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Abstract: Several political initiatives aim to achieve net-zero emissions by the middle of the twenty-
first century. In this context, forests are crucial as a carbon sink to store unavoidable emissions.

Assessing the carbon sequestration potential of forest ecosystems is pivotal to the availability of
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Citation: Giannetti, F.; Chirici, G.; g . . . . .
Vangi, E.; Cotona, P; Masell, F; countries such as Italy, where the capacity of forests to act as sinks is decreasing due to climate

Chiesi, M.; D’Amico, G.; Puletti, N.
Wall-to-Wall Mapping of Forest
Biomass and Wood Volume
Increment in Italy. Forests 2022, 13,
1989. https://doi.org/10.3390/

change. This study aimed to develop a spatial approach to obtain high-resolution maps of Italian
forest above-ground biomass (ITA-BIO) and current annual volume increment (ITA-CAI), based on
remotely sensed and meteorological data. The ITA-BIO estimates were compared with those obtained
with two available biomass maps developed in the framework of two international projects (i.e.,
the Joint Research Center and the European Space Agency biomass maps, namely, JRC-BIO and

f13121989 ESA-BIO). The estimates from ITA-BIO, JRC-BIO, ESA-BIO, and ITA-CAI were compared with the

2nd Italian NFI (INFC) official estimates at regional level (NUT2). The estimates from ITA-BIO are in
good agreement with the INFC estimates (R? = 0.95, mean difference = 3.8 t ha—!), while for JRC-BIO
and ESA-BIO, the estimates show R? of 0.90 and 0.70, respectively, and mean differences of 13.5 and
of 21.8 t ha~! with respect to the INFC estimates. ITA-CAI estimates are also in good agreement with
the INFC estimates (R? = 0.93), even if they tend to be slightly biased. The produced maps are hosted
on a web-based forest resources management Decision Support System developed under the project
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s _ 1. Introduction
This article is an open access article

Measuring the amount of CO; stocked in forest ecosystems is mandatory to support
the new European (EU) Forest Strategy for 2030, a flagship initiative of the European
Attribution (CC BY) license (https://  Green Deal, in sight of achieving neutrality with respect to greenhouse gas emission in
creativecommons.org/licenses /by / 2050 [1,2]. In this context, the estimation of forest biomass is pivotal to evaluate the carbon
40/). sequestration potential of forest ecosystems [3-5].
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As reported by Ruiz-Peinado et al. [3], the assessment of carbon balance and carbon
sink is critical in Mediterranean areas, where in the last years, the capacity of forests to
act as sinks is decreasing due to the climate change (e.g., hot and dry summers, irregular
precipitations, increasing temperatures) and to the increasing frequency of extreme forest
disturbances [4,6]. For example, Vayreda et al. [7] underline that climate change is causing
a reduction in the carbon sink capacity of unmanaged Spanish forests due to the lower
water availability. For these reasons, national-level accurate estimations of forest biomass
and carbon fluxes are also critical to support sustainable forest management and specific
silvicultural systems that can help the maintenance of carbon sink [3,5] under an evidence-
based framework [8].

At EU scale, various maps of forest biomass are available [9], such as those by Thurner
etal. [10], Barredo et al. [11], Gallaun et al. [12], Kindermann et al. [13], Baccini et al. [14],
and Santoro [15]. However, as stressed by the Joint Research Center (JRC) in 2020 [16], the
mentioned maps show high relative mean square error (RMSE) ranging from 29% to 40% at
the national level. JRC has deemed such maps unreliable and, in 2020, developed a forest
biomass map (JRC-BIO) in line with the statistics of National Forest Inventories (NFIs):
this map has a 100 m x 100 m spatial resolution, was constructed applying a bias-removal
approach to the Santoro map [15], and refers to the nominal year 2010. The European Space
Agency (ESA), with the aim of quantifying changes in carbon stored in forests, provided
the global above-ground biomass maps (ESA-BIO) at 1 km x 1 km for the years 2010, 2017,
and 2018 by exploiting synthetic aperture radar data [17].

Various authors underline that global or continental forest maps are not suitable to
quantify forest variables with high accuracy at national level [18,19]. For those reasons,
countries usually adopt aggregate statistics of forest biomass, growing stock volume, and
volume increments derived from NFIs to estimate the CO, fluxes in the context of interna-
tional agreements [20-23]. Aggregate statistics of the NFI enable to develop strategies over
large areas but do not provide spatial details to assess the biomass and CO, fluxes over
small areas [23]; so, they are unable to support sustainable forest management [24].

The spatial detail over small areas can be achieved moving from conventional NFIs
to Enhanced Forest Inventories (EFIs) [25] that, by integrating NFI plot measurements
with remote sensing data, can provide estimates of forest variables, such as growing
stock volume (GSV) [23,26-31], annual volume increments [32-34], and biomass [29,31], at
various spatial scales. Such an approach enables to analyze changes over spatial scales,
from national to small scale [23,24], and the information from EFIs can be used for multiple
purposes such as to support sustainable management of forest estates by implementing
the maps in Forest Information Systems (FIS) and/or in Decision Support System (DSS),
besides designing forest management policy strategies.

The main difference between maps developed at global/continental level and those
developed in the context of EFIs is the spatial scale. The forest resource maps developed
in the context of EFIs are produced at a fine spatial resolution (<30 m x 30 m), which is
consistent with the size of the field sampling units and can be used to implement operational
FIS and DSS.

The EFI approach is well established in many North [24] and Central Europe Countries
(e.g., Switzerland [35] and Germany [36]), while in the EU Mediterranean ones only few
examples are available (Spain: Novo-Fernandez et al. [37]; Italy: Chirici et al. [23], Vangi
et al. [26], Chirici et al. [32]; Greece: Chrysafis et al. [38,39]).

In Spain, Novo-Fernandez et al. [37] and Pascual et al. [40] demonstrated that the
NFI plots can be coupled with Airborne Laser Scanning (ALS) to obtain accurate GSV
estimates, underlining that Spanish conventional NFI might be transformed to ALS-based
NFI. Researches conducted in Italy on both broadleaved and coniferous forests with ALS
show that GSV can be predicted at stand level with suitable precision [41-43]. However,
Italy has no wall-to-wall ALS data coverage [18]; so, various authors have investigated the
potential of using satellite data coupled with NFI plot data for predicting forest variables
wall-to-wall. Chirici et al. [23] and Vangi et al. [26] showed that GSV can be predicted
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at fine spatial scale (23 m x 23 m) using Landsat and auxiliary variables (e.g., climate
and orographic). Chirici et al. [32] demonstrated also that, using NFI data, Moderate
Resolution Imaging Spectroradiometer (MODIS), ancillary data, and the wall-to-wall GSV
map [23] allows mapping the current annual increment (CAI) in Tuscany Region at a scale of
23 m x 23 m by integrating two ecophysiologically-based models (C-Fix and BIOME-BGC).

Forests in Italy are the largest terrestrial ecosystems, covering more than 11 million
ha (37% of Italian land). Italian forests contain more than 569 million of tons of organic
carbon above ground [44]. It is mandatory to set up a methodology to develop the Italian
forest variables maps, which provides spatially explicit estimates of biomass and annual
increment. Since plot measurements from the last Italian NFI (hereafter called INFC) are
not yet available [44,45], we developed the methodology here presented by using the plot
data from 2005.

This paper is aimed at the following: (i) illustrating the developed methodology to
elaborate wall-to-wall forest biomass and CAI maps of Italy (i.e., the ITA-BIO and ITA-CAI
maps); (ii) comparing the biomass estimates derived from ITA-BIO with those obtained
from INFC and from JRC-BIO and ESA-BIO; (iii) combining the INFC biomass and CAI field
observations with the ITA-BIO and ITA-CAI maps to produce model-assisted estimates of
biomass and CAI at the sub-national level.

2. Materials and Methods
2.1. Study Area

Italy covers over 301,000 km? and is divided into 21 local administrative Regions
(NUT2) and 107 administrative territorial lands (NUT3) following the European Statistical
Office classification (Eurostat). The Italian territory is characterized by large geographical
and topographical variability, from coastal areas to gentle hills and steep mountains. Even
the climate is characterized by high variability, mostly influenced by the distance from the
sea (Mediterranean basin) and the elevation (up to about 4800 m asl).

According to INFC, forest vegetation is characterized by deciduous broadleaves (68%),
mainly Quercus spp. (Q. petrea M., Q. pubescens W., Q. robur L., Q. cerris L.) and Fagus
sylvatica L., while the dominant conifers are Picea abies Karst, especially in the Alpine
regions, and Pinus spp. (Pinus sylvestris L., P. nigra Arnold, P. pinae L., P. pinaster Ait).
According to the European Forest Types classification system [46,47], 7 of the 14 EU Forest
Types classes occur in Italy.

2.2. Data
2.2.1. Italian National Forest Map

To develop the wall-to-wall ITA-BIO map, the wall-to-wall GSV map of Italy developed
by Vangi et al. (2021) [26] was exploited as input data (Figure 1). The GSV map was
produced by applying the Random Forest algorithm to INFC field observations and several
environmental (e.g., topographic, climatic, land cover and soil maps, bioregions) and
satellite predictors (e.g., Landsat bands, Global PALSAR/PALSAR-2 bands). The Italian
GSV map is a 23 m x 23 m raster grid that provides, for each pixel, the GSV expressed in
m3ha~1. More details can be found in Chirici et al. [23] and Vangi et al. [26].
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Figure 1. Italian National Growing Stock Map with a resolution of 23 m x 23 m [26].

2.2.2. Corine Land Cover Forest Types, Biomass Expansion Factors, and Wood Basic
Densities

To convert the GSV into biomass, two key information are needed: (i) spatial distribu-
tion of forest types; (ii) biomass expansion factors (BEFs) and wood basic densities (WBDs)
for each forest type.

Since a forest type map covering the whole national territory is not available for
Italy [18], we decided to use the CORINE Land Cover (CLC) at IV level (Table 1). More
specifically, we used the CLC IV level database of 2006 [48], having a nominal scale
1:100,000 and a minimum mapping unit of 25 ha. We rasterized the vector maps with
a spatial resolution of 23 m x 23 m, consistent with the GSV map and the national grid
developed by D’Amico et al. [18]. The obtained raster grid CLC Forest Types map was then
masked with the Italian forest mask developed by D’ Amico et al. [18] to delete non-forest areas.

Table 1. Nomenclature system of Corine Land Cover (IV Level) forest types, biomass expansion
factors (BEF), and wood basic densities (WBD) based on Federici et al. [49].

BEF WBD
(Volume of Aboveground Biomass/ (Dry Weight t/
CLC IV Forest Types Nomenclature Systems Volume of Growing Fresh Volume
Stock) of Aboveground Biomass m®)
3.1.1.1. Forest dominated by holm oak and/or cork oak 1.45 0.72
3.1.1.2. Forest dominated by deciduous oak (Turkey oak, downy 1.39 0.65
oak, farnetto oak, and/or English oak) : :
3.1.1.3. Mixed forests with a prevalence of mesophilic and
mesothermophilous broad-leaved trees (maple-ash, cute 1.28 0.66
black-ash)
3.1.1.4. Chestnut forests 1.33 0.49
3.1.1.5. Beech forests 1.36 0.61
3.1.1.6. Forests dominated by hygrophilous species (forests with a 1.39 041
prevalence of willows, poplars, and/or alders, etc.) : ’
3.1.2.1. Forests dominated by Mediterranean pines (stone pine, 153 053
pine maritime) and cypress ’ ’
3.1.2.2. Forests dominated by mountain and Mediterranean pines 133 0.47
(black pine and larch, Scots pine, Bosnian pine) : ’
3.1.2.3. Forests dominated by silver fir and/or spruce 1.34 0.38
3.1.2.5. Forests dominated by larch and/or stone pine 1.37 0.43
3.1.3.1 Mixed Forests with a prevalence of broad-leaved trees 1.53 0.53

3.1.3.2 Mixed Forests with a prevalence of conifers 1.37 0.43
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Then, for each CLC forest type, we derived the BEF and the WBD (Table 1) calculated
as the mean of the species present in each CLC forest type based on Federici et al. [49].

2.2.3. Biomass Maps from International Frameworks

As mentioned, we compared the ITA-BIO map here developed (Section 3) with two
products, JRC-BIO and ESA-BIO maps, which represent the most accurate maps available
for the Italian territory and refer to a nominal year (the 2010) closer to that of the INFC
data here used (the field survey of INFC finished in 2008, and, as underlined by McRoberts
et al. [50], two years of discrepancy should have minor impact on the comparison).

Both ESA-BIO and JRC-BIO, which provide above-ground biomass expressed in
t ha~!, were masked with the Italian forest mask developed by D’Amico et al. [18] to delete
non-forest area and to obtain products that are comparable with the one here developed.

2.2.4. Field Italian National Forest Inventory Plot Data

The field reference data were measured within 6782 plots surveyed in the framework
of the INFC [51]. The available plot geolocation has been the target coordinate of the
sampling unit. For each field plot, the biomass per hectare derived using the allometric
equation developed by Tabacchi et al. [52] and the CAI (m? ha~!) are available online via a
spatial database at https://www.inventarioforestale.org/ (accessed on 1 March 2021) [53].
Figure 2 shows the spatial distribution of the plots and the biomass measured in the field.
For more details about INFC, we refer to Chirici et al. [23].
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Figure 2. Spatial distribution of INFC plots with respective biomass classes [54].
2.3. Methods
2.3.1. Wall-to-Wall Forest Biomass Map
The GSV data were converted into biomass (BIO) following Federici et al. [49]:

BIO = GSV - BEF - WDB 1)

where GSV is the pixel value of growing stock volume (m® ha~!), BEF is the biomass
expansion factor of each CLC forest type, and WBD is the wood basic density of each CLC
forest type (Table 1).
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The obtained biomass map (ITA-BIO) has pixels of 23 m x 23 m reporting the forest
biomass in t ha=!.

2.3.2. Model-Assisted Estimation

To construct an inference for the mean value of biomass for a given survey area from
the ITA-BIO, JRC-BIO, and ESA-BIO maps, the model-assisted estimation approach was
adopted, exploiting the biomass measured in the 6782 INFC field plots as proposed by
Chirici et al. [23].

The map-based estimate of the mean biomass in a given forest area is

. 1N
Hmap = N 2,‘:1]/1‘ 2)

where N is the number of map units (23 m x 23 m pixels) in the area and ¥; is the biomass
of each map unit.

Then, the map-based estimate is adjusted for systematic errors by bias estimation
calculated as

— lw—, ,.
Bias (fmap) = = Y11 (9 — vi) 3)

n

where # is the number of INFC plots in the area, y; is the biomass measured in the i-th INFC
plot, and ¥; is the biomass predicted for the corresponding map unit.
The model-assisted estimate is the map estimate with the estimated bias subtracted:

ﬁmodel—ussisted = ﬁmap - BZ.AQS (ﬁmﬂp> (4)

while the standard error (SE) of fl,,04e1-assisted 15

(e;—2)° ©)

n
=1

. 1
SE(Dmodel-assisted) = \/n(n—l) 4

1

~ > 1vyvn
where¢; = (§; —y;) ande = 5 }I' ; e;.

2.3.3. Accuracy Assessment

To assess the accuracy of ITA-BIO, JRC-BIO, and ESA-BIO maps, we compared the
Pimodel-assisted PiOmass estimates with the INFC biomass statistics at NUT2 level (i.e., regional
level) freely available online at https://www.sian.it/inventarioforestale (accessed on 1
March 2021) (Table 2).

We calculated the coefficient of determination (R?) for each NUT2 between official NFI
estimates and .ﬁmodel—assisted'
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Table 2. finrr and f1,,04e1-assisted (With respective standard errors, SE) for the three considered biomass
maps (ITA-BIO, JRC-BIO, ESA-BIO) at NUT2 level.

INFC-BIO ITA-BIO JRC-BIO ESA-BIO
Region (NUT2) t‘ll?gljl (§/0E) ”m;nfle;-gslsisted t :aEfl ”m:’ilf;ESSiStEd ¢ ::il ”m;nille;-gssisted t :aEfl
Abruzzo 77.7 45 75.2 2.37 55.7 4.88 50.1 4.84
Alto Adige 130.5 4.3 123.9 3.96 116.7 7.69 106.1 6.18
Basilicata 64.3 6.7 53.0 2.83 46.6 5.54 394 5.66
Calabria 98.9 4.5 80.7 3.11 52.2 5.21 50.9 5.78
Campania 65.3 6 64.5 2.90 51.8 5.76 42.6 5.67
Emilia Romagna 73.5 3.6 70.8 2.32 64.2 4.31 52.3 3.99
Friuli-Venezia 107.7 49 114.9 3.64 101.0 7.45 98.8 6.26
Giulia
Lazio 63.7 45 62.9 2.12 48.5 4.51 41.6 3.94
Liguria 77.5 4.2 72.5 2.60 69.5 4.66 57.7 3.99
Lombardia 86.7 3.8 83.7 2.33 74.3 5.76 71.6 3.96
Marche 48 6.4 49.8 2.23 29.9 5.49 30.5 447
Molise 67.6 8.7 56.8 4.72 50.3 6.54 42.1 6.32
Piemonte 77.4 2.8 78.5 1.98 65.7 4.16 56.8 3.09
Puglia 49.2 10.7 44.5 4.28 53.8 7.42 35.9 8.06
Sardegna 37.8 5.3 27.0 1.68 28.5 2.82 16.8 3.47
Sicilia 50.4 6 34.8 2.55 15.8 4.54 14.3 3.84
Toscana 72.6 2.8 72.4 1.70 59.7 3.47 53.6 2.89
Trentino 122.2 4.3 123.7 3.71 115.5 7.33 108.5 5.99
Umbria 48.3 4.7 48.5 191 42.7 441 34.0 2.96
Valle d’Aosta 68.3 6.9 67.3 4.63 65.0 9.91 46.0 5.68
Veneto 98.3 4 98.8 2.82 93.4 6.22 78.3 431

2.3.4. CAI Modeling

The information used to produce the ITA-BIO map was coupled with meteorological
datasets to derive a wall-to-wall simulation of forest CAI Below, the main methodological
steps are summarized: a detailed description of the modeling strategy is reported by Maselli
et al. [55] and Chirici et al. [56], along with all the input data and the adopted assumptions.

The strategy is based on the combination of two models, C-Fix and BIOME-BGC, which
simulate the gross and net carbon fluxes of forest ecosystems. The estimates produced
by the two models are combined and corrected to account for the effects of natural and
human-induced disturbances affecting forest ecosystems. This is achieved including an
indicator of the distance from ecosystem equilibrium computed as the ratio between the
actual (measured or estimated) and potential (simulated by BIOME-BGC) GSV: the ratio
is used to correct the photosynthesis and respiration estimates obtained by the model
simulations [56], computing actual NPP (NPP,) as

NPP, = GPP-FC, — Rgr - FC5 — Rmn - NV (6)

where GPP, Rgr, and Rmn are the BIOME-BGC estimates of photosynthesis, growth, and
maintenance respirations, corrected for the GPP simulated by C-Fix; and the two terms
FCx (actual forest cover) and NV, (actual normalized volume) describe the ecosystem
proximity to the equilibrium condition [53]. Distinctively, NV, is the mentioned ratio
between the actual and potential GSV, and FC, represents the fraction of photosynthetic
radiation usable by the tree canopy, obtained by combining NV and the leaf area index
(LAI) following Beer’s law.
Finally, NPP4 can be converted into CAI by the following formula [38]:

CAI =NPP, - (SCA/BEF/BWD) - 2/100 @)
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where SCA is the stem carbon allocation ratio, defined for each forest type by BIOME-
BGC, while the values of BEF and BWD are taken again from Federici et al. [50]. The
multiplication by 2 accounts for the conversion from carbon to dry matter, and the division
by 100 for the change in magnitude from g m~2 to Mg ha™!.

Equations (6) and (7) were applied to yield the ITA-CAI map with a pixel size of
250 m for all Italian forests. The accuracy of this map was assessed against the INFC CAI
estimates at NUT2 level (i.e., regional level) freely available online at https://www.sian.it/
inventarioforestale (accessed on 1 March 2021).

3. Results

The ITA-BIO map is shown in Figure 3. The main patterns of Figure 2 are well
reproduced, with the lowest biomass values found in Sardinia and the highest on the Alps,
particularly in the north-east.

Table 2 reports the mean biomass values and the corresponding standard errors for
the Italian regions (NUT2), both derived from the INFC official statistics (fiyr;) and from
the map produced here (#,0de1-assisted Of ITA-BIO). In addition, there are the corresponding
values derived from the other two maps, ESA-BIO and JRC-BIO, for comparison. All
three maps provide comparable results both in terms of mean and standard error. The
coefficient of determination (R?) between the means from the considered maps and fiNF]
is greater than 0.70 (ITA-BIO = 0.95, ESA-BIO = 0.70, JRC-BIO = 0.90); underestimation
is less evident for ITA-BIO with respect to the other two maps (Figure 4). The standard
error of ITA-BIO is smaller than those of the two other biomass maps and ranges between
1.68 t ha—! in Toscana and Sardegna and 4.72 t ha~! in Molise (Table 2). The lowest differ-
ences in terms of fixr; and Ayodel-assisted fOr ITA-BIO are observed in Toscana (0.2 t ha™1),
Umbria (—0.2 tha™1), Veneto (—0.5 tha™1), Campania and Lazio (0.8 t ha~1), Valle d’Aosta
(1 tha™!), and Piemonte (—1.1 t ha™!), while larger differences are observed in Calabria
(18.2 t ha™1), Sicilia (15.6 t ha=!), Basilicata (11.3 t ha™1), Sardegna and Molise (10.8 t ha™1),
and Friuli-Venezia Giulia (—7.2 tha~!). ESA-BIO and JRC-BIO show the greatest differences
between fl,,odel-assisted aNd finr for Calabria (ESA-BIO: 46.7 t ha~!; JRC-BIO: 48 t ha™ 1),
Sicilia (ESA-BIO: 34.6 t ha—!; JRC-BIO: 36.1 t ha—!), and Basilicata (ESA-BIO: 17.7 t ha™*;
JRC-BIO: 24.9 t ha™!). In terms of differences between finr; and flodel-assisted, JRC-BIO
performs slightly better than ITA-BIO in Friuli-Venezia Giulia (JRC-BIO: 6.7 t ha~!; ITA-BIO:
—7.2 t ha~1), while in Puglia both maps produce comparable results (JRC-BIO: —4.6 tha™};
ITA-BIO: 4.7 t ha!), with JRC-BIO overestimating and ITA-BIO underestimating the mean
biomass. Regarding ESA-BIO, relevant differences between finr; and flodei-assisted are
observed, ranging between 8.9 t ha~! in Friuli Venezia Giulia and 48 t ha~! in Calabria.
ITA-BIO tends to slightly overestimate the mean biomass in Umbria, Veneto, Piemonte,
Trentino, and Marche, while underestimation is observed for all other regions. JRC-BIO
and ESA-BIO underestimate the mean biomass in all regions except for JRC-BIO in Puglia.
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Figure 4. (A—C) flyodel-gssisted from the three biomass maps at NUT2 level (A: ITA-BIO, B: ESA-
BIO, C: JRC-BIO) against fiyrj, with the black line being the 1:1 line. The biomass unit is t ha—1.
(D) fmodel-assisted ©f CAI map against fiyp;. The black line is the 1:1 line. The CAI unit is
m3 ha_lyear_l. The colors of the dots represent the standard errors (SE) derived from the maps.

The CAI variations shown in Figure 3 follow the main patterns of the forest GSV;
however, some differences are also due to forest types. The ITA-CAI map at NUT2 level
provides a good fit with fiyr; with R? equal to 0.93 (Figure 4). The CAI map is affected by
relatively small standard errors, ranging between 0.26 m3 ha~! year~! in Valle d’Aosta and
0.10 m® ha™! year’l in Lazio, Toscana, and Abruzzo. The ITA-CAI tends to overestimate
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CAl in all regions with respect to INFC (Table 3 and Figure 4). The smallest CAI differences
between finr; and fl,,,04e1-assisted are observed in Campania (—0.6 m3 ha~! year’l), Sicilia,
Sardegna, and Piemonte (—0.7 m® ha~! year~!), while the greatest ones are found in
Friuli Venezia-Giulia (—2.3 m® ha~! year’l), Calabria (—2.1 m® ha™! year’l), Liguria
(2m3ha~! year’l), Alto Adige, and Lombardia (—1.8 m3 ha™! year’l). For all other
regions, the CAI differences range between —1.5 m3 ha~! year~! and —0.9 m3 ha~! year™!
(Table 3 and Figure 4).

Table 3. finrr and f,,04e1-assisted (With respective standard errors, SE) for the ITA-CAI map at NUT2

level.
INFC-CAI ITA-CAI
Region (NUT2) UNFI SE (%) Hmodel—assisted 3 SE
m®ha—lyear—1 m3ha-lyear1 ~ m°ha~lyear™!
Abruzzo 3.4 45 43 0.10
Alto Adige 5.6 4.0 7.4 0.21
Basilicata 2.8 55 4.3 0.13
Calabria 5.4 44 7.5 0.17
Campania 4.1 5.1 4.7 0.13
Emilia Romagna 43 3.7 5.5 0.11
Friuli-Venezia 5.6 45 7.9 0.17
Giulia
Lazio 2.9 4.6 44 0.10
Liguria 4.7 4.6 6.7 0.13
Lombardia 5.0 3.6 6.8 0.15
Marche 2.7 7.0 4.0 0.13
Molise 3.2 7.0 4.2 0.16
Piemonte 45 3.1 52 0.12
Puglia 2.8 8.2 3.6 0.21
Sardegna 1.9 52 2.6 0.08
Sicilia 3.0 6.5 3.7 0.14
Toscana 4.1 3.3 5.6 0.10
Trentino 6.2 4.0 7.4 0.19
Umbria 2.2 4.6 3.6 0.08
Valle d’Aosta 3.0 7.4 4.0 0.26
Veneto 5.5 3.7 7.0 0.20

4. Discussion and Conclusions

The main objective of the study was to develop a spatial approach to obtain both
the 23 m x 23 m forest biomass map (ITA-BIO) and the CAI map (ITA-CAI) of Italy. The
proposed approach allows derivation of estimates at various spatial scales with associated
uncertainty as required by the reporting under international environmental agreements.

The model-assisted estimates based on the ITA-BIO map reduce the error of INFC
estimates at the regional level (Table 2), which is also lower than model-assisted estimates
based on other available biomass maps. Both the JRC-BIO and the ESA-BIO underestimate
the mean forest biomass (f1odel-assisted) (With the only exception of JRC-BIO for Puglia
region) compared with the INFC estimate (mean difference = 13.5 and 21.8 t ha~! for
JRC-BIO and ESA-BIO, respectively), while ITA-BIO is characterized by a small mean
difference (3.8 tha~!) (Table 2, Figure 4). The results regarding JRC-BIO and ESA-BIO maps
are in disagreement with those found by Neeti in the USA [57], since we found that these
maps underestimate the mean biomass with respect to INFC. Comparing four different
global biomass products, Araza et al. [58] showed a disagreement between their mean
values in most of the regions, where we observed the largest differences between finr; and
Amodel-assisted for ITA-BIO, JRC-BIO, and ESA-BIO (i.e., Calabria, Sicilia, Abruzzo, Marche,
Molise, and Basilicata) (Table 2). In the mentioned regions, the standard errors of INFC are
also the highest.
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As pointed out by Zhang et al. [59] and Huang [60], the inconsistency between biomass
maps observed in our study can be attributed to the allometric equations used to compute
field data, to the choice and quality of remotely sensed data, as well as to the algorithms
for mapping forest biomass or to the extrapolation techniques.

The more accurate results observed for ITA-BIO with respect to JRC-BIO and ESA-BIO
are due to the fact that our approach was distinctively calibrated for the Italian forests,
allowing to reach higher reliability, as observed by previous studies investigating other
forest variables such as forest area [18] and forest disturbance area [19,61].

However, the results obtained by all three biomass maps in terms of R? and mean
biomass estimates at coarse scales (e.g., regional level) are in line with the ones obtained in
Mexico (R? > 0.66) using a calibration approach with LIDAR, NF], satellite remote sensing
(i.e., ALOS PALOSAR and Landsat) data, and a machine learning approach [62], and with
the results of Huang [60] in the USA and Avitabile [63] in Uganda. On the other hand,
our study confirms the finding of Araza et al. [59], who demonstrated that global biomass
maps, if adopted to estimate the mean biomass at coarse scales (i.e., regional level), can
be effective to a certain extent. At the level of single pixels, the map may be affected by a
substantial bias [59,62]; however, when aggregating several pixels to areas of increasing
size (e.g., forest estates, provinces, regions), the average value tends to converge to the real
value, since the model-assisted estimator is unbiased [58,61,64]. Nevertheless, it can be
expected that global maps produce even larger errors than the ones obtained at regional
scales when used at small spatial scales (e.g., forest stands and forest management units). In
this regard, the spatial scale of ITA-BIO (23 m x 23 m) can provide more precise estimates
at small scales [23] and is more suitable to support forest management compared with the
other maps (1 km x 1 km for ESA map, 1 ha for JRC map) [24].

The available high-spatial-resolution forest biomass maps can be combined with other
data layers to yield additional wall-to-wall forest descriptors, such as CAIL As previously
noted, the CAI modeling strategy is based on the efficient combination of parametric
and bio-geochemical models, C-Fix and BIOME-BGC. The former merges meteorological
and NDVI data to yield forest GPP estimates [56], which are then used to improve the
functioning of BIOME-BGC and simulate all Mediterranean ecosystem processes and
maximum GSV. The latter term allows the calculation of the two scalars accounting for
forest disturbances (NV 5 and FC,), which are decisive to simulate forest NPP, and then
derive CAL As fully discussed in [32], this strategy does not take into consideration some
factors that are important for woody biomass accumulation but cannot be properly assessed
over wide areas (e.g., plant age and management condition). The simulation of CAI can
be also deteriorated by the use of mapped GSV estimates and species-specific BEFs, both
implying additional uncertainty [56].

The NUT?2 level model-assisted estimates derived from the ITA-CAI map are in good
agreement with the CAI estimates by INFC (R? = 0.93), but they show a certain tendency
to overestimation (mean bias error = 1.3 m>ha~! year~!). The reason, already stressed by
Chirici et al. [56], might be prevalently due to the characteristics of the input data layers:
for instance, the spatial resolution of the adopted national meteorological datasets (1 km) is
not suboptimal to capture local environmental variability.

The maps presented in this paper (ITA-BIO and ITA-CAI) are hosted on a web-based
forest resources management DSS developed under the project AGRIDIGIT (ForestView)
and available at http:/ /progetti.technocenter.it/crea/#/forestview. Such maps represent a
key element to support the new Green Deal, the EU Forest Strategy 2030, and the Italian
Forest Strategy since they can be used for multiple objectives such as to quantify biomass
and sequestered CO,, to assess the availability of wood for production and to monitor
the status of forest ecosystems. This web-based DSS will include modules dedicated to
forest management planning and decision making, and a graphical user interface (GUI) for
relevant GIS analysis.

A weakness of the current study is that the maps produced have both a nominal year
of 2005 that is not consistent with the ongoing forest management activities [24]; however,
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during the study, the observations of the new 2015 INFC plots were not yet released [45].
Nevertheless, the methodology developed and tested here can be applied immediately to
the new data when available. In addition, it is important to point out that the CAI map,
giving the spatial explicit estimation of mean annual increment (m? ha~! year~!), adopted
in conjunction with the forest disturbance maps (i.e., clearcut, forest fire, windstorm and
developed in Italy at country/regional and local scales [19,61,64—67]), is potentially useful
for yearly updating the GSV map and, consequently, the biomass map. In this regard, future
research efforts integrating those maps and other increment models are expected in order
to yield yearly updated spatially explicit estimates of those forest variables (i.e., GSV and
biomass) useful for forest management and for the reporting of international frameworks
(e.g., ICPP [20], Forest Europe [68], and Global Forest Resource Assessment [69]).
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