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Forests provide essential ecosystem services such as carbon sequestration, clean water, 

and lumber, among others. Foresters need to know what is in the forest to manage the economic 

benefits and sustainability of the resource and for ecological soundness to prevent further 

degradation of these ecosystem services. Foresters must be able to conduct accurate and 

efficient forest inventories. Introducing remote sensing products in a traditional forest inventory 

presents novel opportunities to enhance forest characteristic predictions. These enhanced forest 

inventories (EFIs) can be done at varying resolutions based on plot size creating wall-to-wall 

raster data; thus, complete spatial knowledge of these estimates can be determined. Airborne 

Laser Scanning (ALS) has become a promising and commonly used remote sensing product that 

researchers and foresters apply to EFI workflows. Although best practice guides have been 

created in other countries, research on the best plot type and design has not been done for 

Maine’s structurally diverse and intensively managed forests.  

       This study investigated a range of forest designs to determine the best ground-based 

calibration plot specifications for developing EFI models from ALS data in Maine. We conducted 

a study that compared fixed- versus variable-radius plots, sampling size and intensity, and 

sample design with ALS data to map EFI variables, including percent softwood, volume, BA, and 

tree count. These data were collected from the Penobscot Experimental Forest (PEF) in the 



 
 

summer of 2022 using two plot types, sample sizes and sampling intensities, and two different 

sample designs. In addition, data from other study sites were provided to us by our partners that 

only included one plot type, sample size and intensity, and sample design. These datasets were 

used to cover a range of metrics not considered in the PEF (i.e., a grid sample design) and 

represent Maine’s working forests in the North. For validation, we used data collected in the 

Demeritt Forest in the summer of 2022. We assessed model performance across forest 

inventories to investigate the best calibration plot design for ALS-based EFIs in our study areas. 

We determined that a principal component analysis for plot placement gave better model results 

than randomly placed plots. Also, fixed radius plots (FRPs) and a smaller sample size generated 

better evaluation statistics when predicting the percent softwood, volume, and tree count in the 

PEF. In contrast, variable radius plots (VRPs) with a smaller sample size provided better model 

outcomes when predicting basal area (BA). Once the best calibration plot design was identified 

and validated, we applied it to the PEF to estimate aboveground biomass.  

We obtained mixed results, which may be due to different forest types. There was better 

model performance in spruce-fir forest types than in other forest types like oak-pine. Therefore 

more research must be done to ensure our potential recommendations are appropriate. Our 

results provide insights into an optimal approach for specific conditions and underscore the 

importance of future research to assist decision-making on plot type and sample design for the 

broad range of conditions on forested landscapes in Maine.   



ii 
 

ACKNOWLEDGEMENTS 

Thank you to everyone in the Wheatland Geospatial Lab: Dr. Daniel Hayes, my advisor, for his 

continuous support and guidance, David Sandilands for his patient teaching of R and 

collaboration, and Anthony Guay for his GIS expertise and sense of humor. I would also like to 

thank my committee, Dr. Aaron Weiskittel, Dr. Ivan Fernandez, Dr. Shawn Fraver, and Ian 

Prior, for their time and knowledge related to this research. I am grateful for my field collection 

crew Rissa Currie, Carly Fredericks, and David Ludwig as well as the University Forest Office 

crew who helped me collect inventory data for this project. Lastly, I would like to thank my 

friends and family who supported me unconditionally for the last several years. 

 

 



iii 
 

TABLE OF CONTENTS  

ACKNOWLEDGEMENTS ............................................................................................................... ii 

LIST OF TABLES ............................................................................................................................ vi 
 
LIST OF FIGURES .........................................................................................................................vii  
 
LIST OF ABBREVIATIONS ............................................................................................................ ix 
 
 
1.     CHAPTER 1: INTRODUCTION  ............................................................................................... 1 
 

1.1 Importance of ALS Data in Forestry  ................................................................................ 1 
 

 1.2 Forest Inventory Metrics ..................................................................................................2 

 1.3 Applications in Maine ..................................................................................................... 4 

 1.4 Rationale and Significance .............................................................................................. 4 

2.     CHAPTER 2: DEVELOPING AN ENHANCED FOREST INVENTORY IN MAINE  
 USING AIRBORNE LASER SCANNING: THE ROLES OF CALIBRATION PLOT  
 DESIGN AND DATA QUALITY ............................................................................................ 6 
 

2.1 Introduction  .................................................................................................................... 6 
 
2.2 Methodology ................................................................................................................... 11 

 
 2.2.1 Study Area  ........................................................................................................ 11 
 
 2.2.2 Data  .................................................................................................................. 13 
 
  2.2.2.1 In-Situ Data  ........................................................................................... 13 
 
  2.2.2.2 ALS Data ................................................................................................ 14 
 
  2.2.2.3 Covariate Data ....................................................................................... 15 
 
 2.2.3 Data Analysis .................................................................................................... 18 

 
2.3 Results  ........................................................................................................................... 19 
 
 2.3.1 Validation ......................................................................................................... 28 
 
2.4 Discussion  ...................................................................................................................... 37 
 
 2.4.1 Analysis of Results  ............................................................................................ 37 

 
 2.4.2 Future Work  .................................................................................................... 38 
 



iv 
 

2.5 Conclusions  ................................................................................................................... 40 
 
3.     CHAPTER 3: USING BEST PRACTICES TO ESTIMATE ABOVEGROUND  
 BIOMASS WITH AIRBORNE LASER SCANNING IN MAINE ......................................... 42 
 

3.1 Introduction ................................................................................................................... 42 
 
3.2 Methodology ...................................................................................................................45 

 
 3.2.1 Study Site  ..........................................................................................................45 
 
 3.2.2 Data  .................................................................................................................. 47 
 
  3.2.2.1 In-Situ Data  ........................................................................................... 47 
 
  3.2.2.2 ALS Data ................................................................................................ 47 
 
  3.2.2.3 Covariate Data ...................................................................................... 48 
 
 3.2.3 Data Analysis ................................................................................................... 49 

 
3.3 Results  ........................................................................................................................... 51 

 
3.4 Discussion  ...................................................................................................................... 55 
 
 3.4.1 Data Analysis  .................................................................................................... 55 

 
 3.4.2 Future Work  .....................................................................................................56 
 
3.5 Conclusions  .................................................................................................................... 57 

 
4.     CHAPTER 4: CONCLUSIONS  .............................................................................................. 58 
 

4.1 Key Findings  ................................................................................................................. 58 
 
  4.1.1 Best Practices Results ....................................................................................... 58 

  4.1.2 Applications of Best Practices Results ..............................................................59 

 4.2 Future Research & Final Thoughts  ...............................................................................59 

 
BIBLIOGRAPHY ............................................................................................................................ 61 
 
APPENDICES ............................................................................................................................... 68 

 
APPENDIX A. MODEL COMPARISONS, SCATTER PLOTS, AND RASTER  
MODEL OUTPUTS USED AS SUPPLEMENTARY MATERIAL IN CHAPTER 1 .............. 68 
 
APPENDIX B. BAR PLOTS DESCRIBING ATTRIBUTES OF THE PEF BY  
FOREST TYPE USED IN CHAPTER 2  ............................................................................... 73 



v 
 

 
 
BIOGRAPHY OF THE AUTHOR ................................................................................................... 75 
 

  



vi 
 

LIST OF TABLES  

Table 2.1. Summary of studies done in four different countries using the  

 area-based approach ...................................................................................... 9 

Table 2.2. Summary of plot types, sample size, sample intensity, and sample  

 design of our areas of interest  ...................................................................... 14 

Table 2.3. Summary of ALS data and associated characteristics for each study  

 area  ............................................................................................................... 15 

Table 2.4. Datasets and the respective products created from them  ........................... 17 

Table 2.5. ALS metrics used in this study and a description ......................................... 17 

Table 2.6.  R2, normalized root mean square error (NRMSE), coefficient of  

 variation (CV), and normalized mean bias (NMB) results ........................... 27 

Table 2.7.  R2, NRMSE, CV, and mean bias results for the Demeritt model ................. 29 

Table 2.8. A subset of Demeritt stands with corresponding EFI total volume  

 estimates .......................................................................................................33 

Table 2.9. R2, RMSE, and mean bias values of the White et al. (2015) study  

 comparing leaf-on and leaf-off conditions compared to this study’s  

 results  ........................................................................................................... 37 

Table 2.10.    R2, RMSE, and mean bias values of studies that only investigated 
 Leaf-off conditions  ...................................................................................... 38 

Table 2.11.    Summary of study areas (and validation study area) and associated  
 forest ecoregions .......................................................................................... 40 

Table 3.1. ALS metrics used in this study and a description  ....................................... 49 

Table 3.2. Summary of evaluation statistics for the two PEF models  .......................... 51 

Table A.1. R2, normalized root mean square error (NRMSE), coefficient of  

 variation (CV), and mean bias metrics for model outputs ........................... 61  



vii 
 

LIST OF FIGURES 

Figure 2.1. Our sample domain includes areas of interest owned by several forestry  

 companies and university land holdings across the state Maine .................. 12 

Figure 2.2. The ABA consists of several steps  ................................................................. 19 

Figure 2.3. The ten most important percent softwood predictor variables  .................... 21 

Figure 2.4. The ten most important volume (left) and basal area (right) predictor  

 variables ........................................................................................................ 22 

Figure 2.5. The ten most important tree count predictor variables ................................ 24 

Figure 2.6. The ten most important predictor variables for the Demeritt model ............ 31 

Figure 2.7. Means and standard deviations of volume (in cords per acre) in a  

 subset of stands in the Demeritt for the predicted EFI and estimated  

 (in-situ) values. ............................................................................................. 34 

Figure 2.8. Means and standard deviations of the four PEF FRP models applied  

 in the Demeritt and the Demeritt model .......................................................35 

Figure 2.9. Plotted relationships between predicted (x-axis) and observed values  

 (y-axis) for percent softwood, volume, basal area, and tree count  

 predictions in the Demeritt Forest................................................................ 36 

Figure 3.1. Location of the PEF within the state of Maine  ............................................. 46 

Figure 3.2. The ABA consists of several steps which are ................................................ 50 

Figure 3.3. Chart showing the amout of aboveground biomass (AGB) by forest 

  type  ...............................................................................................................52 

Figure 3.4. AGB in the PEF in 2017 (left), 2021 (middle), and the change in  

 AGB (right) .....................................................................................................53 

Figure 3.5. Canopy height in the PEF in 2017 (left), 2021 (middle), and the  

 change in canopy height (right) .....................................................................54 

Figure 3.6. Chart showing the average change from 2017 to 2021 in AGB (top)  



viii 
 

 and canopy height (bottom) in clear cuts in the PEF by forest type ..............54 

Figure A.1. Scatter plots of observed percent softwood as a function of predicted  

 percent softwood  .......................................................................................... 69 

Figure A.2. Scatter plots of observed volume as a function of predicted volume ........... 69 

Figure A.3. Scatter plots of observed basal area as a function of predicted basal  

 area  ............................................................................................................... 70 

Figure A.4. Scatter plots of observed tree count as a function of predicted tree  

 count.............................................................................................................. 70 

Figure A.5. Model outputs for the PEF using 92 FRPs..................................................... 71 

Figure A.6. Model outputs for the Demeritt  .................................................................... 72 

Figure B.1 Chart showing the average change from 2017 to 2021 in AGB (top)  

 and canopy height (bottom) in expanding gap shelterwoods in the  

 PEF by forest type  ......................................................................................... 73 

Figure B.2. Chart showing the average change from 2017 to 2021 in AGB (top)  

 and canopy height (bottom) in overstory removals in the PEF by  

 forest type  ...................................................................................................... 73 

Figure B.3. Chart showing the average change from 2017 to 2021 in AGB (top)  

 and canopy height (bottom) in shelterwoods with overstory  

 removals in the PEF by forest type ................................................................ 74 



ix 
 

LIST OF ABBREVIATIONS 
 
3DEP: 3D Elevation Program 

ABA: area-based approach 

ALS: airborne laser scanning 

AGB: aboveground biomass 

AOI: area of interest 

BA: basal area 

BAF: basal area factor 

CDS/ac: cords per acre 

CFI: continuous forest inventory 

CHM: canopy height model 

CRM: component ratio method 

CV: coefficient of variation 

DBH: diameter at breast height 

DEM: digital elevation model 

EFI: enhanced forest inventory 

exts1: variable name for normalized difference vegetation index data used in our model 

exts7: variable name for the near infrared band of the Sentinel-2 data used in our model 

extsCV: variable name for the canopy cover data used in our model 

FRP: fixed radius plot 

G-LiHT: Goddard’s LiDAR, Hyperspectral, and Thermal Airborne Imager 

GPS: global positioning system 

ikurt: intensity kurtosis (ALS metric) 

isd: intensity standard deviation (ALS metric) 

ITD: Individual Tree Detection 

NASA: National Aeronautics and Space Administration 



x 
 

NDVI: normalized difference vegetation index 

NLCD: national land cover database 

OSR: overstory removal 

PCA: principal component analysis 

PEF: Penobscot Experimental Forest 

PSW: percent softwood 

NRMSE: root mean square error 

SILC: Seven Islands Land Company 

SRS: simple random sampling 

SYS: systematic sampling  

TPA: trees per acre 

USGS: United States Geological Survey 

VRP: variable radius plot 

zmean: elevation mean (ALS metric) 

zpcum3, zpcum8: cumulative percentage of returns located in the lower 30% and 80% of 

maximum elevation (ALS metrics) 

zsd: elevation standard deviation (ALS metric) 

zp5, zp20, zp25, zp45, zp85, zp90: elevation percentiles (ALS metrics) 

 
 
 
 



1 
 

CHAPTER 1: INTRODUCTION 

 

1.1 Importance of ALS Data in Forestry 
 

Forests are essential as they provide many ecosystem services, such as climate regulation, 

biomass fuel, fiber, and water cycling (Daily, 1997). Forest resource managers must exercise 

sustainable forestry practices so that society can continue to benefit from these valuable 

ecosystem services. Enhanced forest inventories (EFIs) potentially provide more accurate and 

precise estimates of forest characteristics than a traditional forest inventory that may help 

foresters conserve ecosystem services while also maintaining economic feasibility when 

managing a land base for timber.  

           A forest inventory can be completed in many ways, but these have historically occurred 

solely in the field (Nelson, 2014; Liang et al., 2016). Remote sensing is revolutionizing how 

forests are inventoried so that they can be completed more efficiently over time and space (Chen 

et al., 2019). The goal of using Airborne Laser Scanning (ALS) data in conjunction with forest 

inventories is to create accurate and updated maps of forest attributes so that foresters can 

potentially manage large areas of woodlands more sustainably (Schumacher et al., 2019; Ganz, 

2019; Cheng & Wang, 2019). This process is accomplished by the time and cost efficiencies of 

cutting down on the number of plots used and using data at finer resolutions that can assist in 

many facets of forest management. Numerous researchers and forester practitioners in different 

countries have successfully conducted forest inventories using ALS. Some critical studies about 

operational ALS for EFI purposes are White et al., 2013 and 2017, Kangas et al., 2018, and 

Næsset et al., 2002.        

Forest resource managers require field inventories to calibrate data collected from ALS to 

create models of forest attributes (Bolton et al., 2018). An EFI is a product of collecting field 

data and incorporating it with ALS, and other remote sensing estimates from which attributes 

such as tree height, volume, and basal area (BA) can be modeled (White et al., 2017). However, 
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the study by White et al. (2013) recommends that forest resource managers consider 

implementing an area-based approach (ABA) for EFI techniques to be effective. Field data and 

ALS data must be collected for the ABA to model the known x variables (observed values) where 

ALS data exist. This allows for complete spatial knowledge of an area of interest as x and y 

(predicted) variables exist within the pixels of the raster output.  

1.2 Forest Inventory Metrics 

In recent decades, ALS data sets for the state of Maine have been made available to the 

public allowing forest landowners to utilize them in creating sustainable management plans. 

Even though these data are accessible to the public, some forest resource managers in Maine 

may be using a specific forest inventory design that does not provide the best results to suit their 

needs. In-situ data must be collected as accurately as possible to ensure proper correlation to 

ALS data; thus, acceptable forest attributes predictions. Research is needed to determine the 

optimal calibration plot design for generating the most accurate modeling results with an 

efficient data collection approach in Maine. 

ALS technology is continually improving and becoming more available at a greater pace 

(Goetz & Dubayah, 2011; Alberdi, 2021). There is an increasing demand for improved methods 

of field inventory practices to complement the advancements in ALS technology (White et al., 

2016). Many aspects of field-based inventory designs must be compared to determine which 

techniques are more effective for calibrating ALS data (White et al., 2013). These design 

specifications include decisions on fixed radius plots (FRP) versus variable radius plots (VRP), 

the appropriate sample size and intensity, and the sampling method. 

It is impossible to have a complete census of timber resources in a forest because forest 

resource managers would need to sample every tree within the scope of their management plan. 

Time and monetary constraints mean that forest resource managers must decide the 

appropriate sample size and intensity to collect the most acceptable information for their needs. 

The sample size decision refers to the number of observations chosen from the population, 
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whereas the sample intensity is the ratio of observations to the total population estimated 

(Kershaw et al., 2017). Increasing the sample size and intensity allows for complete information, 

but the tradeoffs include increasing time and money spent collecting data. Even though forest 

inventory efficiency can increase with the use of ALS, it can potentially plateau. It even 

decreases if the optimal sample size and intensity are not used (Lisańczuk et al., 2020). 

Maintaining high efficiency while not sacrificing time, money, and resources is a common goal 

shared by all forest resource managers (Kershaw et al., 2017). 

Forest resource managers typically use FRPs to calibrate ALS data (Deo et al., 2016; Hayashi 

et al., 2014). This is the ideal case where the consistent areas of the plots can be coordinated 

with the spatial resolution of the ALS data and thus provide more accurate results (Deo et al., 

2016). However, FRPs are expensive and time-consuming to implement, so foresters must make 

tradeoffs if using this plot type. Very few researchers have investigated using VRPs as calibration 

plots, even though there is a need to do so (Deo et al., 2016). Of the researchers who have 

explored this topic, some do not promote the use of VRPs as a type of calibration plot, citing a 

lack of research (White et al. 2017), while others have found that VRPs can be used under 

certain circumstances with specific BA factor plots (Deo et al., 2016).  

Using a sampling design that fails to capture most of the variability in the forest may return 

unacceptable model predictions. Most forest resource managers tend to gravitate toward simple 

random sampling because it presents an unbiased estimate of the population mean (Kershaw et 

al., 2017). An additional technique employed for plot placement is the principal component 

analysis (PCA). PCA is a dimensionality reduction technique that condenses large data sets and 

highlights the variability within the data. PCA provides efficient differentiation in the variation 

of forest structure by identifying patterns in the point cloud data and emphasizing the 

similarities and differences (Zavyalov et al., 2009). By sampling across the major axis of the 

PCA, plot locations can then be assigned based on a targeted stratification of the overall 
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variation in a multivariate data set, which will capture the range of forest parameters (Jolliffe & 

Cadima, 2016).  

 
1.3 Applications in Maine 

In North America, Canadian researchers in British Columbia have been at the forefront of 

these metric design questions and have attempted to explore how to create efficient calibration 

plots for their needs. From this research, they developed a set of recommendations for the area-

based approach to EFI as a “best practices guide” (White et al., 2013). The guide aimed to direct 

foresters and others through gathering and processing ALS data, creating the best calibration 

plots, and modeling forest attributes to accurately estimate forest characteristics cost- and time-

effectively over large areas (White et al., 2017). The best practices guide for Canada may have 

the potential to be applied to Maine. However, as the state has different forest types and 

conditions (Flatebo et al., 1999), further investigation is needed regarding its transferability to 

other forest regions. Maine sits in a transitional zone between the temperate forests to the south 

and the boreal forests to the north. This creates three unique ecotypes: the northern coniferous 

forests, the northern mixed-hardwood forests, and the oak/pine forests (McCaskill et al., 2016). 

Questions about the appropriate plot type, sampling size and intensity, and sample design are 

considered in this research to create a best practices guide for Maine. 

1.4 Rationale and Significance 

            According to the Maine Forest Action Plan 2020, there are 18 million acres of forested 

land where small woodland owners manage approximately 5 million acres, approximately 10 

million are managed by industry, and 3 million acres are permanently protected (Maine.gov, 

web). Both industrial and private landowners may see improved forest management by utilizing 

EFIs. As of 2019, ALS data have been publicly accessible for the entire state of Maine, which 

allows all forest landowners to utilize these valuable data to assist in creating sustainable 

management plans (CFRU, 2019). Foresters and landowners in Maine use remotely sensed data 
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(i.e., ALS) to generate EFIs to guide their management decisions and have seen acceptable 

results. However, by determining best practices regarding plot type, sample size, and sample 

design, forest landowners may see improved accuracy in EFI predictions. Since Maine does not 

have a best practices guide for EFIs, forest inventory designs must be explored to determine the 

appropriate plot types for forest landowners to calibrate ALS data.   
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CHAPTER 2: DEVELOPING AN ENHANCED FOREST INVENTORY IN MAINE 

USING AIRBORNE LASER SCANNING: THE ROLES OF CALIBRATION PLOT 

DESIGN AND DATA QUALITY 

 

2.1. Introduction 
 

Forests are valuable resources because they provide various ecosystem services such as 

climate regulation, lumber, nutrient recycling, and other provisioning, regulating, or cultural 

supporting services (Pan et al., 2011). Disruptions of ecosystem services can occur because of 

several factors, including climate change-related impacts (Soucy et al., 2020), insects and 

pathogens (Busby & Canham, 2011), and land use conversion (Mauldin et al., 1999). To monitor 

changes and take stock of timber, foresters need to conduct inventories. These inventories help 

to evaluate forest characteristics such as tree species composition, growth, and mortality (Ma et 

al., 2021; Tewari, 2015; Hoover et al., 2020). 

There are many forms a forest inventory can take, which hinge on time and monetary 

constraints (Köhl & Magnussen, 2016), the inventory’s purpose, and the forest’s size (Scott & 

Gove, 2002). Historically, these inventories have taken place on the ground, including 

measurements of physical characteristics and timber assessments (Krug & dos Santos, 2004). A 

cost- and time-effective plot type typically employed is a variable radius plot (VRP). Each tree 

has its own plot radius factor which determines whether it is tallied. This is a quicker way to 

collect data, while still maintaining the efficacy of the inventory, compared to measuring trees 

with a fixed radius plot (FRP) where all trees within the plot radius are tallied. There are also 

different sample designs that can be utilized. Biases are associated with each design, where the 

forester must determine which design is most time and cost-efficient for the inventory. While 

forest inventories are a valuable tool, limitations can hinder reliability. Didion et al. (2009) 

found that conducting inventories in intensively managed stands can negatively impact forest 

metric predictions because of the structural variability that is not sufficiently captured. There 
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are also limitations related to a geographical extent. Not all forests are the same size, and larger 

forest parcels require more plots to cover large expanses of land, which can be costly and time 

expensive. Lastly, repeat inventories are usually conducted every 5-10 years or more (Yu et al., 

2022). Tree growth and mortality that occur during this period may prove a previous forest 

inventory inaccurate leading to ill-informed management. Many foresters and researchers are 

turning to remote sensing to fill the gaps in a traditional forest inventory.  

Traditional forest inventories, when coupled with remote sensing products, can 

potentially enhance estimates of forest metrics like BA, stem density, volume, and aboveground 

biomass (Sheridan et al., 2015; Iqbal et al., 2019). Interest in enhanced forest inventories (EFIs) 

continues to grow as remote sensing datasets become more reliable (Goodbody et al., 2019). 

Remote sensing products can generate wall-to-wall forest inventories of an area of interest. This 

is accomplished by feeding a model in-situ and remote sensing data to predict forest metrics in 

areas without ground plot data (Waser et al., 2015). Additionally, remote sensing products can 

cover larger geographical areas than traditional forest inventories. Lastly, the temporal 

resolution is finer than most traditional forest inventories, as some satellites have a return 

interval of 16 days (USGS Landsat Missions, web). While most satellite imagery provides 

adequate detail about an area of interest for landowners and some researchers, a limitation is its 

need for more ability to characterize the 3D structure of the forest.  

Airborne laser scanning (ALS) is a remote sensing product that can measure the 3D 

structure of an object or surface, including forest canopies (White et al., 2016). A sensor 

attached to an aircraft measures the distance to objects using an emitted laser pulse as the 

aircraft is flown over an area of interest. The returns from the laser, along with the associated 

distance measurements, are then used to create a 3D point cloud. A point cloud of a forested 

area can be used for individual tree measurement (Weiser et al., 2022). Individual tree detection 

(ITD) is a useful tool that allows a user to extract tree height information without measuring 
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each tree in the field (Weinstein et al., 2021). Due to the high computational requirements of 

ITD, this technique is most useful when applied to a small region of interest (Sparks & Smith, 

2022; Jeronimo et al., 2018), whereas the area-based approach (ABA) may be applied across 

landscapes (White et al., 2017). After collecting an inventory, missing information about forest 

characteristics can be predicted from ABA models that use calibrated ALS data (Brosofske et al., 

2014).  

The ABA tessellates the area of interest and uses in-situ and ALS data wherein predictive 

equations are applied in each grid cell that aids in the creation of wall-to-wall predictions. This 

is the recommended approach to predicting forest characteristics for several reasons (White et 

al., 2013; Næsset et al., 2002; Woods et al., 2011). The most obvious advantage is the ability of 

users to have complete spatial knowledge of predictions, unlike traditional forest inventories 

that are not spatially explicit (White et al., 2013). Second, the ABA has been shown to offer more 

precise predictions (Coomes et al., 2017). Lastly, users can calculate confidence intervals for 

forest characteristic estimates (Woods et al., 2011). 

The ABA for generating EFIs has shown promising results in different forest types in 

different countries (Table 2.1). White et al. (2013) suggested using the ABA for attribute 

estimation in Canada using a best practices guide. In Norway, Næsset (2005) found that the 

ABA provided sufficient forest characteristic estimations in an operational setting in a mixed 

wood forest. Frank et al. (2020) demonstrated that the ABA approach proved superior to semi-

individual tree crown models in a mixed species-environment. In Southeast Asia, Coomes et al. 

(2017) determined that the ABA models perform better than tree-centric approaches in the 

lowland tropical rainforest. The ABA approach works well in different forest types, and mixed-

species stands. However, the question remains about how well it performs in Maine’s mixed-

species, structurally complex, and intensively managed forests. 
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Table 2.1. Summary of studies done in four different countries using the area-based approach 
to estimate forest attributes and the respective results. 

Study Country Forest Type Results 

White et al. 
(2013) 

Canada Boreal Following a best practices guide created for Canada’s 
forests, the ABA approach has the potential to provide 
accurate forest attribute estimations. 

Næsset 
(2005) 

Norway Boreal Under operational conditions, the ABA offered 
sufficiently better results than a traditional forest 
inventory. 

Frank et al. 
(2020) 

United 
States 

Temperate 
Deciduous 

ABA models had smaller residual variance and smaller 
random effect variance estimates than semi-individual 
tree crown models  

Coomes et 
al. (2017) 

Southeast 
Asia 

Lowland 
Tropical 
Rainforest 

ABA provided better results than a tree-centric 
approach when estimating forest characteristic 
predictions. 

 
This research aimed to compare two plot types, various sample sizes and sampling 

intensities, and sample designs for predicting forest attributes. The two plot types considered 

were fixed radius plots (FRPs) and variable radius plots (VRPs). A typical plot type used with 

remotely sensed data is FRPs, where all trees (usually above a specified height threshold) are 

measured within a particular radius. FRPs cost- and time- inefficient. However, VRPs are a 

satisfactory solution to overcome those obstacles. This plot type requires that only a fraction of 

the trees be measured based on the basal area of the trees. Because VRPs are not circular (with 

an unknown shape and area), errors can be introduced into the EFI models (Deo et al., 2016). 

While research exists where VRPs are considered for use with remotely sensed products (Deo et 

al., 2016; Hayashi et al., 2014), more research should be done using VRPs for the ABA.  We 

predict that FRPs will provide the best model performance since these plots tend to mitigate 

errors associated with edge effects. 

The second consideration of this study was the sample size and sampling intensity. Sample 

size refers to the number of plots in the study site that is measured, whereas the sampling 

intensity is the proportion of the plots' area to the study site's area. Since VRPs have an 

unknown shape and area, the sampling intensity cannot be calculated, so sampling intensity in 
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this study is only available for FRPs. Usually, a higher sample size captures more population 

variability, meaning better model performance. However, foresters face tradeoffs when 

considering their area of interest's sample size and sampling intensity. Plot implementation 

costs time and money, but foresters must be as accurate as possible (Fassnacht et al., 2014). 

Knowing that foresters face time and monetary constraints, our study tested different sample 

sizes and intensities to determine if smaller sample sizes return accurate and precise 

predictions. Because we used random forest as our predictive model (Breiman, 2001), we 

predict that smaller sample sizes and sampling intensities will provide better model results.  

Lastly, we created models using three different sample designs – a simple random sample 

(SRS) design, a systematic sample (SYS) design, and a principal component analysis (PCA) for 

plot placement. An SRS is when plots are placed randomly, whereas an SYS places plots in a grid 

pattern. A PCA for plot placement uses ALS data to determine variability in the forest structure. 

More plots were placed in areas with more variability, and fewer plots were placed in areas with 

less variability. White et al. (2013) suggest using a structurally guided sample design, like a PCA 

for plot placement, but offer no comparisons to designs most used by foresters like an SRS and 

SYS. Although these sample designs were tested for comparison, we predict that a PCA for plot 

placement will return better results than the other two sample designs. 

ALS is revolutionizing the way foresters conduct forest inventories. Research on in-situ data 

type and ALS data quality has been extensively conducted in areas like Norway (Næsset et al., 

2004 & 2007) and Canada (White et al., 2013 & 2017) but may have limited applicability in 

Maine’s forests. This study aimed to identify and demonstrate best practices concerning 

calibration plot design and data quality for foresters using ALS-based EFIs in Maine.  
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2.2. Methodology 
 

2.2.1 Study Areas 

 

Our study sites are in various regions across Maine (Figure 2.1) and include the Penobscot 

Experimental Forest (PEF) and the Demeritt Forest, as well as properties owned or managed by 

Baskahegan Company and Seven Islands Land Company (SILC). Maine consists of three distinct 

forest ecotypes including the (1) northern coniferous forests dominated by spruce-fir, (2) 

northern mixed-hardwood forests dominated by beech-birch-maple, and (3) oak-pine forests 

(McCaskill et al., 2016). Most of our study sites lie in the spruce-fir forest type, although the oak-

pine forest type encroaches on the areas near the PEF and Demeritt Forests. There are inter-

species size and structural differences and intra-species differences - especially in the spruce-fir 

forests where many industrial forestry companies manage land commercially.  
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Figure 2.1. Our sample domain includes areas of interest owned by several forestry 
companies and university land holdings across the state of Maine. Maine comprises three 
distinct forest ecotypes (McCaskill et al., 2016). Spruce-fir dominates Northern Maine 
whereas the northern hardwoods and oak/pine forests are found in Southern Maine. 
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2.2.2 Data 

 

2.2.2.1 In-Situ Data 

 

Our partners at SILC and Baskahegan provided plot data in western, northern, and 

eastern Maine, while data was collected from the PEF and Demeritt in the summer of 2022 

(Table 2.2). SILC supplied us with two datasets: one in Rangely and one in Ashland West. There 

are 384 circular FRPs in the Rangely site with a sampling intensity of 0.364%. The sample 

design used was simple random sampling (SRS). The Ashland West site had 1,387 VRPs using 

principal component analysis (PCA) for plot placement. A PCA for plot placement works by 

inputting ALS data and the number of plots needed or wanted for analysis. The PCA will use the 

ALS data to assess the structural variability of the area and will determine where plots should be 

placed to capture more of that variability. Sampling intensity could not be determined for this 

site because each VRP has a unique and unknown shape and area. Baskahegan used 183 FRPs 

using a systematic sample (SYS) design with a sampling intensity of around 0.012%.  

We collected data in the PEF in 2022 to compare the different plot types, sample sizes, 

and sample designs in one location. A PCA for plot placement was used to determine FRP and 

VRP placement for 92 and 143 points. FRPs were 32.8 feet in radius, and sampling intensity was 

0.304% and 0.472%, respectively. We also determined the plot radius factor for each tree to 

create variable radius data using a nine basal area factor (BAF) prism. An SRS design had been 

used previously in the PEF for a continuous forest inventory (CFI) in which there were 92 FRPs 

and each plot had a radius of 37.2 feet. We grew the CFI data using the USFS Forest Vegetation 

Simulator (FVS) Acadian Variant (Weiskittel & Kershaw, 2018) to 2022 and clipped the stem 

map to a 32.8-foot radius. A sample size of 143 random FRPs was generated by combining the 

existing 92 CFI FRPs with the 143 PCA FRPs and running a random number generator to extract 

143 data points. The plot radius factor for all trees within the 92 and 143 FRPs in the SRS design 

was calculated to create variable radius data using a 9 BAF prism.  
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Because of the proximity of the Demeritt to the PEF, we were able to collect data there as 

well in 2022 to be used as validation. There were 53 plot locations with a sampling intensity of 

0.359% in the Demeritt Forest. These data were collected using 1/10-acre plots. Calculations 

were done post-cruising to create 32.8-foot radius FRPs and to determine the plot radius factor 

for VRPs using a 9 BAF prism. Tree measurements collected in the PEF and Demeritt were 

species, diameter at breast height (DBH), tree height, crown class, azimuth, and distance. In 

each plot, only trees greater than four inches DBH were measured. In the PEF, tree heights were 

measured for one tree in each DBH class in each plot, while in the Demeritt, every tenth tree was 

measured for height in each plot. For all the VRP data, we could not determine sampling 

intensity because each plot has a different area. The differing plot sizes make it difficult to 

calculate sampling intensity (Keene & Barlow, 2019). 

Table 2.2. Summary of plot types, sample size, sample intensity, and sample design of our 
areas of interest. 

Study Area Plot Type Sample Size Sample Intensity Sample Design 

PEF FRP 143 0.472% PCA 

 FRP 92 0.304% Random 

PEF VRP 143 N/A PCA 

 VRP 92 N/A Random 

Demeritt FRP 53 0.359% Random 

Ashland West (SILC) VRP 1,387 N/A PCA 

Rangely (SILC) FRP 384 0.364% Random 

Baskahegan FRP 183 0.009% Grid 

 
2.2.2.2 ALS Data 

 

We used NASA’s Goddard’s LiDAR, Hyperspectral & Thermal Imager (G-LiHT) data for 

the Demeritt Forest and PEF (Table 2.3). G-LiHT combines ALS, imaging spectroscopy, and 

thermal measurements that can map the structure and composition of forests (Cook et al., 

2013). G-LiHT LiDAR data have a high point density, and the sensor is flown during leaf-on 

conditions, which may allow for more accurate forest metric predictions (Næsset, 2005; 

Imangholiloo et al., 2020; Bouvier et al., 2015).  
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We used USGS’s 3D Elevation Program (3DEP) data for all other study areas. This 

program aims to collect and make publicly available ALS datasets for the United States with 

high-resolution elevation data (USGS, n.d.). 3DEP datasets are available for Maine and 

classified as Quality Level 2 (QL2). The QL2 dataset has a slightly lower point density than QL0 

or QL1 datasets (USGS, n.d.). Because the goal is to provide elevation data, ALS acquisition is 

during leaf-off events to ensure more ground returns. Both G-LiHT and 3DEP datasets were 

normalized by calculating height above the ground. 

 Table 2.3. Summary of ALS data and associated characteristics for each study 
area.  

Study Area 
ALS 
Data 

Point 
Density  
(pls/m2) 

Temporal 
Resolution 

Land 
Characteristics 

PEF G-LiHT 12-15 2021 Leaf-on 

Demeritt G-LiHT 12-15 2021 Leaf-on 

Ashland West 3DEP 2-3 2017 Leaf-off 

Rangely 3DEP 2-3 2018 Leaf-off 

Baskahegan 3DEP 2-3 2017 Leaf-off 

 
2.2.2.3 Covariate Data 

 

In addition to the ALS data, we used Sentinel-2 multispectral data as covariates in our 

models (Table 2.4). Sentinel-2 data less than 30% cloud cover for 2021 were downloaded from 

USGS's Earth Explorer before the archive ended. These data were used to create a Normalized 

Difference Vegetation Index (NDVI), a Principal Component Analysis composite containing 

principal components 1 and 2, which explained 94.24 and 5.76% percent of the variance, 

respectively, and a four-band composite of the blue, green, red, and near-infrared bands at a 10-

meter resolution to assist the model in vegetation recognition. A digital elevation model (DEM) 

at a 10-meter resolution was created using an ALS dataset corresponding to our study areas. We 

filtered for the last returns to create the DEM from which we calculated slope and aspect and 

added them as model covariates for all study areas except the PEF and Demeritt Forest. Slope 

and aspect were not used for these two study sites because of the flat topography of these areas. 
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Furthermore, we created a canopy cover dataset by filtering noise and points over 164 feet in the 

ALS dataset, and then a percentage of all returns over the mean height was calculated. This 

dataset was used to describe the canopy structure and was calculated at a 10-meter resolution. 

Lastly, we used various standard height and intensity metrics within the ALS dataset, as 

described in Table 2.5 below. Height metrics are calculated from the distance of each point from 

the ground (Hütt et al., 2022), whereas intensity metrics measure the laser pulse's return 

strength for each point (Kashani et al., 2015). These metrics were subset using the lidR package 

in R (Roussel et al., 2020; Roussel & Auty, 2023).   
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Table 2.4. Datasets and the respective products created from them.  

Dataset Products Created Spatial Resolution (meters) 

Sentinel-2 NDVI (exts1) 10 

PCA (exts2, exts3) 10 

4 Band Composite (B, G, R, NIR) 

(exts4, exts5, exts6, exts7) 10 

*ALS Canopy Cover (extsCV) 10 

Slope (ext_slope) 10 

Aspect (ext_aspect) 10 

 Height Metrics 10 

 Intensity Metrics 10 

*G-LiHT or 3DEP were used to derive certain datasets depending on the study area. Slope and 
Aspect were not used in the models for the PEF or Demeritt because the topography for these 
areas is homogenous, so the elevation factors were not important for model performance.  

 

Table 2.5 ALS metrics used in this study and a description. 

Metric Name Description 
zmax elevation maximum 

zmean elevation minimum 

zsd elevation standard deviation 

zskew elevation skewness 

zkurt elevation kurtosis 

zentropy elevation entropy of returns 

zq5, zq10, …, zq90, zq95 elevation percentiles 

zpcum1, zpcum2, …, zpcum8, 

zpcum9 

cumulative percentage of returns in each layer of the 

elevation range  

imax intensity maximum 

imean intensity mean 

isd intensity standard deviation 

ikurt intensity kurtosis 
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2.2.3 Data Analysis 

 

We used the area-based approach (ABA) for modeling (Figure 2.2). According to White 

et al. (2013), the ABA consists of two stages. In stage one, plot data are clipped to ALS data. 

From the clipped data, standard ALS metrics were subset that included mean height, height 

percentiles, and maximum intensity, among other metrics (Roussel et al., 2020; Roussel & Auty, 

2023). Then predictive models were developed where in-situ data are the response variable, and 

predictors are the ALS metrics. We employed random forest for our predictive models, which 

used the clipped ALS metrics as the training data. From the random forest model, we could 

determine which predictor variables were most important or which variables the model used the 

most to determine the predictions. In stage two, wall-to-wall estimates were generated for the 

whole area of interest (Figure A.5). The resulting grid cell, or pixel size, is related to the size of 

the plot. We used 32.8-feet radius plots for FRP calibration, so the pixel size is 65.6 feet. The 

prediction equation created from the model in stage one is applied within the grid cells. Once 

applied, each pixel will contain a forest attribute prediction. This information can then be 

expanded to stand-level predictions (White et al., 2013; White et al., 2017). 
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Figure 2.2. The ABA consists of several steps which are (a) tessellating the area of interest 
based on plot size, (b) gathering ALS data (c) gathering ground plot data, (d) generating wall-
to-wall metrics, (e) clipping ALS data to plots, (f) compiling covariate data, (g) applying the 
predictive model, and finally (h) generating wall-to-wall maps. 

 
We used random forests for the predictive model mentioned in stage one of the ABA. The 

random forests modeling approach allows a group of trees to “grow” by voting for the most 

popular decision (Breiman, 2001). Our clipped ALS data were used as training data - the model 

used the training data without replacement to grow the groups of trees. This is known as 

bagging (Breiman, 1996). 

 2.3. Results 
 

The best results in terms of model performance consistently came from the percent softwood 

(PSW) predictions. The Baskahegan model had the most considerable R2 value out of all the 

other models (Table A.1). This indicates that there is a stronger correlation between the 

predicted and observed percent softwood values than that of the other models (Figure A.1). The 

normalized root mean square error (NRMSE) metric of 0.3% shows that the model predictions 

are closer to the observed values on average than with the other models. The low coefficient of 

a 

b 

c 

e 

d 

f 

g 

h 
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variation (CV) value indicates a higher precision in the predicted values, and the normalized 

mean bias (NMB) demonstrates that the error was underestimated but small. The PEF model 

using 143 FRPs with an SRS design was the lowest model performance in predicting PSW (Table 

2.6). The R2 shows that the PSW predictions and observed values do not fit the regression as 

well as with the Baskahegan model. The higher NRMSE indicates that the predictions are 

further away from the fitted line. The higher CV demonstrates a lower precision in the model’s 

predictions, and the NMB shows that the error was overestimated and is substantial 

comparatively. Of all the PEF models, the best-performing one used 92 FRPs and a PCA for plot 

placement. None of the models performed terribly in predicting PSW and can be attributed to 

the addition of covariate data. The added imagery assisted the models by aiding the distinction 

between hardwoods and softwoods and can be surmised from the three most important 

variables from all the models. The important imagery variables include Sentinel-2 band 8 (near 

infrared) (exts7), NDVI (exts1), intensity kurtosis (ikurt), and standard deviation (isd) (Figure 

2.3).  
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Figure 2.3. The ten most important percent softwood predictor variables for the PEF model 
using 92 FRPs and a PCA for plot placement. 

 
Model performance across all study sites begins to decline when predicting volume. The 

Baskahegan model showed the best performance for this attribute. The evaluation metrics 

indicate that the predicted volume values are closer to the observed volume and are more 

precise than the worst-performing model - the PEF model using 143 FRPs with an SYS design 

(Figure A.2). Within the PEF, the best-performing model was the one that used 92 FRPs and an 

SYS design. The most important variables in predicting volume were consistently canopy cover 

(extsCV), elevation in the fifth percentile (zp5), and the cumulative percentage of returns in the 

lower 30% of the maximum elevation (zpcum3) (Figure 2.4). The decline in model performance 

continues with the prediction of BA. The Baskahegan model, once again, was the best-
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performing model compared to the PEF model using 143 FRPs and an SYS design. The 

evaluation statistics show that the predicted BA values are closer to the observed values and 

more precise (Figure A.3). Compared to the models in the PEF, the best evaluation statistics 

came from the one using 92 VRPs and PCA for plot placement. The topmost important variables 

in predicting BA were consistently zp5, exts7, and extsCV (Figure 2.4). Since volume and BA are 

somewhat related, overlapping importance variables are to be expected. 

  

Figure 2.4. The ten most important volume (left) and basal area (right) predictor variables for 
the PEF model using 143 FRPs (left) and 92 FRPs (right) both with a SYS design. 

 
Tree count predictions consistently underperformed across all sites, with the highest R2 

coming from the PEF model using 92 FRPs and a PCA for plot placement (Figure A.4). The 

NRMSE shows that the range in predictions from this model are closer to the range of in-situ 
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data compared to the other models. The NMB from this model indicates that the error was 

underestimated, but there was no significant error. This contrasts with the model using 143 

VRPs and an SYS design in the PEF and the Ashland West model, which showed the worst 

performance in predicting tree count. The R2 demonstrates that the predicted TPA values are 

not close to the observed TPA values, while the higher NRMSE indicates that the predictions lie 

further away from the fitted line. The high CV indicates that the predictions were less precise 

than other models. The most important variables that help predict tree count were zq5, the 

standard deviation of the elevation (zsd), and the standard deviation of the intensity (isd) 

(Figure 2.5). The most notable difference between the two models is the type of ALS data used 

for the analysis. G-LiHT data (leaf-on) was used for the PEF models, while 3DEP data (leaf-off) 

was used for the Ashland West model. The quality of ALS data may affect tree count predictions. 
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Figure 2.5. The ten most important tree count predictor variables for the PEF model using 
92 FRPs. 

 
Even with a large sample size, the Ashland West model (using VRPs) performed the 

poorest across all forest attribute predictions compared to the Rangeley and Baskahegan sites 

which used FRPs. The high NRMSE value of the Ashland West model demonstrates that the 

model was over-predicting, while the higher CV value means that the predictions could be more 

precise than the other two models. In the PEF, the models using FRPs slightly outperformed the 

models using VRPs with the same sample size across most of the calculated forest metrics. 

Comparing the models using a sample size of 92, the FRP types see a better model fit, usually 

better prediction values, usually more precise predictions, and smaller errors. Comparing the 

models using a sample size of 143, again, FRP types show better model performance. However, 
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the model using 92 VRPs did perform better than the model using 143 FRPs for the PSW, 

volume, and BA predictions.  

Sample sizes, hinted at in the previous paragraph, can also provide insight into model 

performance. Sample sizes range from large (n = 1,387) to small (n = 92). The Ashland West 

model with the largest sample size seemed to perform the worst compared to the Rangeley and 

Baskahegan models – even though the sample size was four to nine times larger than the other 

two sites. Comparing the four PEF models, the smaller sample size showed better model 

performance regardless of plot type. This may be because of how our random forest model 

worked. Our random forest model's default was bootstrapping, meaning all our observations 

were sampled with replacement (Breiman, 1996). Breiman (2001) explained that when the 

sample size is decreased, there are fewer correlations between trees. A lower correlation between 

trees means a potential improvement in prediction accuracy. However, a smaller sample size 

does not necessarily imply that more variability is captured in a land base.  

Lastly, the models can be compared by sample designs. Half of the PEF models and the 

Ashland West model used a PCA for plot placement, whereas the other sites used either an SRS 

or an SYS (Table 2.2). Of the four PEF models, the two that performed slightly worse in 

predicting PSW and BA were the ones that used a PCA for plot placement. The R2 for these two 

models is slightly worse, indicating that the predicted values were not as close to the observed 

values than the other models that used an SRS. The NRMSE, CV, and NMB values for the worst-

performing PEF models also show that the prediction values are not as precise or accurate as the 

others. The PEF models that performed worse in predicting volume were the models that used 

143 VRPs (PCA) and 92 VRPs (random). 

Furthermore, the models that performed worse in predicting tree count were the ones 

that used 92 VRPs and 143 FRPs (PCA). Comparing across all models, the Baskahegan (PCA) 

model performed the best across all sites for PSW, volume, and BA predictions. The worst-
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performing model was the PEF (143 VRPs, PCA) in predicting PSW, volume, and BA and the 

Ashland West model in predicting tree count.
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Table 2.6. R2, normalized root mean square error (NRMSE), coefficient of variation (CV), and normalized mean bias (NMB) results for 
the PEF for each of the four forest metrics predicted as well as both plot types and sample sizes. 

Plot 
Type 

Sample 
Size (n) 

Percent Softwood (%) Total Volume (CDS/ac) Basal Area (ft2/ac) Tree Count (trees/ac) 

  
R2 

(%) 
NRMSE 

(%)  
CV 
(%) 

NMB 
(%) 

R2 

(%) 
NRMSE 

(%)  
CV 
(%) 

NMB 
(%) 

R2 

(%) 
NRMSE 

(%)  
CV 
(%) 

NMB 
(%) 

R2 

(%) 
NRMSE 

(%)  
CV 
(%) 

NMB 
(%) 

FRP 92 72.7 47.1 31.0 -0.18 31.9 11.4 57.7 -1.74 38.4 21.6 45.4 -1.34 39.8 46.4 33.3 -1.27 

FRP 143 59.1 41.5 38.6 0.89 35.8 36.0 37.9 -1.16 25.2 33.5 34.2 -0.94 26.3 51.0 49.7 -1.58 

VRP 92 61.7 43.3 38.9 1.79 40.1 48.4 38.7 -0.23 61.3 22.1 52.8 -1.06 22.2 53.4 52.3 -0.61 

VRP 143 58.5 40.6 39.8 0.89 30.7 37.2 39.3 -0.92 22.5 34.1 35.2 -1.02 27.7 50.5 49.6 -1.80 

FRP 92 64.6 36.0 37.9 0.83 57.0 18.0 41.7 -0.54 40.7 21.3 33.0 0.94 32.5 34.1 32.6 -0.11 

FRP 143 50.8 38.1 40.6 0.12 22.0 12.4 69.3 -2.23 22.0 43.3 57.7 -1.68 27.0 36.3 32.2 -0.42 

VRP 92 63.3 42.8 39.6 1.07 33.3 34.2 39.3 -0.07 28.7 34.5 32.6 -0.13 21.4 52.0 46.1 -0.98 

VRP 143 54.2 44.0 41.1 1.77 22.7 12.3 49.8 -0.06 35.1 12.3 77.7 -0.35 12.4 45.2 57.2 -0.65 

*The first four rows of information reflect the PCA for plot placement while the last four rows of information reflect the simple random sampling design. 
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2.3.1. Validation 

 
A model was created for the Demeritt forest, and four PEF FRP models were applied to 

this study site as a comparison. The created model data was prepared using G-LiHT data to 

separate the Demeritt into 64 PCA classes and assumed we needed 53 plots. Existing CFI plots 

were then used and categorized into each PCA class. Some classes did not need plots as these 

sites were devoid of trees, such as non-forested wetlands, so no plots were placed in those 

categories. Once plot placement had been determined, the stem map could be clipped to 32.8-

foot radius plots. Plot metrics (i.e., PSW, volume, BA, and tree count) were calculated and fed 

into the model along with covariate data, which produced a raster dataset (Figure A.6). Results 

showed mediocre performance in predicting PSW – even with the addition of covariate data that 

was assumed to have aided PSW predictions in other models (Table 2.6). Although the statistics 

for the PSW predictions were poor, that was not the case for the other predictions. Volume and 

BA saw an improved model performance, either on par or better than other models. Tree count 

predictions also showed good model performance, comparatively. A visualization of how well 

the predicted values compared to the observed values can be seen below in Figure 2.6, and the 

results are shown in Table 2.7.
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Table 2.7. R2, NRMSE, CV, and NMB results for the Demeritt model for each of the four predicted forest metrics. 

Plot 

Type 
Sample 
Size (n) 

Percent Softwood (%) Total Volume (CDS/ac) Basal Area (ft2/ac) Tree Count (trees/ac) 

  
R2 

(%) 
NRMSE  

(%) 
CV 
(%) 

NMB 
(%) 

R2 
(%) 

NRMSE 
(%)  

CV 
(%) 

NMB 
(%) 

R2 
(%) 

NRMSE 
(%)  

CV 
(%) 

NMB 
(%) 

R2 
(%) 

NRMSE 
(%)  

CV 
(%) 

NMB 
(%) 

FRP 53 28.3 0.2 29.4 0.47 52.2 17.3 38.6 0.45 74.7 0.7 30.0 -0.09 41.4 57.4 37.3 -0.71 
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Looking at the top three most important variables for the PSW model (Figure 2.7), exts7, 

ikurt, and isd are the most used in the predictions. These are the same variables used in the PEF 

(92 FRPs) model to predict PSW (Figure 2.3). The top three variables for predicting volume 

were zq20, zq25, and zmean. For BA in the Demeritt, the top three variables were zq85, zq90, 

and zq45. Lastly, Demeritt’s top three predictor variables for tree count were zpcum1, zpcum8, 

  

  

Figure 2.6. Plotted relationships between predicted (x-axis) and observed values (y-axis) for 
percent softwood, volume, basal area, and tree count predictions in the Demeritt Forest.  
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and zsd. These variables do not deviate from those used to predict the different forest metrics in 

the other models.  

 

  



32 
 

 

 

 

 

Figure 2.7. The ten most important predictor variables for the Demeritt model where 
percent softwood is upper left, volume is upper right, basal area is lower left, and tree count is 
lower right. 
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Another comparison that we can make is stand-level volume predictions from the model 

and stand-level volume estimates derived from the traditional forest inventory. The total 

predicted volume in cords per acre from the model was 3,818,469.77, and the total estimated 

volume from the traditional forest inventory was 2,512,658.50, with a difference of 1,305,811.27. 

This difference indicates that the EFI model is predicting more volume than the estimates from 

the traditional forest inventory. Table 2.8 shows a subsample of stands in the Demeritt Forest 

with corresponding EFI and traditional forest inventory volume predictions. The minimum and 

maximum values associated with each stand are shown with the EFI volume predictions. Stand 

B36 was predicted to have 52.30 CDS/ac, while the traditional forest inventory estimated 33.30 

CDS/ac. Even though the two estimates are off by 19 CDS/ac, it is essential to understand that 

the EFI predictions are presented in ranges because the predictions within each raster pixel 

were aggregated to the stand boundaries. This means that some areas of the stand may have a 

lower predicted volume estimate and depend on the pixel’s location. 

In contrast, the traditional inventory estimate is derived from measurements in one to 

several plots per stand that are not necessarily spatially dependent. This is where EFIs come at 

an advantage because, with these predictions, foresters can have complete spatial knowledge of 

their land base instead of using a traditional forest inventory. In some instances, the estimated 

volume is higher than the predictions from the EFI. Stand E26, for example, was predicted to 

have 46.96 CDS/ac, whereas the estimate from the traditional forest inventory is 66.33 CDS/ac. 

While some stands have differing predictions and estimates of volume, others are more 

agreeable, like stand C49, where there is a difference of 0.24 CDS/ac. Given the comparison 

below, it is evident that predictions and estimates of forest metrics can vary no matter what type 

of inventory is used. Traditional forest inventories have been used for decades and can be 

reliable, but EFIs are time and cost-effective and provide expansive spatial knowledge of the 

land base. 
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Table 2.8. A subset of Demeritt stands with corresponding EFI total volume estimates and 
the associated minimum and maximum values compared to the traditional forest inventory 
volume estimates all in cords per acre. 
Stand EFI  

CDS/ac 
EFI Min 
CDS/ac 

EFI Max 
CDS/ac 

Estimated  
CDS/ac 

B36 52.30 

 

15.55 

 

79.04 

 

33.30 

 
C48 33.94 13.47 

 
71.57 
 

43.08 

C49 38.27 16.61 
 

90.30 38.03 

C50 44.86 21.27 
 

91.71 34.55 

E26 46.96 14.91 
 

102.71 66.33 

F7 36.07 13.69 
 

90.67 29.02 

I75 52.78 24.61 
 

100.00 28.40 

 

We can validate the Demeritt model by comparing means and standard deviations of the 

volume predictions from the EFI model and volume estimates from a traditional forest 

inventory (Figure 2.8). Most standard deviation error bars of predicted and estimated values for 

the stands listed in Table 2.8 above overlap, indicating that the values are not statistically 

significant from each other. In other words, our predicted EFI volume metrics are comparable to 

the traditional inventory volume estimates. However, in stands such as B36, the standard 

deviations of the predicted and estimated values do not overlap. This indicates that volume from 

the EFI model may have been overestimated in this stand. Since a sample of stands are 

statistically different, we can assume that the model may not work for all stands. Overall, these 

results indicate that the ABA may provide acceptable forest attribute predictions for forest 

management. 
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Figure 2.8. Means and standard deviations of volume (in cords per acre) in a subset of 
stands in the Demeritt for the predicted EFI and estimated (in-situ) values. 

Comparing the Demeritt model to the other four PEF FRP models applied to the 

Demeritt, it becomes evident that there is little to no statistical difference between the five 

datasets for most forest attribute predictions (Figure 2.9). For the PSW prediction, the standard 

deviations of the Demeritt model and the first three applied models (143 and 92 FRPs using a 

PCA for plot placement and 143 FRPs using an SRS design) show overlap meaning that the 

models are working as expected. Additionally, there is much overlap in all model’s standard 

deviations in the BA and TPA categories. However, when assessing volume, some models’ 

standard deviations do not overlap others, demonstrating that these models may not be working 

as well as they should.  
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Figure 2.9. Means and standard deviations of the four PEF FRP models applied in the 
Demeritt and the Demeritt model for the percent softwood (PSW), volume (Vol), basal area 
(BA), and trees per acre (TPA) predictions.  
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2.4. Discussion 
 

2.4.1 Analysis of Results 

 

PSW predictions did well because of the covariate data used to assist the model in 

distinguishing between softwoods and hardwoods. The model performance declines after PSW, 

with tree count predictions having the worst evaluation statistics. The models may not be able to 

predict tree count, depending on the ALS data used, since some data were flown during leaf-on 

conditions and others were flown during leaf-off conditions. White et al. (2015) conducted a 

study comparing leaf-on to leaf-off ALS and found that models using leaf-on ALS data had 

slightly better model performance than models using leaf-off data (Table 2.9). 

Table 2.9. RMSE and mean bias values of the White et al. (2015) study comparing leaf-on 
and leaf-off conditions compared to this study’s results.  

Source Forest Type Target Forest Attributes Results 

White et al. (2015) Boreal Lory’s mean height* and crown 
closure 

Leaf-on: RMSE = 
3.738 
mean bias = 0.098 

Leaf-off: RMSE = 
4.612 
mean bias = 0.005 

Chapter 2 data Mixed PSW*, volume, basal area, and tree 
count 

Leaf-on: RMSE = 19.9 
mean bias = 0.47 

Leaf-off: RMSE = 0.17 
mean bias = -0.004 

*The results shown for White et al. (2015) are reflective of Lory’s mean height for leaf-on and 
leaf-off data while this paper’s results are reflective of the best performing models which were 
PEF using 92 VRPs (leaf-on) and Baskahegan (leaf-off). 
 

Other studies using leaf-off ALS data or comparing leaf-on to leaf-off ALS data show 

mixed results (Table 2.10). Hawbaker et al. (2010) used leaf-off ALS data to predict various 

forest attributes, in which the evaluation statistics could have been better. Næsset (2005), 

contrary to the previous study mentioned, found that leaf-off ALS provided slightly better 

results. There was also a difference in the models when comparing plot types. Models that used 

FRPs tended to have better statistical outcomes than VRPs. A higher sample size intuits a better 
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model performance, but results show the inverse. This may be due to the inner workings of 

random forest. 

Table 2.10. R2, RMSE, and mean bias values of studies that only investigated leaf-off 
conditions or compared leaf-on and leaf-off ALS conditions. 

Source Forest Type Target Forest Attributes Results 

Hawbaker et al. 
(2010) 

Mixed Hardwood Tree density, basal area*, Lory’s 
mean height, and volume 

Leaf-off: R2 = 0.13 
mean bias = -13.0 

 

Næsset (2005) Mixed Lory’s mean height, basal area*, 
volume 

Leaf-on: R2 = 0.62  

Leaf-off: R2 = 0.66  

Chapter 2 data Mixed PSW, volume, basal area*, and  
tree count 

Leaf-on: RMSE = 19.9 
mean bias = 0.47 

 

Leaf-off: RMSE = 0.17 
mean bias = -0.004 

 

*The results shown for Hawbaker et al. (2010), Næsset (2005), and the PEF model using 92 
VRPs and Baskahegan model are reflective of basal area for leaf-on and leaf-off data. 

 

 
Since the models use many of the same variables to predict the different forest metrics, 

the models themselves may not be the issue. Further data collection is needed to compare the 

results from 2021 in the PEF and Demeritt to assess if observations are similar and provide 

comparable predictions. The structural variability may also impact the prediction outputs and 

evaluation statistics. The PEF and Demeritt Forest are both research forests with many different 

silvicultural applications creating areas with varying structures and species compositions 

contrary to the working industrial forests in Northern Maine. The increased variability of these 

two forests may prove difficult to capture without sacrificing time and cost efficiency and is 

potentially reflected in the results.  

2.4.2 Future Work 

 

More data should be collected to compare different sample sizes. For the purposes and 

timeline of this research, only two sample sizes and sampling intensities were compared in one 

study location. More work should be done to expand upon this by considering higher and lower 

sample sizes and sampling intensities. Future research should also focus on using different 
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sample sizes and sampling intensities in areas beyond the PEF to ensure proper 

recommendations are being made for different forest types. Even though a smaller sample size 

shows the better model performance when using random forest, larger sample sizes, 

theoretically, capture more variability in the population, which should provide better results. 

This may be because a small sample size has less correlation and due to the inner workings of 

random forest. The user must determine what type of predictive model should be used for their 

research. Random forest is used in remote sensing because it yields reliable classifications 

(Breiman, 2001) but linear models have long been established and are well-understood (Means 

et al., 2000). Different sample designs should also be considered. We could only compare three 

different sample designs in this research, but there are others such as strip, cluster, or stratified 

random sampling. 

Lastly, VRPs in the Ashland West site performed worse than the Baskahegan and 

Rangeley sites. These same trends were absent in the PEF. FRPs did, however, produce better 

evaluation statistics overall, while VRPs for some forest metrics performed slightly better or 

equally as well as FRPs – specifically when predicting volume and BA. The PEF, since it is a 

research forest with various silvicultural implementations, is a highly variable forest, most likely 

not representative of the industrial forests in northern Maine. This could be one explanation for 

the differing results between all four sites – why VRPs performed poorly in all models except for 

some forest metric predictions in the PEF. Specifically, the Baskahegan and Rangeley sites in the 

spruce-fir forest type (some parts of the Rangeley site in the beech-birch-maple forest type) had 

the best overall results, and even the Ashland West site in the spruce-fir forest type 

outperformed the PEF models in some predictions (Table 2.11). Maine’s forests are intensively 

managed, especially the spruce-fir forests in northern Maine, where much of the industry is 

located. 
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 Table 2.11. Summary of study areas (and validation study area) and associated  
forest ecoregions (McCaskill et al., 2016).  

Study Area Forest Ecoregions 

PEF Oak-Pine 

Demeritt Oak-Pine 

Ashland West Spruce-Fir 

Rangely Beech-Birch-Maple/Spruce-Fir 

Baskahegan Spruce-Fir 

 

2.5. Conclusions 
 

 Although there is still much research to be done before making formal 

recommendations, there were trends in our findings that support our hypothesis. Our results 

show that a PCA for plot placement, FRPs, and a smaller sample size and sampling intensity 

provided slightly better results. However, the Baskahegan model, which used an SYS design to 

place plots, also showed good performance. Although smaller sample sizes had better results, 

that may not be the case if other predictive models are used. If using a random forest, smaller 

sample sizes reduce the number of correlated variables in each tree, resulting in improved 

evaluation statistics (Breiman, 2001). Results may be different if using a parametric model, such 

as linear regression. Employing these plot types and smaller sample sizes could allow the user to 

create more accurate and precise EFIs if utilizing random forest for the predictive model. This 

may be especially true in the spruce-fir forest types in northern Maine, where most of the 

forested land is managed for timber. The following steps should consist of attempting various 

combinations of these designs in other forest types to define what approach works best in 

southern Maine's oak-pine or beech-birch-maple forests. Other plot designs and the type of GPS 

used to collect plot location data, plot shape, and sample design should be further investigated. 

However, some plot types and sample designs may be cheaper and faster to execute than 

recommended here. Foresters should use a plot type and design that best fits their needs and is 

economically feasible for their company. If implemented in the future, foresters can effectively 
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balance economically sustainable practices with ecologically sound interventions conserving 

ecosystem services that will continue to reward forest product companies and the public for 

future generations.  
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CHAPTER 3: USING BEST PRACTICES TO ESTIMATE ABOVEGROUND FOREST 

ABOVEGROUND BIOMASS WITH AIRBORNE LASER SCANNING IN MAINE 

 
3.1Introduction 
 

Trees play a substantial role in mitigating the effects of climate change by sequestering and 

storing carbon from the atmosphere (Pan et al., 2011). It is estimated that forests can store up to 

70-90% of total global aboveground carbon depending on the forest type (i.e., boreal, temperate 

deciduous, rainforest, etcetera) (Cusack et al., 2014; Hao et al., 2019; Simard et al., 2020). 

Researchers and land managers need to understand how trees affect the concentration of 

anthropogenic carbon in the atmosphere, especially in areas that are intensively managed since 

young trees sequester more carbon as they tend to accumulate growth rapidly, whereas older 

trees, once the growth curve flattens out, store more carbon (Stephenson et al., 2014; Waring et 

al., 2020). Understanding how trees capture carbon in intensively managed forests and 

accurately estimating stored carbon is the first step in actively formulating a response to climate 

change (Pang et al., 2022).  

Simple allometric equations using tree height and diameter at breast height (DBH) are used 

to estimate aboveground biomass from which carbon estimations are derived (Sun & Liu, 2020). 

This inventory-based approach to carbon estimation requires in-situ measurements of tree 

height, DBH, and potentially wood density for species-specific equations (Daba & Soromessa, 

2019; Vorster et al., 2020). Although these inventory-based practices are the norm and 

accepted, biases and errors are inherent. For example, measuring the entire population at larger 

landscape scales is almost impossible, so forests are often sampled using plots. Statistics are 

applied to the sample of trees and expanded to the population, therefore, introducing error 

(Tomppo, 2004). Another error is that estimates derived from these inventories are not spatially 

explicit (Knoke et al., 2021) and are usually made at the stand or landscape scale (Ståhl, 1992). 

While stand or landscape-scale estimates of forest attributes may give foresters a better 
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interpretation of forest characteristics like volume and basal area, spatially explicit estimates 

provide a finer detail that improves that understanding. Time and money constraints may also 

provide foresters with bias and error since repeat measurements may not occur for several 

years. Additionally, collecting in-situ measurements in intensively managed forests can 

negatively impact forest attribute estimates if the structural variability is not sufficiently 

captured (Didion et al., 2009). Remote sensing products may be able to help overcome these 

restraints. 

Where there are missing data in a forest inventory, remote sensing products can fill in the 

knowledge gaps (Lister et al., 2020). These products can assist in estimating forest metrics such 

as BA, volume, biomass, and more (White et al., 2013; Esteban et al., 2019; Fraser & Congalton, 

2021). Traditional forest inventories that use remote sensing products are known as enhanced 

forest inventories and still require in-situ measurement collection to produce accurate and 

precise results (Wulder, 1998). As more remote sensing products emerge and become publicly 

available, interest in their use in EFIs grows. Remote sensing products can be used to aid the 

generation of wall-to-wall forest attribute prediction maps for an area of interest. In-situ data 

are fed into a model with remote sensing products in which forest attribute predictions are made 

across areas of interest - even in areas with no ground plots (Waser et al., 2015). 

While many remote sensing products, like satellite imagery, provide adequate detail 

pertaining to an area of interest, it lacks the ability to capture the 3D structure of the forest. 

Additionally, there is no limit on geographic extent; the only limitation is the size of the remote 

sensing dataset. With a high return interval of some satellite remote sensing products (i.e., a 

weekly return interval), foresters and researchers can enjoy a finer temporal resolution than a 

typical traditional forest inventory which may be completed every 5, 10, or 15-plus years. 

Airborne laser scanning, a remote sensing product, can capture the structure of the forest. A 

3D point cloud displaying the forest structure is created when a sensor attached to the underside 
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of an aerial vehicle emits laser pulses at target objects. In this case, the target objects are trees. 

These laser pulses hit the trees and are reflected to the sensor, where the computer calculates 

the distance of each return. Information from 3D point clouds can be used for measurements 

like tree height and individual tree segmentation analyses (Weiser et al., 2022). Tree 

segmentation helps extract tree height information without measuring tree heights in-situ 

(Weinstein et al., 2021). Point clouds can also help develop stand-level predictions across a 

landscape using the area-based approach (ABA) to modeling (White et al., 2013). After 

collecting an inventory, missing information about forest characteristics can be predicted from 

ABA models that use calibrated ALS data (Brosofske et al., 2014).  

The ABA has two distinct stages (White et al., 2013). ALS data are clipped to the plot 

locations in the first stage and fed through a predictive model. In the second stage, wall-to-wall 

estimates are made, resulting in a raster dataset for the area of interest. This has become a 

popular modeling approach for many users and is recommended by researchers (White et al., 

2013; Næsset et al., 2002; Woods et al., 2011). Two main advantages of the ABA are 1. users can 

have complete spatial knowledge or forest attribute estimates (White et a., 2013), and it has 

been shown to predict forest metrics more accurately and precisely (Coomes et al., 2017). 

             The raster outputs from these models can be used in countless ways to support the 

sustainable management of a forest. The most obvious is creating stand-level predictions that 

can be used to assess forest growth and productivity for future harvest operations. Another way 

to use the outputs is to monitor change after harvesting. In this chapter, we applied the best 

practice recommendations from our previous study to the Penobscot Experimental Forest (PEF) 

on two different dates – 2017 and 2021 – to estimate aboveground biomass (AGB). We 

accomplished a change detection analysis using those model outputs and canopy height models 

(CHMs) as a reference to determine increases and decreases in biomass and canopy height in 

harvested areas. 
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3.2. Methodology 
 

3.2.1 Study Site 

 

 The area of interest (AOI) chosen for this study was the Penobscot Experimental Forest 

(PEF) located in Bradley and Eddington, Maine (Figure 3.1). The PEF is about 3,800 acres 

managed by the U.S. Forest Service on a 99-year loan with the goal of long-term management 

research in the northern mixed forest type. It is located on the eastern side of the Penobscot 

River, with an offshoot stream on its perimeter that feeds into Chemo Pond. According to the 

NRCS Soil Survey, the PEF contains soils from very poorly drained (nearest Blackman Stream 

and Chemo Pond) to well-drained, allowing various vegetation to exist. It contains many 

peatlands and (forested and non-forested) wetlands. It is situated in Maine between the spruce-

fir forests of the north and oak-pine forests of the south, creating a variety of habitats suitable 

for various wildlife species. Its proximity to the University of Maine, the many forest 

management projects, and its characteristics made this forest a convenient and valuable location 

for data collection. 



46 
 

 

Figure 3.1. Location of the PEF within the state of Maine. Study site is red in the inset map 
denoting the location within the state of Maine. 
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3.2.2 Data 

 
3.2.2.1 In-Situ Data 

 
 ALS data for the PEF was downloaded, normalized, and then run through a Principal 

Component Analysis (PCA) to determine the location of plots. 93 was the input for the PCA 

since this is how many CFI plots are within the PEF. One plot needed to be dropped because it 

was outside the ALS data, so our sample size was 92. In Chapter 1, we determined that using a 

smaller sample size and a PCA for plot placement in the PEF returned better results, so we chose 

this design for this application. Using the ALS data to determine variability, the PEF was split 

into 64 categories, and each “bin” required a certain number of plots or no plots at all. Areas 

deemed to have the most variability by the PCA necessitated more plots. An advantage to using a 

PCA for plot placement is that plots may be placed closer to areas that are more easily accessible 

such as roads, which makes data collection easier. The plot shape was circular, and the radius 

was 10 meters corresponding to the recommendations in White et al. (2013). The plot center 

location was collected using a survey-grade GPS to minimize error. Data collection in the PEF 

was completed between May and August in the summer of 2022.  

3.2.2.2 ALS Data 

 

NASA’s Goddard’s LiDAR, Hyperspectral & Thermal Imager (G-LiHT) data was used for 

the PEF in the model and for the PCA, as mentioned above. G-LiHT combines ALS, imaging 

spectroscopy, and thermal measurements that can map the structure and composition of forests 

(Cook et al., 2013). While these data come from an amalgamation of sensors, this project uses 

ALS data. G-LiHT, like other ALS data, creates 3D point clouds from which height 

measurements and structure can be determined – this is how the PCA determined the variability 

in forest structure in the PEF. G-LiHT has a high spatial resolution (12-15 pls/m2), and the 

sensor is flown during leaf-on conditions which may allow for more accurate forest metric 

predictions. The small footprint (10cm diameter) allows the user to characterize better forest 
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structure and disturbances (Cook et al., 2013). G-LiHT data was collected in July/August of both 

2017 and 2021, which is temporally close to the in-situ data collection timeframe.  

3.2.2.3 Covariate Data 

 

National Land Cover Database (NLCD) land cover data for 2019 and Sentinel- 2 data 

were used in addition to the ALS data in the models. 2019 NLCD land cover data was chosen 

because it is close to the ALS acquisition date and the in-situ collection date. Land cover data 

were used to categorize the biomass per forest type in the PEF since NLCD uses four forest type 

classifications that are classified as deciduous forest, evergreen forest, mixed forest, and woody 

wetlands (Dewitz, 2021). Sentinel-2 data with less than 30% cloud coverage was downloaded for 

2021 from USGS’s Earth Explorer before the archive ended. Sentinel-2-derived products 

included a normalized difference vegetation index (NDVI), a four-band composition using the 

red, green, blue, and infrared bands, and a principal component analysis (PCA) composite with 

principal components 1 and 2 that accounted for 94.24 and 5.76% of the variation, respectively. 

Another supplementary dataset used was a canopy cover raster created with the G-LiHT data. 

All noise and points over 164 feet were filtered in the ALS data. Then a percentage of all returns 

over the mean height was calculated at a spatial resolution of 10 meters. This canopy cover 

dataset was used to describe the canopy structure. Lastly, we used various standard height and 

intensity metrics within the ALS dataset, as described in Table 3.1 below. These metrics were 

subset using the lidR package in R (Roussel et al., 2020; Roussel & Auty, 2023). 
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Table 3.1 ALS metrics used in this study and a description. 

Metric Name Description 
zmax elevation maximum 

zmean elevation minimum 

zsd elevation standard deviation 

zskew elevation skewness 

zkurt elevation kurtosis 

zentropy elevation entropy of returns 

zq5, zq10, …, zq90, zq95 elevation percentiles 

zpcum1, zpcum2, …, zpcum8, 

zpcum9 

cumulative percentage of returns in each layer of the 

elevation range  

imax intensity maximum 

imean intensity mean 

isd intensity standard deviation 

ikurt intensity kurtosis 

 

3.2.3 Data Analysis 

 

We used the component ratio method (CRM) to estimate aboveground biomass (Woodall 

et al., 2011). The CRM uses equations derived from Jenkins et al. (2003) which used wood-

specific gravity to estimate the biomass of particular components of trees like branches and 

foliage. AGB data for the PEF was then applied to our model using the area-based approach  

(ABA) (Figure 3.2). Stage 1: ALS, in-situ, and covariate data were collected. Once these two 

datasets had been collected, wall-to-wall metrics were calculated for the PEF. Since we used 10-

meter radius plots, the tessellation was done at 20 meters. Plot data were then clipped to the 

ALS and covariate data creating plot-level ALS/covariate data metrics that the model used as 

training data. These metrics contain forest metrics such as height percentiles, intensity values, 

NDVI values, and canopy cover values. A random forest model was used where the in-situ data 

were the response variables, and the ALS and covariate metrics were the predictors. Stage 2: 

Wall-to-wall estimates were generated for the PEF, resulting in a raster dataset containing those 
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estimates. This information can then be expanded to stand-level predictions for easier use 

(White et al., 2013; White et al., 2017). 

 

Figure 3.2. The ABA consists of several steps which are (a) tessellating the area of interest 
based on plot size, (b) gathering ALS data (c) gathering ground plot data, (d) generating wall-
to-wall metrics, (e) clipping ALS data to plots, (f) compiling covariate data, (g) applying the 
predictive model, and finally (h) generating wall-to-wall maps. 

 
 Once both models had been completed and raster products downloaded, we could begin 

a change detection analysis. Four different datasets were used for this analysis: the two raster 

outputs from the PEF models (AGB for 2017 and 2021) and two canopy height models (CHMs) 

for 2017 and 2021. CHMs were used because canopy height can be a crucial indicator of AGB 

(Tao et al., 2016). The outputs from the change detection analysis using the CHMs were used in 

conjunction with the results of the analysis using AGB to validate the changes in AGB and to 

show how the two data are interrelated. The analysis was done by subtracting the 2021 dates 

from the 2017 dates. Forest-type data were then extracted from an NLCD land cover dataset. 

This was done to understand how canopy height and AGB changed from 2017 to 2021 in the 

PEF.  
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3.3. Results 
 

 Comparing the R2 and root mean square error (NRMSE) of the two models, it is 

apparent that the 2021 model outperforms the other (Table 3.2). The R2 for the 2021 model is 

slightly higher, indicating that the predicted biomass versus the observed biomass values are 

closer to each other than the predicted and observed values in the 2017 model. Similarly, the 

lower normalized root mean square error (NRMSE) metric of the 2021 model indicates that the 

predicted biomass value ranges are closer to the ranges of the observed values. Both models' 

normalized mean bias values (NMB) are negative, revealing that these predictions 

underestimate the actual value. However, the NMB metric of the 2021 model, being the most 

negative, shows that this model underestimates biomass more than the 2017 model. Lastly, the 

lower coefficient of variation (CV) metric of the 2021 model indicates that this model has 

smaller residuals comparatively. 

Table 3.2. Summary of evaluation statistics for the two PEF models – the first using 2017 G-
LiHT data and the second using 2021 G-LiHT data. 
 

Aboveground Biomass (tons/ac) 

Year R2 (%) NRMSE (%) NMB (%) CV (%) 

2017 50.12 62.8 -0.01 37.38 

2021 54.99 59.5 -0.04 36.26 
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Figure 3.3. Chart showing the amout of aboveground biomass (AGB) by forest type in the PEF 
in 2017 (top) and 2021 (bottom). 

Comparing the AGB predictions from the two models, some differences appear (Figure 

3.3). From 2017 to 2021, AGB decreased in the deciduous forest type while it increased in the 

evergreen forest type. Over the five years, there was a change in canopy height and AGB (Figures 
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3.4 & 3.5). In 2017, there was a research experiment that required several strip clearcuts. We can 

see from those figures that the clearcut patches were not visible in the CHM and AGB images in 

2017 but appear in 2021. This is also seen in the change detection images (outlined in green), 

where the strips appear white or light blue, indicating a drastic decrease in AGB and canopy 

height in those areas. Figure 3.6 shows what tree classification (deciduous, evergreen, etcetera) 

was removed from those clearcuts. It shows that most trees removed fall into the deciduous 

forest type followed by mixed forest type, woody wetlands, and evergreen forests close behind.  

   

Figure 3.4. AGB in the PEF in 2017 (left), 2021 (middle), and the change in AGB (right) where 

yellow hues indicate higher biomass, and white or blue hues indicate lower biomass all shown 

in 20-meter pixels. 
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Figure 3.5. Canopy height in the PEF in 2017 (left), 2021 (middle), and the change in canopy 
height (right) where yellow hues indicate increased height, and white or blue hues indicate 
decreased height all shown in 1-meter pixels. 

 
 

 
 
Figure 3.6. Chart showing the average change from 2017 to 2021 in AGB (left) and canopy 
height (right) in clear cuts in the PEF by forest type. 

 
Other silvicultural removal practices in the PEF between 2017 and 2021 were expanding 

gap shelterwoods, overstory removals (OSRs), and shelterwoods with the addition of an OSR. 

The average change in AGB in expanding gap shelterwoods, we see that the most decrease 

occurred in the mixed forest type followed by evergreen and deciduous (no removals occurred in 

the woody wetlands category) (Figure B.1). In contrast, according to the change in canopy 

height, the most decrease in height occurred in the evergreen forest type followed by mixed, 
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deciduous, and lastly the woody wetlands. Although the first two rankings were different, the 

trend remains. 

The average change in AGB in OSRs shows the most biomass decrease in the deciduous 

forest type, followed by evergreen. Lastly, the mixed forest type (Figure B.2). Instead of biomass 

decreasing, there was an increase in the woody wetlands type. This contrasts with the average 

change in canopy height in OSRs. This model showed an increase in height in the mixed forest 

type, while the most decrease was in the deciduous forest type, followed by the evergreen and 

woody wetland types. 

The last silvicultural treatment examined was the shelterwood with an additional OSR 

operation (Figure B.3). The average change in AGB showed an increase in woody wetlands. This 

is like the findings mentioned previously for the OSR treatment. The most decrease in biomass 

occurred in the deciduous forest type, followed by the mixed and evergreen forest types. There 

were no increases in average canopy height in these treatment areas from 2017 to 2021. The 

evergreen forest type saw the most decrease in height, followed by the mixed forest and woody 

wetlands. There was a decrease in canopy height in the deciduous forest type, but it was less 

relative to the other forest types. 

3.4. Discussion 
 

3.4.1 Data Analysis 

 

This chapter explored the application of our best results from the previous chapter. This 

means that we used the smaller of the two sample sizes in the PEF from our previous research, 

which was 92 plots. Plot locations were determined using a PCA, and the plot type was a fixed 

radius. Our results using this design in the PEF in the previous study did not provide results on 

par with other models. As considered in the chapter 2 discussion, additional work should be 

done to collect more inventory data and investigate the effects of different sample sizes and 

sampled designs. Although this design did not provide better results than other models used in 
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Chapter 2, this did provide the best results for the PEF overall. The evaluation statistics for 

predicting AGB could be more robust. The R2 values around 50% indicate that the predicted 

values are moderately close to the observed values. 

Moreover, the NMB and CV values indicate that the model could be more precise and 

accurate. However, the PEF is a variable forest with many different silvicultural practices 

implemented throughout the years. Because of the heterogeneous state of the structure, species 

composition, and intense management of the PEF, the model may have difficulties predicting 

forest metrics since variability may not have been fully captured (Didion et al. 2009). If this 

model were to be implemented in a different forest, we might see different results. Foresters 

may need to implement a type of plot and sample design that best fits their needs.  

             The differences in these results were also seen in the graphs comparing the average 

change in AGB or canopy height to the different silvicultural treatments by forest type. There 

were slight differences in the two changes for the clearcut patches, and the overall trend 

remained. It was only when the other three silvicultural treatments were compared that the 

differences became more evident. This may have to do with the spatial resolution of all the 

datasets. AGB was predicted at 20-meter pixels, while the CHM was created at 1-meter pixels. 

Since we wanted to compare the average increases and decreases of AGB and canopy height in 

our analysis, we decided to use NLCD land cover data available at 30-meter pixels. The 

differences in pixel size across the datasets, especially when calculating the mean between AGB 

and forest type – and canopy height and forest type – may have resulted in errors that either 

over or underestimated the increases and decreases in AGB and canopy height in each 

silvicultural treatment. 

3.4.2 Future Work 

 

Like the discussion in Chapter 1, more research is needed to determine what plot types 

and sample designs will work best in different forest ecotypes. The calibration plot type used 

here may work slightly better for other study sites that happen to be in the spruce-fir forest type. 
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The PEF is located between the spruce-fir and oak-pine forest ecotypes, which have different 

tree species and more structural variability. This may influence model performance and must be 

explored further. 

Pixel size for the AGB prediction raster data was determined by the size of our plots, 

which were 10-meter radius. That meant that our pixel size had to be 20 meters. If using NLCD 

data to determine the average change in AGB, future research should include a plot size of 15 

meters so that the pixel size is the same as the NLCD datasets. Also, the CHM should be created 

with a coarser resolution to match the forest-type dataset's resolution. This may eliminate some 

of the errors shown in this chapter. 

 
3.5. Conclusions 
 

 The results from this chapter relate to the concerns expressed in Chapter 2 since this was 

the application of our best practice recommendations. This was an example of how our partners 

and others may use their EFIs' results. Not only can this process be used to predict any range of 

forest metrics, but it can also be used to monitor changes in the forest. In this example, we 

estimated AGB in our study area and completed a change detection analysis; this was done in 

conjunction with a CHM change analysis since canopy height is related to forest biomass. We 

knew of past harvest activities in the PEF between 2017 and 2021. We were able to visualize 

those changes through the predictive outputs of the model and by assessing the average change 

in biomass and canopy height. This exemplifies the power of this modeling approach and its 

usefulness to foresters who may want to predict forest metrics more accurately and precisely, 

like volume or biomass. Not only can they improve forest metric predictions, but they can also 

monitor the removal of timber via a change detection analysis. This has the potential to assist 

foresters in assessing forests – how their past histories may affect production and how to 

manage them better to remain both economically viable and ecologically sound. 
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CHAPTER 4: CONCLUSION 

 

We used the ABA to model forest attribute estimates, a recommended best practice for 

western Canadian forests by White et al. (2013) and shown to provide precise and accurate 

results in Norway’s forests under operational conditions (Næsset, 2007). By assessing recent 

data in the PEF using two plot types, two sample sizes, and sampling intensities, and two sample 

designs, we were able to compare model performance better, especially to data collected in other 

sites using only one type of plot, one sample size and sampling intensity, and one sample design. 

We were also able to identify recommendations from this research and use them in the PEF to 

estimate AGB and demonstrate the applicability of these best practice suggestions in a forest 

monitoring capacity. The results from this research are intended for both foresters and 

researchers whose concerns lie with effectively integrating remote sensing products in their 

inventory analysis and how to formulate the inventory and plot design best to get acceptable 

results for their needs.  

4.1 Key Findings 
 

4.1.1 Best Practices Results 

 

 Our overall goal for this research was to develop models that compared fixed versus 

variable radius plots, sampling size and intensity, and sample design with ALS data to map EFI 

variables, while our objective for Chapter 2 was to quantify and compare the accuracy of those 

forest inventory designs at predicting percent softwood, volume, BA, and tree count. We found 

that a PCA for plot placement yielded the best model results when compared to plots that had 

been randomly placed. This works by using the calculated ALS metrics and inputting the desired 

number of plots. The model then assesses how much variation in the overall dataset is 

accounted for in the first two principal components and assigns plots to capture this variation in 

the placement of EFI calibration plots. Our second finding was that models using a smaller 

sample size outperformed those with a larger sample size. This may be because of the predictive 
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model (random forest) that we used, where a smaller sample size means decreased correlation. 

Our third finding was that FRPs are a better plot type to calibrate ALS data with potentially 

depending on the site. In the spruce-fir forest types, FRPs performed best overall. However, we 

saw mixed results in the more mixed forest types, like in the PEF. FRPs still had high evaluation 

statistics, but VRPs performed equally, if not better, when predicting some forest metrics like 

volume and BA.  

4.1.2 Application of Best Practices Results 

 

Our objective for Chapter 3 was to use the best practice recommendations created from 

the first objective to map forest structures and determine the change in aboveground biomass 

from 2017 to 2021. We used a PCA for plot placement, a small sample size (n = 92), and FRPs 

for this analysis based on the results in Chapter 2. Once these recommendations from Chapter 2 

had been applied at two dates to predict AGB, we then completed a change detection analysis 

which was also done with two CHMs for comparison. We extracted harvested areas and 

established what the increases and decreases in AGB and canopy height were by forest type. 

While the average changes in biomass and canopy height by forest type in the clearcut 

treatments were similar, there were disagreements in these changes by forest type in the 

expanding gap shelterwood, OSRs, and shelterwoods with OSR treatments. These 

disagreements may be due to the differences in forest cover type pixel size, the AGB and CHM 

data, and errors in predicting biomass. More research should be done looking at plot type and 

design in the creation of EFIs in Maine. This study laid the framework for applying the best 

practice recommendations in Chapter 2 and what analysis could look like for foresters who want 

to continue to manage the forests sustainably. 

4.2 Future Research & Final Thoughts 
 

 Overall, this study offers valuable insight into how plot type and design can affect the 

outcomes of EFI models and their applicability. This research provides a crucial step in the 

creation of a best practices manual that will help guide foresters through the setup and success 
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of an EFI for their area of interest. This will ensure that foresters in Maine can practice 

sustainable forest management that may have the potential to be more economically feasible 

and ecologically sound.   
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APPENDICES 

APPENDIX A 

MODEL COMPARISONS, SCATTER PLOTS, AND RASTER MODEL OUTPUTS USED AS SUPPLEMENTARY 

MATERIAL IN CHAPTER 1. 

 

Table A.1. R2, normalized root mean square error (NRMSE), coefficient of variation (CV), and normalized mean bias (NMB) metrics 
for model outputs predicting percent softwood, volume, basal area, and tree count in the Ashland West, Rangeley, and Baskahegan 
study areas. 

AOI Percent Softwood (%) Total Volume (CDS/ac) Basal Area (ft2/ac) Tree Count (trees/ac) 
 

R2 

(%) 
NRMSE 

(%) 
CV 
(%) 

NMB 
(%) 

R2 
(%) 

NRMSE 
(%) 

CV 
(%) 

NMB 
(%) 

R2 

(%) 
NRMSE 

(%) 
CV 
(%) 

NMB 
(%) 

R2 
(%) 

NRMSE 
(%) 

CV 
(%) 

NMB 
(%) 

Ashland 
West 

58.9 43.3 44.4 0.35 43.6 59.2 55.1 -1.23 30.2 58.8 56.4 -1.31 15.8 86.2 83.9 -2.95 

Rangeley 75.1 28.4 29.1 0.63 47.9 35.7 36.8 -0.65 37.7 33.5 34.0 -0.42 32.7 35.1 36.2 -0.46 

Bask-
ahegan 

75.8 0.3 30.2 -0.08 59.2 47.2 47.8 -1.15 54.8 42.5 41.6 -1.22 22.4 90.1 45.6 -3.29 
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Baskahegan PEF VRP 143 

Figure A.1. Scatter plots of observed percent softwood as a function of predicted percent 
softwood in the Baskahegan (left) and PEF (143 VRPs, right) study sites. 

 

  

Baskahegan PEF VRP 143 

Figure A.2. Scatter plots of observed volume as a function of predicted volume in the 
Baskahegan (left) and PEF (143 VRPs, right) study sites.  
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Baskahegan PEF VRP 143 

Figure A.3. Scatter plots of observed basal area as a function of predicted basal area in the 
Baskahegan (left) and PEF (143 VRPs, right) study sites. 

 

  

PEF FRP 92 Ashland West 

Figure A.4. Scatter plots of observed tree count as a function of predicted tree count in the 
PEF (92 FRPs, left) and Ashland West (right) study sites. 
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Figure A.5. Model outputs for the PEF using 92 FRPs predicting the percent softwood, basal 
area per hectare, trees per hectare, and cords per hectare. These predictions are at 65.6-foot 
resolution. 
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Figure A.6. Model outputs for the Demeritt predicting the percent softwood, basal area per 
hectare, trees per hectare, and cords per hectare. These predictions are at 65.6-foot resolution. 
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APPENDIX B 

BAR PLOTS DESCRIBING ATTRIBUTES OF THE PEF BY FOREST TYPE USED IN 

CHAPTER 2. 

 

 
 
Figure B.1. Chart showing the average change from 2017 to 2021 in AGB (left) and canopy 
height (right) in expanding gap shelterwoods in the PEF by forest type.  

 

 
 
Figure B.2. Chart showing the average change from 2017 to 2021 in AGB (left) and canopy 
height (right) in overstory removals in the PEF by forest type. 
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Figure B.3. Chart showing the average change from 2017 to 2021 in AGB (left) and canopy 
height (right) in shelterwoods with overstory removals in the PEF by forest type. 
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