L. based on the individualising of crowns using airborne LiDAR and the National Forest Inventory data. For Sys 25(1): e046Varo-Martínez MA, Navarro-Cerrillo RM, Hernández-Clemente R, Duque-Lazo J, 2017. Semi-automated stand delineation in Mediterranean Pinus sylvestris plantations through segmentation of LiDAR data: The influence of pulse density. Int J Appl Earth Obs 56: 54-64.Vázquez de la Cueva A, 2008. Structural attributes of three forest types in central Spain and Landsat ETM+ information evaluated with redundancy analysis. Int J Remote Sens 29: 5657-5676.Verdú F, Salas J, 2010. Cartografía de áreas quemadas mediante análisis visual de imágenes de satélite en la Espa-a peninsular para el periodo 1991–2005. Geofocus 10: 54–81.Viana-Soto A, Aguado I, Martínez S, 2017. Assessment of post-fire vegetation recovery using fire severity and geographical data in the Mediterranean region (Spain). Environments 4: 90.Vicente-Serrano SG, Pérez-Cabello F, Lasanta T, 2011. Pinus halepensis regeneration after a wildfire in a semiarid environment: assessment using multitemporal Landsat images. Int J Wildland Fire 20Ñ 195-208.Viedma O, Quesada J, Torres I, De Santis A, Moreno JM, 2015. Fire severity in a large fire in a Pinus pinaster forest is highly predictable from burning conditions, stand structure, and topography. Ecosystems 18: 237-250.Yebra M, Chuvieco E, 2009. Generation of a species-specific look-up table for fuel moisture content assessment. IEEE J Selected topics in applied earth observation and RS 2 (1): 21-26.White JC, Wulder MA, Varhola A, Vastaranta M, Coops NC, Cook BD, Pitt D, Woods M, 2013. A best practices guide for generating forest inventory attributes from airborne laser scanning data using an area-based approach. Natural Resources Canada, Canadian Forest Service, Canadian Wood Fibre Centre, Victoria, BC. Information Report FI-X-010, 39 pp.White JC, Wulder MA, Hobart GW, Luther JE, Hermosilla T, Griffiths P, Coops NC, Hall RJ, Hostert P, Dyk A, Guindon L, 2014. Pixel-based image compositing for large-area dense time series applications and science. Can J Remote Sens 40 (3): 192-212.White JC, Coops NC, Wulder MA, Vastaranta M, Hilker T, Tompalski P, 2016. Remote sensing technologies for enhancing forest inventories: a review. Can J Remote Sens 42: 619-641.White JC, Wulder MA, Hermosilla T, Coops NC, Hobart GW, 2017. A nationwide characterization of 25 years of forest disturbance and recovery for Canada using Landsat time series. Remote Sens Environ 194: 303-321.Wulder MA, 1998. Optical remote-sensing techniques for the assessment of forest inventory and biophysical parameters. Progr Phys Geog 22 (4): 449-476.Wulder MA, Dymond CC, 2004. Remote sensing in survey of Mountain Pine impacts: review and recommendations. MPBI Report. Canadian Forest Service. Natural Resources Canada, Victoria, BC, Canada. 89 pp.Wulder MA, Masek JG, Cohen WB, Loveland TR, Woodcock CE, 2012. Opening the archive: how free data has enabled the science and monitoring promise of Landsat. Remote Sens Environ 122: 2-10.Wulder MA, Hilker T, White JC, Coops NC, Masek JG, Pflugmacher D, Crevier Y, 2015. Virtual constellations for global terrestrial monitoring. Remote Sens Environ 170: 62-76.Wulder MA, White JC, Loveland TR, Woodcock CE, Belward AS, Cohen WB, Fosnight EA, Shaw J, Masek JG, Roy DP, 2016. The global Landsat archive: Status, consolidation, and direction. Remote Sens Environ 185: 271-283.Xie Q, Zhu J, Wang Ch, Fu H, López-Sánchez JM, Ballester-Berman JD, 2017. A modified dual-baseline PolInSAR method for forest height estimation. Remote Sens-Basel 9 (8): 819.Xie Y, Sha Z, Yu M, 2008. Remote sensing imagery in vegetation mapping: a review. J Plant Ecol 1 (1): 9-23.Zald HSJ, Wulder MA, White JC, Hilker T, Hermosilla T, Hobart GW, Coops NC, 2016. Integrating Landsat pixel composites and change metrics with LiDAR plots to predictively map forest structure and aboveground biomass in Saskatchewan, Canada. Remote Sens Environ 176: 188-201.Zarco-Tejada PJ, Diaz-Varela R, Angileri V, Loudjani P, 2014. Tree height quantification using very high resolution imagery acquired from an unmanned aerial vehicle (UAV) and automatic 3D photo-reconstruction methods. Eur J Agron 55: 89-99.Zarco-Tejada PJ, Hornero A, Hernández-Clemente R, Beck PSA, 2018. Understanding the temporal dimension of the red-edge spectral region for forest decline detection using high-resolution hyperspectral and Sentinel-2A imagery. ISPRS J Photogramm 137: 134-148

    Developing an Enhanced Forest Inventory in Maine Using Airborne Laser Scanning: The Role of Calibration Plot Design and Data Quality

    Get PDF
    Forests provide essential ecosystem services such as carbon sequestration, clean water, lumber, and more. It is important that foresters be able to collect accurate forest inventories, especially in a changing climate. Foresters need to know what is in the forest not only to manage for the economic benefits, but also to manage for social acceptability and ecological soundness to prevent further degradation of these ecosystem services. One way to collect accurate and precise forest inventories is through the utilization of remote sensing products. These enhanced forest inventories (EFIs) can be done at varying resolutions that are contingent on the plot design creating wall-to-wall raster data and thus, complete spatial knowledge of these estimates can be determined. A popular remote sensing product to be used to create EFIs is airborne laser scanning (ALS). Although best practices guides have been created in other countries, research on the best plot type and design has not been done for Maine’ structurally diverse and intensively managed forests. The goal of this study was to investigate a range of forest designs to determine the best ground-based calibration plot specifications for developing EFI models from ALS data in Maine. We developed a model that compared fixed versus variable radius plots, sampling size and intensity, and sample design with ALS data to map EFI variables like percent softwood, volume, BA, and tree count. Data were collected from the Penobscot Experimental Forest (PEF) in summer 2022 that had two different plot types, two sample sizes and sampling intensities, and two different sample designs. Data from other study sites were provided to us from our partners that only included one plot type, sample size and intensity, and sample design each. For validation, we used data collected in the Demeritt Forest also in summer 2022. We assessed R2, root mean square error (RMSE), coefficient of variation (CV), and mean bias for models with varying forest inventory designs to establish the best calibration plot for ALS in our study areas. It was determined that a principal component analysis for plot placement gave better model results than randomly placed plots. Also, fixed radius plots (FRPs) and a smaller sample size generated better evaluation statistics when predicting percent softwood, volume, and tree count in the PEF. In contrast, VRPs with a smaller sample size provided better model outcomes when predicting basal area (BA). Once the best forest inventory calibration plot design was identified and validated, we applied it to the PEF to estimate aboveground biomass. Although there were obvious trends in our results, there is still more research to be done to ensure that our potential recommendations are correct. It seems that there was better model performance in spruce-fir forest types than other forest types like oak-pine. Our results provide insights on an optimal approach for specific conditions and underscore the importance of future research to assist decision-making on plot type and sample design for the broad range of conditions on forested landscapes in Maine

    Data assimilation in forest inventories at stand level

    Get PDF
    Data assimilation (DA) is a potentially interesting method for forestry if new stand level data about forest attributes are made available at short time intervals. DA is a method where an estimate is forecasted by a model and updated when a new measurement is made. A weighted average of the forecast and the measurement is obtained as the new current state, which increases the accuracy of the estimate. In areas like meteorology DA has been successfully applied for a long time. In this case the availability of very frequent satellite data makes it possible to update weather forecasts several times a day and obtain accurate forecasts. Forest inventories in the traditional way, by field campaigns, are expensive and thus provide new data only every 10-20 years. During this long time a lot of changes due to growth, management and disturbances might occur in the forest stands of interest. Thus, old data are discarded when new data are obtained from a new campaign, and the forecasts of the current state are only based on the last measurement. Since many types of remotely sensed data, e.g. from laser scanners, optical satellite sensors, and radars, have become available during recent years, there are now good opportunities to apply DA also in the context of forest inventory. In this thesis I focus on stand level forest inventories. A first theoretical study with simulated data showed that DA has a strong potential to be successfully applied in forestry and increase the accuracy of inventory estimates. However, the second study, the first with empirical data, pointed at problems to obtain equally good results in practice. In the third study, correlated prediction errors were identified as the plausible reason for this. The higher the correlations the less was found to be gained by applying DA. Despite several remaining challenges, the overall conclusion is that DA has a potential to make forest inventories more efficient in the future

    The global tree carrying capacity (keynote)

    Full text link
    editorial reviewe

    Remote sensing technologies for enhancing forest inventories: a review

    No full text
    Forest inventory and management requirements are changing rapidly in the context of an increasingly complex set of economic, environmental, and social policy objectives. Advanced remote sensing technologies provide data to assist in addressing these escalating information needs and to support the subsequent development and parameterization of models for an even broader range of information needs. This special issue contains papers that use a variety of remote sensing technologies to derive forest inventory or inventory-related information. Herein, we review the potential of 4 advanced remote sensing technologies, which we posit as having the greatest potential to influence forest inventories designed to characterize forest resource information for strategic, tactical, and operational planning: airborne laser scanning (ALS), terrestrial laser scanning (TLS), digital aerial photogrammetry (DAP), and high spatial resolution (HSR)/very high spatial resolution (VHSR) satellite optical imagery. ALS, in particular, has proven to be a transformative technology, offering forest inventories the required spatial detail and accuracy across large areas and a diverse range of forest types. The coupling of DAP with ALS technologies will likely have the greatest impact on forest inventory practices in the next decade, providing capacity for a broader suite of attributes, as well as for monitoring growth over time

    Wall-to-Wall Mapping of Forest Biomass and Wood Volume Increment in Italy

    Get PDF
    Several political initiatives aim to achieve net-zero emissions by the middle of the twenty-first century. In this context, forests are crucial as a carbon sink to store unavoidable emissions. Assessing the carbon sequestration potential of forest ecosystems is pivotal to the availability of accurate forest variable estimates for supporting international reporting and appropriate forest management strategies. Spatially explicit estimates are even more important for Mediterranean countries such as Italy, where the capacity of forests to act as sinks is decreasing due to climate change. This study aimed to develop a spatial approach to obtain high-resolution maps of Italian forest above-ground biomass (ITA-BIO) and current annual volume increment (ITA-CAI), based on remotely sensed and meteorological data. The ITA-BIO estimates were compared with those obtained with two available biomass maps developed in the framework of two international projects (i.e., the Joint Research Center and the European Space Agency biomass maps, namely, JRC-BIO and ESA-BIO). The estimates from ITA-BIO, JRC-BIO, ESA-BIO, and ITA-CAI were compared with the 2nd Italian NFI (INFC) official estimates at regional level (NUT2). The estimates from ITA-BIO are in good agreement with the INFC estimates (R2 = 0.95, mean difference = 3.8 t ha−1), while for JRC-BIO and ESA-BIO, the estimates show R2 of 0.90 and 0.70, respectively, and mean differences of 13.5 and of 21.8 t ha−1 with respect to the INFC estimates. ITA-CAI estimates are also in good agreement with the INFC estimates (R2 = 0.93), even if they tend to be slightly biased. The produced maps are hosted on a web-based forest resources management Decision Support System developed under the project AGRIDIGIT (ForestView) and represent a key element in supporting the new Green Deal in Italy, the European Forest Strategy 2030 and the Italian Forest Strategy.8n

    The Development of Regional Forest Inventories Through Novel Means

    Get PDF
    For two decades Light Detection and Ranging (LiDAR) data has been used to develop spatially-explicit forest inventories. Data derived from LiDAR depict three-dimensional forest canopy structure and are useful for predicting forest attributes such as biomass, stem density, and species. Such enhanced forest inventories (EFIs) are useful for carbon accounting, forest management, and wildlife habitat characterization by allowing practitioners to target specific areas without extensive field work. Here in New England, LiDAR data covers nearly the entire geographical extent of the region. However, until now the region’s forest attributes have not been mapped. Developing regional inventories has traditionally been problematic because most regions – including New England – are comprised of a patchwork of datasets acquired with various specifications. These variations in specifications prohibit developing a single set of predictive models for a region. The purpose of this work is to develop a new set of modeling techniques, allowing for EFIs consisting of disparate LiDAR datasets. The work presented in the first chapter improves upon existing LiDAR modeling techniques by developing a new set of metrics for quantifying LiDAR based on ecological ii principles. These fall into five categories: canopy height, canopy complexity, individual tree attributes, crowding, and abiotic. These metrics were compared to those traditionally used, and results indicated that they are a more effective means of modeling forest attributes across multiple LiDAR datasets. In the following chapters, artificial intelligence (AI) algorithms were developed to interpret LiDAR data and make forest predictions. After settling on the optimal algorithm, we incorporated satellite spectral, disturbance, and climate data. Our results indicated that this approach dramatically outperformed the traditional modeling techniques. We then applied the AI model to the region’s LiDAR, developing 10 m resolution wall-to-wall forest inventory maps of fourteen forest attributes. We assessed error using U.S. federal inventory data, and determined that our EFIs did not differ significantly in 33, 25, and 30/38 counties when predicting biomass, percent conifer, and stem density. We were ultimately able to develop the region’s most complete and detailed forest inventories. This will allow practitioners to assess forest characteristics without the cost and effort associated with extensive field-inventories

    Temporal changes in mediterranean pine forest biomass using synergy models of ALOS PALSAR-Sentinel 1-Landsat 8 Sensors

    Get PDF
    Currently, climate change requires the quantification of carbon stored in forest biomass. Synthetic aperture radar (SAR) data offers a significant advantage over other remote detection measurement methods in providing structural and biomass-related information about ecosystems. This study aimed to develop non-parametric Random Forest regression models to assess the changes in the aboveground forest biomass (AGB), basal area (G), and tree density (N) of Mediterranean pine forests by integrating ALOS-PALSAR, Sentinel 1, and Landsat 8 data. Variables selected from the Random Forest models were related to NDVI and optical textural variables. For 2015, the biomass models with the highest performance integrated ALS-ALOS2-Sentinel 1-Landsat 8 data (R2 = 0.59) by following the model using ALS data (R2 = 0.56), and ALOS2-Sentinel 1-Landsat 8 (R2 = 0.50). The validation set showed that R2 values vary from 0.55 (ALOS2-Sentinel 1-Landsat 8) to 0.60 (ALS-ALOS2-Sentinel 1-Landsat 8 model) with RMSE below 20 Mg ha−1. It is noteworthy that the individual Sentinel 1 (R2 = 0.49). and Landsat 8 (R2 = 0.47) models yielded equivalent results. For 2020, the AGB model ALOS2-Sentinel 1-Landsat 8 had a performance of R2 = 0.55 (validation R2 = 0.70) and a RMSE of 9.93 Mg ha−1. For the 2015 forest structural variables, Random Forest models, including ALOS PAL-SAR 2-Sentinel 1 Landsat 8 explained between 30% and 55% of the total variance, and for the 2020 models, they explained between 25% and 55%. Maps of the forests’ structural variables were generated for 2015 and 2020 to assess the changes during this period using the ALOS PALSAR 2-Sentinel 1-Landsat 8 model. Aboveground biomass (AGB), diameter at breast height (dbh), and dominant height (Ho) maps were consistent throughout the entire study area. However, the Random Forest models underestimated higher biomass levels (>100 Mg ha−1) and overestimated moderate biomass levels (30–45 Mg ha−1). The AGB change map showed values ranging from gains of 43.3 Mg ha−1 to losses of −68.8 Mg ha−1 during the study period. The integration of open-access satellite optical and SAR data can significantly enhance AGB estimates to achieve consistent and long-term monitoring of forest carbon dynamics
    corecore