30 research outputs found

    Scholarly event characteristics in four fields of science : a metrics-based analysis

    Get PDF
    One of the key channels of scholarly knowledge exchange are scholarly events such as conferences, workshops, symposiums, etc.; such events are especially important and popular in Computer Science, Engineering, and Natural Sciences.However, scholars encounter problems in finding relevant information about upcoming events and statistics on their historic evolution.In order to obtain a better understanding of scholarly event characteristics in four fields of science, we analyzed the metadata of scholarly events of four major fields of science, namely Computer Science, Physics, Engineering, and Mathematics using Scholarly Events Quality Assessment suite, a suite of ten metrics.In particular, we analyzed renowned scholarly events belonging to five sub-fields within Computer Science, namely World Wide Web, Computer Vision, Software Engineering, Data Management, as well as Security and Privacy.This analysis is based on a systematic approach using descriptive statistics as well as exploratory data analysis. The findings are on the one hand interesting to observe the general evolution and success factors of scholarly events; on the other hand, they allow (prospective) event organizers, publishers, and committee members to assess the progress of their event over time and compare it to other events in the same field; and finally, they help researchers to make more informed decisions when selecting suitable venues for presenting their work.Based on these findings, a set of recommendations has been concluded to different stakeholders, involving event organizers, potential authors, proceedings publishers, and sponsors. Our comprehensive dataset of scholarly events of the aforementioned fields is openly available in a semantic format and maintained collaboratively at OpenResearch.org. © 2020, The Author(s)

    Information Outlook, January 2008

    Get PDF
    Volume 12, Issue 1https://scholarworks.sjsu.edu/sla_io_2008/1000/thumbnail.jp

    Personalized Expert Recommendation: Models and Algorithms

    Get PDF
    Many large-scale information sharing systems including social media systems, questionanswering sites and rating and reviewing applications have been growing rapidly, allowing millions of human participants to generate and consume information on an unprecedented scale. To manage the sheer growth of information generation, there comes the need to enable personalization of information resources for users — to surface high-quality content and feeds, to provide personally relevant suggestions, and so on. A fundamental task in creating and supporting user-centered personalization systems is to build rich user profile to aid recommendation for better user experience. Therefore, in this dissertation research, we propose models and algorithms to facilitate the creation of new crowd-powered personalized information sharing systems. Specifically, we first give a principled framework to enable personalization of resources so that information seekers can be matched with customized knowledgeable users based on their previous historical actions and contextual information; We then focus on creating rich user models that allows accurate and comprehensive modeling of user profiles for long tail users, including discovering user’s known-for profile, user’s opinion bias and user’s geo-topic profile. In particular, this dissertation research makes two unique contributions: First, we introduce the problem of personalized expert recommendation and propose the first principled framework for addressing this problem. To overcome the sparsity issue, we investigate the use of user’s contextual information that can be exploited to build robust models of personal expertise, study how spatial preference for personally-valuable expertise varies across regions, across topics and based on different underlying social communities, and integrate these different forms of preferences into a matrix factorization-based personalized expert recommender. Second, to support the personalized recommendation on experts, we focus on modeling and inferring user profiles in online information sharing systems. In order to tap the knowledge of most majority of users, we provide frameworks and algorithms to accurately and comprehensively create user models by discovering user’s known-for profile, user’s opinion bias and user’s geo-topic profile, with each described shortly as follows: —We develop a probabilistic model called Bayesian Contextual Poisson Factorization to discover what users are known for by others. Our model considers as input a small fraction of users whose known-for profiles are already known and the vast majority of users for whom we have little (or no) information, learns the implicit relationships between user?s known-for profiles and their contextual signals, and finally predict known-for profiles for those majority of users. —We explore user’s topic-sensitive opinion bias, propose a lightweight semi-supervised system called “BiasWatch” to semi-automatically infer the opinion bias of long-tail users, and demonstrate how user’s opinion bias can be exploited to recommend other users with similar opinion in social networks. — We study how a user’s topical profile varies geo-spatially and how we can model a user’s geo-spatial known-for profile as the last step in our dissertation for creation of rich user profile. We propose a multi-layered Bayesian hierarchical user factorization to overcome user heterogeneity and an enhanced model to alleviate the sparsity issue by integrating user contexts into the two-layered hierarchical user model for better representation of user’s geo-topic preference by others

    Multimedia interaction and access based on emotions:automating video elicited emotions recognition and visualization

    Get PDF
    Tese de doutoramento, Informática (Engenharia Informática), Universidade de Lisboa, Faculdade de Ciências, 2013Films are an excellent form of art that exploit our affective, perceptual and intellectual abilities. Technological developments and the trends for media convergence are turning video into a dominant and pervasive medium, and online video is becoming a growing entertainment activity on the web. Alongside, physiological measures are making it possible to study additional ways to identify and use emotions in human-machine interactions, multimedia retrieval and information visualization. The work described in this thesis has two main objectives: to develop an Emotions Recognition and Classification mechanism for video induced emotions; and to enable Emotional Movie Access and Exploration. Regarding the first objective, we explore recognition and classification mechanisms, in order to allow video classification based on emotions, and to identify each user’s emotional states providing different access mechanisms. We aim to provide video classification and indexing based on emotions, felt by the users while watching movies. In what concerns the second objective, we focus on emotional movie access and exploration mechanisms to find ways to access and visualize videos based on their emotional properties and users’ emotions and profiles. In this context, we designed a set of methods to access and watch the movies, both at the level of the whole movie collection, and at the individual movies level. The automatic recognition mechanism developed in this work allows for the detection of physiologic patterns, indeed providing valid individual information about users emotion while they were watching a specific movie; in addition, the user interface representations and exploration mechanisms proposed and evaluated in this thesis, show that more perceptive, satisfactory and useful visual representations influenced positively the exploration of emotional information in movies.Fundação para a Ciência e a Tecnologia (FCT, PROTEC SFRH/BD/49475/2009, LASIGE Multiannual Funding e VIRUS projecto (PTDC/EIAEIA/101012/2008

    Decentralized Knowledge Graphs on the Web

    Get PDF

    Personalized Expert Recommendation: Models and Algorithms

    Get PDF
    Many large-scale information sharing systems including social media systems, questionanswering sites and rating and reviewing applications have been growing rapidly, allowing millions of human participants to generate and consume information on an unprecedented scale. To manage the sheer growth of information generation, there comes the need to enable personalization of information resources for users — to surface high-quality content and feeds, to provide personally relevant suggestions, and so on. A fundamental task in creating and supporting user-centered personalization systems is to build rich user profile to aid recommendation for better user experience. Therefore, in this dissertation research, we propose models and algorithms to facilitate the creation of new crowd-powered personalized information sharing systems. Specifically, we first give a principled framework to enable personalization of resources so that information seekers can be matched with customized knowledgeable users based on their previous historical actions and contextual information; We then focus on creating rich user models that allows accurate and comprehensive modeling of user profiles for long tail users, including discovering user’s known-for profile, user’s opinion bias and user’s geo-topic profile. In particular, this dissertation research makes two unique contributions: First, we introduce the problem of personalized expert recommendation and propose the first principled framework for addressing this problem. To overcome the sparsity issue, we investigate the use of user’s contextual information that can be exploited to build robust models of personal expertise, study how spatial preference for personally-valuable expertise varies across regions, across topics and based on different underlying social communities, and integrate these different forms of preferences into a matrix factorization-based personalized expert recommender. Second, to support the personalized recommendation on experts, we focus on modeling and inferring user profiles in online information sharing systems. In order to tap the knowledge of most majority of users, we provide frameworks and algorithms to accurately and comprehensively create user models by discovering user’s known-for profile, user’s opinion bias and user’s geo-topic profile, with each described shortly as follows: —We develop a probabilistic model called Bayesian Contextual Poisson Factorization to discover what users are known for by others. Our model considers as input a small fraction of users whose known-for profiles are already known and the vast majority of users for whom we have little (or no) information, learns the implicit relationships between user?s known-for profiles and their contextual signals, and finally predict known-for profiles for those majority of users. —We explore user’s topic-sensitive opinion bias, propose a lightweight semi-supervised system called “BiasWatch” to semi-automatically infer the opinion bias of long-tail users, and demonstrate how user’s opinion bias can be exploited to recommend other users with similar opinion in social networks. — We study how a user’s topical profile varies geo-spatially and how we can model a user’s geo-spatial known-for profile as the last step in our dissertation for creation of rich user profile. We propose a multi-layered Bayesian hierarchical user factorization to overcome user heterogeneity and an enhanced model to alleviate the sparsity issue by integrating user contexts into the two-layered hierarchical user model for better representation of user’s geo-topic preference by others

    Processing Structured Hypermedia - A Matter of Style

    Get PDF
    Vliet, J.C. van [Promotor]Eliens, A. [Copromotor

    Recent Advances in Social Data and Artificial Intelligence 2019

    Get PDF
    The importance and usefulness of subjects and topics involving social data and artificial intelligence are becoming widely recognized. This book contains invited review, expository, and original research articles dealing with, and presenting state-of-the-art accounts pf, the recent advances in the subjects of social data and artificial intelligence, and potentially their links to Cyberspace
    corecore