

Aalborg Universitet

Decentralized Knowledge Graphs on the Web

Aebeloe, Christian

Publication date:
2022

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Aebeloe, C. (2022). Decentralized Knowledge Graphs on the Web. Aalborg Universitetsforlag. Ph.d.-serien for
Det Tekniske Fakultet for IT og Design, Aalborg Universitet

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: November 19, 2022

https://vbn.aau.dk/en/publications/aaa939be-2e47-4166-836d-5a078b2a15b1

C
h

r
istia

n
 a

eb
elo

e
D

eC
en

tr
a

lizeD
 K

n
o

w
leD

g
e g

r
a

ph
s o

n
 th

e w
eb

DeCentralizeD KnowleDge
graphs on the web

by
Christian aebeloe

Dissertation submitteD 2022

Decentralized Knowledge
Graphs on the Web

Ph.D. Dissertation
Christian Aebeloe

Dissertation submitted July, 2022

Dissertation submitted: July, 2022

PhD supervisor: Professor Katja Hose
 Aalborg University

PhD Co-Supervisor: Associate Professor Gabriela Montoya
 Aalborg University

PhD committee: Associate Professor Michele Albano (chairman)
 Aalborg University, Denmark

 Associate Professor Aidan Hogan
 University of Chile, Chile

 Professor Ruben Verborgh
 Ghent University, Belgium

PhD Series: Technical Faculty of IT and Design, Aalborg University

Department: Department of Computer Science

ISSN (online): 2446-1628
ISBN (online): 978-87-7573-863-2

Published by:
Aalborg University Press
Kroghstræde 3
DK – 9220 Aalborg Ø
Phone: +45 99407140
aauf@forlag.aau.dk
forlag.aau.dk

© Copyright: Christian Aebeloe
The author has obtained the right to include the published and accepted articles in the
thesis, with a condition that they are cited, DOI pointers and/or copyright/credits are
placed prominently in the references.

Printed in Denmark by Stibo Complete, 2022

Abstract

The increasing popularity of the Web of Data has over the past years caused
a significant increase in the number of open knowledge graphs published
on the Web. However, the structure of the Semantic Web today relies totally
on the data providers to maintain Web services that provide efficient and
scalable access to the knowledge graphs, as well as to keep the data up-to-
date. Without any monetary incentives to do so, publicly available knowl-
edge graphs often become unavailable and outdated, making it difficult to
trust the data available in the knowledge graphs. As a remedy, this thesis
investigates and addresses the availability, scalability, and updatability issues
with the aim of making knowledge graphs on the Web available, scalable,
and updatable.

First, the thesis explores load-balancing in client-server architectures in or-
der to increase the availability and scalability of the knowledge graphs under
heavy query processing load by introducing a system that we call WiseKG.
To optimize queries in such a setup, WiseKG decomposes the query into
star-shaped subqueries and determines, using a cost model that considers
factors such as the current load on the server and the data transfer overhead,
whether each subquery can be processed more efficiently by the client or the
server. A comprehensive experimental evaluation shows that WiseKG signif-
icantly improves query processing performance for high demanding work-
loads compared to state-of-the-art systems while being able to answer more
queries without timing out.

Second, the thesis addresses the availability and scalability issues from a
different point of view by proposing a decentralized Peer-to-Peer (P2P) ar-
chitecture for sharing and querying knowledge graphs, called Piqnic. In
Piqnic, nodes act as both clients and servers and thus maintain a local datas-
tore (a set of knowledge graph fragments) and a local view over the network
(a set of neighboring nodes). Piqnic replicates the fragments over multiple
nodes within the network, ensuring the availability of the data even if the
uploading node fails. An experimental evaluation shows that by doing so,
Piqnic maintains high availability even when a large part of the nodes fails.

Third, the thesis introduces two novel indexing schemes that allow nodes

iii

to determine which nodes hold relevant data to which subquery: (1) baseline
locational indexes that map each predicate in the query to the nodes that hold
relevant data to each predicate, and (2) Prefix-Partitioned Bloom Filter indexes
that represent the set of subjects and objects in a fragment as a partitioned
bitvector that allows the nodes to ascertain the joinability of two fragments.
An experimental evaluation supports the hypothesis that such indexes signif-
icantly improve query processing performance while decreasing the network
usage compared to Piqnic.

Fourth, the thesis addresses the updatability issue by introducing
ColChain, a system that allows the users to collaborate on keeping the
data up to date. ColChain divides the P2P network into communities of
nodes and relies on community-wide consensus to allow nodes to propose
and apply consensual updates to the fragments. Furthermore, ColChain

represents the entire history of updates to a fragment as a chain of updates,
allowing nodes to trace-back faulty updates to their origin, as well as to dy-
namically roll-back fragments to an earlier version and process queries over
them. A comprehensive experimental evaluation shows that ColChain pro-
vides efficient community-wide consensual updates to the fragments without
incurring a significant cost on query performance.

Fifth, the thesis demonstrates ColChain and introduces a fully function-
ing ColChain client with a graphical UI. The demonstration highlights how
users can navigate the fragments stored by a particular ColChain node. Fur-
thermore, the demonstration shows how users can participate in keeping the
fragments up to date, as well as how queries can be processed over a previous
version of the fragments.

Last, the thesis introduces the Lothbrok approach to optimizing SPARQL
queries in the decentralized setup. In particular, Lothbrok fragments data
based on characteristic sets (predicate families) and uses star-shaped query
decomposition similar to WiseKG. To accommodate the fragmentation tech-
nique, Lothbrok further introduces a novel indexing scheme, called Semanti-
cally Partitioned Bloom Filter indexes, that associates the objects in a fragment
with the predicates they occur in triples with. Lothbrok nodes use these
indexes to build a query execution plan in consideration of cardinality esti-
mations, the compatibility of fragments for the given query, and the locality
of the data. Lothbrok is further able to delegate subqueries to other nodes
in the network such that the network overhead is minimized. A comprehen-
sive experimental study shows a performance increase of up to two orders of
magnitude when comparing Lothbrok to Piqnic and ColChain while the
network usage is lowered as well.

Resumé

Det Semantiske Webs stigende popularitet har over de seneste år forårsaget
en væsentlig stigning i antallet af frit tilgængelige vidensgrafer på nettet.
Strukturen af det Semantiske Web afhænger imidlertid i dag af, at dataudby-
derne vedligeholder webtjenester, der giver effektiv og skalerbar adgang til
vidensgraferne, samt holder dataen opdateret. Manglen på monetære tilkyn-
delser til at vedligeholde vidensgrafer er i høj grad skyld i at frit tilgængelige
vidensgrafer ofte er utilgængelige og forældede, hvilket gør det svært at stole
på den tilgængelige data. Denne afhandling undersøger løsninger til hvert af
disse problemer individuelt med formålet om at gøre åbne vidensgrafer mere
tilgængelige, skalerbare og opdaterbare.

For det første udforsker denne afhandling belastningsbalancering i klient-
server arkitekturer for at øge tilgængeligheden og skalerbarheden af videns-
graferne, når mange forespørgsler bliver behandlet samtidigt, og introducerer
et system kaldet WiseKG. For at effektivisere behandlingen af forespørgsler i
sådan et setup, nedbryder WiseKG forespørgslen til stjerneformede underfo-
respørgsler og fastlægger, baseret på faktorer såsom den nuværende belast-
ning på serveren samt overhead af dataoverførsel, om hver forespørgsel kan
behandles mest effektivt af klienten eller serveren. En omfattende undersø-
gelse viser, at WiseKG forbedrer ydeevnen for behandling af forespørgsler
væsentligt for højt krævende arbejdsbyrder sammenlignet med state-of-the-
art systemer, samt kan besvare flere forespørgsler uden at time ud.

For det andet undersøger afhandlingen tilgængeligheds- og skalerbaheds-
problemerne fra et andet perspektiv ved at foreslå en decentraliseret Peer-to-
Peer (P2P) arkitektur til deling og forespørgselsbehandling af vidensgrafer,
kaldet Piqnic. Noder i Piqnic agerer både som klienter og servere, og ved-
ligeholder derfor et lokalt datalager (en mængde af vidensgraffragmenter),
samt en lokal oversigt over netværket (en mængde af nabonoder). Piqnic

replikerer fragmenterne på flere noder i netværket for at sikre tilgængelighe-
den af dataen selv i tilfælde af, at den uploadende node fejler. En eksperi-
mentel undersøgelse viser, at Piqnic fastholder høj tilgængelighed, selv når
en stor andel af noderne fejler.

For det tredje introducerer afhandlingen en ny form for decentraliseret in-

v

deks, der tillader noder i et P2P-netværk at fastslå præcis hvilke noder, der in-
deholder relevant data til hvilke underforspørgsler: (1) locational indekser, der
matcher hvert prædikat i forespørgslen med de noder, der indeholder rele-
vant data for dem, og (2) Prefix-Partitioned Bloom Filter-indekser der repræsen-
terer mængden af subjekter og objekter i et fragment som en opdelt bitvektor,
der lader noderne fastslå om to fragmenter producerer join-resultater for en
given forespørgsel. En eksperimentel undersøgelse understøtter hypotesen
om, at sådanne indekser forbedrer ydeevnen for behandling af forespørgsler
væsentligt ved at formindske belastningen på netværket sammenlignet med
Piqnic.

For det fjerde adresserer afhandlingen opdaterbarhedsproblemet ved at
introducere ColChain, et system der tillader brugerne at samarbejde om at
holde dataen opdateret. ColChain deler netværket op i mindre fællesskaber af
noder og bruger konsensus over fællesskaberne til at lade noder i netværket
foreslå og anvende konsensuelle opdateringer til vidensgraferne. Ydermere
repræsenterer ColChain hele opdateringshistorikken af et fragment som en
kæde af opdateringer, hvilket lader brugerne spore fejlslagne opdateringer til
deres oprindelse, samt dynamisk at behandle forespørgsler over tidligere til-
gængelige versioner af vidensgraferne. En omfattende undersøgelse viser, at
ColChain tillader effektive konsensuelle opdateringer af fragmenterne, for-
uden at pådrage sig en unødvendig omkostning på ydeevnen for behandling
af forespørgsler.

For det femte demonstrerer afhandlingen ColChain ved at introducere
en fuldt fungerende ColChain-klient med en grafisk brugerflade. Demon-
strationen fremhæver, hvordan brugere kan navigere i vidensgraferne lag-
ret af en bestemt ColChain-node. Desuden viser demonstrationen, hvordan
brugere kan deltage i at holde vidensgraferne opdateret, samt hvordan fore-
spørgsler kan behandles over tidligere versioner af vidensgraferne.

Til sidst introducerer afhandlingen Lothbrok, en metode til at optimere
SPARQL-forespørgsler i den decentraliserede kontekst. Specifikt fragmente-
rer Lothbrok vidensgraferne baseret på characteristic sets (prædikatfamilier)
og bruger stjerneformet nedbrydelse af forespørgslerne lignende WiseKG.
Lothbrok introducerer ydermere en ny måde at indeksere dataen på ved
at introducere Semantically Partitioned Bloom Filter-indekser, som associerer
objekterne i et fragment med de prædikater, de optræder i tripler med. Lo-
thbrok-noder bruger disse indekser til at bygge en plan for behandling af
forespørgslerne, der tager højde for estimerede kardinaliteter, kompatibilite-
ten af fragmenter for en given forespørgsel, samt lokaliteten af dataen. Lo-
thbrok-noder kan desuden delegere underforespørgsler til andre noder, så-
fremt det minimerer belastningen på netværket. En omfattende eksperimen-
tel undersøgelse viser, at Lothbrok forbedrer effektiviteten for behandling af
forespørgsler med op til to størrelsesordener sammenlignet med Piqnic og
ColChain, samt at netværksbrugen også er formindsket.

Acknowledgments

First and foremost, I would like to thank my Ph.D. supervisors, Katja Hose
and Gabriela Montoya, for providing helpful feedback and comments on
drafts, for their patience despite my many questions and mistakes, and for
their support and understanding throughout even the most difficult parts of
my journey. I admire their dedication and attention to detail, without which
this thesis and my publications would not be possible.

Secondly, I would like to thank my amazing girlfriend, Sabine Tovgaard,
for her unwavering support throughout this journey. I know that it has not
always been easy, but she has always stood besides me and provided me
with all the support, comfort, and motivation I needed to continue. For that,
I admire her greatly; this thesis would not have been possible without her.

My colleagues from the Data, Knowledge and Web Engineering (DKW)
group at Cassiopeia, Aalborg University also deserve a huge thanks for cre-
ating a pleasant work environment throughout my employment here. They
have managed to create a great work environment with room for both fun
and cozy work environment, and challenging research interactions. Through
board game events on Wednesdays and interesting conversations in lunch
breaks, they have made my time here a true pleasure. I feel honored to
have worked alongside such kind, dedicated, and intelligent people. Fur-
thermore, I wish to thank the administrative staff at Aalborg University for
their patience with me and assistance despite my many, and in many cases
redundant, questions.

I also wish to extend my gratitude to the co-authors of all the papers I
have been a part of during my time here at the University, not just the ones
included in this thesis. Besides Katja and Gabriela, I thus thank Ilkcan Ke-
les, Amr Azzam, Axel Polleres, and Vinay Setty, for their valuable input and
feedback throughout our collaborations. Each of them have helped shap-
ing me as a researchers, and I am grateful for the time they have taken to
work with me throughout my (as of yet) brief research career. Furthermore,
I would like to thank the funding agencies that have (partially) funded my
work. Specifically, I wish to thank the danish Council for Independent Re-
search (DFF), Aalborg University’s Talent Management Programme, and the

vii

Poul Due Jensen Foundation.
Last, I would like to thank my entire family for all their support during

my Ph.D. studies. Their understanding, support, and patience has helped me
through what, at times, has been long and odd working hours.

This thesis is written in loving memory of my late father, Brian Aebeloe.

Christian Aebeloe
Aalborg University, Friday 15th July, 2022

This research was partially funded by the Danish Council for Independent Re-
search (DFF) under grant agreement no. DFF-8048-00051B, Aalborg University’s
Talent Programme, and the Poul Due Jensen Foundation.

Contents

Abstract iii

Resumé v

Acknowledgments vii

Thesis Details xv

I Thesis Summary 1

Decentralized Knowledge Graphs on the Web 3
1 Introduction . 3

1.1 Background and Motivation 3
1.2 Contributions of the Thesis 5
1.3 Structure of the Thesis . 7

2 State of the Art . 7
2.1 Client-Server Architectures 8
2.2 Federated Systems . 9
2.3 Peer-to-Peer Systems . 10
2.4 Blockchains . 11

3 Scalable Access to Knowledge Graphs 12
3.1 Motivation and Problem Statement 12
3.2 Preliminaries . 12
3.3 WiseKG: Balanced Access to Web Knowledge Graphs . 15
3.4 Query Processing . 18
3.5 Evaluation and Discussion 19

4 An Unstructured Peer-to-Peer Architecture 22
4.1 Motivation and Problem Statement 22
4.2 PIQNIC: A Decentralized Architecture for Sharing and

Querying Semantic Data 23
4.3 Query Processing . 26

ix

Contents

4.4 Evaluation and Discussion 27
5 Indexing Decentralized Knowledge Graphs 29

5.1 Motivation and Problem Statement 29
5.2 Locational Indexes . 29
5.3 Prefix-Partitioned Bloom Filter Indexes 31
5.4 Query Processing . 34
5.5 Evaluation and Discussion 35

6 Collaborative Updates . 36
6.1 Motivation and Problem Statement 36
6.2 Preliminaries . 37
6.3 ColChain: Collaborative Linked Data Networks 38
6.4 Query Processing . 44
6.5 Demonstration . 45
6.6 Evaluation and Discussion 46

7 Optimizing Decentralized SPARQL Queries 48
7.1 Motivation and Problem Statement 48
7.2 The Lothbrok approach 49
7.3 Query Optimization . 52
7.4 Query Execution . 64
7.5 Evaluation and Discussion 66

8 Conclusions and Summary of Contributions 69
9 Future Research Directions . 71
References . 72

II Papers 79

A WiseKG: Balanced Access to Web Knowledge Graphs 81
1 Introduction . 83
2 Background . 84

2.1 Existing KG Interfaces . 85
2.2 RDF HDT Compression 90

3 Motivating Example . 90
4 WiseKG . 91

4.1 Overview . 92
4.2 Server-Side Cost Model 93

5 Query Processing . 96
5.1 Server-Side Query Processing 96
5.2 Client-Side Query Processing 97

6 Experimental Evaluation . 98
6.1 Experimental Setup . 99
6.2 Experimental Results . 101

7 Conclusions and Future Work . 107

x

Contents

References . 108

B A Decentralized Architecture for Sharing and Querying Semantic
Data 111
1 Introduction . 113
2 Related Work . 114
3 PIQNIC . 115

3.1 Data Fragmentation . 116
3.2 Network Architecture . 118
3.3 Replication of Datasets . 120

4 Query Processing . 121
5 Evaluation . 123
6 Conclusions . 127
References . 128

C Decentralized Indexing over a Network of RDF Peers 131
1 Introduction . 133
2 Related Work . 134
3 Preliminaries . 136
4 Locational Index . 137
5 Prefix-Partitioned Bloom Filters 139

5.1 Partitioning Bloom Filters 140
5.2 Matching Triple Patterns to Nodes 142

6 Query Processing . 144
7 Evaluation . 146

7.1 Experimental Setup . 146
7.2 Experimental Results . 147

8 Conclusions . 150
References . 151

D ColChain: Collaborative Linked Data Networks 153
1 Introduction . 155
2 Related Work . 157

2.1 Client-Server Architectures 157
2.2 Decentralized Architectures 158
2.3 Blockchains . 158

3 Preliminaries . 159
3.1 Knowledge Graphs . 159
3.2 ColChain Peer-to-Peer Layer 160

4 ColChain . 162
4.1 Design and Overview . 162
4.2 Formal Definition of ColChain 165

5 Consensual Updates . 168

xi

Contents

5.1 Updates . 168
5.2 Consensus Protocol . 170

6 Query Processing . 172
7 Experimental Evaluation . 174

7.1 Implementation Details 174
7.2 Experimental Setup . 174
7.3 Experimental Results . 176
7.4 Summary . 180

8 Conclusion . 180
References . 181

E A Demonstration of ColChain: Collaborative Knowledge Chains 185
1 Introduction . 187
2 System Overview . 188

2.1 Architecture of a ColChain Client 188
2.2 Graphical User Interface for ColChain 189

3 Demonstration . 190
References . 190

F Optimizing SPARQL Queries over Decentralized Knowledge
Graphs 191
1 Introduction . 193
2 Related Work . 195

2.1 Client-Server Architectures 196
2.2 Federated Systems . 197
2.3 Peer-to-Peer Systems . 198

3 Background . 199
3.1 Peer-to-Peer . 200
3.2 Distributed Indexes . 202

4 The Lothbrok Approach . 205
4.1 Design and Overview . 205
4.2 Data Fragmentation . 206
4.3 Semantically Partitioned Bloom Filter Indexes 208

5 Query Optimization . 211
5.1 Fragment and Source Selection 212
5.2 Cardinality Estimation . 215
5.3 Optimizing Query Execution Plans 221

6 Query Execution . 226
7 Experimental Evaluation . 229

7.1 Experimental Setup . 230
7.2 Scalability under Load . 233
7.3 Impact of Query Pattern 235
7.4 Network Usage . 238

xii

Contents

7.5 Performance of Individual Queries 239
7.6 Summary . 242

8 Conclusions . 242
References . 243

xiii

Contents

xiv

Thesis Details

Thesis Title: Decentralized Knowledge Graphs on the Web
Ph.D. Student: Christian Aebeloe
Supervisor: Professor Katja Hose, Aalborg University
Co-Supervisor Associate Professor Gabriela Montoya, Aalborg University

The main body of this thesis consists of the following six papers.

[A] Amr Azzam, Christian Aebeloe, Gabriela Montoya, Ilkcan Keles, Axel
Polleres, Katja Hose, “WiseKG: Balanced Access to Web Knowledge
Graphs,” In Proceedings of the 30th The Web Conference (WWW 2021), pp.
1422-1434, 2021.

[B] Christian Aebeloe, Gabriela Montoya, Katja Hose, “A Decentralized
Architecture for Sharing and Querying Semantic Data,” In Proceedings
of the 16th Extended Semantic Web Conference (ESWC 2019), pp. 3-18, 2019.

[C] Christian Aebeloe, Gabriela Montoya, Katja Hose, “Decentralized In-
dexing over a Network of RDF Peers,” In Proceedings of the 18th Interna-
tional Semantic Web Conference (ISWC 2019), pp. 3-20, 2019.

[D] Christian Aebeloe, Gabriela Montoya, Katja Hose, “ColChain: Collab-
orative Linked Data Networks,” In Proceedings of the 30th The Web Con-
ference (WWW 2021), pp. 1385-1396, 2021.

[E] Christian Aebeloe, Gabriela Montoya, Katja Hose, “A Demonstration
of ColChain: Collaborative Knowledge Chains,” In Proceedings of the
ISWC 2021 Posters, Demos and Industry Tracks (ISWC 2021), 2021.

[F] Christian Aebeloe, Gabriela Montoya, Katja Hose, “Optimizing
SPARQL Queries over Decentralized Knowledge Graphs,” Unpublished
manuscript.

In addition to the above papers, I have co-authored the following four papers
as part of my studies, which are not included in this thesis.

xv

Thesis Details

[G] Christian Aebeloe, Ilkcan Keles, Gabriela Montoya, Katja Hose, “Star
Pattern Fragments: Accessing Knowledge Graphs through Star Pat-
terns,” In arXiv Preprint arXiv:2002.09172, 2020.

[H] Gabriela Montoya, Christian Aebeloe, Katja Hose, “Towards Efficient
Query Processing over Heterogeneous RDF Interfaces,” In Proceedings of
the 2nd Workshop on Decentralizing the Semantic Web (DeSemWeb@ISWC
2018), 2018.

[I] Christian Aebeloe, Gabriela Montoya, Vinay Setty, Katja Hose, “Dis-
covering Diversified Paths in Knowledge Bases,” In Proceedings of the
VLDB Endowment 11 (12), pp. 2002-2005, 2018.

[J] Christian Aebeloe, Vinay Setty, Gabriela Montoya, Katja Hose, “Top-K
Diversification for Path Queries in Knowledge Graphs,” In Proceedings
of the ISWC 2018 Posters, Demos and Industry Tracks (ISWC 2018), 2018.

This thesis has been submitted for assessment in partial fulfillment of the
PhD degree. The thesis is based on the scientific papers that are listed above.
Parts of the papers are used directly or indirectly in the extended summary
of the thesis. As part of the assessment, co-author statements have been made
available to the assessment committee and are also available at the Technical
Faculty of IT and Design at Aalborg University. The permission for using
the published and accepted articles in the thesis has been obtained from the
corresponding publishers with the conditions that they are cited and DOI
pointers and/or copyright/credits are placed prominently in the references.

xvi

Part I

Thesis Summary

1

Decentralized Knowledge
Graphs on the Web

1 Introduction

This thesis details our effort into making the Web of Data more available,
updatable, and scalable through decentralized technologies like Peer-to-Peer
(P2P) systems and blockchains. First, Section 1.1 addresses the problem at
hand and the motivational aspects of using decentralized technologies to
solve it. Then, Section 1.2 describes the contributions of the thesis, followed
by Section 1.3 describing the structure of the thesis summary.

1.1 Background and Motivation

The Semantic Web [20] in principle offers access to a vast and interlinked Web
of Data [46] made available as Linked Open Data (LOD) [37, 40] using well-
known standards such as the Resource Description Framework (RDF) [25]
and structured query languages like SPARQL [24]. The promise of such a vast
and interlinked Web of Data has, in part, fueled a rapid increase in the num-
ber of openly published knowledge graphs on the Web [47] that span a broad
range of topics such as life sciences (e.g., Bio2RDF [27]), general knowledge
(e.g., DBpedia [17] and Wikidata [85]), geography (e.g., LinkedGeoData [81]),
and government data (e.g., US Government LOD [43]). In fact, as of the time
of writing, the LOD Cloud [62] consists of 1,301 different knowledge graph
with 16,283 links between them. Furthermore, knowledge graphs grow in-
creasingly large; for instance, Wikidata [85] as well as Bio2RDF [27] both
contain more than 14 billion triples.

However, the sheer amount of RDF data available today, and the current
structure of the Semantic Web, accentuates several major issues that prevent
the Web of Data from reaching its full potential. While we addressed one
such issue in our previous work [10, 11], i.e., the lack of support for find-
ing paths between nodes in SPARQL 1.1 [24], this thesis addresses the three

3

major challenges the Semantic Web faces today. First, as we have previously
highlighted in [4, 64], data providers have to maintain continuous access to
their data; however, as several recent studies [16, 83, 84] have pointed out,
this can be quite costly, and with very little monetary incentives to do so, the
services become unstable and the data, in the worst case, can become un-
available. Second, data providers have to keep their data up to date which,
since current architectures do not support mechanisms to update outdated
or faulty data, is often done by periodically publishing a new version of the
entire dataset and taking the old version offline. However, accessing previous
dataset versions as well as tracing back updates to their origin could be help-
ful for many applications [3], e.g., to trust data quality. Third, data providers
have to ensure efficient and scalable query processing under load, i.e., when
a large number of users issue queries at the same time.

In this thesis, we will refer to the aforementioned challenges as the
availability, updatability, and scalability challenges, respectively. The avail-
ability and scalability challenges often go hand in hand, and several re-
cent approaches have attempted to solve them from different perspectives.
For instance, systems based on Linked Data Fragments (LDF) [84] such
as [4, 19, 38, 64, 84] aim to increase the availability and scalability of the server
in a client-server architecture by shifting parts of the query processing load to
the client, increasing the availability of the server. For instance, we recently
introduced Star Pattern Fragments (SPF) [4], which processes star-shaped
subqueries on the server while processing joins and other SPARQL operators
on the client. On the other hand, Peer-to-Peer (P2P) systems [22, 30, 54, 55, 61]
address the availability and scalability challenges by replicating the data
across multiple nodes in a P2P system and distributing the query process-
ing effort across the network, ensuring that even when the uploader fails, the
remaining nodes can still access the data.

However, the vision of a vast Web of Data is still inhibited by the heavy
burden on the data providers since existing systems fail to address the chal-
lenges completely. In this thesis, we therefore investigate each of the afore-
mentioned challenges with the aim of making knowledge graphs on the Web
available, scalable, and updatable, and thus making the Semantic Web one
step closer to realizing its full potential. To do this, we first tackle the avail-
ability and scalability challenges from two different perspectives; (1) by find-
ing a better balance between putting the load on the server and the client
compared to existing client-server architectures, thereby increasing the avail-
ability of the server under load, and (2) by replicating the data across a
P2P network to ensure data availability even if the uploader fails. Then, we
combine the aforementioned P2P architectures with update chains similar to
blockchains [33, 69, 80, 86] and let users collaborate on keeping the data up
to date, as well as to process queries over earlier versions of the data. Last,
we explore how query processing efficiency can be increased when the afore-

4

1. Introduction

mentioned P2P architectures are under heavy load using query optimization
strategies based on data locality and cardinality estimation [34, 67, 70].

As such, by building upon state-of-the-art decentralized technologies such
as LDFs, P2P systems, and blockchains, we aim to deliver robust methodolo-
gies alongside advanced tools and technologies that increase the availability
of knowledge graphs while allowing users to collaborate on keeping the data
up to date. Furthermore, we aim to provide efficient and scalable query
processing techniques over such decentralized knowledge graphs to accom-
modate for quick and continuous access to the information within the knowl-
edge graphs when a large number of queries are issued concurrently. In the
remainder of this section, we give an overview of the contributions of the
thesis as well as an overview of the structure of the thesis. Details on the
state of the art and the individual contributions are given in Sections 2-7.

1.2 Contributions of the Thesis

The main contributions are novel methodologies and systems that increase the
availability, updatability, and scalability of knowledge graphs on the Web.

First, Paper A [18] explores load-balancing in client-server architectures
to increase the availability and scalability of the server under high load by
introducing WiseKG. WiseKG decomposes the query into star-shaped sub-
queries and determines, based on factors such as the current server load and
the network download speed, whether a subquery should be processed by
the server or client.

Then, we investigate the three aforementioned challenges from a different
standpoint; P2P systems. The objective is to end up with an unstructured
P2P system that accommodates data replication, collaborative updates, and
scalable query processing under load. This is visualized in Figure 1, where
we outlined a vision of a P2P network in which chains of updates allow nodes
to collaborate on keeping the data up to date, and distributed indexes allow
for scalable query processing under load.

In order to achieve this goal, we propose in Paper B [5] an unstructured
architecture for sharing and querying knowledge graphs called Piqnic (a P2p
clIent for Query processiNg over semantIC data). Piqnic formally defines an
unstructured architecture in which nodes maintain a limited local datastore
and a set of neighboring nodes (i.e., a local view over the network) that uses
replication to make knowledge graphs more available.

Building upon the architecture of Piqnic, in Paper C [6], we provide a
novel scheme for distributed indexes over knowledge graphs in a P2P net-
work that represents the constituents of the knowledge graphs as partitioned
bitvectors, removing the need for flooding the network with requests when
processing queries.

5

n2

n4

n1

n3 n5

Datastore

MetadataIndex

nil

nil

Fig. 1: Example of an unstructured P2P network with update chains and a distributed index.

In Paper D [7], we build on the architectural aspects defined in Pa-
pers B [5] and C [6] and propose an approach that enables users to collaborate
on keeping the data up to date, called ColChain (COLlaborative knowledge
CHAINs). ColChain divides the network into communities of nodes and uses
chains of updates, similar to blockchains, coupled with community-wide con-
sensus to enable users to collaborate on keeping the data up to date, making
knowledge graphs updatable. Furthermore, ColChain lets users roll-back
updates and process queries over earlier versions of the data. ColChain is
demonstrated in Paper E [8].

Building upon Piqnic and ColChain, Paper F [9] introduces a novel ap-
proach to optimizing queries in such P2P setups called Lothbrok. Lothbrok

uses a query optimization strategy based on star-shaped decomposition that
considers the locality and compatibility of knowledge graphs (i.e., whether
or not two knowledge graphs may produce join results for a given query).

Make knowledge graphs more
available.

Make knowledge graphs
updatable.

Improve query optimization.

Paper B Paper C

Paper D Paper E

Paper A

Paper F

objectives papers

Fig. 2: Overview of the objectives of each paper and connections between papers.

Figure 2 shows which objective each paper in the thesis contributes to
along with the connection between the papers. Paper A [18] focus on the
availability and scalability issues in a client-server architecture. Papers B [5]

6

2. State of the Art

and C [6] then looks into the availability and scalability issues from the P2P
perspective. As such, they propose the baseline P2P architecture for shar-
ing and querying knowledge graphs. Furthermore, Paper C builds on Pa-
per B and extends the architecture with the distributed indexes. Papers D [7]
and E [8] then focus on making knowledge graphs updatable by extend-
ing the architecture defined in Papers B and C using update chains and
community-wide consensus to allow users to collaborate on keeping the data
up to date. Last, Paper F [9] builds upon the architectures presented in Pa-
pers B, C, and D to optimize query processing in P2P architectures.

1.3 Structure of the Thesis

The thesis is structured as follows. Part I contains the motivational aspects of
the thesis as well as a summary of the papers included in the thesis. We dis-
cuss the related work for decentralized management and querying of knowl-
edge graphs in Section 2. Section 3 summarizes Paper A and our approach
to load-balancing in client-server architectures (WiseKG). Then, Sections 4
and 5 summarize our approach to addressing the availability and scalability
challenges with unstructured P2P networks (Paper B, Section 4) and decen-
tralized indexes (Paper C, Section 5). We introduce ColChain and summa-
rize how we address the updatability challenge with chains of updates and
community-wide consensus in Section 6, which summarizes Papers D [7]
and E [8]. Then, Section 7 summarizes Lothbrok [9], i.e., our approach to
optimizing queries in the P2P architectures (Paper F). Finally, Section 8 pro-
vides a summary of the conclusions and contributions made in this thesis,
while Section 9 presents an outlook on future work directions for our work.

Part II reproduces each of the six papers in full with only the layout be-
ing revised to fit the format of the thesis. Since some of the papers build
upon the work done in previous papers, in accordance with Figure 2, it is
recommended to read them in sequential order.

2 State of the Art

SPARQL endpoints are one of the most popular interfaces for storing and
querying RDF data today. SPARQL [24] is the most common query language
for RDF data today; SPARQL endpoints are Web services that implement the
SPARQL protocol. They usually provide an HTTP interface that accepts and
answers SPARQL queries [5, 9]. However, as several studies [16, 83, 84] have
pointed out, relying on the data providers to maintain endpoints that provide
access to their data often results in unavailable and outdated data. To make
knowledge graphs more available and up to date, and to provide scalable
access to them under high load, this thesis focuses on addressing three of

7

the main issues the Semantic Web faces today; availability, updatability, and
scalability. In this section, we analyze state-of-the-art approaches that address
each of these aspects and discuss their advantages and shortcomings.

2.1 Client-Server Architectures

Centralized client-server architectures based on Linked Data Fragments
(LDF), such as Triple Pattern Fragments (TPF) [84], Bindings-Restricted TPF
(brTPF) [38], Star Pattern Fragments (SPF) [4], and Smart-KG [19], attempt
to make the server more available and scalable under high query process-
ing load (i.e., when a lot of queries are executed concurrently) by ensuring
that the server only processes requests with low time complexity thus shift-
ing some of the query processing load back to the client. Figure 3 shows
an overview of how much of the query processing load the different HTTP
interfaces for RDF data put on the server; from downloadable data dumps to
the left, which requires the clients to process the entire query, to SPARQL
endpoints to the right, which process the entire query on the server.

specific requests
high server effort

low server availability

data
dump

Linked Data
document

triple pattern
fragments

SPARQL
result

bindings-restricted
triple pattern fragments

star pattern
fragments

smart-kggeneric requests
high client effort
high server availability

Fig. 3: Overview of different HTTP interfaces for RDF data (adapted from [4, 38, 84]).

As such, each system strikes a different balance between shifting more or
less load from the server to the client. For instance, TPF [84] servers only
process individual triple patterns, shifting joins and other expensive oper-
ations to the clients. Since such requests are usually quite limited in time
complexity, and that TPF splits results to such requests into reasonably sized
pages of results, the load on the server remains relatively low even when a
large number of clients issue queries concurrently, thus increasing the scala-
bility of the server under load. Different TPF clients use different client-side
query processing strategies, e.g., based on a greedy query processing algo-
rithm [84], a metadata-based strategy [45], or star-shaped query decompo-
sition coupled with query execution schedulers adapted to data availability
and runtime conditions [1]. In any case, however, TPF clients have to trans-
fer bindings from previously evaluated triple patterns along with subsequent
triple pattern requests one by one to avoid an unnecessarily large data trans-
fer. Furthermore, [56] proposes a TPF client for processing skyline queries.
This naturally incurs a large network overhead, decreasing overall query per-
formance. Additionally, previous studies have found that the performance of
TPF is greatly affected by factors such as the shape of the query [65, 66] and

8

2. State of the Art

the position of variables in the triple patterns [42].
To decrease the network overhead, brTPF [38] proposed to send bindings

from previously evaluated triple patterns in bulks with subsequent requests,
thereby lowering the number of requests overall. However, while brTPF in-
deed decreases the network overhead compared to TPF, complex queries with
a large number of intermediate results still incur high network usage. To
overcome this limitation, hybridSE [64] combines the brTPF server with a
SPARQL endpoint by exploiting the strengths of each interface. In particular,
hybridSE processes subqueries with a small number of intermediate results
using the brTPF server and sends subqueries with a large number of interme-
diate results to the SPARQL endpoint. However, since hybridSE sends large
subqueries to the SPARQL endpoint, it ends up putting significantly more
load on the server while also being vulnerable to server failure.

Instead, SPF [4] proposes to send star-shaped conjunctive subqueries to
the server while processing more complex graph patterns on the client. The
intuition is that the intermediate results from the triple patterns within each
star-shaped subquery that would otherwise have to be transferred to and
from the server can be processed internally on the server since such con-
junctive subqueries can be processed relatively efficiently by the server [72].
However, such a decomposition strategy based on star-shaped subqueries
also shifts a large part of the query processing load to the server, and thus
does not utilize the distributed client-side query processing capabilities fully.
On the other hand, Smart-KG [19] ships predicate-family partitions based
on the star-shaped decomposition of the query to the client and processes
the entire query on the client. In opposition to SPF, this shifts the entire
query processing load to the client, increasing the scalability and availability
of the server, but in doing so incurs an excessive amount of unnecessary data
transfer, since the entire partitions are transferred to the client regardless of
any bindings obtained from previously evaluated graph patterns, while not
utilizing the often stronger server-side resources.

Differently from LDF systems, SaGe [63] uses Web preemption to increase
the scalability of the server under load by suspending queries after a fixed
time quantum, thereby preventing long-running queries from exhausting the
resources made available by the server. After a query has been suspended, it
can then be restarted by issuing a new request to the server. However, while
as a result, smaller queries are able to complete relatively efficiently even
when the server is under load, SaGe still processes the entire, possibly quite
complex, queries on the server which, as stated above, is subject to failure.

2.2 Federated Systems

Federated query engines such as the ones presented in [2, 23, 32, 79] enable
processing queries over multiple different datasets spread out over multi-

9

ple SPARQL endpoints or LDF servers [41]. Generally, federated systems
have different strategies when processing queries over a federation. For in-
stance, [2] adapts the query execution schedulers to query runtime and the
availability of each endpoint in the federation, while [41] processes queries
over heterogeneous federated LDF servers by adapting the query optimizer
to the characteristics of each interface and the locality of the data.

Commonly for federated systems, however, is that such systems of-
ten generate suboptimal query execution plans and join orders, increasing
the number of intermediate results and the load on each individual end-
point [52]. To address this issue, extensive research has gone into opti-
mizing the query processing performance of federated systems in different
ways [36, 48, 67, 68, 78, 82]. For instance, [68] decomposes the queries into
subqueries that can be processed over a single endpoint. On the other hand,
[67] relies on the statistical information provided by characteristic sets [70]
and pairs [34] combined with Dynamic Programming (DP) to estimate the
selectivity of joins and, in doing so, produce more efficient query execution
plans. Furthermore, [79] relies on building an index of the data over time by
remembering which endpoints provide access to which data.

However, while federated systems generally spread out the query pro-
cessing load across multiple servers, they target setups where each endpoint
or LDF server provides access to different datasets, and thus each individual
dataset is still subject to failure.

2.3 Peer-to-Peer Systems

The solutions discussed until now have focused on situations where a single
server or a set of servers have attempted to increase the scalability of the data
under high load. However, as described earlier, the central points of failure
are subject to failure [16, 83] to the detriment of the availability of the data.

To combat the availability problem in particular, Peer-to-Peer (P2P) sys-
tems like [22, 30, 54, 55, 61] have recently gained attention in the Semantic
Web community. They tackle the availability from a different standpoint; by
replicating the data throughout several nodes in a P2P network and com-
pletely removing the central point of failure, they ensure the availability of
the data even in the event that the original uploader fails. Nodes in P2P sys-
tems thus maintain both a local datastore and a local view over the network
(i.e., a set of neighboring nodes), acting as both server and client.

One recent application of P2P technology on the Web is the Solid [61]
project, which proposes to store personal data in so-called decentralized data
PODs (Personal Online Datastores) that can be stored on any server decided
by the user. As such, data PODs can be scattered across several servers on the
Web and, even if a server fails, most users’ PODs will still be available. How-
ever, Solid in its current form focuses mostly on the protection of personal

10

2. State of the Art

data whereas this thesis focuses on the availability of open data.
While the structure of the network and the strategy for replicating and al-

locating data throughout the network can vary from system to system, most
P2P systems today that maintain RDF data provide a structured overlay over
the network. For instance, the approaches presented in [22, 54, 55] use Dy-
namic Hash Tables (DHTs) [57] to determine data locality and allocation.
Furthermore, to optimize query processing in such decentralized setups, dis-
tributed indexes [26, 36, 82] have been proposed to keep track of which data
is located on which nodes.

However, in situations where nodes frequently leave or join the network,
or upload new datasets to the network, systems using a structured overlay
have to undergo a costly adjustment process when experiencing churn. As
such, this thesis proposes, among other contributions, an unstructured P2P
network that uses replication to increase data availability while being robust
under churn.

2.4 Blockchains

Thus far, we have discussed related approaches proposed to solve the avail-
ability and scalability problems. However, all of the approaches discussed
until now rely on the data providers to keep the uploaded data up to date.
This, however, can often lead to the data becoming outdated or nonfactual [3].
One solution to the updatability problem could be to let users collaborate on
keeping the data up to date. To do this while reducing the risk of malicious
updates, blockchains could be used.

Blockchains [69] define global ledgers of data that all the nodes within
the network store, i.e., chains of data blocks. They rely on the consensus
(majority agreement) on the state of the ledger, to ensure that data pushed
to the ledger is factual. However, using blockchains in the context of de-
centralized knowledge graphs has, to the best of our knowledge, only been
briefly researched previously [33, 80]. Furthermore, blockchains require all
the participating nodes to store the entire ledger, pack the structured data
into blocks of a fixed size, and guarantee the immutability of the data [86].

In the database community, blockchains have previously been used for
the storage and retrieval of relational data [14, 28]. For instance, CAPER [14]
proposes to store the ledger as a directed acyclic graph such that each
node only has to store a limited part of the ledger. On the other hand,
BlockchainDB [28] provides a partitioned relational database layer on top
of an existing blockchain. In any case, however, such systems either limit the
autonomy of each node, still require all the nodes to store the entire ledger,
enforce shared relational schema on top of the blockchain on each node, or
view the data within the blockchain as one big dataset instead of multiple
datasets owned by different providers.

11

3 Scalable Access to Knowledge Graphs

This section gives an overview of Paper A [18].

3.1 Motivation and Problem Statement

As discussed in Section 1.1, the increasing amount of RDF data published
on the Web today puts an ever increasing burden on the data providers to
maintain access to the data. As a result, many publicly available knowledge
graphs often become unavailable [16, 83] and the data inaccessible. And
while solutions based on Linked Data Fragments (LDF) [4, 19, 38, 84] do
decrease the load on the server by shifting some of the query processing load
back to the client, they either suffer from a high network overhead [38, 84]
or put the bulk of the query processing load on either the clients [19] or the
server [4], suffering from imbalanced load. As such, in Paper A [18], we
present WiseKG that dynamically attempts to balance the query processing
load between the server and client. In particular, we combine two state-of-the-
art LDF interfaces that decompose the queries into star-shaped subqueries
that offer different balances between network usage and server load and take
advantage of the strengths of each interface to provide more efficient query
processing performance under load. WiseKG proposes a cost model that
determines at query time whether it is most efficient to process a particular
star-shaped subquery on the server or the client based on factors such as the
current load on the server, data transfer overhead, and the resources available
on the client. In doing so, WiseKG increases scalability and availability when
the server is under heavy load.

3.2 Preliminaries

The Resource Description Framework (RDF) [25] is a commonly used format
for storing semantic data. RDF structures the data as triples that we formally
define as follows:

Definition 1 (RDF Triple – adapted from [5, 7, 18])
Given I, B, and L, i.e., the disjoint sets of IRIs, blank nodes, and literals, an
RDF triple t is of the form t = (s, p, o) ∈ (I ∪ B)× I × (I ∪ B ∪ L), where s, p,
and o are called subject, predicate, and object.

As in [5, 7, 18], we define a knowledge graph G as a finite set of RDF triples.
A SPARQL query [24] is of one or more Basic Graph Patterns (BGPs) com-
bined with operations such as UNION and OPTIONAL. A BGP is a set of con-
junctive triple patterns. Given again the sets I, B, and L, as well as the set
V of all variables disjoint with I, B, and L, a triple pattern tp is a triple of
the form tp = (s, p, o) ∈ (I ∪ B ∪ V) × (I ∪ V) × (I ∪ B ∪ L ∪ V). Given a

12

3. Scalable Access to Knowledge Graphs

triple pattern tp, we denote subj(tp), pred(tp), and obj(tp) as the subject,
predicate, and object of tp, respectively. Furthermore, we denote the left-
linear execution order for a BGP P = {tp1, . . . , tpn} as a sequence, i.e., the
execution plan (tp1, . . . , tp2) is equivalent to the execution plan denoted by
(((tp1 ./ tp2) ./ . . .) ./ tpn). The answer to a BGP P over a knowledge graph
G, denoted [[P]]G is a set Ω of solution mappings, defined formally in [18] as:

Definition 2 (Solution mapping [84] – adapted from [5, 7, 18])
Given a BGP P and a knowledge graph G, I, B, L are the sets of IRIs, blank
nodes, and literals in G, and V is the set of variables in P. A solution mapping
µ is a partial mapping µ : V 7→ (I ∪ B ∪ L).

The following description is adapted from [5, 7, 18]. Given a triple pattern
tp and a solution mapping µ, µ[tp] denotes the triple (pattern) obtained by
replacing the variables in tp with the values specified in µ. A triple t is a
matching triple to a triple pattern tp iff there exists a solution mapping µ for
which t = µ[tp]. Moreover, dom(µ) denotes the domain of a solution mapping
µ, i.e., the set of bound variables in µ, and vars(tp) denotes the variables in a
triple pattern tp. Last, two solution mappings µ1, µ2 are said to be compatible,
denoted µ1||µ2, iff for any v ∈ dom(µ1) ∩ dom(µ2), µ1(v) = µ2(v).

A star pattern sp is a BGP such that sp = {tp1, . . . , tpk} and ∀tpi =
(si, pi, oi) ∈ sp and ∀tpk = (sk, pk, ok) ∈ sp, si = sk, i.e., all triple patterns
share the same subject. Given a BGP P, we define the star decomposition of P:

Definition 3 (Star decomposition – adapted from [18])
Given a BGP P, the star decomposition of P, denoted S(P), is defined as:

S(P) = {{tp ∈ P | subj(tp) = s} | s ∈ subj(P)}

Linked Data Fragments

In the following, we formally define LDF APIs [84] by reproducing the defi-
nitions and formulas from [18]. As in [18], we omit some details on LDFs like
metadata that is sent along with query results, as well as hypermedia results.
As such, we define an LDF API as follows:

Definition 4 (Linked Data Fragment – adapted from [18])
Given a knowledge graph G, An LDF API f of G accessible at an endpoint
IRI i is a tuple f = (s, Φ) where:

• s is a selector function s(G, P, Ω) that defines how a fragment Γ ⊆ G, or
alternatively a set of fragments Γ∗ ⊆ 2G , is constructed for a given BGP
P and set of solution mappings Ω.

• Φ is a paging mechanism Φ(n, l, o) parameterized by n, l, o ∈ N0 denot-
ing maximum page size, limit, and offset.

13

We define two variants of the selector function, s(G, P, Ω) and s∗(G, P, Ω),
which differ in returning either a single (sub)graph or one (sub)graph per
solution µ ∈ [[P]]G . These are reproduced from [18] and defined as follows:

s(G, P, Ω) = {t ∈ µ[P] | ∃µ ∈ [[P]]G : G |= µ[P] ∧ ∃µ′ ∈ Ω : µ||µ′} (1)

s∗(G, P, Ω) = {µ[P] | ∃µ ∈ [[P]]G : G |= µ[P] ∧ ∃µ′ ∈ Ω : µ||µ′} (2)

In the remainder of this section, we will describe four different existing
LDF APIs in terms of the above definitions and formulas by reproducing
them from [18]: Triple Pattern Fragments (TPF) [84], Bindings-Restricted TPF
(brTPF) [38], Star Pattern Fragments (SPF) [4], and Smart-KG [19].

Triple Pattern Fragments (TPF) [84] can be described using the generic LDF
framework from Definition 4 as follows:

• The selector function is s(G, P, Ω) as shown in Equation 1
• The only admissible form of P are triple patterns and Ω = {∅}
• Φ(n, l, o) batches results into pages of n triples; l and o cannot be set

explicitly.

Bindigs-Restricted TPF (brTPF) [38] is an extension of TPF, and the descrip-
tion as an LDF system is similar to the one for TPF as well. The difference
being, that brTPF allows arbitrary Ω 6= {∅}.
Star Pattern Fragments (SPF) [4] generalizes brTPF to handle star patterns
rather than triple patterns. As such, SPF is described as an instance of an
LDF API as follows:

• The selector function is s∗(G, P, Ω) as shown in Equation 2
• The only admissible form of P are star patterns
• Ω can be any set of bindings
• Φ(n, l, o): n is fixed to P of size k but SPF allows to retrieve chunks of l

results (iterating over increasing offsets o = o + l)

Smart-KG [19] ships knowledge graph partitions to the client per star pattern
and processes the query on the client. As such, the server holds partitions
per characteristic set [70] of a knowledge graph G. A characteristic set is a set
of predicates and is, for any subject in G, defined as follows:

Definition 5 (Characteristic set – adapted from [18])
Given a knowledge graph G, the characteristic set of a subject s over G, CG(s),
is the set of predicates associated with s:

CG(s) = {p | ∃o : (s, p, o) ∈ G} (3)

We denote the set of characteristic sets of a knowledge graph G as C(G) or C
for simplicity whereby C(G) = {CG(s)|s ∈ subj(G)}.

14

3. Scalable Access to Knowledge Graphs

Given the definition of a characteristic set, Smart-KG can be described as
an LDF interface as follows:

• The selector function is adapted from Equation 1 as follows:

sSKG(G, P, Ω) = {t ∈ G | ∃t′ ∈ s(G, P, Ω) : subj(t) = subj(t′)} (4)

• Admissible patterns are defined by submitting a characteristic set
c = {p1, . . . , pk} that can be interpreted as a set of triple patterns
∪k

i=1{(?s, pi, ?oi)}, and Ω = {∅}
• Φ: Only n = ∞ is admissible, i.e., no pagination is supported since the

union of all relevant partitions is returned

3.3 WiseKG: Balanced Access to Web Knowledge Graphs

All the LDF interfaces mentioned so far suffer from imbalanced load either
towards the client (TPF, brTPF, Smart-KG) or the server (SPF). To this end, we
present WiseKG, a system that attempts to optimally distribute the process-
ing of star-shaped subqueries to take advantage of the strengths of SPF and
Smart-KG in particular. In other words, WiseKG dynamically determines
whether it is more efficient to process a particular star pattern on the client
or server.

Example 1 (Motivating example – adapted from [18])
Consider query Q shown in Figure 4a over DBpedia [17]. All triple pat-
terns in the query have large cardinalities (the smallest cardinality being
146,716), meaning both TPF and brTPF would have to send an excessive
number of requests to process the query, and transfer a large number of
intermediate results back to the client. The star decomposition of the query
results in two star patterns, sp1 = {tp1, tp2, tp3} and sp2 = {tp4, tp5}, and
tp6 which is a star pattern with a single triple pattern. sp1 has 89,366 so-
lutions and sp2 has 600,349 solutions. Both SPF and Smart-KG order the
query in the following join order: (sp1, sp2, tp6). When processing sp1,
Smart-KG then ships a partition with 1,628,572 distinct stars, whereas SPF
only ships the 89,366 resulting bindings, resulting in less of a network
overhead. However, since SPF enforces a limit on the number of bindings
attached to each request, when processing the join between sp1 and sp2,
SPF has to bulk the bindings from sp1 into batches of, for instance, 30
bindings to transfer along with the request, amounting to 2, 979 requests in
total. We could mitigate this overhead by instead shipping the compressed
partition with the 600,349 solution mappings to sp2 and processing the join
locally on the client, illustrating a situation where it might be a good idea
to process parts of the query on the server, but other parts on the client.

15

select ∗ where {
?album dbo: artist ? artist . # tp1: 146,716 matches (sp1)
?album rdf:type dbo:Album . # tp2: 147,917 matches (sp1)
?album dbo:releaseDate ?date . # tp3: 212,290 matches (sp1)
? artist dbo:genre ?genre . # tp4: 576,000 matches (sp2)
? artist foaf :name ?name . # tp5: 4,146,579 matches (sp2)
?song dbo:writer ? artist . # tp6: 200,969 matches

}

(a) Show artists’ albums, genres, and the songs they
have written (Q)

tp1 tp2

tp3
tp4 tp5

tp6

SP1

SP2

SKG
SPF

(b) Query execution plan for
(spSPF

1 , spSKG
2 , tpSPF

6)

Fig. 4: Example of processing a SPARQL query with WiseKG (reproduced from [18]).

Overview

WiseKG uses a cost model to determine whether it is most efficient to process
a star-shaped subquery on the client or on the server, i.e., using SPF or Smart-
KG. To do this, it creates a query execution plan annotated with the approach
to use for each subquery, denoting annotations as SPF in the case of server-
side processing, and SKG in the case of client-side processing. For instance,
the plan Π = (spSPF

1 , spSKG
2 , tpSPF

6) denotes the execution plan visualized in
Figure 4b and denotes that sp1 and tp6 are processed by the server and sp2
by the client.

Upon receiving a query, the WiseKG server decomposes it into star pat-
terns, uses its cost model to obtain an annotated query execution plan, and
attaches to it a timestamp τ that denotes the expiration time of the plan; in
case the client has not finished execution by τ, it has to send a new request to
obtain a new query execution plan which may look different. This is to ensure
the server resources are always optimally utilized. Formally, the WiseKG API
offers the following interfaces to access a knowledge graph G [18]:

• A control SPF(P, Ω) returning s∗(G, P, Ω) (Equation 2)
• A control SKG(P, Ω) returning sSKG(G, P, ∅) (Equation 4)
• An execution plan interface Plan(P) returning a pair (ΠP, τ)

Given a control c ∈ {SPF, SKG}, c(P, Ω) denotes that P is executed by calling
either SPF(P, Ω) or SKG(P, Ω) acording to c [18]. [18] assumes that the call
to c(P, Ω) is converted to a set of bindings through the function evalc(P, Ω) =
Ω ./ [[P]]G . Furthermore, the call to Plan(P) attaches to the execution plan a
timestamp τ = τC + ι where τC is the current timestamp and ι is a fixed time
quantum similar to SaGe’s [63].

Cost Model

The cost model used by WiseKG [18] is inspired by the R* optimizer [60]
from the field of distributed databases [87]. Given a star pattern sp, we use

16

3. Scalable Access to Knowledge Graphs

the following components when estimating the cost of processing sp: esti-
mated number of CPU instructions (#CPU), estimated number of requests
to the server (#M), estimated number of transferred bytes (#BYT), and esti-
mated number of I/O operations (#IO), formalized as follows (reproduced
from [18]):

cost(sp) = WCPU × (#CPU)︸ ︷︷ ︸
Processing

+WM × (#M)︸ ︷︷ ︸
Messaging

+WBYT × (#BYT)︸ ︷︷ ︸
Data transfer

+WIO × (#IO)︸ ︷︷ ︸
I/O

WCPU , WM, WBYT , and WIO describe weights on each parameter that are
determined as follows [18]:

• WCPU : The inverse of the CPU’s IPS (Instructions Per Second) rate
dampened by the current load on the CPU:

WCPU =
1

IPS× (100%− CPUload)

• WM: The average time to transmit a request; in our implementation and
experiments, we assume a constant value of WM = 50ms.

• WBYT : The conservative minimum between the bandwidth of the server
bwserver and client bwclient:

WBYT =
1

min(bwserver, bwclient)

• WIO: The time it takes to load 1 MB of data into memory. In our exper-
iments, I/O was a negligible factor (cf. our experiments in Paper A),
and we therefore let WIO = 0 in our implementation.

The above formulas can be concretized to estimate the cardinality of process-
ing a star pattern respectively on the server, costSPF, and the client, costSKG.
To do this, we will first reproduce from [18] the following functions and vari-
ables:

• card(sp, Π): The estimated cardinality of processing sp using the esti-
mated number of bindings from Π (as described in [70])

• size(c): The size of the partition for a characteristic set c on disk (i.e.,
the size of the corresponding HDT [29] file)

• it: The number of CPU instructions needed to process each triple in the
result

• bt: The (average) number of bytes per triple in the result

Given the above definitions, we reproduce the formulas for the cost estima-
tions from [18]. First, the cost of processing the star pattern on the server can
be estimated using the following formula [18]:

17

costSPF(sp, Π) = WCPUserv × card(sp, Π)× it︸ ︷︷ ︸
#CPU

+

WMSG ×
card(sp, Π)

Φ(n)︸ ︷︷ ︸
#M

+WBYT × card(sp, Π)× bt︸ ︷︷ ︸
#BYT

+WIO × size(G)︸ ︷︷ ︸
#IO

(5)

In other words, the CPU cost is the estimated cardinality multiplied by
the number of instructions per results, the messaging cost is the estimated
cardinality divided by the page size, and the data transfer cost is the esti-
mated cardinality multiplied with the number of bytes per triple. The cost
of shipping the entire partition to the client and processing the star pattern
locally is estimated using the following formula [18]:

costSKG(sp, Π) = WCPUclient × card(sp, Π)× it︸ ︷︷ ︸
#CPU

+WMSG × |Csp|︸︷︷︸
#M

+

WBYT ×
(

∑
c∈Csp

size(c)

︸ ︷︷ ︸
#BYT

)
+ WI/O ×

(
∑

c∈Csp

size(c)

︸ ︷︷ ︸
#IO

)
(6)

Differently from costSPF, costSKG estimates the messaging cost as the num-
ber of characteristic sets for sp and the data transfer cost as the summarized
number of subjects in each relevant characteristic set.

3.4 Query Processing

When processing a query, the WiseKG client follows the following steps
(adapted from [18]):

1. Retrieve (Π, τ) by calling Plan(P) on the server
2. For each star pattern spc ∈ Π and solution mapping Ω from evaluating

previous star patterns, do the following:

(a) If τ < τC , call Plan(P) once again
(b) Otherwise, call c(sp, Ω) on the server

Algorithm 1 shows how the server creates a query execution plan given a
BGP P. First, line 2 decomposes P into star patterns. Then, lines 5-13 itera-
tively find and select the star pattern spi with the lowest estimated cardinality
and append it to the execution plan. The algorithm estimates the cost of pro-
cessing spi on the server (costSPF, Equation 5) and on the client (costSKG,
Equation 6); if costSPF ≤ costSKG, spi is appended on line 10, otherwise it
is appended on line 12. Finally, the timestamp τ is found on line 14, and
(ΠP, τ) is returned on line 15.

18

3. Scalable Access to Knowledge Graphs

Algorithm 1 Create annotated execution plan – reproduced from [18])

Input: P = {tp1, tp2, . . . , tpn} // a BGP
Output: (Πp, τ) // an annotated plan and its expiry time

1: function Plan(P)
2: S← S(P)
3: Πp ← ()
4: while S 6= ∅ do
5: for sp ∈ S do
6: cntsp ← card(sp, Πp)
7: if cntsp = 0 then return ()

8: spi ← sp where sp ∈ S and cntsp ≤ cntsp′ for all sp′ ∈ S
9: if costSPF(spi, ΠP) ≤ costSKG(spi, ΠP) then

10: ΠP ← append(ΠP, (spSPF
i))

11: else
12: ΠP ← append(ΠP, (spSKG

i))

13: S← S \ {spi}
14: τ ← τC + ι
15: return (ΠP, τ)

Algorithm 2 defines a recursive function that processes a query execution
plan Π with a timestamp τ. First, line 2 checks whether the timestamp has
expired; if it has, the algorithm collects a new plan and expiry timestamp
from the server on line 3. Then, if Π consists of a single star pattern, the
algorithm processes that star pattern using its control (line 5). Otherwise,
the function makes a recursive call for the left subtree (line 7) and uses the
resulting bindings in another recursive call for the right subtree (line 8). Last,
the resulting bindings are returned on line 9.

3.5 Evaluation and Discussion

To make knowledge graphs published on the Web available and scalable un-
der heavy query processing load, existing LDF systems shift some of the
query processing load back to the client in an attempt to decrease the load
on the server. However, such systems usually suffer from imbalanced load,
either putting too much effort on the server [4, 63] or the client [19, 38, 84].
As such, we argue that there is a middle ground where the load can be bal-
anced across the server and client in such a way that exploits the stronger
server-side query processing capabilities without overloading it. To this end,
in Paper A [18], we proposed WiseKG; an LDF system that combines two
existing approaches [4, 19] and dynamically determines whether each star-
shaped subquery in the query can be answered most efficiently by the client

19

Algorithm 2 Processing a query execution plan – reproduced from [18])

Input: Π = (spc1
1 , . . . , spcn

n) // an execution plan;
τ // expiry timestamp;
Ω′ // a set of bindings

Output: Ω // set of solution bindings
1: function evalPlan(Π, τ, Ω′)
2: if τ < τC then
3: (Π, τ)← Plan(BGP(Π))

4: if Π = spc then
5: Ω← evalc(sp, Ω′)
6: else
7: Ω← evalPlan((spc1

1 , . . . , spcn−1
n−1), τ, Ω′)

8: Ω← evalPlan(spcn
n , τ, Ω)

9: return Ω

or the server based on factors such as the current load on the server and the
resources available on the client.

To test our approach, we conducted experiments using the WatDiv bench-
mark tool [13] and generated datasets with 10 million (watdiv10M), 100 mil-
lion (watdiv100M), and 1 billion (watdiv1B) triples. For queries, we used
the query templates and query generator provided by WatDiv to create two
query loads using the basic testing templates (watdiv-btt) and the stress-
testing templates (watdiv-sts). Furthermore, we tested our approach using
DBpedia [17] (v.2015A) and generated 28 queries from a real-world query log
called LSQ [76]. We compared our approach to TPF [84], SaGe [63], SPF [4],
and Smart-KG [19]. Furthermore, we included two versions of WiseKG in
our experiments; (1) WiseKGheuristic which executes all star patterns on the
server until the CPU load reaches a threshold σ, after which the remaining
star patterns are processed by the client, and (2) WiseKGcost which uses the
cost model defined in Section 3.3. Our full experimental evaluation is given
in Paper A [18]; in the following, we will discuss the most interesting results.

Figure 5 shows the number of timeouts, average workload time, and
throughput (queries/minute) incurred by each system when 128 clients is-
sue queries concurrently. Clearly WiseKG has better performance than the
competing systems when the server is under load. In fact, for watdiv10M and
watdiv100M, WiseKG experiences no timeouts, and even for watdiv1B, only
around 2% of the queries timed out compared to 13% for Smart-KG, 21% for
SPF, and up to 55% for SaGe and TPF (Figure 5a). This is in line with the per-
formance of the systems; WiseKG has a sizable increase in performance, both
in terms of the workload time (Figure 5b) and query throughput (Figure 5c)
compare to every other system. In fact, WiseKG increases performance by

20

3. Scalable Access to Knowledge Graphs

(a) Number of Timeouts (b) Avg. Workload Time (c) Queries per minute

Fig. 5: Number of timeouts, average workload time, and throughput for 128 clients over each
WatDiv dataset for watdiv-sts (reproduced from [18]).

up to two orders of magnitude compared to TPF, and up to an order of mag-
nitude compared to the remaining approaches.

Fig. 6: Execution time (in seconds) for the DBpedia queries (reproduced from [18]).

These findings are supported by Figure 6 which shows the execution time
for each system over the DBpedia queries and dataset. Again, WiseKG gen-
erally has significantly better performance than the competitors. The only
cases where SPF or SaGe is faster than WiseKG are the queries where the
overhead of computing the query execution plan is a sizable part of the time
complexity (i.e., very simple queries); in these cases, WiseKGheuristic is also
faster than WiseKGcost for the same reason.

Figures 7a and 7b show the number of requests each system made to the
server and the number of bytes each system transferred when processing the
watdiv-sts queries over each WatDiv dataset. Clearly, SaGe incurs the lowest
network overhead; this is because it does not transfer any intermediate results
over the network. On the other hand, while WiseKG issues less requests than
SPF, it also has a slightly higher data transfer. This is due to the transfer of
some partitions during query processing when the load on the server is high.
This is also reflected on Figure 7c which shows the average CPU usage for an
increasing number of nodes; the SaGe and SPF servers suffer from high server
load which inhibits performance. For WiseKG, though, the CPU load on the
server never goes above 60%, showing that while the network overhead might

21

(a) No. requests to the server
for 128 clients over each WatDiv
dataset (log).

(b) No. transferred bytes for 128
clients over each WatDiv dataset
(log).

(c) Avg. Server CPU Usage (in
percentage) for increasing num-
bers of clients over watdiv1B.

Fig. 7: Number of requests to the server and number of transferred bytes for 128 clients over
each WatDiv dataset, and CPU load for increasing numbers of clients over watdiv1B on the
watdiv-sts workload (reproduced from [18]).

be a little higher compared to systems like SPF, this is actually preferable,
since the server load is maintained on an acceptable level that increases the
performance when a lot of clients issue queries concurrently.

Overall, our experimental results show that WiseKG significantly out-
performs state-of-the-art LDF interfaces on high demanding workloads and
when the server is under load. Furthermore, they show that the cost model
used by WiseKG improves the average workload completion time while be-
ing able to answer more queries without timing out. However, while our ex-
periments show that WiseKG is able to increase the server availability when
it is under heavy load, it still relies on the data provider to maintain a server.
As discussed previously, centralized servers are subject to failure [16, 83] and
represent a heavy burden on the data providers. As such, in Section 4, we
will investigate how such a central point of failure can be removed by repli-
cating data throughout a Peer-to-Peer (P2P) network such that even if the
original uploader fails, the data is still available.

4 An Unstructured Peer-to-Peer Architecture

This section gives an overview of Paper B [5].

4.1 Motivation and Problem Statement

While the approach presented in Paper A [18] as well as other LDF ap-
proaches [4, 19, 38, 84] do decrease the load on the server by shifting some
of the query processing load back to the client, they fail to address the core
of the availability problem, i.e., the centralized point of failure that the server
represents. As such, removing the central point of failure and using replica-
tion is pivotal in ensuring the continued availability of the data even when
the original uploader fails. However, the few Peer-to-Peer (P2P) systems that

22

4. An Unstructured Peer-to-Peer Architecture

exist for RDF data [22, 54, 55, 61] enforce a structured overlay over the net-
work that has to be recomputed during churn (when nodes leave or join the
network, or when data is added, removed, or modified). As such, Paper B [5]
presents Piqnic (a P2p clIent for Query processiNg over semantIC data), a
system that aims to address the availability problem by replicating the data
on several nodes throughout a P2P network while enforcing no structured
overlay over the network, thereby ensuring node autonomy and being robust
under churn.

4.2 PIQNIC: A Decentralized Architecture for Sharing and
Querying Semantic Data

Piqnic builds upon the principles unstructured P2P networks. As such, a
Piqnic network consists of a set of interconnected nodes that each maintain a
local datastore and a set of neighboring nodes. The partial overview over the
network, i.e., the set of neighboring nodes, consists of (1) nodes with highly
related knowledge graphs, i.e., knowledge graphs that use common IRIs, to
ensure efficient query processing over multiple knowledge graphs, and (2)
some random neighbors to ensure connectivity within the network [5].

Data Fragmentation

Due to the size of knowledge graphs today, replicating entire RDF datasets
at several nodes is not always feasible or useful. Hence, Piqnic proposes a
customizable fragmentation approach presented in the following using the
definitions and examples reproduced with modifications from Paper B [5].
Given a Piqnic network N, we formally define a fragment as follows:

Definition 6 (Fragment – adapted from [5])
Let GN be a knowledge graph that includes all RDF triples in the Piqnic

network N. A fragment f is a 4-tuple f = (T, N, u, i) where:

• T is a finite set of RDF triples, and T ⊆ GN ,
• N is a set of Piqnic nodes storing the fragment,
• u is an IRI that identifies the fragment, and
• i is an identification function that determines whether the fragment

contains triples matching a given triple pattern.

Identification functions are used as part of the query processing algorithm
to determine which fragments contain relevant data to which triple patterns.
Since any node can upload a knowledge graph, we include the notion of
fragment ownership, i.e., the owner of a fragment manages the replication
and allocation of the fragment. As such, we formally define a dataset as:

Definition 7 (Dataset – reproduced from [5])
A dataset D is a triple D = (F, u, o) where:

23

• F is a set of fragments,
• u is an IRI that identifies the dataset, and
• o is an identifier of the “owner” node, i.e., the node that uploaded F to

the network.

Given a knowledge graph G, the fragments of G are obtained using a
fragmentation function F , formally defined as follows:

Definition 8 (Fragmentation function – reproduced from [5])
A fragmentation function F is a function that, when applied to a knowledge
graph G, creates a set of fragments F = F (G), i.e., F (G) : G 7→ 2G .

Fragmentation functions can have different granularities; for instance, the
fragmentation function FC(G) = {G} that results in the original knowledge
graph is very coarse-granular. For simplicity, Piqnic uses the predicate-based
fragmentation presented in Definition 9; however, in Section 7, we discuss us-
ing a more complex fragmentation function based on characteristic sets [70].

Definition 9 (Predicate-based fragmentation function – reproduced from [5])
Let pt denote the predicate of a triple t. A predicate-based fragmentation
function FP(G) = {Fp | ∃t ∈ G : pt = p ∧ (∀t′ ∈ G)[pt′ = p] : t′ ∈ Fp} defines
one fragment for each unique predicate in the knowledge graph G.

Table 1: Applying FP to a knowledge graph GE (adapted from [5])

(a) Knowledge graph GE [5]

Knowledge graph GE
(a p1 b) (a p2 c) (a p3 d)
(b p2 e) (b p1 d) (b p3 d)
(c p3 d) (d p1 c) (c p2 a)
(f p4 d) (d p4 f) (e p5 g)

(b) FP(GE) [5]

f1 f2 f3
(a p1 b) (a p2 c) (a p3 d)
(b p1 d) (b p2 e) (b p3 d)
(d p1 c) (c p2 a) (c p3 d)

f4 f5
(f p4 d) (e p5 g)
(d p4 f)

Example 2 (Fragmentation – reproduced from [5])
Consider the knowledge graph GE in Table 1a. Applying FP to GE results
in the set of fragments f1, f2, f3, f4, and f5 shown in Table 1b; one fragment
for each unique predicate p1, p2, p3, p4, and p5.

24

4. An Unstructured Peer-to-Peer Architecture

Network Architecture

We now formally define the network structure of a Piqnic network using the
definitions, equations, and examples adapted from Paper B [5]. A Piqnic

network is a set of interconnected nodes. A node is formally defined as
follows:

Definition 10 (Node – reproduced from [5])
A node n is a triple n = (Γ, ∆, N) where:

• Γ is the set of fragments located on the node,
• ∆ is a set of datasets owned by the node, and
• N is a set of so-called neighbor nodes in the network.

To account for changes in the network, nodes periodically shuffle their
neighbors with another node. To do this, a node n picks a random node n′ in
its set of neighbors (n′ ∈ n.N) and selects a subset of its neighbors which it
sends to n′ removing them from the set n.N. The selected neighbors are the
ones with the least related data in the local datastore, based on the joinability
of the fragments within the nodes. Two fragments are said to be joinable if
they have some subject/object IRIs in common; formally, the joinability of
fragments are defined as follows:

Definition 11 (Fragment joinability – reproduced from [5])
Let st and ot be the subject and object of a triple t, GN the knowledge graph
containing all RDF triples in a network N, and f1, f2 ∈ F (GN). f1 and f2 are
said to be “joinable”, denoted f1 ⊥⊥ f2, iff for at least one triple t1 ∈ f1, there
exists a triple t2 ∈ f2, s.t. {st1 , ot1} ∩ {st2 , ot2} 6= ∅.

Notice that Definition 11 does not consider the rate of overlap between
two fragments, but only if two fragments overlap; this is the case since frag-
ments with a small rate of overlap might still be important for complete query
results [5]. We now reproduce from [5] the definition of a relatedness metric
to rank a node’s neighbors; given a node n, the following function selects
the k nodes R ⊆ n.N that minimize the objective function in Equation 7, as
follows [5]:

Rel(n) = arg min
R⊆n.N

∑
ni∈R

|Join(n, ni)|
|n.Γ| s.t. |R| = k (7)

where Join(n, ni), as defined in Equation 8 and [5], returns the set of frag-
ments stored in n’s local datastore that are joinable with at least one of node
ni’s fragments with a different fragment identifier, reproduced from [5] as:

Join(n1, n2) = { f1 ∈ n1.Γ | ∃ f2 ∈ n2.Γ : f1 ⊥⊥ f2 ∧ f1.u 6= f2.u} (8)

25

n1

f1, f2

n2

f2, f3

n3

f1, f3

n4

f4, f5

f4 ⊥⊥
f1 , f5 ⊥⊥

f2

f4
⊥⊥

f3 ,f5
⊥⊥

f2f4 ⊥⊥ f1

(a) Joinable fragments at n4’s neighbors [5]

n1

f1, f2

n2

f2, f3

n5

f2, f4

n4

f4, f5

(b) Result of shuffling n4’s least related
neighbors [5]

Fig. 8: Computing the relatedness of n4’s neighbors and shuffling. Solid arrows denote a connection
to a neighbor in list n4.N, and dashed arrows neighbors after a shuffle (reproduced from [5]).

Example 3 (Neighbor ranking – reproduced from [5])
Given the fragments in Table 1b and the distribution of the fragments be-
tween the 4 nodes in Figure 8a, n4 selects the least related neighbor to
shuffle. As such, we apply Equation 7 and obtain:

• n1: Since f4 ⊥⊥ f1 and f5 ⊥⊥ f2, then r1 = 2/2 = 1
• n2: Since f4 ⊥⊥ f3 and f5 ⊥⊥ f2, then r2 = 2/2 = 1
• n3: Since f4 ⊥⊥ f1, f4 ⊥⊥ f3, f5 6⊥⊥ f1 and f5 6⊥⊥ f3, then r3 = 1/2 = 0.5

As a result, n3 is least related neighbor, thus it is removed after the shuffle
and replaced by a new neighbor n5 (Figure 8b).

Paper B [5] gives details on the replication and allocation strategy used
by Piqnic. In short, when a knowledge graph is uploaded to a Piqnic node
n, n fragments the knowledge graph using the predicate-based fragmenta-
tion function in Definition 9. Each fragment is sent to a random neighbor
which replicates the fragment and passes it on to one of its neighbors. This
continues for a certain number of steps called the replication factor.

4.3 Query Processing

Due to lack of global knowledge, query processing in Piqnic follows a flood-
ing approach. That is, when a node n issues a query, its triple patterns are
forwarded to n’s neighbors, which process the triple pattern and forward it
to their neighbors, and so on, until the Time-To-Live (TTL) distance has been
reached. In the following, we summarize the query processing approach
used by Piqnic given a BGP P by adapting the following steps from [5].

26

4. An Unstructured Peer-to-Peer Architecture

1. Determine the join order of the triple patterns in P using variable count-
ing (triple patterns with less variables are evaluated first).

2. Evaluate P’s triple patterns according to the join order by flooding the
network with requests using a specified TTL value.

3. Receive partial results from each queried node.
4. Compute the final result by combining the intermediate results of each

triple pattern in P.

To determine which fragments contain relevant data to which triple pattern
in the query, we formally define the predicate-based identification function (i
in Definition 6) as follows:
Definition 12 (Predicate-based identification function – reproduced from [5])
Let FP(GN) be a the set of fragments in a network, f ∈ FP(GN) be a frag-
ment, tp be a triple pattern and ptp the predicate of tp. A predicate-based
identification function FIP(f , tp) returns true iff ∀t ∈ f : pt = ptp or ptp is a
variable.

To assess the impact of the approach used at step 2 above, we imple-
mented three different strategies that we call Single, Bulk, and Full respec-
tively, which we summarize from [5] as follows:

Single. Inspired by TPF [84], the intermediate result obtained from pre-
viously evaluated triple patterns are used to instantiate subsequent triple
patterns before flooding the network with requests, one by one.

Bulk. Inspired by brTPF [38], the intermediate bindings from previously
evaluated triple patterns are bulked and flooded along with subsequent triple
patterns to lower the number of requests.

Full. In contrast to Single and Bulk, this strategy does not consider the
intermediate bindings from previously evaluated triple patterns, but instead
processes the original triple patterns in parallel over the network, joining the
results afterwards on the issuing node.

4.4 Evaluation and Discussion

The fact that knowledge graphs today have a relatively high degree of un-
availability [16, 83] highlights the need for a decentralized solution that en-
sures the availability of the data even if the data providers fail. To this end,
we presented Piqnic (a P2p clIent for Query processiNg over semantIC data).
Piqnic defines an unstructured P2P architecture in which nodes maintain a
local datastore (a set of fragments) and a local view over the network (a set
of neighboring nodes). We implemented a prototype of Piqnic following the
approach outlined in this section that allows nodes to join and upload knowl-
edge graphs to a network. Furthermore, the prototype of Piqnic provides an
interface to process queries using three different strategies: Single, Bulk, and
Full.

27

To test the hypothesis that Piqnic increases the availability of knowledge
graphs when nodes fail, and to assess the impact of the query processing
strategy on performance, we ran experiments using data and queries from
LargeRDFBench [77]. LargeRDFBench consists of 13 interlinked datasets with
over a billion triples in total, and 40 queries in 4 different groups: Simple (S),
Complex (C), Large Data (L), and Complex and High Number of Sources
(CH). The experimental setup and results are available in Paper B, however,
in the following we will summarize the results.

0 %10 %20 %30 %40 %50 %60 %70 %80 %90 %100 %
0 %

20 %

40 %

60 %

80 %

100 %

Available Nodes (%)

C
om

pl
et

en
es

s
(%

)

Fig. 9: Completeness (in %) for queries when varying the number of nodes failures (reproduced
from [5]).

Figure 9 is reproduced from [5] and shows the robustness of a Piqnic net-
work when a large number of nodes fail; the x-axis shows the rate of available
nodes (40% means that 60% of the nodes were randomly killed) and the y-
axis shows the average (over 3 runs) completeness over all queries (i.e., the
percentage of computed answers in comparison to the complete set of an-
swers provided by LargeRDFBench) without giving the network any time to
recover. As the graph shows, Piqnic was able to achieve more than 90% com-
pleteness even when more than 30% of the nodes were killed, after which the
completeness gradually decreased. Furthermore, our experimental results in
Paper B [5] showed that the Bulk strategy significantly outperformed Single
and Full by incurring less data transfer, both in terms of number of messages
and number of bytes sent throughout the network, incurring lower query ex-
ecution times as a result.

As such, our experimental results show that Piqnic is able to maintain
high availability of the data within the network, even when a large portion
of the nodes fail. However, while we assessed the impact of the query pro-
cessing strategy on performance, the fact that Piqnic has to flood the net-
work with requests to process queries represents a significant overhead on
performance. As such, in the upcoming stages of this thesis, we develop so-
lutions that remove the need for flooding the network by determining, as a
pre-processing step, which nodes contain relevant data to a given query.

28

5. Indexing Decentralized Knowledge Graphs

5 Indexing Decentralized Knowledge Graphs

This section gives an overview of Paper C [6].

5.1 Motivation and Problem Statement

While Piqnic as presented in Paper B [5] was shown to increase the availabil-
ity of the data in the network even when a large portion of the nodes fail, the
lack of a global overview over the network means that it has to flood the net-
work with requests several times per query execution. And while we already
in [5] made some advances towards lowering the impact of flooding the net-
work with requests by sending bulks of intermediate bindings along with
each triple pattern request, the flooding mechanism still incurs potentially an
exponential number of requests. As such, in Paper C [6], we investigate how
flooding can be avoided altogether to allow for more efficient and feasible
query processing performance over an unstructured P2P network without
a global overview. In particular, we propose two types of indexes called
locational indexes and Prefix-Partitioned Bloom Filter (PPBF) indexes respec-
tively, that allow nodes in the network to determine on query time on which
nodes relevant data is located, thereby removing the need for flooding the
network with requests. In the following, we summarize locational indexes
and PPBF indexes presented in Paper C [6].

5.2 Locational Indexes

The indexes presented in Paper C [6] avoid the need for flooding the network
with requests at query time by allowing the nodes to estimate where relevant
data to each triple pattern in the query is located. In the following, we sum-
marize the formal definition of the baseline locational indexes by reproducing
the definitions, formulas, and examples with modifications from [6].

Let f be a fragment and P(f) be a function that returns the set of pred-
icates in f . Consider the definition of a node n in Definition 10 as a triple
n = (Γn, ∆, N) where Γn is the set of fragments that n stores [5]. n’s locational
index Ii

L(n) summarizes the fragments reachable within a distance of i hops
from n, and is formally defined in [6] as follows:

Definition 13 (Locational index – adapted from [6])
Let N be the set of nodes, P the set of predicates, and Γ the set of fragments,
a locational index is a tuple Ii

L(n)=(γ, η), with γ : P → 2Γ and η : Γ → 2N .
γ(p) returns the set of fragments F s.t. ∀ f ∈ F : p ∈ P(f). η(f) returns the
set of nodes N such that f ∈ Γni for all ni ∈ N such that ni is within i hops
from n.

29

The following formulas are reproduced from [6]. The locational index at a
node n of depth 0, i.e., the index covering only the fragments available locally,
is I0

L(n) = (γ, η) where:

γ(p) = { f | f ∈ Fn ∧ p ∈ P(f)} (9)

η(f) = {n}, ∀ f ∈ Fn (10)

The ⊕ operator is reproduced from [6] as follows. (f ⊕ g)(x) = f (x) ∪
g(x) if f and g are defined at x; (f ⊕ g)(x) = f (x) if only f is defined at x;
(f ⊕ g)(x) = g(x) if only g is defined at x. The locational index of depth i for
a node n is defined in [6] as:

γ = I0
L(n).γ⊕

⊕
n′∈n.N

Ii−1
L (n′).γ (11)

η = I0
L(n).η ⊕

⊕
n′∈n.N

Ii−1
L (n′).η (12)

f1 f2 f3 f4
(a p1 b) (a p2 d) (c p3 d) (b p2 i)
(f p1 a) (b p2 e) (g p3 d) (g p2 b)
(c p1 b) (e p3 h) (b p1 j)

(a) Fragments and their triples [6]

n1
f1, f2

n2
f2, f3

n3
f3, f4

(b) Connections between
nodes [6]

p γ(p) f η(f)
p1 { f1, f4} f1 {n1}
p2 { f2, f4} f2 {n1, n2}
p3 { f3} f3 {n2, n3}

f4 {n3}

(c) I2
L(n1) [6]

Fig. 10: Locational index obtained from a set of fragments and connections (reproduced
from [6]).

Example 4 (Locational index – adapted from [6])
Given the fragments shown in Figure 10a and the network with the con-
nections and fragment allocations shown in Figure 10b, computing the lo-
cational index on node n1 of depth 2, I2

L(n1), is done by applying Equa-
tions 11-12. The result is shown in Figure 10c.

Source Selection

Locational indexes let the nodes avoid flooding the network when processing
queries by determining which nodes may contain relevant data to each triple
pattern. This is done by sending each triple pattern in the query directly
to a node that contains a fragment that includes the predicate in the triple
pattern. The following example is adapted from [6] and shows how exactly
source selection using locational indexes is done.

30

5. Indexing Decentralized Knowledge Graphs

Example 5 (Source selection – adapted from [6])
Consider the example network on Figure 10b and the locational index on
node n1 in Figure 10c. Processing the triple pattern tp = (?v1, p2, ?v2) on
node n1 incurs processing tp locally on n1 as well as sending it directly to
n3, since γ(p2) = { f2, f4}, and n1 ∈ η(f2) and n3 ∈ η(f4).

5.3 Prefix-Partitioned Bloom Filter Indexes

Building on the baseline approach of locational indexes, we now define
Prefix-Partitioned Bloom Filter (PPBF) indexes. PPBFs represent the set of
IRIs in a fragment as a partitioned bitvector based on Bloom Filters [21]. The
idea is that by checking the overlap of PPBFs for fragments that are deemed
relevant for triple patterns in a query that join, it is possible to prune non-
overlapping fragments (fragments that do not produce join results) from the
query execution plan, lowering the number of relevant fragments.

We do not go into detail about Bloom Filters here, but refer the interested
reader to [6, 21] for details. Instead, like in [6], we formally define a Bloom
Filter B for a set S with n elements as a tuple B = (b̂, H) where b̂ is a bitvector
with m bits and H is a set of k hash functions [21]. In the following, we define
PPBFs by reproducing the definitions and examples from [6].

A PPBF is then a Bloom Filter partitioned based on the pre-
fixes (e.g., the IRI http://dbpedia.org/resource/Aalborg has the prefix
http://dbpedia.org/resource [6]) of the IRIs that are inserted, and is for-
mally in [6] defined as follows:

Definition 14 (Prefix-Partitioned Bloom Filter – adapted from [6, 9])
A PPBF BP is a 4-tuple BP = (P, B̂, θ, H) where:

• P is a set of prefixes
• B̂ is a set of bit vectors such that ∀b̂1, b̂2 ∈ B̂, |b̂1| = |b̂2|
• θ : P→ B̂ is a prefix-mapping function
• H is a set of hash functions

Furthermore, ∀pi ∈ P, Bi = (θ(pi), H) is called a partition of BP and is the
Bloom Filter that encodes the IRIs’ names with prefix pi [6].

Example 6 (PPBF insertion – adapted from [6])
Given the IRI u =http://dbpedia.org/resource/Aalborg, inserting u
into a regular Bloom Filter is visualized in Figure 11a. Inserting u instead
into a PPBF is visualized in Figure 11b. In this case, only the name of the
entity is hashed, and the corresponding bits in the partition of its prefix are
set to 1.

31

...

h1 h2 hk

http://dbpedia.org/resource/Aalborg

...

(a) Regular Bloom Filter [6]

...

h1 h2 hk

http://dbpedia.org/resource/Aalborg

...

dbo

...
dbpdbr

......

(b) Prefix-Partitioned Bloom Filter [6]

Fig. 11: Insertion of a IRI into a Bloom Filter and a Prefix-Partitioned Bloom Filter (adapted
from [6]).

We say that a IRI u with a prefix p may be in a PPBF BP, denoted u ∃BP,
if and only if all the positions determined by the hash functions in BP.H
applied to u’s name are 1 in the bitvector at BP.θ(p) [6]. Given a fragment
f , BP(f) denotes the PPBF of f . As such, a PPBF index is formalized in [6]
similarly to Definition 13 as follows:

Definition 15 (PPBF Index – adapted from [6])
Let N be the set of nodes, U the set of IRIs, and Γ the set of fragments. A
PPBF index is a tuple Ii

P(n) = (υ, η) with υ : U → 2Γ and η : Γ → 2N . υ(u)
returns the set of fragments f such that u ∃BP(f). η(f) returns the set of
nodes N such that f ∈ Fni ∀ni ∈ N and ni is within i hops from n.

Source Selection

Source selection using PPBF indexes involves checking whether or not two
fragments for joining triple patterns may produce join results. To do this, we
check the overlap of the PPBFs for the fragments by computing the intersection
of the PPBFs; if the intersection is non-empty, the fragments may produce join
results. The intersection of a regular Bloom filter can be found using a bitwise
logical and operation [53]. PPBF intersection is thus the intersection (logical
and) of the bitvectors for the prefixes that the two PBBFs have in common,
formally defined in [6] as follows:

Definition 16 (PPBF Intersection – adapted from [6])
The intersection of two PPBFs BP

1 and BP
2 , denoted BP

1 ∩ BP
2 , is BP

1 ∩ BP
2 =

〈P∩, B̂∩, θ∩, H〉, where P∩ = BP
1 .P ∩ BP

2 .P, B̂∩ = {BP
1 .θ(p) and BP

2 .θ(p) | p ∈
P∩}, and θ∩ : P∩ → B̂∩.

Example 7 (PPBF Intersection – adapted from [6])
Figure 12a shows an example of intersecting two regular Bloom Filters
using the logical and operation. The intersection of two PPBFs is visualized
in Figure 12b by intersecting the bitvectors for the common prefixes.

32

5. Indexing Decentralized Knowledge Graphs

...

...and

...

B1
B2
B1 ∩ B2

(a) Regular Bloom Filters [6]

dbr dbp dbo

and
B1
B2
B1 ∩ B2

(b) PPBFs [6]

Fig. 12: Intersection of Bloom Filters and PPBFs (reproduced from [6]).

For any PPBF index Ii
P there exists a matching function that, given a BGP

P, returns a node mapping Mn that specifies which nodes should be queried
for each triple pattern, i.e., ∀tp ∈ P, Mn(tp) is a set of nodes that tp should
be processed at. This function is shown in Algorithm 3 which adapts the
algorithm from [6].

Algorithm 3 Match BGP To PPBF Index (adapted from [6])

Input: BGP P; Node n; PPBF Index Ii
P(n) = (υ, η)

Output: Node Mapping Mn
1: function matchBGPToPPBFIndex(P,n,Ii

P)
2: M f ← { (tp, range(Ii

P(n).υ) ∩ ⋂t∈iris(tp) Ii
P(n).υ(t)) : tp ∈ P }

3: M′f ← { (tp, ∅) : tp ∈ P }
4: for all tp1, tp2 ∈ P s.t. vars(tp1) ∩ vars(tp2) 6= ∅ do
5: F′1, F′2 ← ∅
6: for all (f1, f2) s.t. f1 ∈ M f (tp1) and f2 ∈ M f (tp2) do
7: if BP(f1) ∩ BP(f2) 6= ∅ then
8: F′1 ← F′1 ∪ { f1}
9: F′2 ← F′2 ∪ { f2}

10: if F′1 6= ∅ ∧ F′2 6= ∅ then
11: M′f (tp1)← M′f (tp1) ∪ {F′1}
12: M′f (tp2)← M′f (tp2) ∪ {F′2}
13: else
14: M′f ← {(tp, ∅) : tp ∈ P}
15: break
16: return { (tp,

⋃
f∈M′f (tp) takeOne(Ii

P(n).η(f))) : tp ∈ P }

In line 2, the algorithm computes the fragment mapping M f that associates
triple patterns to the set of fragments in the network that might contain rel-
evant data. For each triple pattern tp ∈ P, M f (tp) thus returns the set of
fragments F such that ∀u ∈ iris(tp) : u ∃BP(f) for all f ∈ F if iris(tp) is
non-empty or range(Ii

P(n).υ) otherwise. The for loop in lines 4-15 iterates
through each pair of joining triple patterns in P. The PPBFs for each pair of
relevant fragments are intersected in line 7; if the intersection is non-empty,

33

the fragments may produce join results and they are selected in lines 8-9.
Once all relevant fragments have been considered, the fragment mapping
M′f is extended with the selected fragments on lines 11-12 or if no fragments
were selected, initialized as the empty fragment mapping in line 14. Finally,
given the fragment mapping M′f , line 16 computes the node mapping using
the information available in the PPBF index.

5.4 Query Processing

Like in Piqnic, we process queries triple pattern by triple pattern using bind-
ings from previously evaluated triple patterns similar to brTPF [38] and the
Bulk query processing approach described in Section 4.3. When processing
a query, the first step is source/fragment selection using either the locational
index or the PPBF index. As such, we now reproduce from [6] operators for
retrieving a set of nodes to query given a triple pattern.

Definition 17 (Locational Selection σL – adapted from [6])
Let the function I(Ii

L(n), p) denote the set of nodes that is obtained by using
Ii
L(n) to find the relevant nodes to evaluate a triple pattern with predicate p,

and n1 ∈ Ii
L(n) denote that n1 ∈ η(f) for some f ∈ Ii

L(n).γ(p). Locational
selection for a triple pattern tp on a locational index Ii

L(n) of depth i , denoted
σL

tp(Ii
L(n)), is the set {n1 | n1 ∈ Ii

L(n)} if ptp is a variable, or {n1 | n1 ∈
I(Ii

L(n), ptp)} otherwise.

Definition 18 (PPBF Selection σP – adapted from [6])
Let Mn be the node mapping obtained after applying Algorithm 3 to a BGP
P. The PPBF selection for a triple pattern tp ∈ P, obtained using the PPBF
index Ii

P(n) of depth i, denoted σP
tp,P(Ii

P(n)), is the selection of the nodes in
Mn(tp).

Evaluating triple patterns relies on evaluating them over the fragments
available in the local datastore of the nodes selected using either locational
or PPBF selection. We therefore now reproduce from [6] the operator that
evaluates a triple pattern over a set of nodes, called node projection.

Definition 19 (Node Projection πN – reproduced from [6])
Given a set of nodes N , node projection on a triple pattern, denoted πN

tp(N),
is the set of triples obtained by evaluating tp on the local datastore of the
nodes in N . Given the function T (n, tp), that evaluates tp on n’s local datas-
tore, node projection is formally defined as: πN

tp(N) =
⋃

n∈N
T (n, tp)

Using the three operators defined above allows the nodes to avoid flood-
ing by applying node projection directly over the nodes specified by either

34

5. Indexing Decentralized Knowledge Graphs

locational or PPBF selection. As such, building on the approach outlined in
Section 4.3, a BGP P is processed using the indexes using the following steps
that are adapted from [6]:

1. Determine the join order of P using variable counting.
2. Evaluate each tp ∈ P using the following steps:

(a) Apply either locational selection (σL) or PPBF selection (σP) on n’s
index to select the nodes N with relevant fragments for tp.

(b) Apply node projection (πN) on N .

3. Compute the final result by combining the intermediate results of each
triple pattern in P.

Similar to Piqnic [5], the iterative process in step 2 is completed by sending
bulks of bindings from previously evaluated triple patterns along with the
requests [6].

5.5 Evaluation and Discussion

The flooding approach to query processing used by Piqnic [5] incurs a sig-
nificant network overhead. In fact, in real cases, the increase in the number
of nodes to query for any given triple pattern most likely follows a logistic
growth. As such, in Paper C [6], we proposed two new indexing schemes for
decentralized architectures such as Piqnic that avoid the need for flooding
the network by determining on which nodes relevant data is located. To test
the hypothesis that such indexes lower the communication overhead and in
doing so increase query processing performance, We once again ran experi-
ments with the data and queries from LargeRDFBench [77].

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14

10−2

100

102

101

103

Ex
ec

ut
io

n
Ti

m
e

(s
) PIQNIC Locational PPBF

Fig. 13: Execution time for Piqnic, Piqnic with locational indexes, and Piqnic with PPBF in-
dexes over query group S (reproduced from [6]).

The full experimental evaluation can be seen in Paper C [6]; in the re-
mainder of this section, we focus our discussion on the most important ex-
perimental results. Figure 13 is reproduced from [6] and shows the execution
time for the queries in the S query group from LargeRDFBench. As shown,

35

locational indexes and PPBF indexes increase performance over all queries;
PPBF indexes significantly more so than locational indexes, showing that by
pruning fragments that would not otherwise contribute to the overall query
result, PPBFs further increase performance. This is also the case for the other
query loads.

S C L CH

101

104

107

A
vg

.N
EM

(a) Average NEM [6]

S C L CH
0

20

40

60

80

100

A
vg

.C
O

M
(%

)

PIQNIC Locational PPBF

(b) Average COM [6]

Fig. 14: Average number of executed messages (NEM) and completeness (COM) for Piqnic,
locational indexes, and PPBFs over query groups (reproduced from [6]).

Figure 14 shows the average number of executed messages (Figure 14a),
i.e., the number of requests made between nodes when processing the
queries, and completeness (Figure 14b). Clearly, both the locational indexes
and the PPBF indexes decrease the network usage significantly for all query
loads since they do not have to flood the network with requests. In doing
so, they are able to process more of the complex queries without timing out,
increasing the completeness overall.

Our experimental results thus show that the indexes reduce the commu-
nication overhead when processing queries, increasing query processing per-
formance significantly. While the indexes presented in this section, together
with Piqnic as presented in Section 4 increase the availability of knowledge
graphs published on the Web while allowing for relatively efficient access to
the data, they still rely on the data providers to keep the data up to date. As
such, in Section 6, we build on top of Piqnic and the decentralized indexes
to allow users to collaborate on keeping the data up to date.

6 Collaborative Updates

This section gives an overview of Papers D [7] and E [8].

6.1 Motivation and Problem Statement

The work presented until now has largely focused on increasing the avail-
ability and scalability of knowledge graphs on the Web using replication

36

6. Collaborative Updates

throughout a P2P network. And while Piqnic [5] and the decentralized
indexes [6] were shown to increase availability while providing relatively
efficient access to them, they still rely on the data providers to ensure the
data is up to date [7]. As discussed in Section 1.1 and Paper D, this makes
difficult to trust the data available in the Web of Data since it can be impos-
sible to (1) trace faulty updates to their origin, (2) ensure consistent query
results over long timespans, and (3) update outdated or faulty data. As such,
in Paper D, we build on Piqnic and PPBF indexes and build an architecture
that uses blockchain-like chains of updates to knowledge graphs that allow
the users to collaborate on keeping the data up to date, called ColChain

(COLlaborative knowledge CHAINs) [7]. ColChain splits the entire net-
work into communities of nodes that collaborate on keeping certain data up
to date. By structuring the history of updates as a chain and relying on
community-wide consensus, ColChain lets users propose updates, trace-
back historical updates, and process queries over earlier versions of the data.
ColChain is demonstrated in Paper E [8] which provides a fully functioning
ColChain client with a graphical UI.

6.2 Preliminaries

While the architecture of ColChain as presented in [7] follows the general
fragmentation approach outlined in Section 4.2, we now reproduce a more
generalized definition of the distributed indexes from [7].

Definition 20 (Distributed Index – reproduced from [7])
Let n be a node, N be the set of nodes within a network, T be the (infinite)
set of possible triple patterns, and F be the (finite) set of fragments that n has
access to. A distributed index on n is a tuple In = (ν, η) with ν : T 7→ 2F and
η : F 7→ 2N . For a triple pattern t, ν(t) returns the set of fragments in F that
t matches. For a fragment f , η(f) returns the nodes on which f is located.

Definition 21 (Node Mapping – reproduced from [7])
For any BGP P and distributed index I, there exists a function match(P, I)
that returns a node mapping M : T 7→ 2N where T is the set of triple patterns
in P, such that M(t) returns the nodes that have fragments matching t.

Nodes share partial indexes for each fragment, called index slices that are
the part of the distributed index that describes the particular fragment. Index
slices are formally defined in [7] as follows:

Definition 22 (Index Slice – reproduced from [7])
Let f be a fragment. A slice of f , s f , is a tuple s f = (ν′, η′) where ν′(t) returns
f if there exists a triple in f that matches t, and η′(f) returns the set of all
nodes that contain f in their local datastore.

37

The function s(f) returns the slice of f . Nodes download the slices S of
the fragments they index (the indexing strategy is outlined in Section 6.3)
and combine them using the following formula [7]:

I(S) =

(⊕
s∈S

s.ν′,
⊕
s∈S

s.η′
)

(13)

While the definition of the distributed indexes in this section theoretically
allows for any type of indexes, our implementation of ColChain uses PPBF
indexes described in Section 5.3, and we adapt our definitions from [7] ac-
cordingly. Thus, an index slice of a fragment is the PPBF of that fragment.
Indeed, our implementation of ColChain uses PPBF indexes.

6.3 ColChain: Collaborative Linked Data Networks

ColChain introduces the notion of communities; the entire P2P network is
divided into smaller communities of nodes that collaborate on keeping a
certain set of knowledge graphs up to date. This is to allow for secure con-
sensual updates without the need for a consensus across the entire network.
Take, for instance the example ColChain network shown in Figure 15a that
consists of two such communities and three nodes. The nodes can either par-
ticipate in or observe a community. Participants store the knowledge graphs
in their local datastore and participate in keeping the data up to date, while
observers just include the knowledge graphs in their index. In Figure 15a,
node A participates in community C1 and thus replicates the fragments from
that community, while it observes community C2 and thus indexes the data
from that community.

C1 C2

Datastore

Index

Datastore

IndexDatastore

Index

participant observer

Node A

Node B

Node C

(a) Example ColChain network

Web Interface

SPARQL Query
Processor

User

Node Interface

Triple Pattern Mappings

Data Storage Layer

SPARQL
Queries

Other Nodes

Triple Pattern
Requests

Community
Manager

Community
Management

Updates

Transaction
Consensus

Communication Layer

nil

nil

nil
Processing
Layer

(b) Architecture of a ColChain node

Fig. 15: An example ColChain network and the architecture of a node (reproduced from [7, 8]).

To facilitate consensual updates, ColChain represents the history of up-
dates to a fragment as a chain of so-called transactions, i.e., sets of bundled op-

38

6. Collaborative Updates

erations such as additions or deletions of triples, similar to blockchains [69].
As such, like with blockchains, ColChain relies on the consensus of nodes
within the community to accept transactions. This allows any node to pro-
pose an update to a fragment while ensuring malicious updates have a low
likelyhood of being pushed to the chain. Furthermore, by representing the
history of updates to a fragment as an update chain, ColChain lets users
roll-back updates and process queries over the version of a fragment avail-
able at a certain timestamp, as well as tracing back faulty updates. While the
consensus protocol allows any node to propose updates, it also allows the
owner to enforce updates using the RSA [75] digital signature scheme.

Figure 15b shows the architecture of node A from Figure 15a. It combines
the conventional data storage layer from regular P2P systems (Section 3) with
the blockchain layer in its local datastore. The query processor is able to
process queries over any historical version of the fragments by rolling the
fragments back on query time using the update chain. The node interface
defines an interface that nodes can use to communicate with one another,
e.g., when obtaining consensus on an update.

Formal Definition

A ColChain network N is a set of nodes N = {n1, . . . , nn} that maintain a lo-
cal datastore with fragments from each community they participate in. In the
following, we formally define a node and the state of a node by reproducing
the definitions from [7].

Definition 23 (Node – reproduced from [7])
A node n is a triple n = (K, an, un) where

• K = (κn, ρn) is a key-pair such that κn is n’s private key and ρn is n’s
public key

• an is n’s address
• un is a valid IRI and n’s unique identifier

The key-pair K describe the private and public keys of a node and are
used in the consensus protocol to check for fragment ownership. The state of
a node is defined as follows:
Definition 24 (Node State – reproduced from [7])
Let n be a node. n’s state is Sn = (Σ, S, In,M) where

• Σ = {σ1, σ2, . . . , σm} and ∀σi ∈ Σ : σi = (Xi, fi) such that

– Xi is a secure hash chain
– fi is a fragment
– All updates represented in Xi have been applied to fi
– All f j, fk such that 1 ≤ j, k ≤ m and j 6= k refer to different (unique)

fragments in n’s local datastore

39

– σi is said to be an entry in n’s local datastore

• S is a set of index slices and ∀σi ∈ Σ : s(fi) ∈ S
• In is n’s distributed index, In = I(S), consisting of index slices from

local and remote fragments
• M is a set of metadata triples

The metadata triples describe the node’s local view over the network and
include the metadata of all communities the node participates in or observes
(Definition 26) [7]. For instance, they include the triples describing other
nodes within the community as well as fragment ownership. Notice that in
the case that the node observes a community, the index slices S contain slices
of the fragments within the community even though they are not in the local
datastore. A community is defined formally as follows:

Definition 25 (Community – reproduced from [7])
A community C contains two sets of nodes called participants and observers
(defined in Definitions 27 and 28) and a set of fragments, each owned by a
node, i.e., C = (N, FC , υ, uC) where

• N = (PC , OC) such that PC and OC are the sets of participants and
observers, respectively

• FC is a set of fragments
• υ is an ownership-mapping function such that ∀ f ∈ FC : υ(f) = ρ f where
∃n ∈ PC

⋃
OC : ρ f = ρn

• uC is a valid IRI and C’s unique identifier

The ownership-mapping function υ maps fragments to their owners and
is used in the consensus protocol [7]. Given a fragment f , let u f denote the
unique identifier for f such that u f is a valid IRI. The state of a community
is formally defined in [7] as follows:

Definition 26 (Community State – reproduced from [7])
Let C be a community. C’s state is SC = (Φ,M) where

• Φ = {φ1, φ2, . . . , φm} and ∀φi ∈ Φ : φi = (Xi, fi)

– Xi is a secure hash chain
– fi is a fragment

• M is a set of metadata triples such that

– ∀n ∈ PC : (uC , cc : participant, un) ∈ M
– ∀n ∈ OC : (uC , cc : observer, un) ∈ M
– ∀ f ∈ FC : (uC , cc : fragment, u f) ∈ M and
(u f , cc : author, C.υ(f)) ∈ M

Since nodes can both participate in and observe a community, we now de-
fine community participation and observation by reproducing the following
definitions from [7].

40

6. Collaborative Updates

Definition 27 (Participant – reproduced from [7])
Given a community C and a node n, n is said to be a participant in C iff for
all φ = (X , f) ∈ SC .Φ it is the case that (X , f) ∈ Sn.Σ, s(f) ∈ Sn.S, and
∀t ∈ SC .M : t ∈ Sn.M.

As such, a participant is a node that stores the fragments from the com-
munity within its local datastore. Nodes can participate in multiple commu-
nities at once. Furthermore, participants within a community collaborate on
keeping the data up to date. An observer is defined formally in [7] as follows:

Definition 28 (Observer – reproduced from [7])
Given a community C and a node n, n is said to be an observer in C iff for all
φ = (X , f) ∈ SC .Φ it is the case that s(f) ∈ Sn.S, and ∀t ∈ SC .M : t ∈ Sn.M.

By observing a community, nodes thus gain access to the data without
having to replicate all the fragments, increasing query completeness. Ob-
servers thus access the data by requesting the relevant data from a participant
on query time.

Consensual Updates

ColChain represents updates as transactions that consist of a set of operations.
An operation is either the addition or deletion of a triple. We now reproduce
the formal definition of transactions and operations from [7]. An operation
is in [7] defined as follows:

Definition 29 (Operation – reproduced from [7]))
An operation o over a fragment f is a tuple o = (α, t), where α describes
whether the operation is an insertion (α = +) or deletion (α = −) of a triple,
and t is the triple that is to be inserted or deleted.

Given an operation o = (α, t) and a fragment f , o(f) denotes the result
of applying o to f , i.e., the fragment that does not contain t if α = − or the
fragment that does contain t if α = +. Since operations typically occur in
sets, we reproduce the formal definition of transactions from [7] as a set of
operations including information about which fragment it is applied to as
well as provenance, as follows:

Definition 30 (Transaction – reproduced from [7])
A transaction γ is a triple γ = (O, fi, λ) where O = {o1, o2, . . . , on} is a set
of operations, fi is a fragment, and λ = (un, αγ, ι) is provenance information,
where un is the unique identifier of the node proposing the transaction n, αγ

is a signature obtained using n’s private key, and ι is a timestamp.

Given a transaction γ and fragment f , applying all operations in γ to f is
denoted [[f]]γ.

41

Table 2: Example of applying a transaction to a fragment (adapted from [5])

(a) Fragment f

Fragment f
(a, p1, c) (a, p2, d) (b, p2, d)
(b, p3, e) (c, p1, d) (c, p3, a)
(f , p4, d) (d, p4, f) (e, p5, g)

(b) The result after applying γ to f , [[f]]γ

Fragment [[f]]γ
(a, p1, b) (a, p2, d) (b, p2, d)
(b, p3, e) (c, p1, d) (c, p3, a)
(f , p4, d) (d, p4, f) (e, p5, g)

Example 8 (Transaction – adapted from [7])
Consider fragment f in Table 2a and the following transaction:

γ = ({(+, (a, p1, b)), (−, (a, p1, c))}, f , λ)

The result of applying γ to f , [[f]]γ, is the fragment that exchanges the
triple (a, p1, c) with (a, p1, b), and can be seen in Table 2b.

Next, we reproduce the state transition functions from [7] that define how
updates are applied to a node when a consensus has been reached, both for
the fragments as well as the index slices. The fragment transition function is
defined as follows [7]:
Definition 31 (Fragment Transition Function – reproduced from [7])
Given a transaction γ, a state Sn of a node n, and a secure hash function
H, the fragment transition function is for all σi = (Xi, fi) ∈ Sn.Σ defined as
follows.

τΣ(σi, γ) = (τX (Xi, γ), τf (fi, γ)) (14)

Where

τX (Xi, γ) = Xi ∪ {xi+1} s.t.

xi+1 = (h, γ)

h = (H(γ), y)

y = {H(xj) | j < i}

(15)

And
τf (fi, γ) = [[fi]]γ (16)

h in Equation 15 is a header that contains the hash value of the transaction
and a link to the header of the previous transaction, forming a chain [7]. The
slice transition function is defined in [7] as follows:
Definition 32 (Slice Transition Function – reproduced from [7])
Given a transaction γ = (O, fi, λ) and a state Sn of a node n such that s fi

∈
Sn.S, the slice transition function is defined as follows.

τS(s fi
, γ) = s([[fi]]γ) (17)

42

6. Collaborative Updates

When a transaction is applied, the participants first apply the fragment
transition function and then compute the new index slice by applying the
slice transition function.

The consensus protocol followed by ColChain relies on either a major-
ity vote across the participants in the community, or checking if it is the
owner that proposed the transaction, called Proof-of-Ownership (PoO). Let
veri f y(αγ, ρ f) be a function that returns true if and only if the signature αγ

matches the owner’s public key ρ f , and validate(γ) be a function that returns
true if and only if the user accepts γ. The acceptance protocol then follows
the following steps adapted from [7]:

1. Let γ = (O, f , αγ), M = Sn.M, and σi = (Xi, fi) ∈ Sn.Σ be the unique
state entry such that u fi

= u f . Find 〈u f , cc : author, ρ f 〉 ∈ M.
2. If veri f y(αγ, ρ f) = true, accept γ on σi.
3. If validate(γ) = true, accept γ on σi.
4. If veri f y(αγ, ρ f) = false and validate(γ) = false, reject γ on σi.

Participant Participant Participant Observer

accept(γ, n1)

node n1 node n2 node n3 node n4node n0

τΣ (σi , γ)

γ

PoO Commit Accept Reject

Participant

accept(γ, n2) accept(γ, n3)

τΣ (σi , γ) τΣ (σi , γ)

τS (s f , γ) τS (s f , γ) τS (s f , γ) τS (s f , γ)

Fig. 16: Flowchart of proposing, validating and applying (reproduced from [7]).

Example 9 (Consensus Protocol – adapted from [7])
Consider a community C that has four participants, {n0, n1, n2, n3} and one
observer {n4}, and a transaction γ proposed by n0. Figure 16 shows the
flowchart of what happens when n0 proposes γ; first, each participant fol-
lows the acceptance protocol outlined above and determines whether or
not to accept the transaction. In this case, n1 and n2 vote to accept the
transaction while n3 votes to reject it. Since this is a majority, all partici-
pants call the fragment transition function locally. Then, they call the slice
transition function to update the index slice and propagate the new slice
to the observers (n4).

43

6.4 Query Processing

Similarly to Piqnic [5] with the PPBF indexes [6], and in line with related
work [38], ColChain attaches bindings from previously evaluated triple pat-
terns to subsequent requests in bulks. Recall in Definition 21 the function
match(P, I) that returns a node mapping M that maps triple patterns to the
set of nodes that contain relevant fragments to that triple pattern. With PPBF
indexes, this function corresponds to the function shown in Algorithm 3.

In line with previous work [38, 84], each node n contains a selector function
that defines how triple pattern requests are processed over an entry in n’s
local datastore [7]. To accommodate processing queries over earlier versions
of a fragment, we extend the selector function defined in [38] with the notion
of a timestamp ι. Let σi = (Xi, fi) be an entry in n’s local datastore. ι(σi) thus
denotes the fragment obtained by reversing the operations in each transaction
in γj ∈ Xi such that γj.λ.ι ≤ ι, resulting in the fragment what was available
at ι. The selector function is then defined in [7] as follows:

Definition 33 (Selector Function – reproduced from [7])
Given a node n, a triple pattern tp, a finite set of distinct solution mappings
Ω, and a timestamp ι, the fragment-based bindings-restricted triple pattern
selector for tp, Ω, and ι, denoted s(tp,Ω,ι), is for every entry σ in n’s local
datastore defined in [7] as follows:

s(tp,Ω,ι)(σ) =

{t ∈ ι(σ) | t ∈ ι(σ) ∧ ∃µ : t = µ[tp] if Ω = ∅
{t ∈ ι(σ) | t ∈ ι(σ) ∧ ∃µ : t = µ[tp]∧

∃µ′ ∈ Ω : µ′ ⊆ µ} otherwise.

Given a node n, a triple pattern tp, a set of solution mappings Ω, and
a timestamp ι, let nc(tp, Ω, ι) be a function that returns the cardinality esti-
mation of the result of invoking s(tp,Ω,ι) on n and np(tp, Ω, ι) a function that
returns the result of invoking s(tp,Ω,ι) on n [7].

Algorithm 4 shows a recursive algorithm that processes a BGP P over
the fragments covered by the index of a node n. In line 2, the algorithm
computes the node mapping for P (Definition 21). Then, the for loop in
lines 3-5 computes the estimated cardinality of each triple pattern in P as
the sum of the cardinality estimation over each node specified by the node
mapping; the triple pattern with the lowest estimated cardinality is selected
in line 6 and sent to the nodes specified by the node mapping in line 7. The
resulting bindings are joined with the intermediate bindings from previously
evaluated triple patterns in line 8. Last, the algorithm makes a recursive call
in line 11 if there are any remaining triple patterns in P.

44

6. Collaborative Updates

Algorithm 4 Evaluate a BGP on a ColChain node – reproduced from [7]

Input: A BGP P = {tp1, . . . , tpn}; a node n; a timestamp ι; a set of
solution mappings Ω; a node mapping M
Output: A set of solution mappings

1: function evaluateBGP(P,n,ι,Ω = ∅,M = ∅)
2: if M = ∅ then M← match(P,Sn.In);
3: for all tpi ∈ P do
4: cnti ← Σn1∈M(tpi)

nc
1(tpi, Ω, ι);

5: if cnti = 0 then return ∅;
6: tpε ← tpk where tpk ∈ P and cntk ≤ cntj∀tpj ∈ P;
7: φε ← ⋃

n1∈M(tpε) np
1 (tpε, Ω, ι);

8: Ωε ← Ω ./ {µ | dom(µ) = vars(tpε) and µ[tpε] ∈ φε};
9: P′ ← P \ {tpε};

10: if P′ = ∅ then return Ωε;
11: return evaluateBGP(P′, n, ι, Ωε, M);

6.5 Demonstration

The approach outlined in this section was demonstrated in Paper E [8] which
introduces a fully functioning ColChain client along with a graphical UI on
top. In the GUI, users are able to process queries, manage communities, as
well as propose and vote on updates. Figure 17 shows a screenshot of the
GUI of ColChain in a situation where the user is proposing an update that
changes the current (incumbent) US President from dbr:Donald_Trump to
dbr:Joe_Biden following the inauguration of President Biden. The following
description is adapted from [8].

To update the current US President, the user first searches for the
IRI dbr:President_of_the_United_States on Figure 17a and thus finds
the triple where dbr:Donald_Trump is the object (Figure 17b), which they
then remove. In the next step, the user then adds the same triple with
dbr:Joe_Biden as the object on Figure 17c. Figure 17d then shows the pro-
posed changes. Upon saving the update (Figure 17e), the node forwards the
transaction to the other participants, all of which are notified as shown on
Figure 17f.

During the conference, attendees were able to explore ColChain in two
separate scenarios. First, we ran a network with the data from LargeRDF-
Bench [77], and second we ran a network with a subset of the DBpedia [17]
data with update chains dating back to version 2015-04. To ease the inter-
action from attendees, we prepared several interesting SPARQL queries and
also allowed the attendees to write their own queries, as well as navigate the
interface and propose updates to the fragments.

45

Fig. 17: ColChain’s graphical interface when proposing an update to a fragment (reproduced
from [8]).

6.6 Evaluation and Discussion

While the approach outlined in Sections 4 and 5 increase the availability of
knowledge graphs on the Web, they still rely on the data providers to keep the
data up to date. To address the updatability issue, we introduced ColChain

(COLlaborative knowledge CHAINs) in Paper D [7], which divides the entire
network into communities of nodes that collaborate on keeping certain data
up to date by relying on consensus, and demonstrated a fully functioning
ColChain client along with a graphical UI in Paper E [8]. By structuring the
history of updates over the fragments as a chain, ColChain further allows
the nodes within a community to roll back updates and process queries over
an earlier version.

In doing so, ColChain solves the second major issue the Web of Data
faces by increasing the updatability of the data. To test the hypotheses that
ColChain does so without bringing a major cost on query processing perfor-
mance, and that it is able to process queries over earlier versions of the data,
we tested our approach against Piqnic and Piqnic with the PPBF indexes
(called PiqnicPPBF) using the data and queries from LargeRDFBench [77].
The full experimental results can be seen in [7], however in this discussion,
we reproduce some of the most important experimental results.

46

6. Collaborative Updates

Fig. 18: Execution time for queries in the C and CH categories for Piqnic, PiqnicPPBF , and
ColChain (reproduced from [7]).

Figure 18 shows the execution time for the queries over the C and CH
query loads. As evident, ColChain has similar performance as PiqnicPPBF
across the board; this is also the case for the remaining query loads, and
shows that the additional functionality that ColChain provides does not
negatively affect performance. This is the case since network traffic is not neg-
atively affected; ColChain incurs a similar network cost as PiqnicPPBF [7].
The experimental results presented in [7] further show that the size of the
communities has an impact as well; since larger communities means a higher
replication factor (i.e., fragments are replicated across more nodes), there is
a higher chance that relevant data is available locally on the issuing node,
lowering the network overhead and increasing performance.

(a) Execution Time (b) Materialization Time
(c) Update Overhead Time

Fig. 19: Execution and materialization time excluding queries that timed out, and update over-
head time over different community sizes (reproduced from [7]).

Figure 19 shows the execution (Figure 19a) and fragment materialization
(Figure 19b) times when processing queries over earlier versions for update
chains of various lengths. Evidently, the length of the chain has a negligible
effect on performance. In fact, this effect is sub-linear, since materializing
each version in-between the current and target versions is unnecessary; it is
sufficient to compute the changes between the two versions and materialize
the older fragment only once. Since ColChain uses HDT [29] to store frag-
ments, which does not support dynamic updates, it has to decompress the
triples in the current version of a fragment and compress the triples in the
target version when materializing the older dataset versions. As such, the
majority of the materialization time is spent on decompression and compres-

47

sion of the triples in the target fragment (94% of the time in our experiments).
Figure 19c shows the time it takes to apply updates to each fragment, i.e.,
the time it takes to complete the consensus protocol outlined in Section 6.3,
for different community sizes. The majority of the update time is spent on
materialization and the size of the communities has limited impact on the
overhead time.

Overall, our experiments show that the main limitation wrt. the perfor-
mance of processing queries over earlier versions as well as applying updates
to fragments, is the usage of HDT as the backend; in the future, it could be
interesting to use an RDF compression technique that allows for dynamically
updating the data to assess the impact on performance. As such, ColChain

is able to let users collaborate on keeping the data up to date without in-
curring a significant cost on query processing performance, and is able to
provide query processing over earlier fragment versions with good scala-
bility. ColChain thus proposes solutions to all three of the major issues
discussed in Section 1.1; availability, updatability, and scalability. However,
even still ColChain does not improve upon the query processing efficiency
of Piqnic [5], and therefore suffers from the same issues; while the query
processing efficiency has partly been addressed by the indexes presented in
Paper C [6], they still have a relatively high network overhead. As such,
in Section 7, we present a novel approach to lowering the communication
overhead and, in doing so, optimizing queries over Piqnic and ColChain.

7 Optimizing Decentralized SPARQL Queries

This section gives an overview of Paper F [9].

7.1 Motivation and Problem Statement

While ColChain [7] extends Piqnic [5] to also allow users to collaborate
on keeping the data up to date, and thereby solves both the availability and
updatability problems, it does not improve query processing efficiency or
scalability compared to Piqnic. As such, it still suffers from some of the
same pitfalls that Piqnic does; namely that processing queries in such a setup
can be quite challenging and puts a strain on the entire network, since a large
number of nodes have to be queried for relevant data to a single query. While
the indexes presented in Paper C [6] go some way in decreasing the network
overhead compared to the flooding approach used by Piqnic, there is still a
relatively large network overhead that could be decreased further. As such,
in Paper F [9], we present Lothbrok, an approach to optimizing SPARQL
queries over decentralized knowledge graphs that fragments the data based
on characteristic sets [70] and adapts the indexes presented in [6] to the new

48

7. Optimizing Decentralized SPARQL Queries

fragmentation approach. To optimize queries over such fragments, Lothbrok

decomposes the query into star-shaped subqueries similar to WiseKG [18]
and uses a query optimization strategy based on the locality of data, fragment
compatibility, i.e., whether or not two fragments produce join results, and
cardinality estimations enabled by the indexes.

n1

n2

n3

n4

n5

f1
f2
f3
f4
f5

Fig. 20: Example P2P network (reproduced from [9]).

7.2 The Lothbrok approach

To increase performance in P2P systems like Piqnic [5] and ColChain [7],
Lothbrok makes three contributions that work together to decrease the
communication overhead while spreading the query processing effort more
evenly across multiple nodes. In the following, we describe how Lothbrok

structures the data by reproducing the definitions and examples describing
data fragmentation and indexing from [9].

First, Lothbrok proposes to fragment the data based on characteristic
sets as defined in Definition 5, such that entire star-shaped subqueries can be
answered by a single fragment. This fragmentation approach is used, since
processing multiple star patterns concurrently can decrease the network over-
head [4] while star-shaped subqueries are relatively efficient for the nodes to
process [72].

Example 10 (Characteristic sets – adapted from [9])
Consider, as an example, the P2P network in Figure 20 and the query Q
shown in Figure 21a. Table 21b shows the characteristic sets of each frag-
ment in the network; in this example, P3 ∈ S(Q) (Definition 3) can be
processed entirely over f5.

Second, Lothbrok defines a novel indexing scheme that encodes struc-
tural information useful for cardinality estimation and locality awareness and
that takes advantage of the fragmentation based on characteristic sets, called
Semantically Partitioned Bloom Filter (SPBF) indexes that build on PPBF in-
dexes (Section 5).

49

select ∗ where {
?person dbo: nationality ?country . # tp1 (P1)
?person dbo:author ? publication . # tp2 (P1)
?country dbo: capital ? capital . # tp3 (P2)
?country dbo:currency ?currency . # tp4 (P2)
? publication dbo: publisher ? publisher . #tp5 (P3)
? publication dbo:language ?language . #tp6 (P3)

}

(a) Query Q

Fragment CS
f1 {dbo:nationality,dbo:author,dbo:deathDate}
f2 {dbo:nationality,dbo:author}
f3 {dbo:capital,dbo:currency,dbo:population}
f4 {dbo:capital,dbo:currency}
f5 {dbo:publisher,dbo:language}

(b) CSs of each fragment in the running example

Fig. 21: (a) Example SPARQL query Q and (b) corresponding characteristic sets in the example
network (reproduced from [9]).

Third, Lothbrok proposes a query optimization strategy that takes ad-
vantage of the characteristic set based fragments and SPBF indexes to com-
pute a query execution plan in consideration of fragment compatibility, car-
dinality estimations, and locality information.

Data Fragmentation

Given the formal definition of characteristic sets from Definition 5, we define
the characteristic set fragmentation function as a fragmentation function that,
given a knowledge graph G, creates one fragment for each unique character-
istic set in G. Formally, this is defined as follows:

Definition 34 (CS Fragmentation Function – reproduced from [9])
Let G be a knowledge graph, then the characteristic set fragmentation function
of G, FC(G), is defined using the notation introduced in Definition 5, as:

FC(G) = {{(s, p, o) | (s, p, o) ∈ G ∧ CG(s) = Ci} | Ci ∈ C(G)} (18)

For instance, fragment f4 in Table 21b contains all triples of the subjects
that are described by the characteristic set {dbo:capital,dbo:currency}.
However, to avoid a huge number of fragments for relatively unstructured
knowledge graphs, we normalize characteristic sets as follows (the following
description is adapted from [9]): First, we merge a fragment f1 with char-
acteristic set C1 into a fragment f2 with characteristic set C2 if C1 ⊆ C2 by
adding the triples from f1 to f2. If there are multiple candidates for f2, we
select the fragment with the smallest characteristic set (the smallest number
of predicates). Second, we split fragments f with infrequent characteristic
sets (below a certain number of subjects) into two separate fragments f ′ and
f ′′ that can individually be merged into fragments with more frequent char-
acteristic sets by following the first step.

SPBF Indexes

To accommodate the characteristic set fragmentation, and to efficiently es-
timate whether or not two fragments produce join results for a particular

50

7. Optimizing Decentralized SPARQL Queries

query, Lothbrok uses SPBF indexes that build on the baseline approach de-
fined by PPBF indexes (Section 5). In particular, SPBFs encode the set of
subjects in a fragment as a single prefix-partitioned bitvector (PPBF), while
there is one prefix-partitioned bitvector for each predicate value that encodes
the objects associated with that predicate [9]. Formally, this is defined as
follows [9]:

Definition 35 (Semantically Partitioned Bloom Filter – reproduced from [9])
An SPBF BS is a 5-tuple BS = (P,Bs, Bo, Φ, H) where:

• P is a set of distinct predicate values
• Bs is the prefix-partitioned bitvector that summarizes the subjects
• Bo is the set of prefix-partitioned bitvectors that summarize the objects
• ∀Bi ∈ {Bs} ∪ Bo , Bi = (Pi, B̂i, θi) where:

– Pi is a set of prefixes
– B̂i is a set of bitvectors such that ∀b̂1, b̂2 ∈ B̂i : |b̂1| = |b̂2|
– θi : Pi → B̂i is a prefix-mapping function

• Φ : P→ Bo is a predicate-mapping function s.t. ∀p ∈ P : Φ(p) ∈ Bo
• H is a set of hash functions

Example 11 (SPBFs – adapted from [9])
Consider the network shown in Figure 20. Figure 22 shows the SPBFs
of fragments f1 (Figure 22a) and f4 (Figure 22b); as shown, the SPBF of
each fragment contains a prefix-partitioned bitvector describing the subject
values in the fragments, and one prefix-partitioned bitvector for each pred-
icate in the fragment describing the objects associated with that predicate.

...
BS(f1).Bs

dbr ...dbo

...
BS(f1).Φ(dbo:author)

dbr ...dbp

...
BS(f1).Φ(dbo:nationality)

dbr ...dbp

...
BS(f1).Φ(dbo:deathDate)

dbr ...dbp

(a) SPBF BS(f1)

...
BS(f4).Bs

dbr ...dbo

...
BS(f4).Φ(dbo:capital)

dbr ...dbp

...
BS(f4).Φ(dbo:currency)

dbr ...dbp

(b) SPBF BS(f4)

Fig. 22: SPBFs of (a) f1, BS(f1), and (b) f4, BS(f4), in the running example (reproduced from [9]).

Similarly to PPBFs, we say in [9] that an IRI u at position ρ ∈ {s, p, o}
may be in an SPBF BS, denoted u ∃ρ BS, if u ∃BS.Bs if ρ = s, u ∈ BS.P
if ρ = p, or ∃p ∈ BS.P where u ∃BS.Φ(p) if ρ = o. Given a fragment f ,

51

BS(f) denotes the SPBF for f . Given the definition of an SPBF, we adapt
the general definition of a distributed index (Definition 20) to the setup of
Lothbrok in [9]. In other words, [9] defines an SPBF index as a structure
that maps from star patterns to the set of fragments that may contain all
the constants in the star pattern on the corresponding positions, and the
fragments to the nodes that store the fragments. Given a star-shaped BGP
P and a fragment f , [9] defines relevantFragment(P, f) as a function that
returns true iff ∀t = (s, p, o) ∈ P, s ∈ V or s ∃s BS(f), p ∈ V or p ∃p BS(f),
and o ∈ V or o ∃BS(f).Φ(p), or false otherwise. Formally, an SPBF index
is defined in [9] as follows:

Definition 36 (SPBF Index – reproduced from [9])
Let n be a node and N be the set of nodes within n’s local view of the net-
work, P be the set of all possible star patterns, and F be the set of fragments
stored by at least one node in N . The SPBF index on n is a tuple IS

n = (υ, η)
with υ : P 7→ 2F and η : F 7→ 2N . υ(P) returns the set of fragments F such
that ∀ f ∈ F, relevantFragment(P, f) = true. η(f) returns the set of nodes N
such that f ∈ ni.Γ (Definition 10), ∀ni ∈ N and ni ∈ N .

Likewise, we extend the notion of an index slice (Definition 22), by defin-
ing an SPBF slice as follows [9]:

Definition 37 (SPBF Slice – reproduced from [9])
Let f be a fragment. The SPBF slice describing f is a tuple sS

f = (υ′, η′) where
υ′(P) returns { f } if and only if relevantFragment(P, f) = true, and η′(f)
returns the set of all nodes that contain f in their local datastore.

Given a fragment f , the SPBF slice describing f is the SPBF obtained from
f and is denoted by sS(f). For instance, sS(f1) in the previous example is the
SPBF visualized in Figure 22a.

7.3 Query Optimization

Query optimization in Lothbrok consists of several steps. First, Lothbrok

builds a compatibility graph that describes which relevant fragments produce
join results for the joins in the query. Then, based on the compatibility graph
and cardinality estimations, Lothbrok builds a query execution plan using Dy-
namic Programming (DP). In this section, we summarize the query optimiza-
tion strategy used by Lothbrok by reproducing and adapting the definitions,
formulas, algorithms, and examples from [9].

The output of the query optimization step is a query execution plan
that specifies which subqueries can be processed in parallel (i.e., different
branches in the compatibility graph), which subqueries are delegated to
which nodes, and the join order. This is formally defined in [9] as follows:

52

7. Optimizing Decentralized SPARQL Queries

Definition 38 (Query Execution Plan – reproduced from [9])
A query execution plan Π consists of the execution plan and the node that
processes the plan, called a delegation. A query execution plan can be one of
four types:

• Join Π = Π1 ./n Π2 where Π1 and Π2 are two (sub)plans and n is the
node the join is delegated to.

• Cartesian product Π = Π1 ×n Π2 where Π1 and Π2 are two (sub)plans
and n is the node the Cartesian product is delegated to.

• Union Π = Π1 ∪n Π2 where Π1 and Π2 are two (sub)plans and n is the
node the union is delegated to.

• Selection Π = [[P]]nf where P is a star pattern, f is the fragment that P
is processed over, and n is the node the selection is delegated to.

Since unions are not executed by a specific node, instead the results of
processing each subplan in the union are transferred to the nodes that pro-
cess subsequent subqueries, like [9], we omit delegations from unions in the
remainder of this section. Furthermore, as in [9], we assume that execution
plans are left-deep, i.e., the right side of any join can only either be a selection
or a union of selections.

Example 12 (Query execution plan – adapted from [9])
Consider the query execution plan Π = (([[P2]]

n2
f4

./n2 [[P1]]
n2
f1
) ∪

([[P2]]
n3
f3

./n3 [[P1]]
n3
f2
)) ./n1 [[P3]]

n1
f5

(Figure 28g). Π specifies that the
join [[P2]] f4 ./ [[P1]] f1 is delegated to n2 and processed in parallel with
[[P2]] f3 ./ [[P1]] f2 on n3, the result of which is transferred to n1 and joined
with [[P3]] f5 .

In the remainder of this section, we first detail source selection using
compatibility graphs, after which we detail how Lothbrok uses the SPBF
indexes to provide cardinality estimations. Last, we detail the cost function
used in the DP algorithm to obtain the query execution plan.

Fragment and Source Selection

The first step in query optimization in Lothbrok is source selection by ex-
ploiting the information about fragment compatibility for a given query made
possible by the SPBF indexes. Two fragments are said to be compatible for a
given BGP if the intersection of the corresponding SPBF partitions is non-
empty [9]. To consider fragment compatibility, Lothbrok first builds a com-
patibility graph in which nodes are the relevant fragment for the query and
edges describe the compatible ones. In the following, we summarize how

53

Lothbrok performs source selection by reproducing the definitions and al-
gorithms from [9].

Given an SPBF BS, star pattern P, and variable v, B(BS, P, v) denotes a
function that returns the corresponding SPBF partition in BS, i.e., BS.Bs if v is
the subject in P, or BS.Φ(p) if v is the object with predicate v ((s, p, v) ∈ P) [9].
Compatibility graphs are formally defined in [9] as follows:

Definition 39 (Compatibility Graph – reproduced from [9])
Given an SPBF index IS and a BGP P, the compatibility graph GC of P
over IS is a tuple GC(P, IS) = (F, C) such that ∀P1, P2 ∈ S(P) where
vars(P1) ∩ vars(P2) 6= ∅ and ∀v ∈ vars(P1) ∩ vars(P2), it is the case that
∀ f1 ∈ IS.υ(P1), f2 ∈ IS.υ(P2) where B(BS(f1), P1, v) ∩ B(BS(f2), P2, v) 6= ∅,
(f1, f2) ∈ C and f1, f2 ∈ F. Furthermore, ∀P′ ⊆ P where vars(P′) ∩ vars(P−
P′) = ∅ (i.e., for Cartesian products), it is the case that ∀ f1 ∈ F such that
f1 ∈ IS.υ(P1) for some P1 ∈ S(P′) and ∀ f2 ∈ F such that f2 ∈ IS.υ(P2) for
some P2 ∈ S(P− P′), (f1, f2) ∈ C.

Algorithm 5 defines the GC function that builds the compatibility graph
of a BGP P given an SPBF index IS using buildBranch in line 15. In the fol-
lowing, we will explain the algorithm by explaining the step-by-step process
of building the compatibility graph for query Q in the running example (Fig-
ure 21a). The intermediate compatibility graph at each step of this process
are visualized in Figure 23.

Example 13 (Building the compatibility graph – adapted from [9])
Consider query Q in Figure 21a and the characteristic sets in Figure 21b.
Building the compatibility graph for Q, the first step in line 2 is to select
the star pattern in P with the lowest estimated cardinality (cardinality es-
timation is detailed later in this section); assume in this example that P2 is
the star pattern with the lowest cardinality. Furthermore, assume that f1 is
compatible with { f4, f5}, and f2 is compatible with { f3, f5}.

The for loop in lines 5-7 iterates through each relevant fragment to P2,
i.e., { f3, f4}; for each of these fragments, the buildBranch function is called
in line 6 in order to build the subgraph for the current fragment. In the
first iteration (i.e., for f3), the buildBranch function is thus called with the
parameters P = P1 ∪ P3, f = f3, and P′ = P2.

Since, in this case, P1 joins with P2, the for loop in line 22 iterates
through all compatible fragments to f3 for the given join, in this case { f2}.
Line 23 thus makes a recursive call with the parameters P = P3, f = f2,
and P′ = P1. Here, since P3 joins with P1, the for loop in line 22 iterates
through the compatible fragments to f2 for the given join, i.e., { f5}, and
makes the recursive call in line 23 with parameters P = ∅, f = f5, and
P′ = P3.

54

7. Optimizing Decentralized SPARQL Queries

Algorithm 5 Compute Compatibility Graph – adapted from [9]

Input: A BGP P = P1 ∪ · · · ∪ Pn; an SPBF index IS = (υ, η)
Output: A compatibility graph GC

1: function GC(P,IS)
2: P′ ← Pk where Pk ∈ S(P) and cardB(Pk) ≤ cardB(Pj)∀Pj ∈ S(P);
3: Pε ← P′;
4: F, C ← ∅;
5: for all f ∈ IS.υ(P′) do
6: GC

ε ← buildBranch(P− P′, IS, f , P′, Pε);
7: F ← F ∪ GC

ε .F; C ← C ∪ GC
ε .C;

8: if P− Pε 6= ∅ then
9: GC

ε ← GC(P− Pε, IS);
10: if GC

ε = GC
∅ then return GC

∅
11: for all f1 ∈ F, f2 ∈ GC

ε .F do
12: C ← C ∪ {(f1, f2)};
13: F ← F ∪ GC

ε .F; C ← C ∪ GC
ε .C;

14: return (F, C);
15: function buildBranch(P,IS, f ,P′,Pε)
16: if P = ∅ or ∀P′′ ∈ S(P) : vars(P′) ∩ vars(P′′) = ∅ then
17: return ({ f }, ∅);

18: F, C ← ∅;
19: for all P′′ ∈ S(P) s.t. vars(P′) ∩ vars(P′′) 6= ∅ do
20: P′ε ← Pε ∪ P′′;
21: V ← vars(P′) ∩ vars(P′′);
22: for all f ′ ∈ IS.υ(P′′) s.t. ∀v ∈ V : B(BS(f), P′, v) ∩
B(BS(f ′), P′′, v) 6= ∅ do

23: GC
ε ← buildBranch(P− P′′, IS, f ′, P′′, P′ε);

24: if GC
ε 6= GC

∅ then
25: F ← F ∪ GC

ε .F ∪ { f }; C ← C ∪ GC
ε .C ∪ {(f , f ′)};

26: Pε ← Pε ∪ P′ε;
27: return (F, C);

In this call to buildBranch, since P = ∅, the function returns in line 17
the compatibility graph ({ f5}, ∅) visualized in Figure 23a. Since this graph
is non-empty, it is added to the output graph in line 25 together with f2
(since f = f2 in the current iteration of buildBranch) and an edge between
f2 and f5, as visualized in Figure 23b, and returned. Again, since this
graph is non-empty, it is added to the output graph in line 25 along with
f3 (since f = f3 in the current iteration) and an edge between f2 and f3,

55

resulting in the compatibility graph visualized in Figure 23c. This graph is
returned in line 27.

Following the same procedure in the next iteration of the for loop in
line 5, we call the buildBranch function with f = f4 and build the compat-
ibility graph by first adding f5 (Figure 23d), then f1 along with an edge be-
tween f1 and f5 (Figure 23e), following by f4 and an edge between f4 and
f1 (Figure 23f). Since the query contains no Cartesian products, the two
subgraphs are merged into the compatibility graph shown in Figure 23g
(line 7) and returned in line 14.

f5

(a)

f2

f5

(b)

f3

f2

f5

(c)

f5

(d)

f1

f5

(e)

f4

f1

f5

(f)

f4 f3

f1 f2

f5

(g)

Fig. 23: Recursively building the compatibility graph for the query in Figure 21a by applying
Algorithm 5 resulting in GC(Q, IS

n1
) (reproduced from [9]).

Cardinality Estimation

Lothbrok builds the query execution plan for a query using Dynamic Pro-
gramming (DP). Besides considering the compatibility graph, the DP algo-
rithm also uses a cost function that considers the estimated data transfer
overhead for a specific execution plan. To obtain this cost, we use the esti-
mated cardinality of an execution (sub)plan. Furthermore, Since SPBFs in-
clude partitioned bitvectors describing the subject and objects of a fragment
(Definition 35), we can estimate the occurrences of each characteristic set sim-
ilar to [67, 70] by estimating the cardinality of the corresponding SPBF par-
titions. In the following, we summarize the cardinality estimation technique
used by Lothbrok by reproducing the equations and descriptions from [9].

Given a partitioned bitvector B and b̂ ∈ B.B̂, let t(b̂) return the number of
bits in b̂ that are set to 1. The estimated cardinality of B, denoted cardP(B),
is the sum of the estimated cardinality of each bitvector in B as defined in [6,
71], and is formally defined in [9] as follows:

cardP(B) = ∑
b̂∈B.B̂

ln(1− t(b̂)/|b̂|)
|B.H| · ln(1− 1/|b̂|)

(19)

56

7. Optimizing Decentralized SPARQL Queries

Example 14 (Partitioned bitvector cardinality – adapted from [9])
Consider the SPBF for f4 in the running example (Figure 21), BS(f4)

in Figure 22b, and assume that |BS(f4).H| = 5 and |b̂| = 20000 for
all b̂ ∈ BS(f4).B̂. When estimating the cardinality of the partition
BS(f4).Φ(dbo : capital) that has two partitions, dbr and dbp, assume that
the number of set bits in dbr is 736 and the number of set bits in dbp is 249;
applying Equation 19 yields the following equation:

cardP(BS(f4).Φ(dbo:capital)) =

ln(1− 736/20000)
5 · ln(1− 1/20000)

+
ln(1− 249/20000)
5 · ln(1− 1/20000)

≈ −0.0375
−0.00025

+
−0.0125
−0.00025

≈ 150 + 50 ≈ 200

Table 3 shows the cardinality of each partitioned bitvector in the running
example.

Table 3: Estimated cardinalities for the SPBFs BS(f1), BS(f2), BS(f3), and BS(f4) for the running
example in Figure 20 (reproduced from [9])

Partitioned Bitvector cardP Partitioned Bitvector cardP

BS(f1).Bs 1000 BS(f3).Bs 100
BS(f1).Φ(dbo:author) 5000 BS(f3).Φ(dbo:capital) 100
BS(f1).Φ(dbo:nationality) 1000 BS(f3).Φ(dbo:currency) 150
BS(f1).Φ(dbo:deathDate) 1000 BS(f3).Φ(dbo:population) 100
BS(f2).Bs 2000 BS(f4).Bs 200
BS(f2).Φ(dbo:author) 3000 BS(f4).Φ(dbo:capital) 200
BS(f2).Φ(dbo:nationality) 2000 BS(f4).Φ(dbo:currency) 500
BS(f1).Φ(dbo:nationality) ∩ BS(f3).Bs 0 BS(f2).Φ(dbo:nationality) ∩ BS(f3).Bs 100
BS(f1).Φ(dbo:nationality) ∩ BS(f4).Bs 50 BS(f2).Φ(dbo:nationality) ∩ BS(f4).Bs 0
BS(f5).Bs 8000 BS(f1).Φ(dbo:author) ∩ BS(f5).Bs 500
BS(f5).Φ(dbo:publisher) 8000 BS(f2).Φ(dbo:author) ∩ BS(f5).Bs 1000
BS(f5).Φ(dbo:language) 9000

Given a star pattern P asking for the set of unique subject values described
by the predicates in P (i.e., queries with the DISTINCT keyword) and a spe-
cific fragment f , the cardinality of P over f is the cardinality of the subject
partition in BS(f), formalized in [9] as follows:

cardD(P, f) = cardP(BS(f).Bs) (20)

For queries that do not include the DISTINCT keyword, we account for
duplicates by also considering the number of triples, on average, for each

57

predicate in P that each subject is associated with, i.e., the predicate occur-
rences [9]. Let preds(P) denote the predicates in P. Then, the cardinality of P
over f is defined in [9] as follows:

cardS(P, f) = cardD(P, f) · ∏
pi∈preds(P)

cardP(BS(f).Φ(pi))

cardP(BS(f).Bs)
(21)

In the remainder of this section, as in [9], we will refer to card as being
equivalent to cardD for queries with the DISTINCT keyword and cardS for
queries without. The cardinality of a star pattern P over a node n’s SPBF
index is the aggregated cardinality over each relevant fragment, formally
defined in [9] as follows:

cardn(P) = ∑
f∈IS

n .η(P)

card(P, f) (22)

Example 15 (Cardinality estimation (DISTINCT) – adapted from [9])
Consider P1 in Figure 21a and the SPBF partition cardinalities in Table 3.
Given the DISTINCT keyword, applying Equation 22 yields the following
equation: cardn1(P1) = 1000 + 2000 = 3000 (Equation 20), visualized in
Figure 24.

Bs

BS(f1)
Φ (dbo:author)

Φ (dbo:deathDate)Φ (dbo:nationality)

Bs

BS(f2)
Φ (dbo:author)

Φ (dbo:nationality)

1000 + = 30002000

Fig. 24: Estimating the cardinality of P1 with the DISTINCT modifier (reproduced from [9]).

Example 16 (Cardinality estimation – adapted from [9])
Consider P1 in Figure 21a and the SPBF partition cardinalities in Ta-
ble 3. Applying Equation 22 without the DISTINCT keyword yields the
following equation: cardn1(P1) = 1000 · (5000/1000) · (1000/1000) + 2000 ·
(3000/2000) · (2000/2000) = 5000 + 3000 = 8000 (Equation 21), visualized
in Figure 25.

58

7. Optimizing Decentralized SPARQL Queries

BS(f1) BS(f2)

1000 + = 8000·
5000

1000

·
1000

1000
2000 ·

3000

2000

·
2000

2000

Bs Φ (dbo:author)

Φ (dbo:deathDate)Φ (dbo:nationality)

Bs Φ (dbo:author)

Φ (dbo:nationality)

Fig. 25: Estimating the cardinality of P1 without the DISTINCT modifier (reproduced from [9]).

To estimate the cardinality of arbitrary (sub)queries, we extend the frame-
works presented above and in [34, 67] to estimate the cardinality of a query
execution plan, and reproduce the equations from [9] in the following.

The cardinality of Cartesian products, unions, and selections, is straight-
forward and defined in [9] as follows. For Cartesian products, it is the multi-
plication of the cardinality of the operands, for unions it is the addition of the
cardinality of the operands, and the cardinality of selections is found using
Equation 22. As such, the cardinality of a query execution plan is given in [9]
by the following equation:

card(Π) =

card(Π1) · card(Π2), if Π = Π1 ×n Π2

card(Π1) + card(Π2), if Π = Π1 ∪Π2

card(P, f), if Π = [[P]]nf
card./(Π1 ./n Π2), if Π = Π1 ./n Π2

(23)

The function card./(Π1 ./n Π2) exploits the fact that the right side of a
join can only be a selection or a union of selections, and is formally defined
in [9] as follows:

card./(Π1 ./n Π2) =

card(Π1 ./n Π′2)+

card(Π1 ./n Π′′2), if Π2 = Π′2 ∪Π′′2
card./(Π1, P, f), if Π2 = [[P]]n1

f

(24)

The card./(Π, P, f) function estimates the cardinality of the join for a par-
ticular selection on the right side of the join, [[P]] f , similar to characteristic
pairs [34]. As in [9], we consider the estimated cardinality of Π and the se-
lectivity of the join; however if there is more than one join variable, we only
consider the most selective join variable to avoid a huge overestimation due
to the possible correlation between the join variables. Let S(Π, P) denote the
star patterns in Π that join with P, F(Π, f) denote the fragments in Π that
join with f , and v(P1, P2) = {v | v ∈ vars(P1) ∩ vars(P2)}, i.e., the set of join

59

variables [9]. Then, given the DISTINCT keyword, the cardinality of a join be-
tween a plan Π and a selection [[P]] f is computed in [9] using the following
equation:

card./D (Π, P, f) = card(Π)·

min
P′∈S(Π,P)∧v∈v(P,P′)

∑ f ′∈F(Π, f) cardP(B(BS(f), P, v) ∩ B(BS(f ′), P′, v))

∑ f ′∈F(Π, f) cardP(B(BS(f ′), P′, v))
(25)

BS(f4)

= 150

BS(f1)

200
200

50
·
∩

Bs Φ (dbo:author)

Φ (dbo:deathDate)Φ (dbo:nationality)

Bs Φ (dbo:capital)

Φ (dbo:currency)

BS(f3)BS(f2)

Φ (dbo:population)

Bs Φ (dbo:capital)

Φ (dbo:currency)

Bs Φ (dbo:author)

Φ (dbo:nationality)

+ 100
100

100
·
∩

Fig. 26: Estimating the cardinality of Π = ([[P2]]
n2
f4

./n2 [[P1]]
n2
f1
)∪ ([[P2]]

n3
f3

./n3 [[P1]]
n3
f2
) with the

DISTINCT keyword (reproduced from [9]).

Example 17 (Join cardinality estimation (DISTINCT) – adapted from [9])
Consider computing card(Π) where Π = ([[P2]]

n2
f4

./n2 [[P1]]
n2
f1
) ∪

([[P2]]
n3
f3

./n3 [[P1]]
n3
f2
) (i.e., the execution plan in Figure 28d). Since Π is

a union, we compute the cardinality of Π1 = [[P2]]
n2
f4

./n2 [[P1]]
n2
f1

and

Π2 = [[P2]]
n3
f3

./n3 [[P1]]
n3
f2

separately and aggregate the result. This yields
the following formula: card(Π) = 200 · (50/200) + 100 · (100/100) = 150
(visualized in Figure 26).

For queries without the DISTINCT keyword, we consider in [9] the average
number of predicate occurrences in f for each triple pattern in P that does
not join on the object position with any star pattern in Π. This is formally
defined as follows [9]:

60

7. Optimizing Decentralized SPARQL Queries

card./S (Π, P, f) = card./D (Π, P, f)·

∏
p∈preds(P):(s,p,o)∈P∧o 6∈v(P,P′)∀P′∈S(Π,P)

(
cardP(BS(f).Φ(p))

cardP(BS(f).Bs)

)
(26)

Example 18 (Join cardinality estimation – adapted from [9])
Consider again Π = ([[P2]]

n2
f4

./n2 [[P1]]
n2
f1
) ∪ ([[P2]]

n3
f3

./n3 [[P1]]
n3
f2
) in Fig-

ure 28d. Using Equation 26 yields the following formula: card(Π) = 500 ·
(50/200) · (5000/1000) + 150 · (100/100) · (3000/2000) = 625 + 225 = 850
(visualized in Figure 27).

BS(f4)

= 625

BS(f1)

500
200

50
·
∩

Bs Φ (dbo:author)

Φ (dbo:deathDate)Φ (dbo:nationality)

Bs Φ (dbo:capital)

Φ (dbo:currency)

1000

·
5000

(a) Cardinality of Π1 = [[P2]]
n2
f4

./n2 [[P1]]
n2
f1

BS(f3)BS(f2)

Φ (dbo:population)

Bs Φ (dbo:capital)

Φ (dbo:currency)

Bs Φ (dbo:author)

Φ (dbo:nationality)

= 225150
100

100
·
∩

2000
·

3000

(b) Cardinality of Π2 = [[P2]]
n3
f3

./n3 [[P1]]
n3
f2

Fig. 27: Estimating the cardinality of Π in Figure 28d without the DISTINCT modifier for (a)
Π1 = [[P2]]

n2
f4

./n2 [[P1]]
n2
f1

and (b) Π2 = [[P2]]
n3
f3

./n3 [[P1]]
n3
f2

. The output of Equation 23 is thus
the sum of the two formulas (reproduced from [9]).

Optimizing Query Execution Plans

To compute the optimal query execution plan, Lothbrok considers the car-
dinality estimations and compatibility graph described above, and applies

61

Dynamic Programming (DP) to obtain the execution plan. The cost function
used by the DP algorithm, however, considers the locality of the data by esti-
mating the number of intermediate results to be transferred over the network
for a given delegation strategy based on the locality of the data.

Algorithm 6 Compute transfer cost – adapted from [9]

Input: A query execution plan Π; a node n
Output: The estimated transfer cost cost

1: function transferCost(Π,n)
2: cost← 0;
3: if Π = [[P]]ni

f then
4: if n 6= ni then cost← card(P, f);
5: else if Π = Π1 ∪Π2 then
6: cost← transferCost(Π1, n) + transferCost(Π2, n);
7: else if Π = Π1 ×ni Π2 then
8: cost← transferCost(Π1, ni) + transferCost(Π2, ni);
9: if ni 6= n then cost← cost + card(Π);

10: else if Π = Π1 ./ni Π2 then
11: if Π2 = Π′2 ∪Π′′2 then
12: cost ← transferCost(Π1 ./ni Π′2, n) + transferCost(Π1 ./ni

Π′′2 , n);
13: else if Π2 = [[P]]

nj
f then

14: cost← transferCost(Π1, ni);
15: if ni 6= nj then cost← cost + card./(Π1, P, f);

16: if n 6= ni then cost← cost + card(Π);
17: return cost;

Algorithm 6 specifies the function that estimates the transfer cost. Once
again, we shall explain the algorithm by guiding the reader through an ex-
ample based on the running example.

Example 19 (Transfer cost – adapted from [9])
Consider the execution plan Π shown in Figure 28g processed by node
n1. To estimate the transfer cost of the delegations in Π, the transferCost
function first enters the if statement on line 10 (since Π is a join) and the if
statement on line 13 (since the right side is a selection). Since n1 is specified
in the delegation, i.e., it is processed locally, the function only considers the
transfer cost on the left side and makes a recursive call on line 14.

In this call, for Π = ([[P2]]
n2
f4

./n2 [[P1]]
n2
f1
) ∪ ([[P2]]

n3
f3

./n3 [[P1]]
n3
f2
), the

function enters the if statement on line 5 and makes one recursive call for
each (sub)plan in the union.

62

7. Optimizing Decentralized SPARQL Queries

In the first recursive call, i.e., for Π = [[P2]]
n2
f4

./n2 [[P1]]
n2
f1

, the function
once again enters the if statements on line 10 and 13. Here, since the join
is delegated to n2 and n2 6= n1, we consider both the cost of the left side
(line 14) and the cardinality of Π (line 16); since the left side (([[P2]]

n2
f4

)
is also delegated to n2, the transfer cost of the left side is 0, while the
cardinality of Π is 625 (Figure 27a).

Following the same procedure for Π = [[P2]]
n3
f3
./n3 [[P1]]

n3
f2

, the transfer
cost of the union is thus 625 + 225 = 850, which is also the final result
since the top-most join is delegated to n1, i.e., the plan incurs transferring
the 850 results from the two subplans in the union from n2 and n3 to n1.

⋃
[[P1]]

n3
f2[[P1]]

n2
f1

(a) P1

⋃
[[P2]]

n2
f4[[P2]]

n3
f3

(b) P2

[[P3]]
n1
f5

(c) P3

⋃

[[P1]]
n3
f2

n3

[[P2]]
n3
f3

[[P1]]
n2
f1

n2

[[P2]]
n2
f4

(d) P2 ./ P1

⋃
[[P2]]

n2
f4

[[P2]]
n3
f3

[[P3]]
n1
f5

n1×

(e) P2 ./ P3

⋃
[[P1]]

n3
f2

[[P1]]
n2
f1

[[P3]]
n1
f5

n1

(f) P1 ./ P3

[[P3]]
n1
f5

n1⋃

[[P1]]
n3
f2

n3

[[P2]]
n3
f3

[[P1]]
n2
f1

n2

[[P2]]
n2
f4

(g) P1 ./ P2 ./ P3

Fig. 28: Best query execution plan for each subquery in the DP table (reproduced from [9]).

In [9], the cost of processing a query execution plan Π on a node n is
defined as the transfer cost plus the cardinality estimation as follows:

costn(Π) = trans f erCost(Π, n) + card(Π) (27)

Lothbrok uses the cost function in Equation 27, to estimate the cost of
all possible delegation plans and applies DP to obtain the one that has the
lowest overall cost [9].

Example 20 (DP cost – adapted from [9])
Table 4 shows the (partial) DP table entries for the lowest costing execu-
tion plan for each subquery in Q (Figure 21a) on node n1 in the running
example. These plans are visualized in Figure 28.

63

Table 4: Entries in the DP table for query Q (reproduced from [9])

Subquery Execution Plan Cardinality Cost
P1 [[P1]]

n2
f1
∪ [[P1]]

n3
f2

8,000 8,000
P2 [[P2]]

n3
f3
∪ [[P2]]

n2
f4

650 650
P3 [[P3]]

n1
f5

9,000 9,000
P2 ./ P1 ([[P2]]

n2
f4
./n2 [[P1]]

n2
f1
) ∪ ([[P2]]

n3
f3
./n3 [[P1]]

n3
f2
) 850 1,700

P2 ./ P3 ([[P2]]
n3
f3
∪ [[P2]]

n2
f4
)×n1 [[P3]]

n1
f5

5,850,000 5,850,650
P1 ./ P3 ([[P1]]

n2
f1
∪ [[P1]]

n3
f2
) ./n1 [[P3]]

n1
f5

1,688 9,688
P2 ./ P1 ./ P3 (([[P2]]

n2
f4
./n2 [[P1]]

n2
f1
) ∪ ([[P2]]

n3
f3
./n3 [[P1]]

n3
f2
)) ./n1 [[P3]]

n1
f5

154 1,004

7.4 Query Execution

In this section, we describe how Lothbrok executes a query execution plan
by reproducing the definitions and algorithms from [9].

Given a query execution plan Π over a BGP P and compatibility graph
GC, Lothbrok processes P by processing the operations specified in Π and
delegating joins and Cartesian products to the nodes specified by delegations
in Π [9]. To formalize how star patterns in Π are processed over the corre-
sponding fragments, we build on the selector function from Definition 33 and
define the star pattern-based selector function as follows [9]:

Definition 40 (Star Pattern Selector Function – reproduced from [9])
Given a node n, a star pattern P, and a finite set of distinct solution mappings
Ω, the star pattern-based selector function for P and Ω, denoted s(P,Ω) is for
every fragment f in n’s local datastore defined as follows.

s(P,Ω)(f) =

{t ∈ T | T ⊆ f ∧ T[P]} if Ω = ∅
{t ∈ T | T ⊆ f ∧ ∃µ ∈ [[P]] f , µ′ ∈ Ω :

µ[P] = T ∧ µ′ ⊆ µ} otherwise.

In line with [4, 7, 38], we apply pagination of the results; however, for ease
of presentation, we assume in the remainder of this section that all results can
fit into a single page [9]. Given a star pattern P, a node n, a fragment f , and
a finite set of solution mappings Ω, seln(f , P, Ω) denotes in [9] the result of
invoking s(P,Ω)(f) on n.

Algorithm 7 defines the evaluatePlan function that executes a query ex-
ecution plan. First, if the execution plan is a Cartesian product, the function
processes each side concurrently in lines 3-4 and combines the result as the
Cartesian product of the two sets of intermediate results (line 5). If instead
it is a join plan, the function processes the left side first in line 7 and uses
the intermediate bindings from that when processing the right side in line 8.
However, if the plan is a union, the function processes each side concurrently
in lines 10-11 and combines those result in line 12. Last, if the plan is a se-
lection, the function calls the selector function on the node specified by the

64

7. Optimizing Decentralized SPARQL Queries

delegation in line 14 and joins the results with the intermediate results found
from previously evaluated star patterns in line 15.

Algorithm 7 Evaluate an execution plan – adapted from [9]

Input: A join plan Π; a node n; a set of solution mappings Ω
Output: A set of solution mappings Ω

1: function evaluatePlan(Π,n,Ω = {∅})
2: if Π = Π1 ×ni Π2 then
3: Ω1 ← evaluatePlan(Π1, ni, Ω);
4: Ω2 ← evaluatePlan(Π2, ni, Ω);
5: Ω← Ω1 ×Ω2;
6: else if Π = Π1 ./ni Π2 then
7: Ω← evaluatePlan(Π1, ni, Ω);
8: Ω← evaluatePlan(Π2, ni, Ω);
9: else if Π = Π1 ∪Π2 then

10: Ω1 ← evaluatePlan(Π1, n, Ω);
11: Ω2 ← evaluatePlan(Π2, n, Ω);
12: Ω← Ω1 ∪Ω2;
13: else if Π = [[P]]ni

f then
14: φ← selni (f , P, Ω);
15: Ω← Ω ./ {µ | dom(µ) = vars(P) and µ[P] ∈ φ};
16: return Ω;

Example 21 (Processing a query execution plan – adapted from [9])
Consider the query execution plan Π shown in Figure 28g processed by
node n1 (Figre 20). Since this execution plan is a join, the function first
makes a recursive call in line 7 with the plan Π1 = ([[P2]]

n2
f4
./n2 [[P1]]

n2
f1
) ∪

([[P2]]
n3
f3
./n3 [[P1]]

n3
f2
).

Since Π1 is a union, the function then makes two concurrent recursive
calls in lines 10-11 with the two subplans [[P2]]

n2
f4

./n2 [[P1]]
n2
f1

on n2 and

[[P2]]
n3
f3
./n3 [[P1]]

n3
f2

on n3. This delegation is visualized in Figure 29a.

Node n2, for [[P2]]
n2
f4

./n2 [[P1]]
n2
f1

, makes a recursive call in line 7 for

the plan [[P2]]
n2
f4

for which it calls the local selector function (since n2 is
specified in the delegation) in line 14. The 500 results (cf. Table 3) are
joined with the singleton set of bindings Ω = {∅}.

Upon receiving the 500 results in line 7, the function makes another
recursive call in line 8 for the plan [[P1]]

n2
f1

, again calling its local selector in

line 14. This results in 625 results to the subplan [[P2]]
n2
f4
./n2 [[P1]]

n2
f1

.

While n2 found the 625 results of processing [[P2]]
n2
f4

./n2 [[P1]]
n2
f1

, n3

65

found an additional 225 results for the subplan [[P2]]
n3
f3

./n3 [[P1]]
n3
f2

in the
recursive call in line 11 following the same steps as n2. This step is visual-
ized in Figure 29b.

The 850 intermediate bindings found by processing ([[P2]]
n2
f4

./n2

[[P1]]
n2
f1
) ∪ ([[P2]]

n3
f3

./n3 [[P1]]
n3
f2
) are used as Ω when processing the sub-

plan [[P3]]
n1
f5

using the local selector on n1. This results in 154 results to
Π.

n1

n2

n3

[[P1]] f1

[[P2]] f4

[[P1]]f2

[[P2]]f3

225 results

625 results

(a) Delegating subqueries to n2 and n3

n1

n2

n3

[[P3]] f5

f1
f2
f3
f4
f5

850 results

154 results

(b) Processing [[P3]] f5 locally on node n1

Fig. 29: Processing Π in Figure 28g on n1 by (a) delegating [[P2]] f4 ./n2 [[P1]] f1 to n2 and
[[P2]] f3 ./n3 [[P1]] f2 to n3 concurrently and (b) processing the join between these 850 results
and [[P3]] f5 locally on n1 to achieve the 154 results (reproduced from [9]).

7.5 Evaluation and Discussion

The approaches presented outlined in Sections 4-6 take a first step in solv-
ing some of the major obstacles the Semantic Web faces today by increasing
the availability and updatability of knowledge graphs on the Web. However,
even so, they propose approaches that incur a significant communication
overhead since nodes have to query information available on several differ-
ent nodes when processing queries, decreasing performance overall. In Pa-
per F [9], we therefore introduced Lothbrok, a novel approach to decreasing
the communication overhead for processing queries in decentralized systems
and, in doing so, increasing performance. Lothbrok does so by fragment-
ing the data based on characteristic sets [70] and introducing a novel in-
dexing strategy, called Semantically Partitioned Bloom Filter (SPBF) indexes,
that indexes the IRIs based on their position in the fragment. Furthermore,
Lothbrok applies a query processing strategy that considers fragment com-
patibility, data locality, and cardinality estimations to delegate subqueries to
other nodes such that the number of intermediate results transferred over the
network is minimized.

66

7. Optimizing Decentralized SPARQL Queries

(a) Throughput (TP) over watdiv10M (b) Throughput (TP) over watdiv100M

(c) Throughput (TP) over watdiv1B (d) Number of timeouts (NTO) over watdiv10M

(e) Number of timeouts (NTO) over watdiv100M (f) Number of timeouts (NTO) over watdiv1B

Fig. 30: Throughput (TP), and number of timeouts (NTO) for watdiv-sts over watdiv10M,
watdiv100M, and watdiv1B (reproduced from [9]).

Thus, Lothbrok overcomes the last obstacle that we address in this the-
sis; ensuring efficient query processing performance over the decentralized
knowledge graph systems presented thus far. In order to evaluate our ap-
proach, we implemented Lothbrok on top of both Piqnic and ColChain

and ran experiments using the same WatDiv [13] datasets from Section 3
as well as the LargeRDFBench [77] data and queries on a network with 128
nodes. For queries over the WatDiv datasets, we used in [9] the watdiv-sts
query load from Section 3 and used the WatDiv query template generator to
generate query loads with 1-3 star patterns each, called the watdiv-1_star,
watdiv-2_star, and watdiv-3_star query loads, as well as a query load
consisting of path queries, called watdiv-path. Furthermore, we combine
the aforementioned query loads into a single load spanning all the queries,
called watdiv-union. Our full experimental evaluation is given in Paper F [9];
in the following, we will focus our discussion on the most interesting experi-
mental results.

Figure 30 shows the query throughput, i.e., the number of executed
queries per minute (Figure 30a-30c), and the number of queries that timed out
(Figure 30d-30f) in logarithmic scale for each WatDiv dataset over watdiv-sts
for an increasing number of nodes issuing queries concurrently. Clearly,
Lothbrok has a significantly better performance across all configurations
than both Piqnic and ColChain. This is most significant for watdiv10M

67

(a) QET over watdiv1B (b) NRF over watdiv1B

(c) REQ over watdiv1B (d) NTB over watdiv1B

Fig. 31: (a) Query execution time (QET), (b) number of relevant fragments (NRF), (c) number of
requests (REQ), and (d) number of transferred bytes (NTB), over watdiv1B and the WatDiv star
queries (reproduced from [9]).

where the increase in performance is up to two orders of magnitude; how-
ever, even for the largest dataset, watdiv1B, the increase is close to an order
of magnitude. Furthermore, the performance of Lothbrok remains relatively
stable for increasing network loads; even when all nodes in the network issue
queries concurrently, the performance decreases only very little. Since Loth-
brok increases performance, it is also able to answer more queries without
timing out (in our experiments, the timeout was set to 1200 seconds, or 20
minutes); in fact, for watdiv10M and watdiv100M, Lothbrok experiences zero
timeouts. Only for the largest dataset does Lothbrok experience a relatively
small number of timeouts, albeit a much lower number than Piqnic and
ColChain.

Figure 31 shows the execution time (Figure 31a), number of fragments rel-
evant to each query after optimization (Figure 31b), the number of requests
made between nodes when processing the queries (Figure 31c), and the num-
ber of transferred bytes between nodes (Figure 31d) for each WatDiv query
load over watdiv1B. Like with the scalability experiments in Figure 30, Fig-
ure 31a shows a significant improvement on performance across most query
loads for Lothbrok. Furthermore, the performance increase is more signif-
icant, the fewer star patterns the queries contain, since each star pattern in
watdiv-1_star represent larger parts of the queries than in watdiv-3_star.

The only exception to this is watdiv-paths, where Lothbrok has slightly
worse performance than Piqnic and ColChain. This is caused by Loth-
brok having a significantly higher number of relevant nodes compared to
Piqnic and ColChain (Figure 31b) leading to a larger number of fragments
needed to be queried, while the watdiv-path queries are not compensated
by the increased performance that the query optimization provides, like the

68

8. Conclusions and Summary of Contributions

remaining query loads. Nevertheless, even for watdiv-union, we see a sig-
nificant performance increase on average.

Last, we notice that Lothbrok incurs a significantly lower network load
than Piqnic and ColChain (Figure 31c-31d) for all query loads except
watdiv-path (for the reasons specified above), reducing the communication
overhead when processing queries. This is caused by Lothbrok being able
to process each star pattern with fewer requests compared to Piqnic and
ColChain, even if there are more relevant fragments.

Overall, our experimental results show that Lothbrok significantly re-
duces the communication overhead and, in doing so, improves performance
by up to two orders of magnitude compared to Piqnic and ColChain. By
implementing Lothbrok on top of existing systems like ColChain, we have
thus shown that we can overcome some of the main obstacles that the Se-
mantic Web faces today, i.e., data availability, scalability, and updatability, all
while ensuring efficient query processing performance and high throughput.

8 Conclusions and Summary of Contributions

In conclusion, this thesis proposes novel techniques and robust methodolo-
gies that increase the availability, scalability, and updatability of knowledge
graphs published on the Web while ensuring efficient access to them. As
mentioned in Section 1.2, the six papers included in the thesis solve over-
all problem by addressing each issue individually with the goal of making
knowledge graphs on the Web available, scalable, and updatable. In sum-
mary, the six papers included in this thesis make the following contributions:

• Paper A [18] introduces WiseKG; a client-server architecture that finds
a novel, and in many cases better, balance between shifting some of the
query processing load to the client while also exploiting the stronger
server-side query processing capabilities when possible. To achieve this,
WiseKG applies a cost model that dynamically determines whether it is
most efficient to process each star-shaped subquery on the client or the
server taking into account factors such as the data transfer cost and the
current load on the server. A comprehensive experimental evaluation
comparing WiseKG to state-of-the-art LDF systems shows that WiseKG
significantly improves performance for high demanding workloads and
that the cost model used by WiseKG improves the average workload
completion time while answering more queries without timing out.

• Paper B [5] proposes a decentralized and unstructured P2P architecture,
called Piqnic, that increases the availability of the uploaded knowledge
graphs by replicating the data across nodes in the P2P network. In
Piqnic, a set of homogeneous nodes in a network act as both clients

69

and servers and thus maintain a local datastore (a set of fragments)
and a local view over the network (a set of neighboring nodes). As
such, by replicating the data across multiple nodes, Piqnic ensures that,
even if the original uploader fails, the data is still accessible. Piqnic

implements three different query processing strategies, called Single,
Bulk, and Full. Experimental results show that Piqnic maintains a
high availability of the data (> 90% availability) even when a third of
the nodes in the network fails. Furthermore, the experimental results
show that the Bulk query processing method significantly outperforms
the other query processing strategies in all cases.

• Paper C [6] increases the query processing efficiency in unstructured
P2P systems by introducing two novel indexing schemes that remove
the need for flooding that network with requests and allow the nodes
to determine which other nodes in the network contain relevant data
to which parts of the query. First, locational indexes form the baseline
indexes by matching each predicate in the query to the fragments that
contain triples with the predicate. Building upon the baseline locational
indexes, PPBF indexes represent the set of subjects and objects in each
fragment as a partitioned bitvector; by checking whether or not the in-
tersection of two such bitvectors is empty, nodes can prune fragments
from the query processing plan that would not contribute to the over-
all query result. Experimental results over a large-scale benchmarking
suite for federated systems confirm our hypothesis that such indexes
significantly improve query processing performance by decreasing the
huge network overhead that Piqnic suffers from.

• Paper D [7] tackles the updatability problem by introducing ColChain,
a P2P system that allows users to collaborate on keeping the uploaded
knowledge graphs up-to-date. To achieve this, ColChain divides the
entire network into smaller communities of nodes that share certain
fragments and relies on community-wide consensus in order to allow
any node within the community to propose updates to the fragments.
Furthermore, ColChain represents the history of updates to a knowl-
edge graph as a chain of transactions (updates); this allows nodes to
trace-back faulty updates to their origins and roll-back updates to an
earlier point in time and process queries over them. Our experimen-
tal results show that ColChain allows for efficient community-wide
updates to knowledge graphs without incurring a significant cost on
performance. Furthermore, the results show that ColChain lets users
efficiently process queries over earlier fragment versions.

• Paper E [8] demonstrates ColChain as presented in Paper D [7] and
provides a fully function ColChain client with a graphical UI on top.

70

9. Future Research Directions

We demonstrate how users can navigate the fragments stored in com-
munities they participate in and propose updates to any fragment. Fur-
thermore, we show how users can vote on proposed updates to obtain
community-wide consensus. Last, we demonstrate how queries can be
processed over earlier dataset versions.

• Paper F [9] presents Lothbrok, an approach to optimizing SPARQL
queries over decentralized knowledge graphs. To do this, Lothbrok

proposes a fragmentation technique based on characteristic sets and
uses star-shaped query decomposition similar to WiseKG. Furthermore,
Lothbrok proposes an indexing scheme that builds on PPBF indexes
and associates the objects in the fragment with the predicates they oc-
cur in triples with, called SPBF indexes. To optimize a query, Lothbrok

builds a query execution plan in consideration of cardinality estima-
tions based on the SPBF indexes similar to [34, 67, 70], the compatibil-
ity of the fragments (whether or not two fragments produce join results
for the given query), and the locality of the data (on which nodes the
fragments are located). In building the execution plan, Lothbrok is
able to delegate subqueries to nodes in such a way that the overall net-
work usage is minimized. A comprehensive experimental evaluation
that compares Lothbrok to the state-of-the-art systems Piqnic [5] and
ColChain [7] shows a performance increase of up to two orders of
magnitude while the network usage is lowered significantly.

The overall goal of this thesis was to take the Semantic Web one step closer
to realizing its full potential by solving some of the biggest problems it faces
today; availability, scalability, and updatability of the data. Indeed, the papers
presented in this thesis provide robust algorithmic and architectural solutions
to the problem stated above. Moreover, our work highlights some interesting
future work directions as discussed in Section 9.

9 Future Research Directions

As the popularity of the Semantic Web increases, the burden on the data
providers to maintain access to the data and keep the data up to date in-
creases as well. In this thesis, we have presented novel frameworks and the-
oretical models that relieve this burden. However, our work also highlights
some interesting and important future research necessary for the Semantic
Web to realize its full potential.

As highlighted in [12], decreasing the communication overhead in de-
centralized systems is only advantageous to a certain degree; it is equally
important to balance out the query processing load across the nodes. And
while Lothbrok [9] has taken the first step in this direction by letting nodes

71

References

delegate entire subqueries to other nodes in the network, it does not consider
the load on each node, and thus risks sending subqueries to already over-
loaded nodes. Thus, extending the framework presented by Lothbrok with
a cost model like the one presented by WiseKG [18] could further improve
the overall stability and efficiency of the network under load.

Furthermore, the work presented in this thesis considers two possible
data fragmentation techniques (1) predicate-based fragmentation, and (2)
fragmentation based on characteristic sets. However, it is still unclear what
impact other possible fragmentation and allocation strategies would have on
factors such as network usage and query performance. As such, further re-
search is needed to assess multiple different fragmentation and allocation
techniques, e.g., based on SHACL/ShEx shapes [73, 74].

While ColChain [7] solves the updatability issue using community-wide
consensus that lets users collaborate on keeping the data up to date, it relies
on the users to actively vote on whether or not they think an update should
be accepted. However, this is not always feasible since in large communities,
it could be difficult to get a majority of users to vote on an update, let alone
accept it. As such, in the future, applying different consensus protocols,
e.g., by letting fragment owners specify a qualified majority or automatically
detecting malicious updates, could be important to increase the applicability.

Thus far, we have mainly focused on processing BGP queries. However,
the SPARQL language [24] contains further constructs, such as aggregation
and analytical queries [31, 49–51]. In the future, it is therefore important to
expand the scope of the solutions mentioned in this paper to support such
queries as well. Furthermore, expanding the scope of the solutions presented
in this thesis to support exploratory or query-by-example approaches [58, 59]
could be interesting

Last, our approaches are limited to providing the plain set of answers to
the queries; in the future, it could be interesting to expand our frameworks to
support provenance information for the data [15, 35, 39], so that the system
has information about the origin of the data, and for queries [44], such that
the users can obtain explanations on how the query answers were obtained.

References

[1] M. Acosta and M. Vidal, “Networks of linked data eddies: An adaptive web
query processing engine for RDF data,” in ISWC 2015, 2015, pp. 111–127.

[2] M. Acosta, M. Vidal, T. Lampo, J. Castillo, and E. Ruckhaus, “ANAPSID: an
adaptive query processing engine for SPARQL endpoints,” in ISWC 2011, 2011,
pp. 18–34.

72

References

[3] M. Acosta, A. Zaveri, E. Simperl, D. Kontokostas, S. Auer, and J. Lehmann,
“Crowdsourcing linked data quality assessment,” in ISWC 2013, 2013, pp. 260–
276.

[4] C. Aebeloe, I. Keles, G. Montoya, and K. Hose, “Star pattern fragments:
Accessing knowledge graphs through star patterns,” CoRR, vol. abs/2002.09172,
2020. [Online]. Available: https://arxiv.org/abs/2002.09172

[5] C. Aebeloe, G. Montoya, and K. Hose, “A decentralized architecture for sharing
and querying semantic data,” in ESWC 2019, 2019, pp. 3–18.

[6] ——, “Decentralized indexing over a network of RDF peers,” in ISWC 2019, 2019,
pp. 3–20.

[7] ——, “Colchain: Collaborative linked data networks,” in WWW 2021. ACM /
IW3C2, 2021, pp. 1385–1396.

[8] ——, “A demonstration of colchain: Collaborative knowledge chains,” in ISWC
2021 Posters, Demos and Industry Tracks, ser. CEUR Workshop Proceedings, vol.
2980, 2021.

[9] ——, “Optimizing sparql queries over decentralized knowledge graphs,” in Un-
published manuscript, 2022.

[10] C. Aebeloe, G. Montoya, V. Setty, and K. Hose, “Discovering diversified paths in
knowledge bases,” Proc. VLDB Endow., vol. 11, no. 12, pp. 2002–2005, 2018.

[11] C. Aebeloe, V. Setty, G. Montoya, and K. Hose, “Top-k diversification for path
queries in knowledge graphs,” in ISWC 2018 Posters & Demonstrations, ser. CEUR
Workshop Proceedings, vol. 2180. CEUR-WS.org, 2018.

[12] A. Ailamaki, D. J. DeWitt, M. D. Hill, and D. A. Wood, “Dbmss on a modern
processor: Where does time go?” in VLDB 1999, 1999, pp. 266–277.

[13] G. Aluç, O. Hartig, M. T. Özsu, and K. Daudjee, “Diversified stress testing of
RDF data management systems,” in ISWC 2014, 2014, pp. 197–212.

[14] M. J. Amiri, D. Agrawal, and A. E. Abbadi, “CAPER: A cross-application per-
missioned blockchain,” Proc. VLDB Endow., vol. 12, no. 11, pp. 1385–1398, 2019.

[15] A. B. Andersen, N. Gür, K. Hose, K. A. Jakobsen, and T. B. Pedersen, “Publishing
Danish Agricultural Government Data as Semantic Web Data,” in JIST, vol. 8943,
2014, pp. 178–186.

[16] C. B. Aranda, A. Hogan, J. Umbrich, and P. Vandenbussche, “SPARQL Web-
Querying Infrastructure: Ready for Action?” in ISWC 2013, 2013, pp. 277–293.

[17] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. G. Ives, “Dbpe-
dia: A nucleus for a web of open data,” in ISWC 2007, 2007, pp. 722–735.

[18] A. Azzam, C. Aebeloe, G. Montoya, I. Keles, A. Polleres, and K. Hose, “Wisekg:
Balanced access to web knowledge graphs,” in WWW 2021. ACM / IW3C2,
2021, pp. 1422–1434.

[19] A. Azzam, J. D. Fernández, M. Acosta, M. Beno, and A. Polleres, “SMART-KG:
hybrid shipping for SPARQL querying on the web,” in WWW 2020. ACM /
IW3C2, 2020, pp. 984–994.

73

https://arxiv.org/abs/2002.09172

References

[20] T. Berners-Lee, J. Hendler, and O. Lassila, “The semantic web,” Scientific Ameri-
can, vol. 284, no. 5, pp. 34–43, 2001.

[21] B. H. Bloom, “Space/time trade-offs in hash coding with allowable errors,” Com-
mun. ACM, vol. 13, no. 7, pp. 422–426, 1970.

[22] M. Cai and M. R. Frank, “RDFPeers: a scalable distributed RDF repository based
on a structured peer-to-peer network,” in WWW, 2004, pp. 650–657.

[23] A. Charalambidis, A. Troumpoukis, and S. Konstantopoulos, “Semagrow: op-
timizing federated SPARQL queries,” in SEMANTiCS 2015. ACM, 2015, pp.
121–128.

[24] W. W. W. Consortium et al., “Sparql 1.1 overview,” 2013.

[25] ——, “Rdf 1.1 concepts and abstract syntax,” 2014.

[26] A. Crespo and H. Garcia-Molina, “Routing indices for peer-to-peer systems,” in
ICDCS 2002. IEEE Computer Society, 2002, pp. 23–32.

[27] M. Dumontier, A. Callahan, J. Cruz-Toledo, P. Ansell, V. Emonet, F. Belleau, and
A. Droit, “Bio2rdf release 3: A larger, more connected network of linked data for
the life sciences,” in ISWC 2014 Posters & Demonstrations Track, vol. 1272, 2014,
pp. 401–404.

[28] M. El-Hindi, C. Binnig, A. Arasu, D. Kossmann, and R. Ramamurthy,
“Blockchaindb - A shared database on blockchains,” Proc. VLDB Endow., vol. 12,
no. 11, pp. 1597–1609, 2019.

[29] J. D. Fernández, M. A. Martínez-Prieto, C. Gutiérrez, A. Polleres, and M. Arias,
“Binary RDF representation for publication and exchange (HDT),” J. Web Se-
mant., vol. 19, pp. 22–41, 2013.

[30] L. Galárraga, K. Hose, and R. Schenkel, “Partout: a distributed engine for effi-
cient RDF processing,” in WWW 2014. ACM, 2014, pp. 267–268.

[31] L. Galárraga, K. A. Jakobsen, K. Hose, and T. B. Pedersen, “Answering
Provenance-Aware Queries on RDF Data Cubes Under Memory Budgets,” in
ISWC, 2018, pp. 547–565.

[32] O. Görlitz and S. Staab, “SPLENDID: SPARQL endpoint federation exploiting
VOID descriptions,” in COLD 2011, 2011.

[33] D. Graux, G. Sejdiu, H. Jabeen, J. Lehmann, D. Sui, D. Muhs, and J. Pfeffer,
“Profiting from kitties on ethereum: Leveraging blockchain RDF with SANSA,”
in ISWC Posters and Demos, 2018.

[34] A. Gubichev and T. Neumann, “Exploiting the query structure for efficient join
ordering in SPARQL queries,” in EDBT 2014, 2014, pp. 439–450.

[35] E. R. Hansen, M. Lissandrini, A. Ghose, S. Løkke, C. Thomsen, and K. Hose,
“Transparent Integration and Sharing of Life Cycle Sustainability Data with
Provenance,” in ISWC, vol. 12507, 2020, pp. 378–394.

[36] A. Harth, K. Hose, M. Karnstedt, A. Polleres, K. Sattler, and J. Umbrich, “Data
summaries for on-demand queries over linked data,” in WWW 2010. ACM,
2010, pp. 411–420.

74

References

[37] A. Harth, K. Hose, and R. Schenkel, Eds., Linked Data Management. Chapman
and Hall/CRC, 2014.

[38] O. Hartig and C. B. Aranda, “Bindings-restricted triple pattern fragments,” in
OTM 2016 Conferences, 2016, pp. 762–779.

[39] O. Hartig and et al., “RDF-star and SPARQL-star. W3C Draft Community
Group. Report. W3C Community,” 2021. [Online]. Available: https://w3c.
github.io/rdf-star/cg-spec/2021-12-17.html

[40] O. Hartig, K. Hose, and J. F. Sequeda, “Linked data management,” in Encyclopedia
of Big Data Technologies. Springer, 2019.

[41] L. Heling and M. Acosta, “A framework for federated SPARQL query processing
over heterogeneous linked data fragments,” CoRR, vol. abs/2102.03269, 2021.

[42] L. Heling, M. Acosta, M. Maleshkova, and Y. Sure-Vetter, “Querying large knowl-
edge graphs over triple pattern fragments: An empirical study,” in ISWC 2018,
2018, pp. 86–102.

[43] J. A. Hendler, J. Holm, C. Musialek, and G. Thomas, “US government linked
open data: Semantic.data.gov,” IEEE Intell. Syst., vol. 27, no. 3, pp. 25–31, 2012.

[44] D. Hernández, L. Galárraga, and K. Hose, “Computing How-Provenance for
SPARQL Queries via Query Rewriting,” Proc. VLDB Endow., vol. 14, no. 13, pp.
3389–3401, 2021.

[45] J. V. Herwegen, R. Verborgh, E. Mannens, and R. V. de Walle, “Query execution
optimization for clients of triple pattern fragments,” in ESWC 2015, 2015, pp.
302–318.

[46] A. Hogan, The Web of Data. Springer, 2020.

[47] K. Hose, “Knowledge graph (r) evolution and the web of data,” in MEPDaW
2021, 2021.

[48] K. Hose and R. Schenkel, “Towards benefit-based RDF source selection for
SPARQL queries,” in SWIM 2012. ACM, 2012, p. 2.

[49] D. Ibragimov, K. Hose, T. B. Pedersen, and E. Zimányi, “Towards exploratory
OLAP over linked open data - A case study,” in BIRTE 2013, vol. 206, 2014, pp.
114–132.

[50] ——, “Processing aggregate queries in a federation of SPARQL endpoints,” in
ESWC 2015s, vol. 9088, 2015, pp. 269–285.

[51] ——, “Optimizing Aggregate SPARQL Queries Using Materialized RDF Views,”
in ISWC, 2016, pp. 341–359.

[52] A. L. Jakobsen, G. Montoya, and K. Hose, “How diverse are federated query
execution plans really?” in ESWC 2019, 2019, pp. 105–110.

[53] M. C. Jeffrey and J. G. Steffan, “Understanding bloom filter intersection for lazy
address-set disambiguation,” in SPAA 2011, 2011, pp. 345–354.

[54] Z. Kaoudi, M. Koubarakis, K. Kyzirakos, I. Miliaraki, M. Magiridou, and
A. Papadakis-Pesaresi, “Atlas: Storing, updating and querying RDF(S) data on
top of dhts,” J. Web Semant., vol. 8, no. 4, pp. 271–277, 2010.

75

https://w3c.github.io/rdf-star/cg-spec/2021-12-17.html
https://w3c.github.io/rdf-star/cg-spec/2021-12-17.html

References

[55] M. Karnstedt, K. Sattler, M. Richtarsky, J. Müller, M. Hauswirth, R. Schmidt, and
R. John, “UniStore: Querying a DHT-based universal storage,” in ICDE 2007,
2007, pp. 1503–1504.

[56] I. Keles and K. Hose, “Skyline queries over knowledge graphs,” in ISWC 2019,
vol. 11778, 2019, pp. 293–310.

[57] P. Larson, “Dynamic hash tables,” Commun. ACM, vol. 31, no. 4, pp. 446–457,
1988.

[58] M. Lissandrini, D. Mottin, K. Hose, and T. B. Pedersen, “Knowledge graph ex-
ploration systems: are we lost?” in CIDR 2022, 2022.

[59] M. Lissandrini, T. B. Pedersen, K. Hose, and D. Mottin, “Knowledge graph ex-
ploration: where are we and where are we going?” SIGWEB Newsl., vol. 2020,
no. Summer, pp. 4:1–4:8, 2020.

[60] L. F. Mackert and G. M. Lohman, “R* optimizer validation and performance
evaluation for distributed queries,” in VLDB 1986, 1986, pp. 149–159.

[61] E. Mansour, A. V. Sambra, S. Hawke, M. Zereba, S. Capadisli, A. Ghanem,
A. Aboulnaga, and T. Berners-Lee, “A demonstration of the solid platform for
social web applications,” in WWW 2016. ACM, 2016, pp. 223–226.

[62] J. P. McCrae, A. Abele, P. Buitelaar, R. Cyganiak, A. Jentzsch, V. Andryushechkin,
and J. Debattista, “The linked open data cloud.” [Online]. Available:
https://lod-cloud.net/

[63] T. Minier, H. Skaf-Molli, and P. Molli, “Sage: Web preemption for public SPARQL
query services,” in WWW 2019, 2019, pp. 1268–1278.

[64] G. Montoya, C. Aebeloe, and K. Hose, “Towards efficient query processing over
heterogeneous RDF interfaces,” in DeSemWeb@ISWC 2018, 2018.

[65] G. Montoya, I. Keles, and K. Hose, “Analysis of the effect of query shapes on
performance over LDF interfaces,” in ISWC 2019, 2019, pp. 51–66.

[66] ——, “Querying linked data: An experimental evaluation of state-of-the-art in-
terfaces,” CoRR, vol. abs/1912.08010, 2019.

[67] G. Montoya, H. Skaf-Molli, and K. Hose, “The odyssey approach for optimizing
federated SPARQL queries,” in ISWC 2017, pp. 471–489. [Online]. Available:
https://doi.org/10.1007/978-3-319-68288-4_28

[68] G. Montoya, M. Vidal, and M. Acosta, “A heuristic-based approach for planning
federated SPARQL queries,” in COLD 2012, 2012.

[69] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2009. [Online].
Available: http://www.bitcoin.org/bitcoin.pdf

[70] T. Neumann and G. Moerkotte, “Characteristic sets: Accurate cardinality estima-
tion for RDF queries with multiple joins,” in ICDE 2011, 2011, pp. 984–994.

[71] O. Papapetrou, W. Siberski, and W. Nejdl, “Cardinality estimation and dynamic
length adaptation for bloom filters,” Distributed Parallel Databases, vol. 28, no. 2-3,
pp. 119–156, 2010.

[72] J. Pérez, M. Arenas, and C. Gutiérrez, “Semantics and complexity of SPARQL,”
ACM Trans. Database Syst., vol. 34, no. 3, pp. 16:1–16:45, 2009.

76

https://lod-cloud.net/
https://doi.org/10.1007/978-3-319-68288-4_28
http://www.bitcoin.org/bitcoin.pdf

References

[73] K. Rabbani, M. Lissandrini, and K. Hose, “Optimizing SPARQL Queries using
Shape Statistics,” in EDBT 2021, 2021, pp. 505–510.

[74] ——, “SHACL and ShEx in the Wild: A Community Survey on Validating Shapes
Generation and Adoption,” in WWW’22 Companion, April 25–29, 2022, Virtual
Event, Lyon, France, 2022.

[75] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital signa-
tures and public-key cryptosystems,” Communications of the ACM, pp. 120–126,
1978.

[76] M. Saleem, M. I. Ali, A. Hogan, Q. Mehmood, and A. N. Ngomo, “LSQ: the
linked SPARQL queries dataset,” in ISWC 2015, 2015, pp. 261–269.

[77] M. Saleem, A. Hasnain, and A. N. Ngomo, “LargeRDFBench: A billion triples
benchmark for SPARQL endpoint federation,” vol. 48, 2018, pp. 85–125.

[78] M. Saleem, A. Potocki, T. Soru, O. Hartig, and A. N. Ngomo, “CostFed: Cost-
based query optimization for SPARQL endpoint federation,” in SEMANTiCS
2018, ser. Procedia Computer Science, vol. 137. Elsevier, 2018, pp. 163–174.

[79] A. Schwarte, P. Haase, K. Hose, R. Schenkel, and M. Schmidt, “FedX: Optimiza-
tion techniques for federated query processing on linked data,” in ISWC 2011,
2011, pp. 601–616.

[80] M. Sopek, P. Gradzki, W. Kosowski, D. Kuzinski, R. Trójczak, and R. Trypuz,
“Graphchain: A distributed database with explicit semantics and chained RDF
graphs,” in WWW Companion, 2018, pp. 1171–1178.

[81] C. Stadler, J. Lehmann, K. Höffner, and S. Auer, “Linkedgeodata: A core for a
web of spatial open data,” Semantic Web, vol. 3, no. 4, pp. 333–354, 2012.

[82] J. Umbrich, K. Hose, M. Karnstedt, A. Harth, and A. Polleres, “Comparing data
summaries for processing live queries over linked data,” World Wide Web, vol. 14,
no. 5-6, pp. 495–544, 2011.

[83] P. Vandenbussche, J. Umbrich, L. Matteis, A. Hogan, and C. B. Aranda, “SPAR-
QLES: monitoring public SPARQL endpoints,” Semantic Web, vol. 8, no. 6, pp.
1049–1065, 2017.

[84] R. Verborgh, M. V. Sande, O. Hartig, J. V. Herwegen, L. D. Vocht, B. D. Meester,
G. Haesendonck, and P. Colpaert, “Triple pattern fragments: A low-cost knowl-
edge graph interface for the web,” J. Web Semant., vol. 37-38, pp. 184–206, 2016.

[85] D. Vrandecic and M. Krötzsch, “Wikidata: a free collaborative knowledgebase,”
Commun. ACM, vol. 57, no. 10, pp. 78–85, 2014.

[86] Z. Zheng, S. Xie, H. Dai, X. Chen, and H. Wang, “Blockchain challenges and
opportunities: a survey,” IJWGS, vol. 14, no. 4, pp. 352–375, 2018.

[87] I. Zouaghi, A. Mesmoudi, J. Galicia, L. Bellatreche, and T. Aguili, “Query opti-
mization for large scale clustered RDF data,” in DOLAP@EDBT/ICDT 2020, 2020,
pp. 56–65.

77

References

78

Part II

Papers

79

Paper A

WiseKG: Balanced Access to Web Knowledge
Graphs

Amr Azzam, Christian Aebeloe, Gabriela Montoya, Ilkcan
Keles, Axel Polleres, Katja Hose

The paper has been published in the
Proceedings of the 30th The Web Conference (WWW 2021), pp. 1422-1434, 2021.

DOI: 10.1145/3442381.3449911

https://doi.org/10.1145/3442381.3449911

Abstract

SPARQL query services that balance processing between clients and servers become
more and more essential to handle the increasing load for open and decentralized
knowledge graphs on the Web. To this end, Linked Data Fragments (LDF) have intro-
duced a foundational framework that has sparked research exploring a spectrum of po-
tential Web querying interfaces in between server-side query processing via SPARQL
endpoints and client-side query processing of data dumps. Current proposals in be-
tween typically suffer from imbalanced load on either the client or the server. In this
paper, to the best of our knowledge, we present the first work that combines both
client-side and server-side query optimization techniques in a truly dynamic fash-
ion: we introduce WiseKG, a system that employs a cost model that dynamically
delegates the load between servers and clients by combining client-side processing
of shipped partitions with efficient server-side processing of star-shaped sub-queries,
based on current server workload and client capabilities. Our experiments show that
WiseKG significantly outperforms state-of-the-art solutions in terms of average total
query execution time per client, while at the same time decreasing network traffic and
increasing server-side availability.

© 2021 IW3C2 (International World Wide Web Conference Committee), pub-
lished under Creative Commons CC-BY 4.0 License. Reprinted, with permis-
sion from Amr Azzam, Christian Aebeloe, Gabriela Montoya, Ilkcan Keles,
Axel Polleres, and Katja Hose.
Azzam A., Aebeloe C., Montoya G., Keles I., Polleres A., Hose K. (2021)
WiseKG: Balanced Access to Web Knowledge Graphs. In: WWW 2021: Pro-
ceedings of the 30th The Web Conference.
https://doi.org/10.1145/3442381.3449911.
The layout has been revised.

1. Introduction

1 Introduction

The Semantic Web has over the past two decades seen a steady increase in
the amount of data published as Linked Open Data (LOD), forming a Web of
interconnected Knowledge Graphs (KG) [8]. Such KGs are accessible either
via public SPARQL endpoints, downloadable data dumps, KG partitions, or
dereferenceable URIs. The continued work on Linked Data is fueled by the
prospects of such interconnected KGs finally making the vision of an inter-
linked Web of Data a reality, and at the same time providing scalable query
processing to its users. However, as provisioning and maintaining access to
KGs is still a huge burden for data publishers [2, 26, 30], low availability of
public SPARQL endpoints [5, 29] remains one of the greatest obstacles to this
vision.

In order to tackle this bottleneck, various recent proposals emphasize
decentralization as a means to lift this burden off the data providers. On
one hand, several approaches have focused on the decentralization of the
data [2, 3, 9]. While these approaches increase the availability of the data,
their query processing capabilities are significantly less efficient than ap-
proaches with a powerful centralized server or approaches that ship full data
dumps to powerful clients for local processing. On the other hand, several re-
cent studies [1, 6, 12, 19, 20] have focused on the decentralization of the query
processing tasks. These approaches divide the processing burden between
servers and clients. Even though the servers might be powerful, they will
struggle with highly concurrent query loads. Therefore, the clients, which
might have free resources, will take some of the query processing tasks for
themselves rather than waiting for an overloaded server.

To this end, Triple Pattern Fragments (TPF) [30] reduces the server load
significantly by processing joins on the client-side while only processing indi-
vidual triple patterns on the server. To avoid processing non-selective triple
patterns on the server, the client locally processes joins using previously ob-
tained bindings in the request (one binding at a time), potentially leading to
smaller intermediate results. Yet, this kind of processing potentially leads to
a large number of server requests during query processing, creating a sig-
nificant overhead on the network traffic. As opposed to just providing triple
pattern execution on the server and full join capabilities on the client, two
approaches have recently been proposed to optimize SPARQL query pro-
cessing. Star Pattern Fragments (SPF) [1] exploits server-side evaluation of
star-shaped subqueries, while smart-KG [6] exploits client-side evaluation
of star-shaped subqueries by retrieving compressed KG partitions from the
server. However, the potential benefit of being able to dynamically switch
between strategies based on the current server load, caching, etc., remains
mostly unexploited by the current state of the art.

83

Paper A.

Hence, in this paper, we present WiseKG, a novel approach that combines
the strengths of the state of the art and further advances them by finding a
novel balance between server and client load. Based on the current load
on the server, WiseKG decides whether subqueries should be processed on
the client or on the server. The underlying cost model considers parameters
such as CPU load, estimated network transfer time, and currently available
resources at the client to determine where to process a particular part of
the query. By applying this cost model, servers can dynamically share the
query processing tasks with the clients, making better use of server resources
and retaining high performance even during high load. At the same time,
they achieve significantly lower query processing times and, by processing
subqueries locally on the server, avoid unnecessary data shipping during
periods with an overall low query processing load.

In summary, we make the following contributions:

• We present WiseKG, a novel system that dynamically shifts the query
processing load between client and server.

• WiseKG employs a cost model to minimize the total time consumed by
client-side and server-side components while considering the current
load on the server and the client.

• Our extensive evaluation using demanding query workloads on real-
world KGs as well as synthetic KGs up to 1 billion triples shows that
WiseKG significantly outperforms the state of the art.

The remaining sections are organized as follows. We cover background
in Section 2. Section 3 provides a motivating example. Section 4 gives
an overview of WiseKG, followed by a presentation of the server-side cost
model. Section 5 details SPARQL query processing on the client- and server-
side. Section 6 then presents an empirical evaluation of WiseKG. Last, we
conclude the paper and provide an outlook on future work in Section 7.

2 Background

RDF and SPARQL. We assume the readers’ familiarity with base technolo-
gies such as RDF and SPARQL, from which we borrow standard notation
such as RDF Turtle1 or algebra operators [25]; by subj(t), pred(t), obj(t) we
to refer to the components of a single RDF triple t ∈ G, such that these com-
ponents are RDF terms (i.e. URIs/IRIs, blank nodes, and literals). An RDF
knowledge graph (KG) G is a set of such triples, where subj(G), pred(G),
obj(G) denote subjects, predicates, and objects in G.

RDF KGs can be queried using the query language SPARQL, which relies
on matching graph patterns for easy access to RDF stores. The fundamental

1http://www.w3.org/TR/2014/REC-turtle-20140225/

84

http://www.w3.org/TR/2014/REC-turtle-20140225/

2. Background

graph pattern is a triple pattern tp, which is an RDF triple that permits vari-
ables from an infinite set V of variables, disjoint with the previously men-
tioned RDF terms.

A Basic Graph Pattern (BGP) is a set of triple patterns {tp1 . . . tpn} that can
be viewed as a conjunctive query; note that while semantically, order is not
relevant, we use sequences (. . .) instead of sets {. . .} in this paper to indicate
execution (left-linear) order in a query plan, i.e., for instance (tp1, . . . , tpn)
stands for a left-linear query execution plan (. . . (tp1 ./ tp2) ./ . . .) ./ tpn),
whereas non-left-linear plans will be denoted by respective explicit parenthe-
ses.

For any pattern P, we denote by var(P) its variables. The solutions (or,
answers, resp.) of a (query) pattern P over a graph G, denoted [[P]]G, are
given as sets Ω of bindings, i.e., mappings of the form, µ : var(P) → R to
the set R of RDF terms, such that G |= µ(P), i.e. µ(P) forms a (sub)graph
entailed by G. Two mappings µ1, µ2 are called compatible, denoted as µ1||µ2
if for any v ∈ dom(µ1) ∩ dom(µ2), µ1(v) = µ2(v), cf. [25] for details.

A star pattern sp = {tp1...tpk} is a BGP such that subj(tpi) = subj(tpj) for
all i, j ∈ {1, . . . , k}, i.e., the subjects of all triple patterns are the same. We
refer to k as the star-size of sp.

Note that each complex BGP P can be decomposed into a set of star pat-
terns S(P), called the (star-)decomposition of P as follows:

S(P) = {{t ∈ P | subj(t) = s} | s ∈ subj(P)}

Along the above-mentioned notation for query plans as sequences of pat-
terns being interpreted as left-linear query plans, we will analogously write
query plans that evaluate patterns per stars as permutations of S(P), e.g.,
the query plan shown in Fig. A.1b could be written as (sp1, sp2, tp6), in-
dicating an execution plan at the level of joining star patterns as follows:
((sp1 ./ sp2) ./ tp).

The primary focus of this paper is on evaluating BGPs as the fundamental
retrieval functionality of SPARQL. However, more complex patterns, such as
Union, Optional, and Filters, are covered by our proposed system, which im-
plements the full SPARQL specification – for a more complete formalization
we refer to [25].

2.1 Existing KG Interfaces

In this section, we define query interfaces for KGs following the principles
set by Linked Data Fragments (LDF) [30]. In essence, LDF characterizes APIs
that allow access to fragments of a KG G through (specific to a particular
instantiation of LDF) a limited range of allowed query patterns that a client
can submit to the server; often with the goal to limit server-side computation

85

Paper A.

cost and to enable effective HTTP caching, while leaving evaluations of more
complex patterns to the client. Variations of LDF also offer additional controls
to ship intermediate bindings alongside with queries or to control the “chunk
size” of results through specifying page sizes into which the results should
be batched. Note that in line with LDF [30] we also assume G to be blank
node-free.

In this paper, we omit details on LDF, such as metadata that is sent along
with query results and hypermedia controls. However, we borrow from the
original specification [30] and align formal definitions and notations to uni-
formly present different APIs:

Definition A.1 (adapted from [30])
An LDF API of a KG G accessible at an endpoint URI u2 is a tuple f = 〈s, Φ〉
with

• a selector function s(G, P, Ω) that defines how a fragment Γ ⊆ G, or
alternatively a set of fragments3 Γ∗ ⊆ 2G is constructed upon calls to
the API.

• a paging mechanism Φ(n, l, o) parameterized by n, l, o ∈ N0 denoting
maximum page size, limit, and offset.

The selector function s is parameterized by a graph G, pattern P, and a
set of bindings Ω4, where we define two variants, s(·) and s∗(·), which differ
essentially in terms of returning either a single graph or one subgraph per
solution µ ∈ [[P]]G:

s(G, P, Ω) = {t ∈ µ(P) | ∃µ ∈ [[P]]G : G |= µ(P) ∧ (∃µ′ ∈ Ω : µ′||µ)}

s∗(G, P, Ω) = {µ(P) | ∃µ ∈ [[P]]G : G |= µ(P) ∧ (∃µ′ ∈ Ω : µ′||µ)}

As we will see, all LDF APIs discussed in this section can indeed be ex-
pressed in terms of one of these two default selector functions.

The general paging mechanism Φ we use in this paper shall enable re-
turning the result in batches, e.g., for LDF use cases where Γ (or, resp., Γ∗)
would be very large or retrieving the whole result is not required or possi-
ble. Hence, we assume that Φ(n, l, o) simply defines a mechanism to divide Γ

2Via this base URI the API can be accessed and queried as well as additional controls can be
submitted.

3We note that this is a generalization from the original LDF proposal, which – technically –
could be realized, for instance, by returning RDF datasets in the sense of SPARQL (consisting
of a default graph and optionally a set of (named) graphs), or resp. a set of quads instead of
triples.

4We note that this strict definition of allowed parameters for s is not made in [30], but we will
rather use those here to describe the considered APIs uniformly.

86

2. Background

into partitions (or pages) {Γ1, . . . , Γk}, where for each page Γi it is guaranteed
that |Γi| < n (i.e., Γi does not contain more than n triples), and l and o, resp.
would allow to request the pages from Γo to Γo+l

5. We assume l to default to
l = ∞, o to default to o = 1, and finally n = ∞ signifying that whole graph Γ
should be returned.

In the following, we will explain different approaches on the LDF frame-
work’s spectrum, wrt. implications on server availability under high numbers
of concurrent clients:
Data Dumps offer the clients simple access to the entire KG. In order to
perform a SPARQL query, the clients have to download the whole KG and
run a local SPARQL engine themselves. This can be a very beneficial solution
for many clients with sufficient resources but puts high processing cost on
the client, plus the need for high amounts of data transfers whenever the KG
evolves/changes. Data dumps can be characterized in terms of LDF by

• the selector function s(·) as defined above,
• the only admissible form of P and Ω are P = {(?s, ?p, ?o)} and Ω =
{∅}, i.e., s(G, P, Ω) boils down to the identity function,

• Φ: the only admissible parameter for Φ(n, l, o) is Φ(∞, 1, 1) = {Γ1} =
{Γ}.

SPARQL endpoints provide efficient querying on the server side; the query
shipped to the server is typically evaluated in an efficient triple store such as
Virtuoso, Blazegraph, and Jena, etc., without work for the clients, who receive
the ready end result. This can be characterized in terms of LDF as follows:

• while SPARQL endpoints usually directly return sets of bindings, they
can also be viewed as a variant of s∗(·) by returning subgraphs of the
form µ(P)6,

• any pattern P is admissible;
• Ω = {∅}, unless VALUES patterns are considered, which could be

viewed as equivalent to binding restrictions a la LDF,
• Φ: while some SPARQL endpoints support other forms of paging, the

standard LIMIT and OFFSET operators for BPGs could be considered as
LIMIT l and OFFSET o such that n = |P|; however, note that subsequent
calls of SPARQL queries with consecutive OFFSETs are in general not
guaranteed to behave deterministically.

SaGe is – in essence – a SPARQL endpoint with the ability to interrupt

5As such l,o should be viewed synonmous SPARQL’s LIMIT and OFFSET modifiers.
6Deriving µ is straightforward since, given P, µ and µ(P) are in a trivial 1-to-1 correspon-

dence. We prefer this interpretation of the LDF metaphor to SPARQL endpoints over – as
suggested in a side note in [30] – relying on encoding result sets as RDF triples (such as us-
ing e.g. the informal RDF SPARQL result format from the SPARQL1.1 Test Case Structure,
cf. https://www.w3.org/2009/sparql/docs/tests/README.html) since the latter would not
return subgraph(s) of G.

87

https://www.w3.org/2009/sparql/docs/tests/README.html

Paper A.

queries under too much concurrent load on the server side [19]. That is,
in principle, we can view SaGe as a variant of SPARQL endpoints that, given
a query P whose execution exceeds a timeout τ, suspends it and only returns
a partial result {Γ1, . . . , Γo−1}, along with additional state information to the
client. The client can (with additional hypermedia controls using this state
information) deterministically continue exactly at offset o in a subsequent
call. Hence, in times of high query load, SaGe uses this strategy to suspend
clients to avoid starvation of others. We note that, while the SaGe server itself
is stateless, i.e., it does not store the intermediate states of the suspended
queries, it handles the overall query execution load incl. join processing for
BGPs.
Triple Pattern Fragment (TPF) [30] is an interface to enable live SPARQL
querying with high availability and scalability by restricting server capabili-
ties to only answer single triple pattern fragments and shifting processing of
more complex patterns to the client-side (with the expenses of a substantial
increase in the network traffic). In terms of the generic LDF framework, TPF
is the most straightforward “incarnation”, defined as:

• the selector function is s(·) as defined above,
• the only admissible form of P are triple patterns and Ω = {∅},
• Φ(n, l, o): allows results to be “batched” into chunks of n triples,

whereas limit l and offset o cannot be set explicitly in TPF.

Binding-Restricted Triple Pattern Fragments (brTPF) [12] is an extension
of TPF that reduces the network load through additionally permitting arbi-
trary Ω 6= ∅. This ensures fewer requests to the server plus faster query
processing. However, brTPF still potentially struggles with high numbers of
concurrent clients or queries with large intermediate results.
Star Pattern Fragments (SPF) [1] proposes to generalize brTPF from single
triples to handling star-shaped subqueries on the server. Similar to TPF, more
complex queries involving joins over stars or single triples are processed on
the client. Still, evaluating star-shaped subqueries directly on the server may
drastically reduce the number of requests made during query processing
while still maintaining a relatively low server load since star patterns can
be answered relatively efficiently by the server [25]. For processing joins
efficiently, analogously to brTPF, bindings can be shipped along with each
star-shaped subquery. SPF, as an instance of LDF, differs from brTPF with
respect to the restriction of the selector function and allowed patterns:

• sSPF(G, P, Ω) = s∗(G, P, Ω), i.e., s∗(·) is used to return results per pat-
tern solution,

• the only admissible form of P are star-shaped BGPs,
• Ω can be any set of bindings,
• Φ(n, l, o): as solutions are returned per pattern solution, n is fixed to

88

2. Background

the star pattern of size k but SPF also allows to paginate over solutions,
i.e., retrieving results in chunks of l (iterating over increasing offsets
o := o + l).

Experiments [1] show that SPF (compared to brTPF) can decrease the
number of requests made to the server and intermediate result sizes trans-
ferred to the client, maintaining a comparably low network load.
smart-KG [6] (SKG) is another alternative paradigm that combines TPF with
the idea to ship graph partitions per star-shaped patterns. To this end, the
server holds (compressed and queryable) partitions per common predicate
families of G, defined as follows:

Definition A.2 (Predicate family)
We define a predicate family F(s) wrt. to KG G as the set of predicates associ-
ated with subject s:

F(s) = {p | ∃o ∈ obj(G) : (s, p, o) ∈ G} (A.1)

We denote the set of families of a graph G as F(G) or F for simplicity whereby
F(G) = {F(x)|x ∈ subj(G)}.

Predicate families, also known as characteristic sets, were introduced in [23]
as an RDF query cardinality estimation method while SKG uses families as
a basis for inducing a graph partitioning of G, with one partition G f per
f ∈ F(G) [6].

We can interpret SKG as an LDF interface as follows:

• admissible patterns are defined by submitting a predicate family f ′ =
{p1, . . . pk}, which may be interpreted as a pattern

⋃k
i=1{(?S, pi, ?Pi)},

or resp., in SPARQL syntax, as {?S p1 ?P1; p2 ?P2; ...; pk ?Pk.},
• Ω = {∅} is the only admissible binding set, i.e., SKG does not consider

binding restrictions,
• the selector function may be viewed as a variation of s(·) as follows:

while the SKG server API returns a graph G f per family f ∈ F(G)
matching P, the union of all these graphs is defined as

sSKG(G, P, Ω) = {t ∈ G | ∃t′ ∈ s(G, P, Ω) : subj(t) = subj(t′)}

That is, while strictly speaking, indeed rather several partitions G f are
returned, sSKG(G, P, Ω) =

⋃
f⊇ f ′ G f defines the union of all these parti-

tions G f ⊆ G such that f ′ ⊆ f which are sent to the client,
• Φ: only n = ∞ is admissible, i.e., no paging is supported since the union

of all relevant partitions is returned – unlike SPF an over-estimation
representing all subgraphs relevant to a star-shaped subquery

An SKG client hence decomposes BGPs into families f ′ of star-shaped sub-
queries – on an abstract level, discarding variables or concrete bindings – and

89

Paper A.

fetches via this API the subgraphs G f (that are available in compressed form
on the server) matching f ′; single non-star triples in the BGP are retrieved via
TPF and joins between star-shaped subqueries, and single triple queries are
then computed on the client-side. Evaluations [6] show that this approach
is highly competitive for many concurrent clients due to its low server and
(due to partition compression also) network footprint. As for Φ, note that
it would not make sense to decompose family-based partitions into chunks
since chunking up the HDT-compressed partitions would require decompres-
sion.

2.2 RDF HDT Compression

It is worthwhile to also explain the HDT [10] binary compression format for
RDF datasets that is used “under the hood” in all of the previously mentioned
interfaces, namely (br)TPF, SaGe, SKG, and SPF, as well as in our novel ap-
proach presented in this paper. HDT offers efficient search and retrieval over
the compressed RDF graphs without the need for decompression and offer-
ing query relevant statistics directly in its metadata. The main compression
idea relies on ordering triples by SPO, grouping repetitive RDF terms. An
HDT file could be viewed as a compressed, directly queryable SPO-ordered
index. In addition, HDT provides a compressed binary utility index built
upon loading time covering OPS PSO to achieve a high performance for re-
solving any SPARQL triple pattern. TPF and SPF rely on an HDT of the
whole graph G to evaluate triple and star patterns on the server with a low
computation footprint, whereas SKG profits from the compression also low-
ering the network footprint when shipping family partitions G f .

3 Motivating Example

All thus far described KG APIs alone suffer from an imbalanced load on ei-
ther client-side (dumps, TPF, SKG) or server-side (SPARQL endpoints, SaGe,
SPF). In this paper, we therefore advocate that, based on decomposing BGPs
into star-shaped subqueries and characteristics of these subqueries (e.g., se-
lectivity and intermediate result cardinality estimation), we can optimally
distribute the query processing load between client and server. Hence, given
statistics as well as information about the current server workload and the
client’s capabilities, we can pick the best suited KG API.

In particular, the factors that our cost model considers are server load,
client computing resources, and the number/size of intermediate results to
be transferred over the network (in combination with available bandwidth),
since several sources [1, 6, 13, 21, 22] identified these as important dimensions
when accessing KGs.

90

4. WiseKG

To elaborate, let us consider query Q given in Figure A.1a. All triple
patterns of Q have quite large cardinalities, meaning that both single pattern
interfaces (TPF, brTPF) would need to send enormous numbers of requests to
the server and ship large intermediate results to the client when processing
the query.

For both star-based interfaces (SPF and SKG), the query would be de-
composed into two stars and a single triple pattern: sp1 = {tp1, tp2, tp3},
sp2 = {tp4, tp5}, and tp6. sp1 has 89,366 solution mappings, and sp2 has
600,349 solution mappings. Both, SKG and SPF would estimate the result
sizes of star patterns and, in essence, order the query execution plan accord-
ingly to (sp1, sp2, tp6), i.e., starting with sp1. SKG ships a partition containing
1,628,572 stars in total leading to excessive data transfer even though the par-
tition is HDT-compressed. SPF, on the other hand, only ships the 86,366 stars
that actually match sp1, resulting in less of a network overhead and faster
query processing. However, in order to process the join between sp1 and sp2,
SPF’s client join processor would batch the 89,366 bindings into groups of 30
bindings each, sending one request per batch, amounting to 2,979 requests.
This overhead could be conveniently mitigated by instead shipping the com-
pressed partition for sp2 and joining on the client: this example illustrates
how a combination of SPF’s server-side star evaluation with SKGs partition
shipping could outperform either approach alone. Moreover, note that in
case of a high server workload, the additional network overhead for transfer-
ring the partition for sp1 might still be affordable, compared to server-side
SPF processing of sp1 using the overloaded server.

select ∗ where {
?album dbo: artist ? artist . # tp1: 146,716 matches (sp1)
?album rdf:type dbo:Album . # tp2: 147,917 matches (sp1)
?album dbo:releaseDate ?date . # tp3: 212,290 matches (sp1)
? artist dbo:genre ?genre . # tp4: 576,000 matches (sp2)
? artist foaf :name ?name . # tp5: 4,146,579 matches (sp2)
?song dbo:writer ? artist . # tp6: 200,969 matches

}

(a) Show artists’ albums, genres, and the songs they
have written

tp1 tp2

tp3
tp4 tp5

tp6

SP1

SP2

SKG
SPF

(b) Query execution plan for
(spSPF

1 , spSKG
2 , tpSPF

6)

Fig. A.1: Example of processing a SPARQL query with WiseKG

4 WiseKG

In the spirit of the example presented in Section 3, WiseKG enables to lever-
age (i) the characteristics of the star-shaped subqueries as well as (ii) infor-
mation on the currently available client and server resources, to estimate the
cost of processing each star-shaped subquery on the client (using SKG) or

91

Paper A.

on the server (using SPF), – choosing the most efficient execution strategy
dynamically.

4.1 Overview

WiseKG employs a dynamic cost model to determine an annotated query plan:
in order to denote query execution plans (cf. Section 2) with particular inter-
faces to be used per subquery, we will use superscripts SPF and SKG, i.e.,
for our example the annotated plan Π = (spSPF

1 , spSKG
2 , tpSPF

6). In case of the
example in Figure A.1b this would mean that sp1 is evaluated via SPF on the
server, sp2 is executed using SKG on the client, and the resulting bindings
from joining both are given as input Ω to a call of tp6 executed again using
SPF on the server7.

Upon receiving a BGP P from the client, the WiseKG server will decom-
pose it into star-shaped subqueries, and use its cost-model to create an an-
notated query plan Π that is returned to the client, along with a timestamp
τ denoting plan expiry. The client then, in the order specified by the server,
executes Π using the APIs specified in the plan annotations. In case the ex-
ecution is not completed by τ, the client needs to request a new annotated
plan, which may look different – as mentioned before and illustrated in the
example, the choice of API per subquery taken by the server may depend on
its current load, as discussed in the following.

Formally, the WiseKG server API offers the following interface calls access
KG G:

• an SPF LDF API control SPF(P, Ω) returning sSPF(G, P, Ω) ,
• an SKG LDF API control SKG(P, Ω) returning sSKG(G, P, ∅)8,
• an execution plan interface Plan(P) returning a pair(ΠP, τ).

We will use the notation c(P, Ω) to denote that a (star-shaped) sub-pattern P
is executed by a control c ∈ {SPF, SKG} – in the spirit of LDF, we expect also
other (hypermedia) controls to be callable in addition to SPF and SKG in the
future. Further, in this paper we assume that the call to c(P, Ω) on the client
side is converted to a set of bindings through a function evalc(P, Ω) = Ω ./
[[P]]G. Note that, depending on whether the underlying selector function of
c(P, Ω) is already accepting bindings, directly returning Ω ./ [[P]]G (such as
for SPF) or only returning a graph of which [[P]]G can be computed and then
joined with Ω on the client (such as for SKG), evalc incurs more or less work
on the client side.

Plan(P) maps a BPG P to an annotated plan ΠP along with the expiry
timestamp τ = τC + ι, where τC corresponds to the current time, and ι is a

7Note that for triple patterns, SPF is equivalent to brTPF so we can use the SPF interface also
for single triple patterns.

8Note that SKG does not allow to ship bindings, cf. Section 2.

92

4. WiseKG

fixed time quantum per query9. ΠP is constructed from S(P) by (i) iden-
tifying the best join amongst stars based on cardinality estimations and (ii)
determining, based on factors such as the current load on the server and the
estimated network/processing cost, the best interface (SPF or SKG) per sub-
query. Before we explain (server and client) query processing in more detail
(cf. Section 5), we first present the server cost model, which is used to make
this latter choice.

4.2 Server-Side Cost Model

In this section, we present WiseKG’s server cost model used to determine the
choice between client-side evaluation using SKG or server-side evaluation
using SPF. The cost model is inspired by the classic R∗ optimizer [18] from
the field of distributed databases [18, 31]. In the R∗ model, the total time is
the sum of four time components (CPU processing, messaging, data transfer,
and I/O) that can be estimated for a query Q as:

cost(Q) = processing + Messaging + data transfer + I/O
Following the R* model, we consider, in our client-server architecture, the
following components to approximate the total time consumed by client and
server to process a star subquery: estimated number of CPU instructions
(#CPU), estimated number of I/O operations (#IO), as well as two communi-
cation cost components – estimated number of requests (#M) and estimated
number of transferred bytes (#BYT) over the network per query. WiseKG’s
cost model for a given star subquery is then defined as

cost(sp) = WCPU × (#CPU)︸ ︷︷ ︸
Processing

+WMSG × (#M)︸ ︷︷ ︸
Messaging

+ WBYT × (#BYT)︸ ︷︷ ︸
Data transfer

+WIO × (#IO)︸ ︷︷ ︸
I/O

(A.2)

where the weights WCPU , WMSG, WBYT , and WIO help estimating the time
required by the client and server hardware configuration to perform a CPU
instruction, the time required to send an (HTTP) request message from a
client to a server over the network, the time required to transfer one byte
from a server to a client over the network, as well as the time required for a
disk I/O operation. It is important to note that WiseKG’s server optimizer
is tailored to embed dynamic factors to reflect the current server load. These
weights are estimated as follows:

WCPU : We estimate time per CPU instruction as the inverse of the CPU’s
IPS (Instructions per second) rate, damped by the current CPU load in per-
cent10:

9Somewhat similar to/inspired by SAGE’s [19] query suspension timeouts.
10We estimate this current CPU load as the average percentage of CPUusage in the previous

93

Paper A.

WCPU =
1

IPS× (100%− CPUusage)

WMSG: The average time to transmit an HTTP request from a client to
the server. In our experiments and network setup, similar to SaGe’s experi-
ments [19], we assume as a constant value of WMSG = 50ms for all clients. In
a real world scenario, we would measure this delay based on an initial HTTP
request per client.

WBYT : We estimate WBYT by the conservative minimum between the avail-
able server bandwidth bwserv (which we estimate as the difference between
bandwidth of the server network card reduced by the average data transfer
over the network in the last 1 minute, again checking every second) and the
client bandwidth bwclient, which we estimate as 20Mb/sec in our setup, sim-
ilar to [6]. This way, WBYT takes into account the current network usage of
concurrent clients. In our experiments, .

WBYT =
1

Min(bwclient, bwserv)

WIO: We measure I/O in terms of loading chunks of 1MB from disk,
i.e., we estimate WIO as the time required to read 1MB to the memory. In
WiseKG, the I/O times differ per chosen API: for SPF, a single HDT file of
the entire graph G is used and mapped into memory while auxiliary bitmap
indexes remain in memory to help localize potential mapping solutions (us-
ing approx. 3% of the entire HDT file altogether [10]). Thus, the I/O time
accounts for transferring non-cached blocks that might contain the mapping
solutions to memory. In SKG, the I/O time is due to the server reading HDT
partitions from disk in order to ship those to the client; on the client side,
we assume processing continues in memory, thus not involving further I/O
operations.

We note that our experiments have shown that in fact I/O is a negligible
factor in our setup; for both SPF and SKG (we perform a respective exper-
iment with a stress-testing workload described in Section 6.1), we verified
that the amount and difference in I/O times in both approaches was dwarfed
by the communication costs. Therefore, we leave out this factor in our cost
estimation model (WIO = 0).

The final time cost estimates of client-side SKG evaluation based on
shipped partitions vs. server-side SPF evaluation of star patterns are given
in Definition A.3 and Definition A.4. For a query BGP P, these costs are
estimated for each star pattern sp ∈ S(P).

minute (checking every 1sec). Note that for our experiments we only compute this CPU usage
on the server side, i.e. for WCPUserv , whereas for WCPUclient we assume CPUusage = 0, i.e., full
availability of client resources.

94

4. WiseKG

Definition A.3 (Cost of SKG Star Pattern Evaluation)
Given a star pattern sp ∈ S(P) and a plan ΠP, as well as the set of families
Fsp = { f ∈ F(G) | f ⊇ pred(sp)} relevant for sp in G, the cost in time of
evaluating sp using SKG is estimated as follows:

costSKG(sp, Π) = WCPUclient × card(sp, Π)× it︸ ︷︷ ︸
#CPU

+WMSG × |Fsp|︸︷︷︸
#M

+

WBYT ×
(

∑
f∈Fsp

size(f)

︸ ︷︷ ︸
#BYT

)
+ WI/O ×

(
∑

f∈Fsp

size(f)

︸ ︷︷ ︸
#IO

)

Definition A.4 (Cost of SPF Star Pattern Evaluation)
Given sp, ΠP, and Fsp, the cost in time of evaluating sp using SPF is estimated
as follows:

costSPF(sp, Π) = WCPUserv × card(sp, Π)× it︸ ︷︷ ︸
#CPU

+

WMSG ×
card(sp, Π)

Φ(n)︸ ︷︷ ︸
#M

+

WBYT × card(sp, Π)× bt︸ ︷︷ ︸
#BYT

+WIO × size(G)︸ ︷︷ ︸
#IO

Definitions A.3 and A.4 use the following functions and variables:

• card(sp, Π) returns an estimated result cardinality for evaluating star
pattern sp using an estimation of the number of bindings for previously
evaluated star patterns in Π. This estimate (based on statistics about the
sizes of subgraphs per characteristic set) is described in [23].

• size(·) is either the size of an HDT file (plus index) for a partition cor-
responding to a family f ∈ F(G) or, for size(G) the size of the HDT file
for the entire graph G11.

• it is the number of CPU instructions needed to process each triple in the
result set. In general, we rely on HDT algorithmic costs which are sub-
linear and close to constant for most operations. [10]; we only measured
one millisecond (or at most a few milliseconds) in our experiments. We
therefore set this factor to it = 1. Different IPS rates in the server and
client are considered in the different weights: WCPUserv and WCPUclient .

• bt is the average number of bytes per triple in the result; we estimate
this factor by averaging the size of the triples in each family partition.

11Note that SPF relies on a single HDT for G whereas SKG only transfers the HDT files corre-
sponding to Fsp.

95

Paper A.

5 Query Processing

In this section, we detail how the WiseKG server and client work together to
process SPARQL queries. In particular, we describe how the query processing
is performed on the server side and on the client side.

5.1 Server-Side Query Processing

Since the server-side processing of star-shaped subqueries in SPF and SKG
APIs running on the server are explained in detail in [6] and [1], we mainly
focus on the creation of the annotated execution plan in this section: when
the WiseKG server receives a Plan(P) request for a BGP P, it creates a query
execution plan specific to P, which it returns along with the expiry timestamp
τ to the client for execution; the resp. algorithm to compute Plan(P) is shown
in Alg. 8.

Algorithm 8 Create an annotated query execution plan

Input: P = {tp1, tp2, . . . , tpn} // a BGP
Output: (Πp, τ) // an annotated plan and its expiry time

1: function Plan(P)
2: S← S(P)
3: Πp ← ()
4: while S 6= ∅ do
5: for sp ∈ S do
6: cntsp ← card(sp, Πp)
7: if cntsp = 0 then return ()

8: spi ← sp where sp ∈ S and cntsp ≤ cntsp′ for all sp′ ∈ S
9: if costSPF(spi, ΠP) ≤ costSKG(spi, ΠP) then

10: ΠP ← append(ΠP, (spSPF
i))

11: else
12: ΠP ← append(ΠP, (spSKG

i))

13: S← S \ {spi}
14: τ ← τC + ι
15: return (ΠP, τ)

The first step is to decompose the query into star-shaped subqueries (line
2). To create the execution plan, we find the star-subquery with the lowest
cardinality estimation (line 5-7) and add it to the plan; when we find a query
with an empty result (e.g. in case no matching family partition exists [6]), we
can stop since the final result will then also be empty. The star pattern with
the lowest cardinality estimation is selected first (line 8), thus overall in the

96

5. Query Processing

final plan, patterns are ordered by estimated cardinality.
Then, the estimated costs for SPF and SKG are compared in Line 10; de-

pending on the cost models from Section 4.2, each subquery is annotated
with the resp. control for evaluating the star pattern on the server, i.e., SPF
(line 10) or the client SKG (line 12). Here, the append function just appends
the annotated star pattern to the end of the plan. When there are no more
subqueries left in the star decomposition, the algorithm returns the plan (line
15) after computing the expiry timestamp (line 14).

For the query Q shown in Figure A.1a, this algorithm could compute the
execution plan in the join order visualized in Figure A.1b (unless the server
load is too high, in which case SP1 could also potentially be suggested to be
executed using SKG).

Finally, as a side note, we note that, based on the fact that not all family
partitions in SKG are necessarily materialized on the server – SKG does not
materialize HDT files over a certain partition cardinality threshold (for de-
tails, cf. [6, Section 4.1]); in such cases the concrete implementation of Alg. 8
defaults to SPF, i.e., server-side evaluation of the resp. star pattern, indepen-
dent of the cost.

5.2 Client-Side Query Processing

Processing queries on a WiseKG client relies on an approach similar to the
one presented in [1], which we adapt herein to accommodate for client-side
processing of HDT shipped family partitions. In the following, we describe
the basic ingredients that the client needs to process full SPARQL queries:
WiseKG is able to process full SPARQL queries including operators such as
UNION and OPTIONAL, FILTER, etc.,12 which are all evaluated on the client-side.
Herein, we only focus on the BGP evaluation part.

The general approach for processing BGPs P is as follows:

1. Retrieve the query execution plan and time quantum for P from the
server by calling Plan(P) = (ΠP, τ).

2. For each star pattern spc ∈ ΠP with control c ∈ {SPF, SKG} in ΠP and
solution mappings from previously evaluated operators Ω, iteratively
do the following:

(a) If τ < τC , i.e., the plan has expired, the client requests a new
execution plan/expiry based on the remainder of P that has not
yet been processed.

(b) Otherwise we call the interface c(sp, Ω) and convert it to a set of
bindings using evalc(sp, Ω), which as mentioned above, in the case
of c = SKG involves client-side evaluation of the star-shaped pat-

12with the exception of GRAPH query patterns, since HDT does not support named graphs.

97

Paper A.

tern on the shipped HDT, whereas SPF directly returns the result
bindings.

The exact algorithm implementing these steps in a recursive manner is shown
in Alg. 9.

Algorithm 9 Processing a Query Execution Plan

Input: Π = (spc1
1 , . . . , spcn

n) // an execution plan;
τ // expiry timestamp;
Ω′ // a set of bindings

Output: Ω // set of solution bindings
1: function evalPlan(Π, τ, Ω)
2: if τ < τC then
3: (Π, τ)← Plan(BGP(Π))

4: if Π = spc then
5: Ω← evalc(sp, Ω′)
6: else
7: Ω← evalPlan((spc1

1 , . . . , spcn−1
n−1), τ, Ω′)

8: Ω← evalPlan(spcn
n , τ, Ω)

9: return Ω

Line 2 checks whether the plan has not yet expired; in that case, the al-
gorithm calls Plan(Π) to reevaluate the plan on the server (line 3)13. The
way this is currently done can be understood as follows: assuming the orig-
inally requested plan is (spc1

1 . . . spci
i . . . spcn

n) and the client reaches τ at step
i. Then the client will restart calling Plan({spi, . . . spn}) receiving a new plan
Π{spi ,...spn} upon which it continues; obviously this could change the inter-
face choices per star for the remaining plan, based on the current server load
situation. Continuing on Alg. 9, in case the plan is associated with a single
star pattern sp (line 4), we call the control c ∈ {SPF, SKG} to retrieve the
output plan and obtain the output solution mappings (line 5). Otherwise, the
algorithm will make a recursive call for the left subtree (line 8) the resulting
bindings of which are handed over to the call of the right subtree (line 9).

6 Experimental Evaluation

In this section, we compare the performance of WiseKG with the state of the
art SPARQL query processing interfaces.

13Here, BGP(Π) denotes the corresponding (non-annotated) BGP for plan Π.

98

6. Experimental Evaluation

6.1 Experimental Setup

In this section, we describe the experimental setup, including the systems
we compare against, datasets, queries, and hardware and software configu-
rations.

Implementation details. We implemented both WiseKG client and server in
Java14 extending the TPF implementations15 so that we ensure comparabil-
ity and compatibility with the spectrum of Linked Data Fragment (LDF) ap-
proaches including TPF, SPF, and smart-KG. The WiseKG server relies on SPF
star pattern fragments for server-side processing of star-subqueries. Further-
more, the WiseKG server adopts the family generator component from smart-
KG [6] to generate, manage, and store the HDT files of the family-based
partitions. In our server-side cost model, we depend on a cross-platform op-
erating system and hardware information library for Java16 to retrieve system
information about clients and the server resources usage including network
and CPU usage. The WiseKG client implements a pipeline of nested iterators
similar to brTPF and SPF client implementations.

Configuration. To assess the performance of our system under different
loads, we perform experiments over eight configurations with 2i clients
(0 ≤ i ≤ 7) issuing queries concurrently for each configuration (up to 128
concurrent clients). Each concurrent client executes one query at a time, i.e.,
at most 128 queries are executed at the same time.

Datasets. We use three different sizes of the Waterloo SPARQL Diversity
Benchmark (WatDiv) [4] to test the scalability of our approach: 10M, 100M,
and 1B triples. In addition to these, we also use the real-world dataset DB-
pedia [16] (v.2015A). The characteristics of the evaluated RDF graphs are
described in Table A.1.

Table A.1: Characteristics of the used datasets

Dataset #triples #subjects #predicates #objects #families
watdiv10M 10,916,457 521,585 86 1,005,832 21,210
watdiv100M 108,997,714 5,212,385 86 9,753,266 37,392
watdiv1B 1,092,155,948 52,120,385 86 92,220,397 52,885
DBpedia 837,257,959 113,986,155 60,264 221,623,898 29,965

Queries. We consider three different query workloads for the WatDiv
datasets: (i) a basic testing workload named watdiv-btt that consists of
queries obtained from WatDiv basic testing templates17. Each client has a set

14https://github.com/WiseKG/WiseKG-Java
15https://github.com/LinkedDataFragments/Server.java
16https://github.com/oshi/oshi
17https://dsg.uwaterloo.ca/watdiv/basic-testing.shtml

99

https://github.com/WiseKG/WiseKG-Java
https://github.com/LinkedDataFragments/Server.java

Paper A.

of 20 queries including star queries (S), linear queries (L), snowflake queries
(F), and complex queries (C); and (ii) a diverse stress testing workload named
watdiv-sts that consists of queries obtained from the WatDiv stress-testing
suite [4]. Each client has a set of 154 non-overlapping queries. In addition
to these workloads, we randomly selected 16 queries from a real-world LSQ
query log [27]; plus, we included 12 queries used to evaluate smart-KG [6].

Compared Systems. To test the effectiveness of dynamically shifting star-
subquery processing between client-side and server-side based on the status
of server-side resources disregarding the cost model defined in Section 4.2,
we implemented a version of WiseKG named WiseKGheuristic that relies on
more straightforward heuristics. Initially, WiseKGheuristic executes all star
subqueries on the server side up to a predefined CPU usage threshold σ.
When the threshold is reached, WiseKGheuristic produces an execution plan
exclusively based on shipping family partitions. In addition, we evaluate
WiseKGcost, our main contribution, which is a version of WiseKG that relies
on the cost model described in Section 4.2. Note that we use the recom-
mended versions of both server and client for all the evaluated systems in-
cluding Star Pattern Fragment (SPF) [1], smart-KG [6], SaGe [19], and Triple
Pattern Fragments (TPF) [30].

Hardware configuration. We ran all 128 clients concurrently on a virtual ma-
chine with 128 2.5GHz vCPU cores, 64KB L1 cache, 512KB L2 cache, 8192KB
L3 cache, and 2TB main memory. To ensure an even distribution of the re-
sources between the clients, we limited each client (for all approaches) to run
with a single vCPU core and 15GB main memory. WiseKG and all the com-
pared system servers were run on the same server with 32 3GHz vCPU cores,
64KB L1 cache, 4096KB L2 cache, 16384KB L3 cache, and 128GB main mem-
ory. Clients and servers are located on the same 1 GBit network. In order to
emulate a more realistic bandwidth scenario, we limited the network speed
of each client to 20 MBit/sec.

Evaluation metrics.

• Timeouts: number of queries that exceed the timeout.
• Workload Completion Time: the total time required by a client to com-

plete a workload.
• Query Execution Time: the average time it takes to complete a query.
• Server CPU load: the average percentage of server CPU usage during

the execution of a query workload.
• Number of Requests made to the Server: the number of requests a

client sends to the server.
• Number of Transferred Bytes: the number of bytes transferred between

server and client, i.e., the sum of both directions.

100

6. Experimental Evaluation

Software configuration. Following the experiments performed in [1, 6, 19],
we used a timeout of 300 seconds, i.e., 5 minutes, for all approaches. That
is, after 5 minutes we suspend the query execution. The page size Φ(n) for
TPF, SPF, and WiseKG was set to n = 100 (as in [1, 30]) and the maximum
number of bindings attached to a request for SPF and WiseKG was set to
|Ω| = 30 as it was in [1]. In order to assess our approach against the others
using as similar as possible configurations, we set the time quantum ι to the
same value as the overall timeout for all systems, i.e., 5 minutes.18

6.2 Experimental Results

Due to space restrictions, this section focuses on the most important results.
All results, incl. additional experiments, details on the implementation and
configurations used in the experiments (datasets and queries) are available
online19.

(a) Number of Timeouts (b) Avg. Workload Time (c) Queries per minute

Fig. A.2: Number of timeouts, average workload time, and throughput for 128 clients over
watdiv10M, watdiv100M, and watdiv1B on watdiv-sts

System Performance Evaluation. In this part of the evaluation, we focus on
analyzing the behavior of the compared systems in the scenario of increasing
KG size with the highest number of concurrent clients (128 clients) using the
watdiv-sts workload. As shown in Figure A.2, WiseKGheuristic, the vanilla
version of WiseKG, performs significantly better than the state-of-the-art sys-
tems in terms of performance and scalability, not to mention WiseKGcost (just
WiseKG hereafter) has even surpassed WiseKGheuristic.

Figure A.2a shows that WiseKG produces no timeouts over the watdiv10M
and watdiv100M datasets for 128 concurrent clients. Moreover, even in the
case of watdiv1B, WiseKG only incurs 2% timeouts of the total workload

18In our current setup and evaluation covering widely used benchmarks in the area, the expiry
timestamp was hardly reached. While we already significantly outperform all state-of-existing
approaches, we still deem the addition of a plan expiry needed both conceptually (as the system
resources change dynamically over time and our model needs to consider the current “promises”
it made to clients) and useful for future workloads on larger knowledge graph.

19https://github.com/WiseKG/WiseKG-Experiments

101

https://github.com/WiseKG/WiseKG-Experiments

Paper A.

queries. In contrast, none of the compared systems was able to process all
queries with a 5-minute timeout, except SPF and SaGe on the watdiv10M
dataset. When queries are executed over the watdiv1B dataset, the percent-
ages of timeouts reach 13% and 21% for smart-KG and SPF, respectively. For
SaGe and TPF, the percentages of timeouts increase up to 55%. These re-
sults confirm the superior scalability of WiseKG compared to state-of-the-art
systems. These experiments show that even for a high number of clients,
WiseKG is able to handle large scale KGs.

Figure A.2b shows that the average workload completion time includ-
ing queries that timed out. WiseKG is up to 4 times faster than SPF and
smart-KG, and up to an order of magnitude faster than SaGe and TPF over
watdiv1B with a load of 128 concurrent clients. In addition, Figure A.2b
also shows that SPF and smart-KG have comparable average workload time.
smart-KG performs slightly better for watdiv100M and watdiv1B datasets.
This is not surprising since they similarly rely on star decomposition; SPF
executes the star subqueries on the server side while smart-KG ships the rele-
vant partitions for the subqueries and executes them on the client. Compared
to SPF and smart-KG, WiseKG provides a significant performance improve-
ment as a result of the proposed cost model that optimizes query processing
by leveraging the subqueries’ cardinality estimation as well as available client
and server resources to determine an efficient execution plan. To provide a
comprehensive evaluation, we also include TPF and SaGe in our experiments.
As shown in Figure A.2, our experiments confirm a previous study [6] that
SaGe performs far better than TPF for small datasets. However, when dataset
size increases and the number of concurrent clients is high, the difference be-
tween TPF and SaGe becomes less visible. Note that we did not include a
SPARQL endpoint (e.g Virtuoso) in our experiments, since several previous
studies [1, 6, 19, 30] have already shown that SPARQL endpoints are not able
to scale well with an increasing number of clients.

Fig. A.3: Execution time (in seconds) for 28 diverse queries over the dbpedia dataset.

We compare the performance of WiseKG to state-of-the-art interfaces con-
sidering real-world queries on DBpedia. Figure A.3 presents the execution
times of these 28 queries for all systems. The results confirm that WiseKG sig-

102

6. Experimental Evaluation

nificantly outperforms the compared systems for the real-world queries. Fig-
ure A.3 shows that TPF is the slowest or the second to slowest in all queries.
On the one hand, smart-KG suffers from excessive delays in queries that re-
quire non-materialized partitions such as Q2, Q4, Q8, Q12, Q15, Q19, Q21
and Q25 since, in this case, smart-KG depends on TPF in addition to queries
with high selectivity such as Q6, Q16, Q20, and Q26 as it is more resource-
efficient to process on the server-side. On the other hand, SPF has a robust
performance in most of the queries due to its efficient server-side star pattern
execution, except the queries with low selectivity such as Q24 and Q28 due
to the excessive transfer of intermediate results. Moreover, SaGe has worse
performance than WiseKG for the less selective queries with large interme-
diate results, such as Q7 and Q28, due to these queries putting more load
on the server and incurring more requests to the server. The queries where
SaGe has slightly better performance than WiseKG, such as Q2 and Q4, are
generally queries where the overhead of computing the execution plan for
WiseKG is a considerable part of the overall execution time (i.e, very simple
queries).

Finally, WiseKGheuristic is faster than WiseKG for the queries with execu-
tion time less than 0.1 seconds. This is because WiseKG has the overhead of
computing the best query plan.

(a) L1-L5 (b) S1-S7 (c) F1-F5 (d) C1-C3

Fig. A.4: Avg. execution time per client over watdiv100M for the watdiv-btt workload.

Performance evaluation on different query shapes. In this part of the eval-
uation, we analyze the effect of the query shapes on the performance of
the systems. We use queries of 4 different shapes including linear (L), star
(S), snowflake (F), and complex (C) queries. These queries are part of the
watdiv-btt workload and executed against watdiv100M. The watdiv-btt
queries were executed in a different (random) order on each client and the
results were recorded as the overall execution time per query shape averaged
across all clients. Figure A.4 shows the average query execution time for each
shape.

In compliance with the system performance analysis, WiseKG outper-
forms all state-of-the-art systems for all different query shapes. For the
L-workload, all systems have a similarly efficient performance since this
workload includes the simplest queries with a small diameter. As shown

103

Paper A.

in Fig. A.4b, SPF provides an excellent performance for S-workload – as ex-
pected since it is optimized for star queries with high selectivity. On the other
hand, smart-KG performs worse than SPF since it sends an entire partition
with unnecessary intermediate results for such queries. In general, SaGe

has an outstanding performance for all query shapes, especially for the F-
workload as shown in Fig. A.4c. This is due to the fact that the watdiv-btt
workload includes only 20 queries per client (i.e low query arrival rate) and
we use a medium-size watdiv-100M dataset for this experiment.

Fig. A.4d shows that the behavior of the compared systems dramatically
changes for the C-workload. For instance, WiseKG significantly outperforms
state-of-the-art interfaces, even SaGe in the single client configuration. SaGe

starts ahead of smart-KG up to 16 clients, then smart-KG performs better
with higher numbers of concurrent clients. SPF suffers excessive delays in
C1 since the query includes 3 stars that have intermediate results with high
cardinalities. For query C2, SaGe outperforms all the compared systems.
In contrast, smart-KG and TPF are significantly worse (both time out) than
SPF due to SPF’s better handling of triple patterns with large cardinalities by
shipping bindings along with star-shaped subquery requests. Interestingly,
although WiseKGheuristic times out in C2, WiseKG was able to efficiently per-
form the query with a slightly higher average time compared to SaGe. This is
due to the accurate estimations of the cost model. Finally, for C3, though SPF
and smart-KG are optimized for star queries, e.g., C3 is a single unbounded
star, WiseKG is up to three times faster with 128 clients.

(a) Avg. Workload Time (b) CPU Usage (c) Avg. requests per query (d) Data transfer/query

Fig. A.5: Impact of the cost model components on the performance and resources consumption
over watdiv100M

Impact of cost model components. We performed an experiment with
several different configurations of the cost model over watdiv100M on the
watdiv-sts workload in order to evaluate the impact of the cost model com-
ponents on WiseKG query performance and resource consumption. To mea-
sure the impact of the cost model components, we configured three different
versions of WiseKG including data transfer component only (CostD), data
transfer and messaging components (CostMD), and finally, a version with
processing, messaging, and data transfer components (CostPMD). For this
experiment, we used WiseKGheuristic as baseline. Figure A.5a shows that for

104

6. Experimental Evaluation

the configuration with 128 clients CostPMD improves the average workload
completion time (14 min) compared to CostD and CostMD (19min and 16min,
respectively). In addition, Figures A.5b and A.5c show that CostPMD requires
on average less CPU usage and number of requests than CostD and CostMD.
This is due to the fact that the CostPMD configuration includes the process-
ing component which significantly contributes to lowering the CPU load on
the server. Although CostD has the lowest transferred data compared to the
rest of the configurations, CostD is the slowest configuration. The reason for
this behavior is that it does not take into account the HTTP request latency,
which is an important factor to determine the incurred latency especially,
in subqueries that require high numbers of result pages. It is important to
note that all the configurations remain faster than WiseKGheuristic, and since
WiseKGheuristic is faster than all the state-of-the-art systems (Figure A.2), so
are all the configurations.

Moreover, to evaluate the impact of using characteristic set [23] as a cardi-
nality estimation method on the cost model components, we replaced the car-
dinality estimation function in the WiseKG configurations described earlier
with the true cardinality, creating the configurations ExactD, ExactDC, and
ExactPMD, respectively. Figures A.5b, A.5c, and A.5d show that ExactD and
ExactDC provide faster performance and better resource utilization compared
to their peers with cardinality estimation CostD and CostPMD. Figure A.5a
shows that the configurations with the true cardinality have a comparable
workload execution time (≈ 14min). This performance is similar to the per-
formance of CostPMD even though ExactPMD has a lower resource consump-
tion.

Finally, our experimental results show that relying on characteristic sets
as a cardinality estimation method provides a comparable performance to the
configurations with the true cardinality – demonstrating a very subtle impact
of the cardinality miss-estimates on the overall performance of WiseKG. We
plan to investigate diverse cardinality estimators as future work in order to
explore the impact of different cardinality estimation techniques on WiseKG
query execution time [17, 24].

Resource consumption. In this part of the evaluation, we focus on the server
resource usage including network and CPU consumption.

We report two main metrics to demonstrate the network traffic: the num-
ber of requests sent to the server (NRS) and the number of transferred bytes
between client and server (NTB). Figures A.6a and A.6b show the distribu-
tion of the number of requests to the server per query as well as the dis-
tribution of the number of transferred bytes per query, with 128 concurrent
clients on increasing KG sizes (watdiv10M, watdiv100M, and watdiv1B) for
the watdiv-sts workload. As expected, TPF incurs the highest number of
requests and the data transfer leading to a substantial increase in network

105

Paper A.

(a) No. requests to the server
for 128 clients over watdiv10M,
watdiv100M, and watdiv1B (log).

(b) Number of transferred bytes
for 128 clients over watdiv10M,
watdiv100M, and watdiv1B (log).

(c) Avg. Server CPU Usage (in
percentage) for increasing num-
bers of clients over watdiv1B.

Fig. A.6: Number of requests to the server and number of transferred bytes for 128 clients over
watdiv10M, watdiv100M, and watdiv1B, and CPU load for increasing numbers of clients over
watdiv1B on the watdiv-sts workload

load. Even though smart-KG relies on TPF to execute singular triple patterns
and star patterns with no materialized partition, smart-KG significantly re-
duces the number of requests compared to TPF since it only sends a single
request per star pattern. Figure A.6a also demonstrates that WiseKG requires
the lowest average number of requests among all systems due to three main
reasons: first, WiseKG potentially reduces the number of requests required
based on the communication component in the cost model which can be ob-
served in the difference between the number of requests CostD and CostDC
as shown in Figure A.5c; second, WiseKG, in contrast to smart-KG, ships
bindings along with the triple pattern requests (as presented in brTPF [12]
that requires fewer requests than TPF); third, WiseKG has an advantage over
SPF to require less requests in case of star patterns with low selectivity. Fig-
ure A.6b shows that SaGe incurs the least data transfer among all compared
systems since SaGe is essentially a SPARQL endpoint with a preemption
model that only transfers the final results. As expected, WiseKG incurs less
data transfer than TPF, smart-KG, and SPF. To be precise, WiseKG trans-
fers on average 5.5MB per query while SPF and smart-KG transfer 7MB and
13MB over watdiv100M dataset. WiseKG demands on average less intermedi-
ate results than SPF and smart-KG thanks to the cardinality estimation aware
cost model.

Figure A.6c presents the average server CPU usage per system when the
watdiv-sts workload is executed over the watdiv100M dataset. SPF and
SaGe consume more CPU on the server side. This is expected since SPF
processes star pattern queries on the server side and SaGe utilizes a SPARQL
endpoint that does all the work on the server side. As one can see from Fig-
ure A.6c, the CPU usage of these two interfaces approach the CPU processing
capabilities when the concurrent number of clients is set to 128. In contrast,
CPU consumption of smart-KG and TPF remain almost constant and quite
low; under 20% and 30%, respectively. This low consumption is inline with

106

7. Conclusions and Future Work

restricted capabilities of these servers: partition shipping in case of smart-KG
and triple pattern lookup in case of TPF. Figure A.6c shows that WiseKG’s
CPU usage is almost in the middle between SPF and smart-KG, where it
gradually increases up to 60% in the case of 128 concurrent clients, which
enables WiseKG to serve more queries given the current server capabilities
(Figure A.2a).

7 Conclusions and Future Work

We introduced WiseKG, a querying interface to efficiently access Web Knowl-
edge Graphs. We propose an efficient query processing approach under high
query loads by balancing SPARQL query execution load between servers and
clients. To this end, we have combined two Linked Data Fragments APIs
(SPF and smart-KG) that enable server-side and client-side processing of star-
shaped sub-patterns. Our dynamic cost model picks the best suited API per
sub-query based on the current server load, client capabilities, and estima-
tion of necessary data transfer between client and server (for intermediate
query results), and network bandwidth. Our experiments show that WiseKG
significantly outperforms state-of-the-art stand-alone LDF interfaces on high
demanding workloads, with increasing numbers of concurrent clients, with
increasing KG sizes, and on different query shapes. We show that WiseKG’s
cost model improves average workload completion (reducing the number of
timeouts) while also reducing resource consumption (including less CPU us-
age and network traffic) compared to existing interfaces.

In our future work, we plan to evaluate in more detail the influence of
different hardware setups and mixes of clients with differing computational
resources. We also, respectively, plan to expand our query optimizer to con-
sider further aspects, such as additional hardware parameters, parallelism,
network delays, etc. as well as to provide optimization support for addi-
tional types of queries incl. for instance aggregation [14, 15]. Moreover, we
plan to extend our implementation, which is currently implemented as a
standalone setup, into a framework that flexibly allows to integrate different
LDF APIs [20] and also other cost models. The recently introduced Comu-
nica [7, 28] platform could serve as a starting point for integration. While
our implementation covers also full SPARQL patterns (incl. UNION, OP-
TIONAL, FILTER, etc.) computed on the client side, the current approach is
not dealing with multiple (named) graphs and GRAPH queries. Looking into
extensions of HDT towards handling quads [11] could address this current
limitation.

107

References

References

[1] C. Aebeloe, I. Keles, G. Montoya, and K. Hose, “Star Pattern Fragments: Ac-
cessing Knowledge Graphs through Star Patterns,” CoRR, vol. abs/2002.09172,
2020.

[2] C. Aebeloe, G. Montoya, and K. Hose, “A decentralized architecture for sharing
and querying semantic data,” in ESWC 2019, 2019, pp. 3–18.

[3] ——, “Decentralized indexing over a network of RDF peers,” in ISWC 2019, 2019,
pp. 3–20.

[4] G. Aluç, O. Hartig, M. T. Özsu, and K. Daudjee, “Diversified stress testing of
RDF data management systems,” in ISWC 2014, 2014, pp. 197–212.

[5] C. Aranda, A. Hogan, J. Umbrich, and P. Vandenbussche, “SPARQL web-
querying infrastructure: Ready for action?” in ISWC 2013, 2013, pp. 277–293.

[6] A. Azzam, J. D. Fernández, M. Acosta, M. Beno, and A. Polleres, “SMART-KG:
hybrid shipping for SPARQL querying on the web,” in WWW 2020, 2020, pp.
984–994.

[7] A. Azzam, R. Taelman, and A. Polleres, “Towards cost-model-based query exe-
cution over hybrid linked data fragments interfaces,” in ESWC 2020, 2020, pp.
9–12.

[8] P. A. Bonatti, S. Decker, A. Polleres, and V. Presutti, “Knowledge Graphs: New
Directions for Knowledge Representation on the Semantic Web (Dagstuhl Semi-
nar 18371),” Dagstuhl, vol. 8, no. 9, pp. 29–111, 2019.

[9] M. Cai and M. R. Frank, “RDFPeers: a scalable distributed RDF repository based
on a structured peer-to-peer network,” in WWW 2004, 2004, pp. 650–657.

[10] J. D. Fernández, M. A. Martínez-Prieto, C. Gutiérrez, A. Polleres, and M. Arias,
“Binary RDF representation for publication and exchange (HDT),” J. Web Se-
mant., vol. 19, pp. 22–41, 2013.

[11] J. D. Fernández, M. A. Martínez-Prieto, A. Polleres, and J. Reindorf, “HDTQ:
managing RDF datasets in compressed space,” in ESWC 2018, 2018, pp. 191–208.

[12] O. Hartig and C. B. Aranda, “Bindings-restricted triple pattern fragments,” in
ODBASE 2016, 2016, pp. 762–779.

[13] L. Heling and M. Acosta, “Cost- and robustness-based query optimization for
linked data fragments,” in ISWC 2020, 2020, pp. 238–257.

[14] D. Ibragimov, K. Hose, T. Pedersen, and E. Zimányi, “Optimizing Aggregate
SPARQL Queries Using Materialized RDF Views,” in ISWC 2016, 2016, pp. 341–
359.

[15] D. Ibragimov, K. Hose, T. B. Pedersen, and E. Zimányi, “Processing Aggregate
Queries in a Federation of SPARQL Endpoints,” in ESWC 2015, 2015, pp. 269–
285.

[16] J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kontokostas, P. Mendes, S. Hell-
mann, M. Morsey, P. Kleef, S. Auer, and C. Bizer, “DBpedia - A large-scale, mul-
tilingual knowledge base extracted from wikipedia,” Semantic Web, vol. 6, no. 2,
pp. 167–195, 2015.

108

References

[17] V. Leis, A. Gubichev, A. Mirchev, P. A. Boncz, A. Kemper, and T. Neumann,
“How good are query optimizers, really?” PVLDB, vol. 9, no. 3, pp. 204–215,
2015.

[18] L. F. Mackert and G. M. Lohman, “R* optimizer validation and performance
evaluation for distributed queries,” in VLDB 1986, 1986, pp. 149–159.

[19] T. Minier, H. Skaf-Molli, and P. Molli, “Sage: Web preemption for public SPARQL
query services,” in WWW 2019, 2019, pp. 1268–1278.

[20] G. Montoya, C. Aebeloe, and K. Hose, “Towards Efficient Query Processing over
Heterogeneous RDF Interfaces,” in DeSemWeb@ISWC 2018, 2018.

[21] G. Montoya, I. Keles, and K. Hose, “Analysis of the effect of query shapes on
performance over LDF interfaces,” in QuWeDa@ISWC 2019, 2019, pp. 51–66.

[22] G. Montoya, M. Vidal, Ó. Corcho, E. Ruckhaus, and C. B. Aranda, “Benchmark-
ing Federated SPARQL Query Engines: Are Existing Testbeds Enough?” in ISWC
2012, 2012, pp. 313–324.

[23] T. Neumann and G. Moerkotte, “Characteristic sets: Accurate cardinality estima-
tion for RDF queries with multiple joins,” in ICDE 2011, 2011, pp. 984–994.

[24] Y. Park, S. Ko, S. S. Bhowmick, K. Kim, K. Hong, and W.-S. Han, “G-CARE: A
framework for performance benchmarking of cardinality estimation techniques
for subgraph matching,” in SIGMOD 2020, 2020, pp. 1099–1114.

[25] J. Pérez, M. Arenas, and C. Gutiérrez, “Semantics and complexity of SPARQL,”
ACM Trans. Database Syst., vol. 34, no. 3, pp. 16:1–16:45, 2009.

[26] A. Polleres, M. R. Kamdar, J. D. Fernández, T. Tudorache, and M. A. Musen, “A
more decentralized vision for linked data,” in DeSemWeb@ISWC 2018, 2018.

[27] M. Saleem, M. I. Ali, A. Hogan, Q. Mehmood, and A. N. Ngomo, “LSQ: the
linked SPARQL queries dataset,” in ISWC 2015, 2015, pp. 261–269.

[28] R. Taelman, J. V. Herwegen, M. V. Sande, and R. Verborgh, “Comunica: A mod-
ular SPARQL query engine for the web,” in ISWC 2018, 2018, pp. 239–255.

[29] P. Vandenbussche, J. Umbrich, L. Matteis, A. Hogan, and C. Aranda, “SPAR-
QLES: monitoring public SPARQL endpoints,” Semantic Web, vol. 8, no. 6, pp.
1049–1065, 2017.

[30] R. Verborgh, M. V. Sande, O. Hartig, J. V. Herwegen, L. D. Vocht, B. D. Meester,
G. Haesendonck, and P. Colpaert, “Triple Pattern Fragments: A low-cost knowl-
edge graph interface for the Web,” J. Web Semant., vol. 37-38, pp. 184–206, 2016.

[31] I. Zouaghi, A. Mesmoudi, J. Galicia, L. Bellatreche, and T. Aguili, “Query opti-
mization for large scale clustered RDF data,” in DOLAP@EDBT/ICDT 2020, 2020,
pp. 56–65.

109

References

110

Paper B

A Decentralized Architecture for Sharing and
Querying Semantic Data

Christian Aebeloe, Gabriela Montoya, Katja Hose

The paper has been published in the
Proceedings of the 16th Extended Semantic Web Conference (ESWC 2019),

pp. 3-18, 2019. DOI: 10.1007/978-3-030-21348-0_1

https://doi.org/10.1007/978-3-030-21348-0_1

Abstract

Although the Semantic Web in principle provides access to a vast Web of interlinked
data, the full potential remains mostly unexploited. One of the main reasons for this
is the fact that the architecture of the current Web of Data relies on a set of servers
providing access to the data. These servers represent bottlenecks and single points of
failure that result in instability and unavailability of data at certain points in time. In
this paper, we therefore propose a decentralized architecture (Piqnic) for sharing and
querying semantic data. By combining both client and server functionality at each
participating node, and introducing replication, Piqnic avoids bottlenecks and keeps
datasets available and queryable although the original source might not be available.
Our experimental results, using a standard benchmark of real datasets, show that
Piqnic can serve as an architecture for sharing and querying semantic data, even in
the presence of node failures.

© Springer Nature Switzerland AG 2019, published under Creative Com-
mons CC-BY 4.0 License. Reprinted, with permission from Christian Aebe-
loe, Gabriela Montoya, and Katja Hose.
Aebeloe C., Montoya G., Hose K. (2019) A Decentralized Architecture for
Sharing and Querying Semantic Data. In: Hitzler P. et al. (eds) The Semantic
Web. ESWC 2019. Lecture Notes in Computer Science, vol 11503. Springer,
Cham.
https://doi.org/10.1007/978-3-030-21348-0_1
The layout has been revised.

1. Introduction

1 Introduction

More and more datasets are being published in RDF format. These datasets
cover a broad range of topics, such as geography, cross-domain knowledge,
government, life sciences, etc. Access to these datasets is offered in different
ways, e.g., they can be downloaded as data dumps, they can be queried via
SPARQL endpoints, or they can be “browsed” via dereferencing URIs.

Once published, however, we are often in a situation where the datasets,
or rather the interfaces to access them, are not available when needed. In
fact, studies found that over half of the public SPARQL endpoints have less
than 95% availability [2]. The reason often simply is that maintaining these
interfaces requires considerable resources from the data providers. In prac-
tice, this means that the data necessary to answer a certain query might not
be available at a specific time so that the answer might be incomplete – or in
general, the same query might have different answers at different points in
time.

Hence, despite the great potential of the Semantic Web, accessing RDF
datasets today entirely relies on the services offered by the data providers,
e.g., web interfaces with downloadable datasets, SPARQL endpoints, or
dereferenceable URIs. Especially SPARQL endpoints often require huge
amounts of resources for query processing, which further increases the bur-
den on the data providers [9, 22]. Despite recent efforts that proposed to
implement monetary incentives to solve this problem [8], we argue that we
can achieve availability by applying decentralization instead of relying on
the availability of single servers and their functionality. This not only better
reflects the nature of the World Wide Web but also avoids dependencies and
single points of failure.

In this paper, we therefore propose Piqnic (a P2p clIent for Query
processiNg over semantIC data). Piqnic introduces decentralization as a
key concept by building on the Peer-to-Peer (P2P) paradigm and replica-
tion. Piqnic functions as a P2P network of homogeneous nodes that can be
queried by any node in the network. By combining both client and server
functionality at each peer and introducing replicas, we avoid single points
of failure as (sub)queries can be processed by multiple alternative peers and
the data is still available even though the original source is not. In doing so,
Piqnic offers a solution to one of the main problems that the current Seman-
tic Web is suffering from: availability of datasets [2]. It is therefore not our
main goal to enable load sharing among nodes to enhance query process-
ing performance and outperform existing systems. In summary, this paper
makes the following contributions:

• A P2P-based architecture for publishing and querying RDF data
(Piqnic)

113

Paper B.

• A customizable scheme for replicating and fragmenting datasets
• Query processing strategies in Piqnic networks with replicated and

fragmented data
• An extensive evaluation of the proposed approaches

This paper is structured as follows. While Section 2 discusses related
work, Section 3 presents the Piqnic framework and its main concepts. Sec-
tion 4 then describes how to process queries in Piqnic. Section 5 then
presents the results of our evaluation and Section 6 concludes the paper with
a summary and an outlook to future work.

2 Related Work

Recent developments in privacy and personal data on the social Web has in-
spired interesting new applications and use cases. The Solid project [14], for
instance, uses a decentralized architecture and Semantic Web technologies to
enable personal online datastores (pod) to be stored separately from appli-
cations. In fact, users decide themselves where a pod is hosted, giving them
control over their data. While the idea of storing Linked Data in multiple lo-
cations is central to our work, Solid focuses on privacy protection of personal
data whereas we focus on the availability of open datasets.

Federated query processing over SPARQL endpoints, e.g., [19], is a widely
used approach to query over distributed Linked Open Data. To lower the
computational load at the servers hosting the SPARQL endpoints, recent pro-
posals, such as Triple Pattern Fragments (TPF) [22] and Bindings-Restricted
Triple Pattern Fragments (brTPF) [9], propose to shift part of the load to the
client issuing the query [18]. This, in turn, increases the availability of the
servers. Nevertheless, TPF/brTPF servers still represent a single point of fail-
ure; if the server is not available, the hosted datasets are not available either,
which is the problem we are targeting in this paper.

To further share the computational load in a TPF setting, processing
SPARQL queries in networks of browsers has been proposed [6, 7, 17]. The
key principle is to share the computational load among a set of clients based
on the functionality offered by their browsers and caching of recently used
datasets using a collaborative caching system based on overlay networks [5].
However, browsers are relatively unstable nodes, with very limited process-
ing power and storage capacity, which naturally limits the general applica-
bility. In contrast, we aim at a relatively stable network with more powerful
nodes and datasets split into smaller fragments that are replicated.

Replication of triple pattern fragments has been considered in [16], where
fragments are replicated at multiple servers to allow for balancing the server
loads and providing fault tolerance. While [16] considers a fixed set of servers

114

3. PIQNIC

that provide access to a fixed set of replicated fragments, and clients that are
aware of the allocation of fragments to servers, Piqnic has a fault-tolerant
P2P-based architecture where clients also serve replicated fragments to other
clients, which naturally allows for handling dynamic behavior of the clients.

P2P systems in general vary in their level of decentralization. Structured
P2P systems organize their peers in an overlay network using, for instance,
Distributed Hash Tables (DHTs) to decide were to store and find particular
data items. Some of these systems were proposed to support RDF data [3,
11, 12]. The key principle of these systems is that the connections between
peers, i.e., the layout of the network, and the data placement is imposed on
the participating peers, restricting their autonomy. As a consequence, such
systems are vulnerable to situations where many peers leave and join the
network as this might require major reorganizations of structure and data
placement in the network.

Unstructured P2P systems, on the other hand, retain a high degree of
peer autonomy, i.e., there is no globally enforced network layout or data
placement. The basic way of processing queries in such networks is flooding,
i.e, a request is flooded through the network along the connections between
neighboring peers until an answer has been found. These systems are there-
fore more reliable with respect to dynamic behavior, i.e., nodes joining and
leaving the network. The prospects of unstructured P2P techniques as a de-
centralized architecture for Linked Data have also been recognized in recent
vision papers [15, 20]. While these papers provide interesting insights in the
benefits of decentralization and replication, we propose a concrete system
and implementation for query processing over an unstructured network of
P2P nodes.

3 PIQNIC

Piqnic builds upon basic principles of P2P systems; a client software is run-
ning at each participating peer that (i) provides access to a network of clients
without central authority and (ii) offers access to datasets stored locally at
other nodes in the network. To minimize local space consumption at a node,
we use HDT [4] files. As common in P2P networks, nodes do not have global
knowledge of all the peers in the network and their connections. Hence,
Piqnic nodes always maintain a partial view of the entire network. This par-
tial view consists of (i) nodes with related data, i.e. data that uses common
URI/IRIs, to ensure that queries over multiple datasets can be completed
efficiently and (ii) random neighbors to ensure connectivity of the entire net-
work.

Before going into details on query processing (Section 4), this section first
introduces the notion of datasets and data fragments (Section 3.1). After-

115

Paper B.

wards, Section 3.2 outlines Piqnic’s network architecture. Last, Section 3.3
describes the dynamic behavior of Piqnic nodes, maintaining a partial view
over the network, and data replication.

3.1 Data Fragmentation

Since RDF datasets can be quite large (e.g., YAGO3 [13] with over 100 million
triples), replicating entire RDF datasets at another node might not always be
possible or useful. Hence, inspired by the TPF style of accessing data, we
propose a customizable approach for fragmenting large datasets.

Consider the infinite and disjoint sets U (the set of all URIs/IRIs), B (the
set of all blank nodes), L (the set of all literals), and V (the set of all variables).
An RDF triple t is a triple s.t. t ∈ (U∪ B)×U× (U∪ B∪ L), and a triple pattern
tp is a triple s.t. tp ∈ (U ∪ B∪V)× (U ∪V)× (U ∪ B∪ L∪V). A knowledge
graph G is a finite set of RDF triples.

Definition B.1 (Fragment)
Let GN be a knowledge graph that includes all RDF triples in a Piqnic net-
work. A fragment f is a 4-tuple f = 〈T, N, u, i〉 with the following elements:

• T is a finite set of RDF triples, and T ⊆ GN ,
• N is a set of Piqnic nodes storing the fragment,
• u is a URI/IRI that identifies the fragment, and
• i is an identification function that determines whether the fragment

contains triples matching a given triple pattern.

Identification functions are mainly used during query processing to deter-
mine whether or not a triple pattern should be evaluated over a fragment.

Following the principle that a data provider uploads a dataset using a
local Piqnic node, we say that datasets are “owned” by a specific node. The
owner node manages the allocation of replicas to other nodes in the network
(details in Section 3.3). We then define a dataset as a set of fragments:

Definition B.2 (Dataset)
A dataset D is a triple D = 〈F, u, o〉 with the following elements:

• F is a set of fragments,
• u is a URI/IRI that identifies the dataset, and
• o is an identifier of the “owner” node, i.e., the node that uploaded F to

the network.

A fragmentation function F is then defined as follows.

Definition B.3 (Fragmentation function)
A fragmentation function F is a function that, when applied to a knowledge
graph G, creates a set of fragments F = F (G), i.e., F (G) : G 7→ 2G .

116

3. PIQNIC

Concrete fragmentation functions can result in different levels of granularity.
For example, a fragmentation function FC that results in FC(G) = {G} is a
very coarse-granular fragmentation function that does not split up the orig-
inal knowledge graph G. On the other hand, a fragmentation function FF
that results in FF(G) = {{t} | t ∈ G}, creates a separate fragment for each
individual triple and is very fine-granular. Piqnic uses a predicate-based
fragmentation function FP as defined in Definition B.4.

Definition B.4 (Predicate-based fragmentation function)
Let pt denote the predicate of a triple t. A predicate-based fragmentation
function FP(G) = {Fp | ∃t ∈ G : pt = p ∧ (∀t′ ∈ G)[pt′ = p] : t′ ∈ Fp} defines
one fragment for each unique predicate in the knowledge graph G.

Naturally, more complex fragmentation functions can be defined. However,
in its current implementation Piqnic uses FP because it has a straightforward
implementation and is guaranteed to generate pairwise disjoint fragments as
each triple has exactly one predicate, i.e., for any two fragments fi, f j ∈ FP(G)
it holds that fi ∩ f j = ∅.

Example B.1 (Fragmentation)
Consider example knowledge graph GE in Table B.1a. Applying FP to GE
results in the set of fragments f1, f2, f3 f4, and f5 shown in Table B.1b; one
fragment for each unique predicate p1, p2, p3, p4, and p5.

Table B.1: Applying FP to a knowledge graph GE

(a) Knowledge graph GE

Knowledge graph GE
〈a p1 b〉 〈a p2 c〉 〈a p3 d〉
〈b p2 e〉 〈b p1 d〉 〈b p3 d〉
〈c p3 d〉 〈d p1 c〉 〈c p2 a〉
〈f p4 d〉 〈d p4 f〉 〈e p5 g〉

(b) FP(GE)

f1 f2 f3 f4 f5
〈a p1 b〉 〈a p2 c〉 〈a p3 d〉 〈f p4 d〉 〈e p5 g〉
〈b p1 d〉 〈b p2 e〉 〈b p3 d〉 〈d p4 f〉
〈d p1 c〉 〈c p2 a〉 〈c p3 d〉

117

Paper B.

3.2 Network Architecture

A Piqnic network consists of a set of interconnected nodes, each maintaining
a local data/triple store to manage a set of fragments. A node is defined as
follows.

Definition B.5 (Node)
A node n is a triple n = 〈Γ, ∆, N〉 where

• Γ is the set of fragments located on the node,
• ∆ is a set of datasets owned by the node, and
• N is a set of so-called neighbor nodes in the network.

Each node n maintains a set n.N of neighbor nodes representing a partial
view over the network. In order to ensure that (i) related data is close in the
network to increase the completeness of query answers, and (ii) all data and
nodes can be reached (connectivity of the network), n.N contains nodes with
related fragments as well as random nodes in the network.

To account for changes in the network, Piqnic uses periodic shuffles [23]
between pairs of nodes. A node n selects a random node n′ in n.N, which
it sends a subset of its neighbors, removing them from its own partial view.
This subset consists of the least related neighbors based on the “joinability”
of the nodes’ fragments.

Definition B.6 (Fragment Joinability)
Let st and ot be the subject and object of triple t, GN the knowledge graph
containing all RDF triples in a network, and f1, f2 ∈ FP(GN). f1 and f2 are
said to be “joinable”, denoted f1 ⊥⊥ f2, iff for at least one triple t1 ∈ f1, there
exists a triple t2 ∈ f2, s.t. {st1 , ot1} ∩ {st2 , ot2} 6= ∅.

We observe that the binary relation ⊥⊥ is symmetric and reflexive. It is sym-
metric since if t1 has a subject or object in common with t2, t2 has the same
subject or object in common with t1. It is reflexive since any triple t has its
own subjects and objects in common with itself.

Fragment joinability only considers if two fragments are joinable, and
does not consider the rate of overlap between them. This is to avoid favoring
large fragments where the absolute number of joint subjects and objects is
likely to be higher than for small fragments because of the higher number of
triples. The relative number of overlapping subjects and objects is not a good
alternative either as fragments with a small overlap might still be important
to achieve complete query results.

Based on Definition B.6, we can now define a relatedness metric to rank a
node’s neighbors. We consider only non-identical joinable fragments. Hence,
given a node n the goal is to select the k least related nodes R, where R ⊆ n.N
s.t. we minimize the objective function in Equation B.1.

118

3. PIQNIC

Rel(n) = arg min
R⊆n.N

∑
ni∈R

|Join(n, ni)|
|n.Γ| s.t. |R| = k (B.1)

where Join(n, ni), as defined in Equation B.2, is the set of fragments in n that
are joinable with one of node ni’s fragments that does not have the same
fragment identifier.

Join(n1, n2) = { f1 ∈ n1.Γ | ∃ f2 ∈ n2.Γ : f1 ⊥⊥ f2 ∧ f1.u 6= f2.u} (B.2)

Example B.2 (Neighbor Ranking)
Consider the fragments in Table B.1b and their assignment to the 4 nodes
in Figure B.1a. Note that f1, f2, and f3 are pairwise joinable. We observe
that f4 ⊥⊥ f1, f4 ⊥⊥ f3, and f5 ⊥⊥ f2. Assuming we would like to select the
least related neighbor of n4 to shuffle, we apply Equation B.1 and obtain:

• n1: Since f4 ⊥⊥ f1 and f5 ⊥⊥ f2, then r1 = 2/2 = 1
• n2: Since f4 ⊥⊥ f3 and f5 ⊥⊥ f2, then r2 = 2/2 = 1
• n3: Since f4 ⊥⊥ f1, f4 ⊥⊥ f3, f5 6⊥⊥ f1 and f5 6⊥⊥ f3, then r3 = 1/2 = 0.5

This results in n3 being the least related neighbor, and as such it is removed
after the shuffle and replaced by a new neighbor n5 (Figure B.1b).

To compute relatedness in a running system, the nodes exchange the sets
of objects and subjects in a compressed representation, such as bitvectors,
which can be stored locally for future use.

n1

f1, f2

n2

f2, f3

n3

f1, f3

n4

f4, f5

f4 ⊥⊥
f1 , f5 ⊥⊥

f2

f4
⊥⊥

f3 ,f5
⊥⊥

f2f4 ⊥⊥ f1

(a) Joinable fragments at n4’s neighbors
(n4.N)

n1

f1, f2

n2

f2, f3

n5

f2, f4

n4

f4, f5

(b) Result of shuffling n4’s least related
neighbors (n4.N)

Fig. B.1: Computing the relatedness of n4’s neighbors and shuffling. Solid arrows denote a connec-
tion to a neighbor in list n4.N, and dashed arrows neighbors after a shuffle.

119

Paper B.

3.3 Replication of Datasets

Any node participating in a Piqnic network can upload a dataset and become
its owner node. When uploading a knowledge graph G, a fragmentation
function (FP(G)) is applied to obtain a set of fragments. This set of fragments
is then used to create a dataset D.

Allocation of fragments in a Piqnic network follows a chaining approach,
i.e., the owner node passes the fragment on to one of its neighbors, which
inserts the fragment into its own local data store and forwards the fragment
to one of its neighbors. This continues for a certain number of steps, referred
to as replication factor (r f). If a node cannot insert a fragment (for instance
because of too little available storage space), it passes the request to one of its
neighbors. Lastly, the set of nodes at which the fragment has been inserted is
returned to the owner node.

Example B.3 (Allocation and replication of a fragment)
Let us consider nodes n1 and n2 in Figure B.2a and fragments f1, f2, and
f3 from Table B.1b. Suppose n2 wants to allocate f3 with r f = 2. n2 inserts
f3 into its local datastore, and selects neighbor n1. f3 is then forwarded to
n1 with r f = r f − 1 = 1. f3 is inserted into n1’s local data store, resulting
in Figure B.2b. Since r f = 1, {n1, n2} is returned to n2 as the set of nodes
in which f3 has been inserted.

f1 : 〈a, p1, b〉, 〈b, p1, d〉, 〈d, p1, c〉
f2 : 〈a, p2, c〉, 〈b, p2, e〉, 〈c, p2, a〉

f2 : 〈a, p2, c〉, 〈b, p2, e〉, 〈c, p2, a〉

n2n1

f3
f3

(a) Allocating f3

f1 : 〈a, p1, b〉, 〈b, p1, d〉, 〈d, p1, c〉
f2 : 〈a, p2, c〉, 〈b, p2, e〉, 〈c, p2, a〉

f2 : 〈a, p2, c〉, 〈b, p2, e〉, 〈c, p2, a〉

n2n1

f3 : 〈a, p3, d〉, 〈b, p3, d〉, 〈c, p3, d〉
f3 : 〈a, p3, d〉, 〈b, p3, d〉, 〈c, p3, d〉

(b) States of n1 and n2 after allocation

Fig. B.2: Allocating fragment f3 at node n2 with r f = 2. Dashed lines denote the allocation of a
fragment, solid lines denote a neighbor relation.

If a node containing a fragment from D.F fails, the owner will allocate the
fragment to another node, ensuring the continued availability of the frag-
ment. If the owner itself fails, another node can take over the task of main-
taining availability.

120

4. Query Processing

Besides making sure fragments are always available, Piqnic exposes the
following operations, which the owner of a dataset D can execute: (i) add
triples to fragments in D, (ii) remove triples from fragments in D, (iii) allocate
fragments to further nodes, and (iv) revoke an allocation of a fragment from
a node. This update is executed locally on the owner node, after which it
forwards the updated fragment to the nodes it is allocated to.

Joining a Piqnic network can be achieved by knowing an arbitrary node
and making it a neighbor. Consider, for instance, a node n1 wants to join the
network via node n2; n1 therefore sends a message to n2, which replies with
its neighbors. n1 will then take over some replicas of these neighbors and
gradually become a full member of the network.

4 Query Processing

Any node in a Piqnic network can issue queries. Query processing follows
the basic principle of flooding that is employed in P2P systems [1], i.e., a
query is forwarded to a peer’s neighbors, which in turn forward it to their
neighbors, until a certain Time-To-Live (TTL) value/distance is reached. A
query is executed at the node that issued the query, while individual triple
patterns may be processed by the node’s neighbors, i.e., SPARQL operators,
such as UNION, are evaluated at the query issuer. In Piqnic, a SPARQL query
q at a node ni is processed in the following steps:

1. Estimate the cardinality of each triple pattern in q using variable count-
ing. The order in which triple patterns are processed is determined by
this estimation, i.e., more selective triple patterns are evaluated first.

2. Evaluate q’s triple patterns, starting from ni’s local datastore, over the
data accessible via ni’s neighbors by flooding the network using a spec-
ified TTL value.

3. Receive partial results from the queried nodes in the network (nodes
with no result answer with an empty reply). Partial results are sent
directly to the querying node.

4. Compute the final query result by combining the intermediate results of
the triple patterns and the remaining operations necessary to complete
q.

We use fragment identifiers to avoid querying the same fragment twice
on different nodes, i.e., if a fragment with the same identifier has already
been queried by a previous node, it will not be queried again. Moreover, if a
fragment is available locally, we use that and do not query it again on another
node.

Obviously, step 2 can be implemented in different ways. However, before
going into details on this aspect, let us first define an identification function (i

121

Paper B.

in the Definition B.1) to decide whether a fragment is relevant for a particular
triple pattern or not. As fragmentation is defined on predicates, we use a
predicate-based identification function.

Definition B.7 (Predicate-based identification function)
Let FP(GN) be a the set of fragments in a network, f ∈ FP(GN) be a frag-
ment, tp be a triple pattern and ptp the predicate of tp. A predicate-based
identification function FIP(f , tp) returns true iff ∀t ∈ f : pt = ptp or ptp is a
variable.

A triple t is said to be a matching triple for a triple pattern tp iff there exists
a solution mapping µ s.t. t = µ[tp], where µ[tp] is the triple obtained by
replacing variables in tp according to µ.

Definition B.8 (Solution mappings [22])
Let U, B, L, V be the set of all URIs, blank nodes, literals, and variables. Then
the answer S to a SPARQL query is a set of solution mappings s.t. a solution
mapping is a partial mapping µ : V 7→ (U ∪ B ∪ L).

We implemented and evaluated three query processing strategies that differ
in step 2 of the above description: Single, Bulk, and Full.

Single Strategy

The Single approach is inspired by query processing in TPF [22] and Jena
ARQ1. The triple patterns of a query q are processed sequentially. To process
the current triple pattern we use the intermediate results from the node’s
local fragments (step 1) and previously computed triple patterns. We instan-
tiate the triple pattern with the already known result mapping and send it
to the neighbors. This is done for each known solution mapping separately,
hence the name of this strategy: Single.

Bulk Strategy

Obviously, the Single strategy can be improved by sending sets of solution
mappings along with a triple pattern throughout the network, instead of
individual solution mappings. This is a similar optimization as proposed
in [9] to improve TPF query processing. Hence, using the Bulk strategy we
expect that considerably fewer messages are sent throughout the network.
Ideally, all bindings are sent along in a single message. However, for some
triple patterns there is a high number of intermediate solution mappings,
e.g., query L1 in our evaluation has more than 232, 000 solution mappings for
variable ?results. Propagating such a large number of bindings through the

1https://jena.apache.org/documentation/query/index.html

122

https://jena.apache.org/documentation/query/index.html

5. Evaluation

network might easily become a problem because of the message size. Hence,
in such cases, we send the bindings in groups of up to sm bindings. In our
current implementation, we use a default value of sm = 1, 000 (empirically
determined based on the data and queries used in our experiments).

Full Strategy

In contrast to the other strategies, the Full strategy does not include the re-
sults of already computed solution mappings in the queries sent throughout
the network. Instead, it forwards the triple patterns as defined in the original
input query to the neighbors and exploits the fact that this can be done in
parallel (instead of sequentially as in the other strategies). However, as this
strategy cannot exploit the selectivity of triple patterns if instantiated with
solution bindings, in general more data has to be sent through the network.
Likewise, more data has to be processed locally at the querying node to com-
pute the final result.

5 Evaluation

We implemented a prototype Piqnic node2 in Java 8, using the HDT Java
library3 for the local datastore and extended Apache Jena4 to support the
three query processing approaches discussed in Section 4.

Experimental Setup

We ran our experiments on a server with 4xAMD Opteron 6376, 16 core
processors at 2.3GHz, 768KB L1 cache, 16MB L2 cache and 16MB L3 cache
each (64 cores in total), and 516GB RAM. To evaluate our approach we
used extended LargeRDFBench [10]. LargeRDFBench comes with 13 datasets
with altogether over 1 billion triples and was designed to evaluate federated
SPARQL query processing engines. LargeRDFBench provides a total of 40
queries divided into four distinct sets: simple (S), complex (C), large data (L),
and Complex and large data (CH). However, to enable a more fine-granular
analysis, we distinguish the two subsets of S that were originally defined in
FedBench [21] but merged together in LargeRDFBench: cross domain (CD)
and life sciences (LS).

In our experiments, we varied a broad range of parameters. However, due
to space restrictions we do not show all experimental results in this paper

2The source code is available at https://github.com/Chraebe/PIQNIC
3https://github.com/rdfhdt/hdt-java
4https://jena.apache.org/

123

https://github.com/Chraebe/PIQNIC
https://github.com/rdfhdt/hdt-java
https://jena.apache.org/

Paper B.

but focus on a subset. Results of additional experiments are available on our
website5. For each experiment, we measured the following metrics:

• Query Execution Time (QET) is the amount of time it takes to answer a
query, i.e., the time elapsed between issuing the query and obtaining
the final answer.

• Completeness (COM) measures how complete the computed set of an-
swers for a query is; expressed as the percentage of computed answers
in comparison to the complete set of answers.

• Number of Transferred Bytes (NBT) is the total number of bytes trans-
ferred between nodes during query execution.

• Number of Messages (NM) is the total number of messages exchanged
between nodes during query execution.

Each experiment was run as follows: all queries in the query load were exe-
cuted 3 times at randomly chosen nodes in the network – the reported mea-
surements represent the averages of the 3 executions.

Experimental Results

Unless stated otherwise, we use the following default values: #Nodes: 200,
TTL: 5, Replication: 5%, #Neighbors: 5. We used a timeout of 1200 seconds,
i.e., 20 minutes, and the experiments were executed without shuffles during.
The average storage space used per node was 1.1GB with 18.1 million triples.
The test dataset’s size is 61GB with 1 billion triples.

Performance of query execution strategies

Full timed out for all queries in groups L and CH, and all but a few queries
in C, while Single timed out for most queries in the aforementioned groups.
Moreover, the queries that timed out for all approaches have a very large
number of intermediate results (up to 50 million triples). Such queries
are also not supported by state-of-the-art federated query processing ap-
proaches [10] and is therefore a general problem that is considered out of
the scope of this paper. Therefore, the following discussion focuses on query
groups CD and LS – the omitted results can be found on our website5. The
corresponding query execution times (QET) are shown in Figure B.3.

As we can clearly see, generally Bulk performs much better than the other
two approaches with respect to execution time. It is not surprising that Bulk
in general performs better than Single, as sending groups of bindings in-
stead of sending each binding separately, considerably reduces communica-
tion and computational overhead. While Full does perform quite poorly in
most cases, it is faster than both Bulk and Single in rare cases, e.g., LS7. This

5http://relweb.cs.aau.dk/piqnic/

124

http://relweb.cs.aau.dk/piqnic/

5. Evaluation

is due to the fact that some triple patterns have a very low selectivity. In such
cases, almost all triples in a fragment are relevant and it is therefore more effi-
cient to download the entire fragment instead of exchanging multiple rounds
of messages with large amounts of data.

CD1 CD2 CD3 CD4 CD5 CD6 CD7 LS1 LS2LS2 LS3 LS4 LS5 LS6 LS7

100

102

101

103

Ti
m

eo
ut

Ti
m

eo
ut

Ti
m

eo
ut

Ti
m

eo
ut

Ti
m

eo
ut

Ti
m

eo
ut

Ti
m

eo
ut

Ex
ec

ut
io

n
Ti

m
e

(s
)

Single Bulk Full

Fig. B.3: QET for Single, Bulk, and Full over queries CD and LS. Note that the y-axis is in log
scale.

This is evident from Figure B.4, which shows the number of messages
sent through the network. Not surprisingly, in all cases Single sends more
messages throughout the network than the two other approaches. While,
expectedly, Full is better in this regard than Bulk, they are still quite similar
in most cases. This is due to the cardinalities of most triple patterns being
lower than 1,000, and thus only one message is sent. The queries that did not
time out all delivered complete query results (100% completeness).

CD1 CD2 CD3 CD4 CD5 CD6 CD7 LS1 LS2 LS3 LS4 LS5 LS6 LS7

101

103

105

Ti
m

eo
ut

Ti
m

eo
ut

Ti
m

eo
ut

Ti
m

eo
ut

Ti
m

eo
ut

Ti
m

eo
ut

Ti
m

eo
ut#
of

M
es

sa
ge

s

Single Bulk Full

Fig. B.4: NM for Single, Bulk, and Full over queries CD and LS. Note that the y-axis is in log
scale.

Figure B.5 shows the number of transferred bytes (NTB) for queries in
groups CD and LS. Again, we leave out queries that timed out. Not surpris-

125

Paper B.

ingly, Full transfers the most amount of data in all cases. For most queries
Single and Bulk are comparable and the differences negligible.

CD1 CD2 CD3 CD4 CD5 CD6 CD7 LS1 LS2 LS3 LS4 LS5 LS6 LS7
100

105

1010

Ti
m

eo
ut

Ti
m

eo
ut

Ti
m

eo
ut

Ti
m

eo
ut

Ti
m

eo
ut

Ti
m

eo
ut

Ti
m

eo
ut

#
of

Tr
an

sf
er

re
d

By
te

s

Single Bulk Full

Fig. B.5: NTB for Single, Bulk, and Full over queries CD and LS. Note that the y-axis is in log
scale.

Robustness of the network

We also evaluated how Piqnic networks perform in the presence of node fail-
ures. To test robustness and availability of data, we focused on the Bulk strat-
egy and the query sets CD and LS. Figure B.6 shows the average completeness
of queries with a varying number of failing nodes. In the experiment, we ex-
ecuted all the queries and noted the completeness, i.e., we gradually killed a
randomly selected number of nodes until no nodes were left in the network.
The network was given no recovery time after nodes had been killed. The
results show the robustness of Piqnic against node failures; the results start
with a completeness of 100% and stayed above 90% until less than 60% of the
nodes were running. Afterwards, the completeness gradually decreased.

0 %10 %20 %30 %40 %50 %60 %70 %80 %90 %100 %
0 %

20 %

40 %

60 %

80 %

100 %

Available Nodes (%)

C
om

pl
et

en
es

s
(%

)

Fig. B.6: COM for queries when varying the number of nodes failures (Bulk strategy, no recovery
time)

126

6. Conclusions

When giving the network recovery time between each run, i.e., allowing
all nodes to perform 3 shuffles before the next set of nodes is killed, Piqnic

is able to keep the completeness close to 100% (the lowest was 94,44% due
to a single query not being answered) even when 50% of the nodes failed.
However, we should mention that query execution time was affected as each
node had more fragments to look through. This shows that Piqnic is able to
keep data available through replication at the tradeoff of increased execution
time as it is more expensive to find the relevant fragment.

Impact of Time-To-Live

Intuitively, a higher TTL value gives access to a larger part of the network.
However, a large TTL value also means sending messages to more nodes. In
fact, since we use a flooding technique, the amount of sent messages increases
exponentially with the TTL value. To systematically analyze the impact of
the TTL value, we compare COM and QET for three TTL values; 3, 5, and 10.
Figure B.7 shows average completeness and execution time for each of the 5
groups of queries in our query load, using the Bulk strategy. Even though
many of the queries in groups L and CH timed out, they still provided some
results before timing out. In general, a TTL value of 3 results in incomplete
results for all query groups. We observe that even though a TTL value of
10 gives in total more complete results, the additional query execution time
indicates that this might not necessarily be a good tradeoff. Instead, a TTL
value of 5 shows almost as complete results with lower execution times.

CD LS C L CH
0 %

20 %

40 %

60 %

80 %

100 %

A
vg

.C
om

pl
et

en
es

s
(%

)

CD LS C L CH
100

101

102

103

A
vg

.E
xe

cu
ti

on
Ti

m
e

(s
) TTL: 3 5 10

Fig. B.7: Average COM and QET Bulk strategy and TTL 3, 5, and 10 (QET log scale)

6 Conclusions

In this paper, we proposed Piqnic (a P2p clIent for Query processiNg over
semantIC data), to process queries over semantic datasets. Piqnic is inspired
by recent advances in decentralized Semantic Web systems as well as P2P

127

References

systems in general, and provides an implementation that, in addition to pro-
viding query access to vast amounts of data as a client, functions as a server
maintaining a local datastore. We presented a general architecture for shar-
ing and processing RDF data in a decentralized manner and customizable
approaches for data fragmentation and query processing over a network of
nodes. Our experiments show that the Bulk strategy provides the best per-
formance on average and that Piqnic is able to tolerate node failures. As
highlighted by one of our experiments, it is not straightforward to find a
good balance between completeness, TTL, and query execution time. More-
over, the lack of global knowledge makes it difficult to assess the complete-
ness of a query answer. We will therefore investigate this problem in our
future work. Studying the impact of alternative methods for fragmentation
and relatedness methods is also part of our future work, as well as processing
queries with a high number of intermediate results efficiently.

References

[1] E. Adar and B. A. Huberman, “Free riding on Gnutella,” First Monday, vol. 5,
no. 10, 2000.

[2] C. Buil-Aranda, A. Hogan, J. Umbrich, and P.-Y. Vandenbussche, “SPARQL Web-
Querying Infrastructure: Ready for Action?” in ISWC, 2013, pp. 277–293.

[3] M. Cai and M. R. Frank, “RDFPeers: a scalable distributed RDF repository based
on a structured peer-to-peer network,” in WWW, 2004, pp. 650–657.

[4] J. D. Fernández, M. A. Martínez-Prieto, C. Gutiérrez, A. Polleres, and M. Arias,
“Binary RDF Representation for Publication and Exchange (HDT),” J. Web Sem.,
vol. 19, p. 22–41, 2013.

[5] P. Folz, H. Skaf-Molli, and P. Molli, “CyCLaDEs: A Decentralized Cache for
Triple Pattern Fragments,” in ESWC, 2016, pp. 455–469.

[6] A. Grall, P. Folz, G. Montoya, H. Skaf-Molli, P. Molli, M. V. Sande, and R. Ver-
borgh, “Ladda: SPARQL queries in the fog of browsers,” in ESWC Satellite Events,
2017, pp. 126–131.

[7] A. Grall, H. Skaf-Molli, and P. Molli, “SPARQL Query Execution in Networks of
Web Browsers,” in DeSemWeb@ISWC, 2018.

[8] T. Grubenmann, A. Bernstein, D. Moor, and S. Seuken, “Financing the Web of
Data with Delayed-Answer Auctions,” in WWW, 2018, pp. 1033–1042.

[9] O. Hartig and C. Buil-Aranda, “Bindings-restricted triple pattern fragments,” in
OTM Conferences, 2016, pp. 762–779.

[10] A. Hasnain, M. Saleem, A. N. Ngomo, and D. Rebholz-Schuhmann, “Extending
largerdfbench for multi-source data at scale for SPARQL endpoint federation,”
in SSWS, 2018.

128

References

[11] Z. Kaoudi, M. Koubarakis, K. Kyzirakos, I. Miliaraki, M. Magiridou, and
A. Papadakis-Pesaresi, “Atlas: Storing, updating and querying RDF(S) data on
top of DHTs,” J. Web Sem., vol. 8, no. 4, pp. 271–277, 2010.

[12] M. Karnstedt, K. Sattler, M. Richtarsky, J. Müller, M. Hauswirth, R. Schmidt, and
R. John, “UniStore: Querying a DHT-based Universal Storage,” in ICDE, 2007,
pp. 1503–1504.

[13] F. Mahdisoltani, J. Biega, and F. M. Suchanek, “YAGO3: A Knowledge Base from
Multilingual Wikipedias,” in CIDR, 2013.

[14] E. Mansour, A. V. Sambra, S. Hawke, M. Zereba, S. Capadisli, A. Ghanem,
A. Aboulnaga, and T. Berners-Lee, “A Demonstration of the Solid Platform for
Social Web Applications,” ser. WWW Companion, 2016, pp. 223–226.

[15] E. Marx, M. Saleem, I. Lytra, and A. N. Ngomo, “A decentralized architecture for
SPARQL query processing and RDF sharing: A position paper,” in ICSC, 2018,
pp. 274–277.

[16] T. Minier, H. Skaf-Molli, P. Molli, and M. Vidal, “Intelligent clients for replicated
triple pattern fragments,” in ESWC, 2018, pp. 400–414.

[17] P. Molli and H. Skaf-Molli, “Semantic Web in the Fog of Browsers,” in De-
SemWeb@ISWC, 2017.

[18] G. Montoya, C. Aebeloe, and K. Hose, “Towards efficient query processing over
heterogeneous RDF interfaces,” in DeSemWeb@ISWC, 2018.

[19] G. Montoya, H. Skaf-Molli, and K. Hose, “The Odyssey Approach for Optimizing
Federated SPARQL Queries,” in ISWC, 2017, pp. 471–489.

[20] A. Polleres, M. R. Kamdar, J. D. Fernández, T. Tudorache, and M. A. Musen, “A
More Decentralized Vision for Linked Data,” in DeSemWeb@ISWC, 2018.

[21] M. Schmidt, O. Görlitz, P. Haase, G. Ladwig, A. Schwarte, and T. Tran, “Fed-
Bench: A Benchmark Suite for Federated Semantic Data Query Processing,” in
ISWC, 2011, pp. 585–600.

[22] R. Verborgh, M. Vander Sande, O. Hartig, J. Van Herwegen, L. De Vocht,
B. De Meester, G. Haesendonck, and P. Colpaert, “Triple Pattern Fragments: a
low-cost knowledge graph interface for the Web,” J. Web Sem., vol. 37–38, pp.
184–206, 2016.

[23] S. Voulgaris, D. Gavidia, and M. van Steen, “CYCLON: Inexpensive Membership
Management for Unstructured P2P Overlays,” J. Network and Systems Manage-
ment, vol. 13, no. 2, pp. 197–217, 2005.

129

References

130

Paper C

Decentralized Indexing over a Network of RDF Peers

Christian Aebeloe, Gabriela Montoya, Katja Hose

The paper has been published in the
Proceedings of the 18th International Semantic Web Conference (ISWC 2019),

pp. 3-20, 2019. DOI: 10.1007/978-3-030-30793-6_1

https://doi.org/10.1007/978-3-030-30793-6_1

Abstract

Despite the prospect of a vast Web of interlinked data, the Semantic Web today mostly
fails to meet its potential. One of the main problems it faces is rooted in its current
architecture, which totally relies on the availability of the servers providing access to
the data. These servers are subject to failures, which often results in situations where
some data is unavailable. Recent advances have proposed decentralized peer-to-peer
based architectures to alleviate this problem. However, for query processing these
approaches mostly rely on flooding, a standard technique for peer-to-peer systems,
which can easily result in very high network traffic and hence cause high query
response times. To still enable efficient query processing in such networks, this paper
proposes two indexing schemes, which in a decentralized fashion aim at efficiently
finding nodes with relevant data for a given query: Locational Indexes and Prefix-
Partitioned Bloom Filters. Our experiments show that such indexing schemes are able
to considerably speed up query processing times compared to existing approaches.

© Springer Nature Switzerland AG 2019. Reprinted, with permission from
Christian Aebeloe, Gabriela Montoya, and Katja Hose.
Aebeloe C., Montoya G., Hose K. (2019) Decentralized Indexing over a Net-
work of RDF Peers. In: Ghidini C. et al. (eds) The Semantic Web – ISWC
2019. ISWC 2019. Lecture Notes in Computer Science, vol 11778. Springer,
Cham.
https://doi.org/10.1007/978-3-030-30793-6_1.
The layout has been revised.

1. Introduction

1 Introduction

While there is a huge potential of possible applications of Linked Data and al-
though more and more information is being published in RDF, it is currently
not possible to rely on the availability of these datasets. Data providers pub-
lish their data as downloadable data dumps, queryable SPARQL endpoints
or TPF interfaces, or dereferenceable URIs.

As highlighted in several recent studies [1, 3, 10, 22], it is a huge burden
for data providers to keep the data available at all times, making many end-
points often unavailable. Multiple recent studies [1, 4, 8] therefore explored
and evidenced the importance of avoiding a single point of failure, e.g. a
central server, and maintain a decentralized architecture where data is avail-
able even if the original uploader fails through data replication. These ap-
proaches, however, either introduce a structured overlay over a peer-to-peer
(P2P) network [4], use unstable nodes with limited storage capabilities [8],
or make use of inefficient query processing algorithms, such as flooding [1].
Applying a structured overlay to a network of peers restricts peer autonomy
as some kind of global knowledge is used to allocate the data at certain peers
and to find relevant data for a given query. Apart from general problems,
such as finding an optimal way to allocate data at peers, structured overlays
need to adjust the overlay when new peers leave or join the network, which
may cause problems when a high number of nodes leaves or joins.

Unstructured P2P networks, on the other hand, retain the maximum
degree of peer autonomy but with the lack of global knowledge about
data placement efficient query processing is considerably more challenging.
Hence, unstructured P2P systems typically rely on expensive algorithms,
such as flooding, which creates a large overhead and involves exchanging
a high number of messages between nodes until the relevant data is actu-
ally found and processed. Assuming that each node in the network has N
neighbors, flooding results in ∑ttl

i=1 Ni messages to reach all nodes within a
hop distance of ttl (time-to-live value). For example, given a network with
N = 5 and ttl = 5, flooding results in 3,905 messages. Query processing in
an unstructured architecture has been addressed previously [8, 9, 16]. How-
ever, they either focus on reducing the load on servers by splitting the query
processing tasks between multiple clients or rely on unstable nodes with lim-
ited storage capabilities. The lack of global knowledge impacts the answer
completeness as evidenced in [9], where the average completeness remains
under 45%.

In this paper, we do not aim to reduce the server loads or provide users
with low-cost but incomplete answers. Instead, to overcome the lack of global
knowledge in unstructured architectures and enable efficient query process-
ing, this paper proposes the use of novel indexes, inspired by routing in-

133

Paper C.

dexes [6], which are tailored for RDF datasets, and provide a node with
information about which data its neighbors can provide access to within a
distance of several hops. In summary, this paper makes the following contri-
butions:

• Two indexing schemes to determine relevant data based on common
subjects and objects: (i) a baseline approach: Locational Index and (ii)
an advanced index based on bloom filters: Prefix-Partitioned Bloom
Filters.

• Efficient query processing techniques for unstructured decentralized
networks using the proposed indexing schemes, and

• An extensive evaluation of the proposed techniques.

This paper is structured as follows: while Section 2 discusses related
work, Section 3 describes preliminaries and provides background informa-
tion. Section 4 proposes the Locational Indexing scheme, followed by Prefix-
Partitioned Bloom Filters in Section 5. Query processing is described in Sec-
tion 6. The results of our experimental study are discussed in Section 7 and
the paper concludes with a summary and an outlook to future work in Sec-
tion 8.

2 Related Work

Although decentralization is not an entirely novel concept, it has gained more
and more attention over the last couple of years, especially in the Semantic
Web community. The Solid platform [15], for instance, proposes to store per-
sonal data in RDF format in a decentralized manner, in so-called Personal
Online Datastores (PODs). A POD can be stored on any server at any lo-
cation, and applications can ask for access to some of its data. This means
that data is scattered around the world and that, even if a server fails, most
peoples’ PODs will still be available. The current focus of Solid, however, is
more on protection of private data, whereas we focus on indexing schemes
and query processing in decentralized architectures.

To improve availability of data by reducing the load at the servers running
SPARQL endpoints, Triple Pattern Fragments (TPF) [22] have been proposed.
By processing only triple pattern requests at the servers, query processing
load can be reduced and shifted to the clients that then have to process expen-
sive operations, such as joins. Bindings-Restricted TPF (brTPF) [10] further
reduces the server load, by bulking bindings from previously evaluated triple
patterns, thereby reducing the amount of requests. Other approaches [9, 16]
have similarly sought to divide the query processing load among multiple
clients, or multiple RDF interfaces [17], in order to speed up query process-

134

2. Related Work

ing. While the previously mentioned approaches greatly reduce the server
load, they still have some limitations. Some of these approaches [10, 17, 22]
rely on a single server, or a fixed set of servers, that are vulnerable to attacks
and represent single points of failure; if the servers fail, all their data will be-
come unavailable, while other approaches [9, 16] rely on unstable nodes with
limited storage capabilities. Instead, we focus on architectures in which data
is stored, and possibly replicated, in a decentralized and more stable manner,
and on reducing the amount of messages sent within such an architecture.

Several decentralized architecures for RDF data are based on structured
overlays over a P2P network [4, 13, 14]. These overlays allow to easily identify
the nodes that have relevant data to evaluate queries. However, while they
have been shown to provide fast query processing, they are vulnerable to
churn. This is the case, since each time a node leaves or joins the network,
the overlay has to be adapted. This creates a frequent overhead, making such
architectures inflexible in unstable environments. Moreover, such structured
overlays often impose the placement of data within the network, which is not
applicable to the scenario considered in this paper. Therefore, such overlays
are not applicable for source selection in our case.

In unstructured networks where the placement of data to the nodes is
not imposed, several strategies have been proposed to access the data scat-
tered through the network. Accessing the data may rely on centralized in-
dexes, where one single node is responsible to maintain a full overview of
the whole data in the network, and distributed indexes, where nodes are
only responsible to provide an overview of the data they store. Centralized
indexes represent a single point of failure and it is a challenge to keep the
information up-to-date. Diverse approaches, such as [6, 7, 23], represent im-
provements over the basic flooding algorithm, which distributes the requests
to all the nodes in the network, by reducing the number of contacted nodes
to answer a query. For instance, routing indexes [6] extend the information
that each node includes in its distributed index to include an entry for each
of its neighbors and some aggregated information about what data can be ac-
cessed by contacting that neighbor within a distance of several hops, locally
or by routing the query to a neighbor that has access to such information.

Diverse RDF indexing approaches have been proposed in contexts such
as query optimization and source selection [5, 18, 21]. These approaches are
mainly based on the structure of the graphs, such as finding representative
nodes within the graph, common patterns in the data, or statistical infor-
mation, such as number of class instances. Our general approach can be
combined with many of these approaches, however for our concrete imple-
mentation we have focused on summaries based statistical information, since
they provide a good tradeoff between index creation time and precision of
the indexes. In our case, each node computes its own statistical information,
either a locational or PPBF index, and exchanges this information with its

135

Paper C.

neighbors.

3 Preliminaries

Today’s standard data format for semantic data is the Resource Description
Framework (RDF)1. RDF structures data into triples, which can be visualized
as edges in a knowledge graph.

Definition C.1 (RDF Triple)
Given the infinite and disjoint sets U (the set of all URIs/IRIs), B (the set of
all blank nodes), and L (the set of all literals), an RDF triple is a triple of the
form (s, p, o) ∈ (U ∪ B)×U × (U ∪ B ∪ L) where s is called the subject, p the
predicate, and o the object.

An RDF graph g is a finite set of RDF triples. In order to query an RDF graph
containing a set of RDF triples, SPARQL2 is widely used. The building block
of a SPARQL query is a triple pattern. Triple patterns, like RDF triples, have
three elements: subject, predicate, and object, but unlike RDF triples any of
these elements could be a variable.

Definition C.2 (Triple Pattern)
Given the infinite and disjoint sets U, B, and L from Definition C.1, and V
(the set of all variables), a triple pattern is a straightforward extension of an
RDF triple, i.e., a triple of the form (s, p, o) ∈ (U ∪ B ∪ V)× (U ∪ V)× (U ∪
B ∪ L ∪V).

If there is a mapping from the variables in the triple pattern to elements in
U ∪ B ∪ L, such that the resulting RDF triple is in an RDF graph, then we say
that the triple pattern matches those RDF triples, and that the triple pattern
has solutions within the RDF graph. Moreover, in a SPARQL query triple
patterns are organized into Basic Graph Patterns (BGPs). A BGP matches
only if all the triple patterns within the BGP match. Furthermore, BGP may
be combined with other SPARQL operators, such as OPTIONAL or UNION.
Even if our approach works well for SPARQL queries with any SPARQL
operators, we use examples and descriptions with a single BGP as it makes
the explanations simpler and can be naturally extended to SPARQL queries
with any number of BGPs.

In an unstructured P2P system, nodes function as both clients and servers.
Each node maintains a limited local datastore and a partial view over the
network. In the limited local datastore, the node may include one or more
RDF graphs. To ease the management of replicated graphs on several nodes,
each graph is identified by a URI g. Then, the set of graphs in the local

1http://www.w3.org/TR/2004/ REC-rdf-concepts-20040210/
2http://www.w3.org/TR/rdf-sparql-query/

136

http://www.w3.org/TR/rdf-sparql-query/

4. Locational Index

repository of node n is denoted as Gn. To keep the network structure stable
and up-to-date, peers periodically update their neighbors following certain
protocols, such as [23]. The specifics of the partial view over the network may
vary from system to system. For example, some systems [1, 7] rank neighbors
based on various metrics, e.g., the issued queries or the degree to which the
data can be joined.

In this paper, we provide a general approach to identify relevant RDF
data within a network. Our approach is based on indexing techniques that
are defined independently of specific data placement strategies or network
infrastructure. Therefore, our approach can be used in combination with
different systems, in particular unstructured P2P networks, which we provide
specific details for in Section 6. Furthermore, our general approach to identify
relevant RDF data may be used in combination with diverse RDF interfaces
to efficiently process queries.

4 Locational Index

Let P(g) be a function that returns the set of predicates within a graph g and
Gn be the set of graphs in the local repository of node n. n’s locational index
Ii
L(n) then summarizes the graphs that can be reached within a distance of i

hops.

Definition C.3 (Locational Index)
Let N be the set of nodes, P the set of predicates, and G the set of graphs,
a locational index is a tuple Ii

L(n)=〈γ, η〉, with γ : P → 2G and η : G → 2N .
γ(p) returns the set of graphs gs s.t. ∀g ∈ gs : p ∈ P(g). η(g) returns the set
of nodes ns such that g ∈ Gni such that ni is within i hops from n.

More formally, given that a node n can be described as a triple n =
〈Gn, N, u〉, with Gn being the set of graphs that n stores, N being the set
of direct neighbors, and u being a URI that identifies n, a locational index of
depth 0 (covering only local graphs) at node n is defined as I0

L(n) = 〈γ, η〉,
where:

γ(p) = {g | g ∈ Gn ∧ p ∈ P(g)} (C.1)

η(g) = {n}, ∀g ∈ Gn (C.2)

The locational index of depth i for a node n is defined as Ii
L(n) = 〈γ, η〉,

where:

137

Paper C.

γ = I0
L(n).γ⊕

⊕
n′∈n.N

Ii−1
L (n′).γ (C.3)

η = I0
L(n).η ⊕

⊕
n′∈n.N

Ii−1
L (n′).η (C.4)

With (f ⊕ g)(x) = f (x) ∪ g(x) if f and g are defined at x and f (x), g(x)
are sets, (f ⊕ g)(x) = f (x) if only f is defined at x, and (f ⊕ g)(x) = g(x) if
only g is defined at x.

Example C.1 (Locational Index)
Consider the graphs in Table C.1a and the nodes and connections in Fig-
ure C.1b. Applying Equations C.3-C.4 to create a locational index of depth
2 for node n1 results in I2

L(n1) as shown in Table C.1c.

g1 g2 g3 g4
〈a p1 b〉 〈a p2 d〉 〈c p3 d〉 〈b p2 i〉
〈f p1 a〉 〈b p2 e〉 〈g p3 d〉 〈g p2 b〉
〈c p1 b〉 〈e p3 h〉 〈b p1 j〉

(a) Datasets and their triples

n1
g1, g2

n2
g2, g3

n3
g3, g4

(b) Connections between nodes

p γ(p) g η(g)
p1 {g1, g4} g1 {n1}
p2 {g2, g4} g2 {n1, n2}
p3 {g3} g3 {n2, n3}

g4 {n3}
(c) I2

L(n1)

Fig. C.1: Locational index obtained from a set of datasets and connections

In a real system, locational indexes are built by flooding the network for a
specified amount of steps, where each reached node replies with its precom-
puted locational index.

The nodes that are relevant to evaluate a triple pattern tp, with
predicate ptp, are given by

⋃
g∈γ(ptp) takeOne(η(g)), if ptp is a URI, or⋃

g∈range(γ) takeOne(η(g)), if ptp is a variable. takeOne(s) returns one element
in the set s and it allows for evaluating the triple pattern only once against
each graph. Thereby, flooding an entire network can be avoided by only send-
ing triple patterns to relevant nodes. Even in the case of triple patterns with
a variable as predicate, the number of requests can be significantly reduced,
especially when replicas of graphs are stored at multiple nodes.

138

5. Prefix-Partitioned Bloom Filters

Example C.2 (Node Selection with a Locational Index)
Given node n1 that issues the query, and the triple pattern tp =

〈?v1, p2, ?v2〉, the set of selected nodes from I2
L(n1) in Table C.1c is {n1, n3},

since γ(p2) = {g2, g4}, n1 ∈ η(g2), and n3 ∈ η(g4). The set of selected
nodes could be {n2, n3} because n2 is also in η(g2), but n1 may be prefer-
able as it correponds to using the local repository.

5 Prefix-Partitioned Bloom Filters

Building upon the baseline of locational indexes, this section presents Prefix-
Partitioned Bloom Filters (PPBFs). The idea is to summarize entities and
properties in a graph as a Bloom Filter [2] and rely on efficient bitwise op-
erations on Bloom Filters to estimate if two graphs may have elements in
common. We use Bloom Filters since they provide space-efficient bit vectors,
and have previously been shown beneficial in reducing information process-
ing for distributed systems [20]. Such knowledge can be used during query
processing to reduce intermediate results by only evaluating triple patterns
with a join variable over graphs that may have common elements. As such,
PPBFs are not complementary to locational indexes, but encode similar infor-
mation. As we shall see, this further narrows down the list of relevant nodes
for a given query.

A Bloom Filter B for a set S of size n is a tuple mathcalB = (b̂, H), where
b̂ is a bit vector of size m and H is a set of k hash functions. Each hash
function maps the elements from S to a position in b̂. To create the Bloom
Filter of S, each hash function in H is applied to each element in S, and the
resulting positions in b̂ are set. o is estimated to be an element of S if all the
positions given by applying the hash functions in H to o are set in b̂. If at
least one corresponding bit is not set, then it is certain that o 6∈ S. However,
if all corresponding bits are set, it is still possible that o 6∈ S, meaning a
Bloom filter answers the question is o in S? with either no or maybe, rather
than no or yes. The probability of such false positives is given by formula
(1− e−kn/m)k [2]. Furthermore, the cardinality of a set that is represented
by a Bloom Filter where t bits are set, can be approximated by the following
formula [19]:

Ŝ−1(t) =
ln(1− t/m)

k · ln(1− 1/m)
(C.5)

Given two sets s1 and s2 and their Bloom Filters B1 and B2, with bit vectors
of the same size and with the same hash functions, B1&B2 approximates the
Bloom Filter of s1 ∩ s2, and B1|B2 corresponds to the Bloom Filter of s1 ∪

139

Paper C.

s2 [12]. Therefore, the number of URIs in two graphs can be approximated
using Formula C.5 on the Bloom Filter resulting of applying the bitwise and
on the graphs’ Bloom Filters.

5.1 Partitioning Bloom Filters

In order to have a relatively low false positive probability, the bit vectors
should have multiple bits per each possible element. However, in large scale
scenarios, e.g., with 500 million distinct URIs, so large bit vectors are not
feasible to store for all graphs. If we instead use as few bits as the largest
PPBF use, we would still have a high false-positive rate (just above 51% in
our experiments). Therefore, instead of having a unique Bloom Filter per
graph, we will have a prefix-based partitioning, with a Bloom Filter for each
different URI prefix used in the graph.

This has the advantage that not only do most partitions have a low
false-positive rate (less than 0.1% in our experiments in Section 7), but
even for the partitions that have a high false-positive rate, this is more
tolerable since if two URIs have the same prefix, they are more likely to
be contained in the same graph, since a prefix typically encodes the do-
main/source. The prefix of a URI is the URI minus the name of the en-
tity, e.g., the URI http://dbpedia.org/resource/Auckland has the prefix
http://dbpedia.org/resource and the name Auckland.
Definition C.4 (Prefix-Partitioned Bloom Filter)
A PPBF BP is a 4-tuple BP = 〈P, B̂, θ, H〉 with the following elements:

• a set of prefixes P,
• a set of bit vectors B̂,
• a prefix-mapping function θ : P→ B̂, and
• a set of hash functions H.

All bit vectors in B̂ have the same size. For each pi ∈ P, Bi = (θ(pi), H), is
the Bloom Filter that encodes the URIs’ names with prefix pi. Bi is called a
partition of BP.

The false positive risk of BP, is given by its partition with the highest
risk. A PPBF for a graph g is denoted BP(g) and corresponds to the PPBF
for the set of URIs in g. The cardinality of a PPBF is the sum its partitions’
cardinalities.

Example C.3 (Prefix-Partitioned Bloom Filter)
Inserting a URI into an Unpartitioned Bloom Filter is visualized in Fig-
ure C.2a. Inserting the same URI into a PPBF is visualized in Figure C.2b.
Only the name of the entity is hashed, and its hash values set bits only in
the partition of its prefix.

140

5. Prefix-Partitioned Bloom Filters

...

h1 h2 hk

http://dbpedia.org/resource/Auckland

...

(a) Unpartitioned Bloom Filter

...

h1 h2 hk

http://dbpedia.org/resource/Auckland

...

dbo

...
dbpdbr

......

(b) Prefix-Partitioned Bloom Filter

Fig. C.2: Insertion of a URI into an Unpartitioned Bloom Filter and a Prefix-Partitioned Bloom
Filter. dbo, dbr and dbp are short for prefixes from DBpedia, ontology, resource and property,
respectively.

For simplicity, we say that a URI u with prefix p may be in a PPBF BP,
denoted u ∃BP, iff all the positions given by the hash functions applied to
u’s name are set in the bit vector θ(p). Correspondingly, we say that a PPBF
BP is empty, denoted BP = ∅ iff no bit in any partition in BP is set, or it has
no partitions. Given that the intersection of two Bloom Filters is given by the
bitwise and operation, the intersection of two PPBFs is given by:

Definition C.5 (Prefix-Partitioned Bloom Filter Intersection)
The intersection of two PPBFs with the same set of hash functions H and
bit vectors of the same size, denoted BP

1 ∩ BP
2 , is BP

1 ∩ BP
2 = 〈P∩, B̂∩, θ∩, H〉,

where P∩ = BP
1 .P ∩ BP

2 .P, B̂∩ = {BP
1 .θ(p) and BP

2 .θ(p) | p ∈ P∩}, and θ∩ :
P∩ → B̂∩.

That is, partitions with the same prefix are intersected, while other partitions
are not part of BP

1 ∩ BP
2 . The intersection of two PPBFs thereby approximates

the common URIs of the graphs that they represent, and Formula C.5 can use
used to approximate the number of common URIs.

Example C.4 (Prefix-Partitioned Bloom Filter Intersection)
The intersection of two Unpartitioned Bloom Filters is visualized in Fig-
ure C.3a. The intersection of two PPBFs is visualized in Figure C.3b.

...

...and

...

B1
B2
B1 ∩ B2

(a) Unpartitioned Bloom Filter

dbr dbp dbo

and
B1
B2
B1 ∩ B2

(b) Prefix-Partitioned Bloom Filter

Fig. C.3: Intersection of Unpartitioned Bloom Filters and Prefix-Partitioned Bloom Filters. dbo,
dbr and dbp are short for prefixes from DBpedia, ontology, resource and property, respectively.

141

Paper C.

Building a PPBF for a graph is straightforward. For each URI in the graph,
its prefix p identifies the relevant partition θ(p), and the application of hash
functions H to its name determines the bits to set in θ(p). If θ is not defined
for p, it is a bit vector with no bits set, before applying the hash functions.

The intersection of PPBFs can be used at query processing time to prune
graphs if they do not have joinable entities for queries with a join variable,
even if they contain corresponding URIs. Before execution time, each node
can compute PPBFs for the graphs in its local datastore and download PPBFs
from nodes in the neighborhood to compute the approximate number of URIs
of the graphs in the local datastore in common with the reachable graphs.
Any network maintenance strategy could be used to ensure regular updates
in order to keep the approximations up-to-date, e.g. periodic shuffles [1].

Definition C.6 (Prefix-Partitioned Bloom Filter Index)
Let N be the set of nodes, U the set of URIs, and G the set of graphs, a PPBF
index is a tuple Ii

P(n) = 〈υ, η〉 with υ : U → 2G and η : G → 2N . υ(u) returns
the set of graphs gs such that u ∃BP(g), ∀g ∈ gs. η(g) returns the set of
nodes ns such that g ∈ Gni ∀ni ∈ ns and ni is within i hops from n.

5.2 Matching Triple Patterns to Nodes

The relevant nodes for a triple pattern have graphs containing all URIs given
in the triple pattern. PPBFs allow for efficiently checking if the graph has
these URIs. Similarly to matching triple patterns using the locational index,
first, we find the graphs with triples that match the triple patterns in the
query. Then, for every pair of triple patterns that share a join variable, we
prune graphs that, even if they are relevant for each triple pattern, do not
have any common URI. Finally, the set of relevant nodes for each triple pat-
tern is obtained, from these reduced set of relevant graphs, in the same way
as when using the locational index.

Algorithm 10 shows how a PPBF index is used to identify the relevant
nodes to evaluate the triple patterns in a BGP bgp. Given the PPBF index
Ii
P(n) = 〈υ, η〉, the graph mapping Mg, which associates triple patterns to set

of graphs, is initialized (line 2) for every tp ∈ bgp as the set of graphs gs such
that u ∃BP(g) for all g ∈ gs if the set of URIs in tp, uris(tp), is not empty, or
range(Ii

P(n).υ) otherwise. The function uris(tp) returns the set of URIs in the
triple pattern tp. Lines 4-15 select among all the relevant graphs for the triple
patterns, computed in line 2, the ones that have some URIs in common for
triple patterns with a common join variable. This is, the algorithm selects the
graphs that may satisfy the join condition. The PPBFs of the relevant graphs,
BP(g1) and BP(g2) are used to approximate if these graphs have any URI in
common (line 7), and in such case, these graphs are selected as relevant for
tp1 and tp2, respectively (lines 8-9). Once all the relevant graphs have been

142

5. Prefix-Partitioned Bloom Filters

Algorithm 10 Match BGP To PPBF Index

Input: BGP bgp; Node n; PPBF Index Ii
P(n) = 〈υ, η〉

Output: Node Mapping Mn
1: function matchBGPToPPBFIndex(bgp,n,Ii

P)
2: Mg ← { (tp, range(Ii

P(n).υ) ∩ ⋂t∈uris(tp) Ii
P(n).υ(t)) : tp ∈ bgp }

3: M′g ← { (tp, ∅) : tp ∈ bgp }
4: for all tp1, tp2 ∈ bgp s.t. vars(tp1) ∩ vars(tp2) 6= ∅ do
5: G′1, G′2 ← ∅
6: for all (g1, g2) s.t. g1 ∈ Mg(tp1) and g2 ∈ Mg(tp2) do
7: if BP(g1) ∩ BP(g2) 6= ∅ then
8: G′1 ← G′1 ∪ {g1}
9: G′2 ← G′2 ∪ {g2}

10: if G′1 6= ∅ ∧ G′2 6= ∅ then
11: M′g(tp1)← M′g(tp1) ∪ {G′1}
12: M′g(tp2)← M′g(tp2) ∪ {G′2}
13: else
14: M′g ← {(tp, ∅) : tp ∈ bgp}
15: break
16: return { (tp,

⋃
g∈M′g(tp) takeOne(Ii

P(n).η(g))) : tp ∈ bgp }

considered, if any of them have been selected, then the graph mapping M′g
is extended with values for the triple patterns tp1 and tp2 (lines 11-12). In
other case, it is not possible to find answers for the given bgp and therefore
the graph mapping M′g is initialized again and the loop ends (lines 14-15).
Finally, the node mapping Mn is computed in line 16 by using the selected
graphs in M′g and the function Ii

P(n).η(g). The function takeOne(ns) returns
one of the nodes in ns, if the number of hops between n and the nodes in ns is
known, then takeOne(ns) could be implemented to take the node closest to n.
In that case, if triple pattern tp is mapped to {g1}, Ii

P(n).η(g1) = {n1, n2}, and
n1 is closer to n than n2, takeOne({n1, n2})=n1, and therefore Mn(tp) = {n1}
The returned node mapping Mn specifies which nodes should be queried for
each triple pattern.

Example C.5 (Node Mapping)
Consider the query Q in Listing C.1 and the set of graphs in Figure C.1a
and Ii

P in Table C.1a. Applying Algorithm 10 to Q’s bgp results in the
set of mappings in Figure C.1b. Besides checking whether each URI in a
triple pattern is contained within a PPBF, the algorithm prunes g4 from the
second triple pattern. This is the case, since p2, b ∃BP(g4), but BP(g4) ∩
BP(g3) = ∅. Since g3 is matched to the third triple pattern, and they join
on ?v2, g4 is pruned.

143

Paper C.

1 SELECT * WHERE {
2 ?v1 p1 b .
3 b p2 ?v2 .
4 ?v2 p3 ?v3
5 }

Listing C.1: Example query Q.

Table C.1: PPBF index for a set of graphs and the resulting node mappings

(a) Ii
P(n1)

u υ(u) g η(g)
p1 {g1, g4} g1 {n1}
p2 {g2, g4} g2 {n1, n2}
p3 {g3} g3 {n2, n3}
b {g1, g2, g4} g4 {n3}

(b) Mn

tp Mn(tp)

(?v1, p1, b) {n1}
(b, p2, ?v2) {n1}
(?v2, p3, ?v3) {n2}

Using intersections of PPBFs allows for reducing the set of graphs to con-
sider for a query. This is evident from our experiments (Section 7), where
multiple intersections of PPBFs with common prefixes were indeed empty,
and less data as a result was transferred between nodes.

6 Query Processing

For simplicity, and in-line with recent proposals on query processing [10, 22],
we assume that queries are evaluated triple pattern by triple pattern, and
that expensive operations, such as joins, are executed locally at the issuer af-
ter executing relevant triple patterns over graphs on nodes identified by our
indexes. The evaluation of a triple pattern relies on evaluating the triple pat-
tern against the graphs in the local repositories of a set of nodes. Therefore,
we define operators to evaluate a triple pattern using either a locational or
PPBF index.

Definitions C.7 and C.8 formally specify operators for retrieving a set
of nodes given a triple pattern, using a locational index and PPBF index,
respectively. Definition C.9 then specifies an operator for evaluating a triple
pattern given such a set of nodes.

Definition C.7 (Locational Selection σL)
Let the function I(Ii

L(n), p) denote the set of nodes that is obtained by using
Ii
L(n) to find the relevant nodes to evaluate a triple pattern with predicate p,

and n1 ∈ Ii
L(n) denote that n1 ∈ η(g) for some g ∈ Ii

L(n).γ(p). Locational
selection for a triple pattern tp on a locational index Ii

L(n) of depth i , denoted

144

6. Query Processing

σL
tp(Ii

L(n)), is the set {n1 | n1 ∈ Ii
L(n)} if ptp is a variable, or {n1 | n1 ∈

I(Ii
L(n), ptp)} otherwise.

Definition C.8 (PPBF Selection σP)
Let Mn be the node mapping obtained after applying Algorithm 10 to the
BGP which includes tp in the query Q. Given a query Q, the PPBF selection
for a triple pattern tp ∈ bgp and bgp a BGP of Q, obtained using the PPBF
index Ii

P(n) of depth i, denoted σP
tp,Q(Ii

P(n)), is the selection of the nodes
Mn(tp).

Definition C.9 (Node Projection πN)
Given a set of nodes N , node projection on a triple pattern, denoted πN

tp(N),
is the set of triples obtained by evaluating tp on the local datastore of the
nodes in N . Given the function T (n, tp), that evaluates tp on n’s local datas-
tore, node projection is formally defined as: πN

tp(N) =
⋃

n∈N
T (n, tp)

Implementation Details

The proposed indexes can be used in a broad range of applications. However,
motivated by recent efforts in the area of decentralization [1], we show their
benefits in the context of an unstructured P2P system. Nodes in an unstruc-
tured P2P network often have a limited amount of space for datastores. As
such, it does not make sense for a node to download entire graphs. There-
fore, we adopt the basic setup outlined in Piqnic [1]. That is, graphs are split
into smaller subgraphs, called fragments, based on the predicate of the triples.
Each fragment is replicated among multiple nodes. For our setup, we simply
view a fragment as a graph and extend the original graph’s name with the
predicate in the subgraph. Hence, there is no need to encode predicates in
PPBFs, which therefore only contain URIs that are either a subject or object
in the fragment.

In Piqnic, query processing is based on the brTPF [10] style of process-
ing queries; triple patterns are flooded throughout the network individually,
bound by previous mappings. Locational indexes and PPBFs are useful for
avoiding flooding since the query processor can use them to identify pre-
cisely which nodes are to be queried. Specifically, a query Q at a node n is
processed as follows:

1. Reorder triple patterns in Q based on selectivity. More selective triple
patterns (estimated by variable counting) are evaluated first.

2. Evaluate each triple pattern tp ∈ Q by the following steps:

(a) Apply either locational selection (σL) or PPBF selection (σP) on n’s
local index in order to select the nodes Ntp that contain answers to
tp.

145

Paper C.

(b) For each node ni ∈ Ntp, apply node projection (πN) by evaluating
tp on ni’s local datastore.

3. Compute the answer to the query by combining intermediate results
from previous steps using the SPARQL operators specified in the query.

Since we use the brTPF style of query processing, the iterative process in step
2 is completed by sending bulks of bindings from previously evaluated triple
patterns to the nodes selected by the indexes.

7 Evaluation

To evidence the gains in performance and potential benefits of using our
proposed indexing schemes, we implemented locational indexes and PPBF
indexes as a module in Java 83. We modified Apache Jena4 to use the in-
dexes during query processing and extended Piqnic [1] with support for our
module in order to provide a fair comparison with an existing system.

7.1 Experimental Setup

Our experiments were run on a single server with 4xAMD Opteron 6373 pro-
cessors, each with 16 cores (64 cores in total) running at 2.3GHz, with 768KB
L1 cache and 16MB L2 and L3 cache. The server has 516GB RAM. We ex-
ecuted several experiments with variations of some parameters, such as ttl,
replication factor, and number of neighbors. However, due to space restric-
tions, we only show the most relevant results in this section. Additional re-
sults can be found on our website5. The results presented in this section focus
on experiments with the following parameters: 200 nodes, TTL: 5, number
of neighbors per node: 5. The timeout was set to 1200 seconds (20 minutes).
The replication factor was 5%, meaning that with 200 nodes, fragments were
replicated on 10 nodes. While, in theory, these parameters should give nodes
access to well over 200 nodes, in reality nodes within the same neighborhood
often share some neighbors, giving them access to far less nodes. In our ex-
periments, each node had, on average, access to 129.43 nodes. By increasing
the TTL value to a sufficiently large number, our indexes could provide a
global view, however as nodes are free to join and leave the network, keeping
this global view up-to-date can easily become quite expensive. Each dataset
was assigned to a random owner, which replicated the fragments across its
neighborhood.

3The source code is available on our GitHub at https://github.com/Chraebe/PPBFs
4https://jena.apache.org/
5Additional results are available on our website at https://relweb.cs.aau.dk/ppbfs

146

https://github.com/Chraebe/PPBFs
https://jena.apache.org/
https://relweb.cs.aau.dk/ppbfs

7. Evaluation

We use the queries and datasets in the extended LargeRDFBench [11].
LargeRDFBench comprises 13 different datasets, some of them intercon-
nected, with over 1 billion triples. It includes 40 SPARQL queries, divided
into four sets: Simple (S), Complex (C), Large Data (L), and Complex and
Large Data (CH). We measure the following metrics:

• Execution Time (ET): The amount of time in milliseconds spent to process
a given query.

• Completeness (COM): The percentage of the query answers obtained by
a system. To determine completeness, we computed the results in a
centralized system and compared them to the results given by the de-
centralized setup.

• Number of Transferred Bytes (NTB): The total number of transferred bytes
between nodes in the network during query processing.

• Number of Exchanged Messages (NEM): The total number of messages
exchanged, in both directions, between nodes during query processing.

Queries were run sequentially on random nodes. At most 37 nodes were
active at the same time during our experiments. We report averages over
three runs.

Storage and Building Times

As we shall see, in most real cases PPBFs outperform locational indexes in
terms of performance and data transfer. However, in our experiments, the in-
dex creation time was, on average 6,495 ms for locational indexes and 10,992
ms for PPBF indexes. PPBFs used 427MB per node, while locational indexes
used 685KB per node. Furthermore, matching triple patterns to nodes is less
complex for locational indexes. This means, that for cases where resources
are limited, locational indexes might overall be the best choice, given that
they still increase performance overall.

7.2 Experimental Results

During all experiments, we compared Piqnic without modifications, Piqnic

with locational indexes, and Piqnic with PPBF indexes. The objective is to
verify that locational indexes and PPBF indexes can improve query process-
ing, especially for the typically challenging queries.

Performance Gains Using Locational Indexes and PPBF Indexes

Figure C.4 shows ET for query group S. The extended versions with locational
indexes and PPBF indexes perform significantly better than the unmodified
version for all the queries. Moreover, the version extended with PPBF indexes

147

Paper C.

is more efficient than the version extended with locational indexes in all cases
except queries S6 and S7. For queries S6 and S7, using the PPBF indexes
does not allow for pruning any additional nodes than using the locational
indexes, and so the slightly larger overhead of testing the graphs for common
URIs leads to slightly larger query processing times. However, since all these
times are below 100ms, this is negligible compared to the improvements that
PPBF indexes provide for other queries. Moreover, for query S9, a locational
index does not help. This is due to a triple pattern where all constituents are
variables. Because of this, the locational index returns all nodes within the
neighborhood, the same set of nodes that Piqnic uses. The version extended
with the PPBF indexes is able to eliminate some of these nodes and thus
improve performance.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14

10−2

100

102

101

103

Ex
ec

ut
io

n
Ti

m
e

(s
) PIQNIC Locational PPBF

Fig. C.4: ET for Piqnic, Piqnic with locational indexes, and Piqnic with PPBF indexes over
query group S. Note that the y-axis is in log scale.

Figure C.5 shows ET for query groups L and CH. Generally, queries which
were not computable before, are computable with PPBF indexes, alluding to a
significantly improved performance. For some queries, such as S14, CH3 and
CH6, the improvement was especially significant. Though, some especially
large queries could not be processed within the time out. Given enough time,
however, we were able to execute these with ET between 2K-10K seconds. The
only exception was L5, which has proven to be particularly challenging for
state of the art federated processors [11]. Even though we do not show the
results for query group C, they showed the same pattern; an improvement in
performance using locational indexes, and further improvement using PPBF
indexes.

In our experiments, all queries that finished had the same complete-
ness for all approaches. Figure C.6b shows the average COM over query
groups. Since the indexes make query processing more efficient, we experi-
enced fewer timeouts, which caused the higher completeness for some query
groups.

148

7. Evaluation

L1 L2 L3 L4 L5 L6 L7 L8 CH1 CH2 CH3 CH4 CH5 CH6 CH7
10−1

101

103

101

103

Ti
m

eo
ut

Ti
m

eo
ut

Ti
m

eo
ut

Ti
m

eo
ut

Ti
m

eo
ut

Ti
m

eo
ut

Ti
m

eo
ut

Ti
m

eo
ut

Ti
m

eo
ut

Ti
m

eo
ut

Ti
m

eo
ut

Ti
m

eo
ut

Ti
m

eo
ut

Ti
m

eo
ut

Ex
ec

ut
io

n
Ti

m
e

(s
) PIQNIC Locational PPBF

Fig. C.5: ET for Piqnic, Piqnic with locational index, and Piqnic with PPBF indexes over query
groups L and CH. Note that the y-axis is in log scale.

Index Impact on Network Traffic

One of the major advantages of the indexes presented in this paper is the
fact that flooding can be avoided, thus the number of messages exchanged
between nodes is significantly reduced.

To evidence the improvement wrt. the network traffic, we measured the
amount of messages exchanged between nodes, and the amount of trans-
ferred data in bytes, during the execution of the queries in the query load.
Figure C.6a shows the number of exchanged messages, averaged over the
query groups. As expected, both indexes reduce the amount of messages sent
throughout the network by avoiding flooding. This reduction has a stronger
impact when the number of messages for the unmodified approach is very
high. Furthermore, the PPBF indexes can further reduce the number of nodes
queried, thereby further reducing the number of messages sent throughout
the network during query processing.

S C L CH

101

104

107

A
vg

.N
EM

PIQNIC Locational PPBF

(a) Average NEM

S C L CH
0

20

40

60

80

100

A
vg

.C
O

M
(%

)

PIQNIC Locational PPBF

(b) Average COM

Fig. C.6: Average NEM and COM for Piqnic, locational index, and PPBFs over query groups.
Note that for Figure C.6a, the y-axis is in log scale.

The amount of transferred bytes during query execution (Figure C.7 for
query group S), shows the same general tendency. Using indexes can reduce
the number of nodes queried and thereby the amount of transferred bytes

149

Paper C.

since some fragments are pruned. Furthermore, a PPBF index ensures that
only relevant fragments are queried, thus reducing NTB even further. The
reduced NTB in practice means, that less time is spent transferring data dur-
ing query execution. This increases performance, especially for queries with
large intermediate results.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14

103

105

107

103N
TB

(b
yt

e)

PIQNIC Locational PPBF

Fig. C.7: NTB for Piqnic, Piqnic with locational index, and Piqnic with PPBF indexes over
query group S. Note that the y-axis is in log scale.

Impact of Other Parameters

We ran experiments where we varied the time-to-live value, replication fac-
tor, and the number of neighbors for each node. For all these experiments,
query execution times for the modified approaches were only negligibly af-
fected by the varied network structure, since node matching still only require
simple lookups. For the unmodified approach, query execution times were
much more affected by the varied network structure. This means, that in
terms of completeness, we saw a much greater improvement for the modi-
fied approaches than in Figure C.6b, since less queries were completed by the
unmodified approach.

8 Conclusions

In this paper, we proposed two schemes for indexing RDF nodes in decen-
tralized architectures: Locational Indexes and Prefix-Partitioned Bloom Filter
(PPBF) indexes. Locational indexes establish a baseline, that PPBF indexes
extend to provide much more precise indexes. PPBF indexes are based on
Bloom Filters and provide summaries of the graph’s constituents that are
small enough to retrieve the indexes of the reachables nodes without us-
ing too much time or space. We implemented both indexing schemes in a
module, that could be adapted for use in any decentralized architecture or
federated query processing engine. Our experiments show, that both index-
ing schemes are able to reduce the amount of traffic within the network, and
thereby improve query processing times. In the case of PPBF indexes, the

150

References

improvement is more significant than for locational indexes. Using PPBFs
during join processing to check if a fragment may contain matches given spe-
cific values to a join variable could further speed up query processing. This,
and studying the impact of using filters with varying sizes, is part of our
future work.

References

[1] C. Aebeloe, G. Montoya, and K. Hose, “A Decentralized Architecture for Sharing
and Querying Semantic Data,” in ESWC 2019, 2019, pp. 3–18.

[2] B. H. Bloom, “Space/time trade-offs in hash coding with allowable errors,” Com-
mun. ACM, vol. 13, no. 7, pp. 422–426, 1970.

[3] C. Buil-Aranda, A. Hogan, J. Umbrich, and P. Vandenbussche, “SPARQL web-
querying infrastructure: Ready for action?” in ISWC 2013, 2013, pp. 277–293.

[4] M. Cai and M. R. Frank, “Rdfpeers: a scalable distributed RDF repository based
on a structured peer-to-peer network,” in WWW, 2004, pp. 650–657.

[5] Š. Čebirić, F. Goasdoué, H. Kondylakis, D. Kotzinos, I. Manolescu, G. Troullinou,
and M. Zneika, “Summarizing semantic graphs: a survey,” VLDBJ, Dec 2018.

[6] A. Crespo and H. Garcia-Molina, “Routing indices for peer-to-peer systems,” in
ICDCS, 2002, pp. 23–32.

[7] P. Folz, H. Skaf-Molli, and P. Molli, “Cyclades: A decentralized cache for triple
pattern fragments,” in ESWC 2016, 2016, pp. 455–469.

[8] A. Grall, P. Folz, G. Montoya, H. Skaf-Molli, P. Molli, M. V. Sande, and R. Ver-
borgh, “Ladda: SPARQL queries in the fog of browsers,” in ESWC 2017 Satellite
Events, 2017, pp. 126–131.

[9] A. Grall, H. Skaf-Molli, and P. Molli, “SPARQL query execution in networks of
web browsers,” in DeSemWeb@ISWC 2018, 2018.

[10] O. Hartig and C. B. Aranda, “Bindings-restricted triple pattern fragments,” in
OTM 2016 Conferences, 2016, pp. 762–779.

[11] A. Hasnain, M. Saleem, A. N. Ngomo, and D. Rebholz-Schuhmann, “Extending
largerdfbench for multi-source data at scale for SPARQL endpoint federation,”
in SSWS@ISWC, 2018, pp. 203–218.

[12] M. C. Jeffrey and J. G. Steffan, “Understanding bloom filter intersection for lazy
address-set disambiguation,” in SPAA 2011, 2011, pp. 345–354.

[13] Z. Kaoudi, M. Koubarakis, K. Kyzirakos, I. Miliaraki, M. Magiridou, and
A. Papadakis-Pesaresi, “Atlas: Storing, updating and querying RDF(S) data on
top of DHTs,” J. Web Sem., vol. 8, no. 4, pp. 271–277, 2010.

[14] M. Karnstedt, K. Sattler, M. Richtarsky, J. Müller, M. Hauswirth, R. Schmidt, and
R. John, “UniStore: Querying a DHT-based Universal Storage,” in ICDE 2007,
2007, pp. 1503–1504.

151

References

[15] E. Mansour, A. V. Sambra, S. Hawke, M. Zereba, S. Capadisli, A. Ghanem,
A. Aboulnaga, and T. Berners-Lee, “A demonstration of the solid platform for
social web applications,” in WWW Companion, 2016, pp. 223–226.

[16] P. Molli and H. Skaf-Molli, “Semantic Web in the Fog of Browsers,” in De-
SemWeb@ISWC 2017, 2017.

[17] G. Montoya, C. Aebeloe, and K. Hose, “Towards efficient query processing over
heterogeneous RDF interfaces,” in ISWC 2018 Satellite Events, 2018, pp. 39–53.

[18] G. Montoya, H. Skaf-Molli, and K. Hose, “The odyssey approach for optimizing
federated SPARQL queries,” in ISWC 2017, 2017, pp. 471–489.

[19] O. Papapetrou, W. Siberski, and W. Nejdl, “Cardinality estimation and dynamic
length adaptation for bloom filters,” Distributed and Parallel Databases, vol. 28, no.
2-3, pp. 119–156, 2010.

[20] S. Tarkoma, C. E. Rothenberg, and E. Lagerspetz, “Theory and practice of
bloom filters for distributed systems,” IEEE Communications Surveys and Tutorials,
vol. 14, no. 1, pp. 131–155, 2012.

[21] J. Umbrich, K. Hose, M. Karnstedt, A. Harth, and A. Polleres, “Comparing data
summaries for processing live queries over linked data,” WWW, vol. 14, no. 5-6,
pp. 495–544, 2011.

[22] R. Verborgh, M. V. Sande, O. Hartig, J. V. Herwegen, L. D. Vocht, B. D. Meester,
G. Haesendonck, and P. Colpaert, “Triple pattern fragments: A low-cost knowl-
edge graph interface for the web,” J. Web Semant., vol. 37-38, pp. 184–206, 2016.

[23] S. Voulgaris, D. Gavidia, and M. van Steen, “CYCLON: Inexpensive Membership
Management for Unstructured P2P Overlays,” J. Network and Systems Manage-
ment, vol. 13, no. 2, pp. 197–217, 2005.

152

Paper D

ColChain: Collaborative Linked Data Networks

Christian Aebeloe, Gabriela Montoya, Katja Hose

The paper has been published in the
Proceedings of the 30th The Web Conference (WWW 2021), pp. 1385-1396, 2021.

DOI: 10.1145/3442381.3450037

https://doi.org/10.1145/3442381.3450037

Abstract

One of the major obstacles that currently prevents the Semantic Web from exploiting
its full potential is that the data it provides access to is sometimes not available or out-
dated. The reason is rooted deep within its architecture that relies on data providers
to keep the data available, queryable, and up-to-date at all times – an expectation
that many data providers in reality cannot live up to for an extended (or infinite)
period of time. Hence, decentralized architectures have recently been proposed that
use replication to keep the data available in case the data provider fails. Although this
increases availability, it does not help keeping the data up-to-date or allow users to
query and access previous versions of a dataset. In this paper, we therefore propose
ColChain (COLlaborative knowledge CHAINs), a novel decentralized architecture
based on blockchains that not only lowers the burden for the data providers but at
the same time also allows users to propose updates to faulty or outdated data, trace
updates back to their origin, and query older versions of the data. Our extensive ex-
periments show that ColChain reaches these goals while achieving query processing
performance comparable to the state of the art.

© 2021 IW3C2 (International World Wide Web Conference Committee), pub-
lished under Creative Commons CC-BY 4.0 License. Reprinted, with permis-
sion from Christian Aebeloe, Gabriela Montoya, and Katja Hose.
Aebeloe C., Montoya G., Hose K. (2021) ColChain: Collaborative Linked Data
Networks. In: WWW 2021: Proceedings of the 30th The Web Conference.
https://doi.org/10.1145/3442381.3450037.
The layout has been revised.

1. Introduction

1 Introduction

The increasing popularity of the Semantic Web and its Web of Data has over
the past few years led to a rapid increase in the amount of data published
as Linked Open Data (LOD) – spanning a broad range of topics, such as
life sciences [12], geography [33], and general knowledge [36]. Such data
is made available through either raw data dumps, SPARQL endpoints, or
dereferenceable URIs. Yet, the current architecture of the Web of Data re-
quires that we rely on the individual data providers to maintain access to
their datasets. While this is a practical and simple solution, it causes several
issues that significantly limit the general applicability of technologies relying
on the Web of Data as their backbone. As highlighted in several recent stud-
ies [4, 7, 34, 35], providing access to such datasets is a significant burden for
the data providers, which often results in downtime of public SPARQL end-
points [7, 34]. Another burden for the data provider is the responsibility to
keep the data up to date. Current architectures do not support mechanisms
to update faulty or outdated data in a community-driven way. Typically, it is
the data provider publishing a new version of the entire dataset while taking
the old version offline, which then becomes unavailable. However, for many
applications it is helpful to access previous versions of the dataset and also
trace back updates to ensure data quality [2].

In recent years, decentralized architectures [4, 10, 21] have been proposed
to lift some of the burden from the data providers. For instance, RDF-
Peers [10] uses a structured overlay over a Peer-to-Peer (P2P) network that
relies on Dynamic Hash Tables (DHTs) to determine data placement. How-
ever, in situations where nodes frequently leave or join the network, such
systems have to go through a costly adjustment of the overlay and redis-
tribute the data. Therefore, approaches such as Piqnic [4] rely on unstruc-
tured P2P systems instead, where there is no global control over which peer
stores which portion of the data. Nevertheless, in both flavors of P2P architec-
tures, replication is used to increase data availability in case of peer failures.
However, none of these systems efficiently supports updates, in particular
not community-driven ones.

Blockchains [15, 27, 32, 37] are chains of data blocks that represent global
ledgers. They rely on the consensus of participating nodes and facilitate
updates by adding new blocks to the chain. A new block is linked to the
existing chain using hashes to prevent changes without reaching a consensus.

Using blockchain technology for the Web of Data could thus allow users
to collaborate on new updates to the data, keep the published data up-to-
date, and improve its quality by correcting mistakes in community-driven
efforts. However, blockchains typically replicate the chain on all participating
nodes [37] to ensure immutability and persistance [32]. While this increases

155

Paper D.

availability and security, it also requires that every node has to provide a
considerably large amount of resources to store multiple large knowledge
graphs.

In summary, availability as well as writability issues make it increasingly
difficult to trust and rely on the Web of Data since it is sometimes impossible
to (i) access the data, (ii) trace back faulty data and updates to the origin,
(iii) ensure consistent query answers over longer periods in time by accessing
older versions of a dataset, and (iv) update faulty or outdated data. Hence,
in this paper we propose ColChain (COLlaborative knowledge CHAINs),
a system that increases data availability while enabling users to provide up-
dates and queries over previous versions. In particular, ColChain divides
the P2P network into smaller communities to increase availability, store up-
dates in chains, and rely on community-wide consensus for updates. Fur-
thermore, with the information in the blockchain, ColChain can trace back
updates and access previous versions of the dataset. As such, similar to
Wikidata [36] which lets users publish manual updates, ColChain relies on
user-provided updates to keep data up to date. In ColChain, however, a con-
sensus is required before an update is applied to the chain, making malicious
updates and faulty data less likely. Furthermore, ColChain improves con-
sistency and reproducibility of scientific studies that used query logs such as
LSQ [29] in which queries were executed over older versions of well-known
datasets. ColChain is collaborative, meaning users collaborate on the state
of the data by suggesting updates, whereas updates are consensual, meaning
users form a consensus on each update individually. In summary, this paper
makes the following contributions:

• A formal definition of ColChain, a novel decentralized architecture
that increases data availability while allowing nodes to trace back up-
dates to the original source as well as propose updates to existing data.

• An approach to process SPARQL queries over previous versions of the
datasets published in a ColChain network.

• An extensive evaluation of the performance and overhead of query pro-
cessing in a ColChain network using a large-scale benchmark (Larg-
eRDFBench [17]).

This paper is organized as follows. Section 2 discusses related work while
Section 3 introduces preliminaries. Section 4 presents ColChain and Sec-
tion 5 outlines consensual updates. Section 6 describes query processing in
ColChain. Section 7 then presents experimental results and Section 8 con-
cludes the paper.

156

2. Related Work

2 Related Work

In this section, we discuss approaches to increase the availability of knowl-
edge graphs and the pitfalls of such approaches. Furthermore, we discuss ap-
proaches that can accommodate collaborative or consensual updates to data
fragments and their shortcomings.

2.1 Client-Server Architectures

SPARQL endpoints remain among the most popular interfaces for querying
RDF datasets. SPARQL endpoints are centralized servers that provide an
HTTP interface to process SPARQL queries. However, such endpoints are
expensive to maintain and experience downtime, leaving the data inacces-
sible [7, 34]. SaGe [24] increases the availability of the centralized server by
suspending queries after a fixed time quantum to avoid long-running queries
exhausting the server resources. However, SaGe still processes entire queries
on the server, and can thus still suffer downtime.

Several recent approaches [3, 8, 9, 24, 31, 35] attempt to increase the avail-
ability of servers by lowering their query processing load. Triple Pattern Frag-
ments (TPF) [35] shift most of the query processing burden from the server to
the client, lowering the server load and increasing availability. This is done
by ensuring that the server only has to process individual triple patterns,
whereas joins and other SPARQL operators are processed by the client. How-
ever, while TPF does decrease the load on the server, it incurs in high network
usage and high client load, and the performance of TPF depends strongly
on factors such as the type of triple pattern and fragment cardinality [18].
Derivatives of TPF [3, 8, 9, 16, 25] therefore aim to further reduce the server
load by, for example, sending bulks of previously obtained bindings to the
server [16], or increasing the overall throughput by taking advantage of the
characteristics of the queries [25]. SPF [3] processes star-shaped subqueries
on the server, whereas Smart-KG [8] ships predicate-family partitions to the
client. WiseKG [9] combines the approaches presented by SPF and Smart-KG
and determines dynamically which strategy is the most cost-efficient for a
given subquery. Nevertheless, such systems still rely on centralized servers
that are subject to failure.

Federated systems [1, 26, 30, 31] process queries over multiple SPARQL
endpoints and make it feasible to exploit the resources of multiple servers
during query processing. Nevertheless, since federated systems rely on a
fixed set of SPARQL endpoints that are subject to failure, they do not pro-
vide a reliable solution to the availability issue. Col-Graph [19] lets con-
sumers create updates to datasets available over federated sources by us-
ing CONSTRUCT queries to create fragments which they can then change and

157

Paper D.

expose via SPARQL endpoints. This, however, still requires significant re-
sources on the part of the consumers.

In any case, systems that rely on a central server or a fixed set of central
servers do not completely address the availability issue; while reducing the
load on the server reduces the chance of server failure, the data will still be
unavailable in the event of failure.

2.2 Decentralized Architectures

Decentralized architectures have over the past few years been gaining at-
tention in the Semantic Web community [4, 8, 22, 24, 35]. Several ap-
proaches propose to use Peer-to-Peer (P2P) architectures to query RDF
data [4, 10, 20, 21]. Such approaches rely on the replication of data over
several nodes to increase the availability of the data. Some of these ap-
proaches [10, 20, 21] apply a structured overlay such as Dynamic Hash Ta-
bles (DHTs) over the network and enforce data placement. While this can
be exploited to make query processing relatively efficient, it also makes the
networks vulnerable to churn (when nodes frequently leave and join the net-
work) as the overlay then has to be computed again and the data has to
be redistributed each time a node leaves or joins the network. Instead, [4]
proposes an unstructured network, where connections between nodes are
random and replication of data is managed by the data provider. Process-
ing queries in such a network usually relies on flooding the network. This
is generally inefficient; however, the query processing performance of such
approaches were increased using decentralized indexes [5, 11].

Decentralized systems allow providers to freely upload data to the net-
work. By relying on replication of the data, such systems increase the avail-
ability of the data in the event of node failures. However, there is little to no
way for consumers to ensure that they have access to up-to-date data, process
queries over previous dataset versions, or trace back updates to the original
source. Colledge [23] therefore presented a vision of collaborative networks
where heterogeneous data providers are connected with consumers. Inspired
by this vision, we propose a collaborative network of peers that accommo-
dates consensual updates to data fragments.

2.3 Blockchains

Blockchains [27] define a global ledger of blocks that all nodes store. They
rely on the consensus of participating nodes on the state of the ledger. Us-
ing blockchains over decentralized knowledge graphs has, to the best of our
knowledge, only briefly been researched [15, 32]. However, such systems re-
quire the entire chain to be stored on all nodes [37], pack structured data into
blocks of a fixed size, and guarantee immutability of the data itself.

158

3. Preliminaries

Differently, in relational database systems, multiple previous studies [6,
13] have proposed partial solutions to these limitations. BlockchainDB [13]
provides a partitioned database layer on top of an existing blockchain, mean-
ing not all nodes store the entire dataset. CAPER [6] defines the chain as a
directed acyclic graph in such a way that a node only has to maintain a local
view over the entire chain. These approaches, however, only present partial
solutions to the limitations mentioned above; they either limit node auton-
omy, still require the entire chain to be stored on all nodes, or enforce shared
relational schema on each node. Furthermore, they view the data within a
system as one big dataset rather than several separate datasets owned by
different providers.

In this paper, we propose an approach that builds upon blockchains and
unstructured P2P systems that structures the network in communities and
puts community-based ledgers on top of partitioned knowledge graphs such
that each node only stores small subsets of the data and chain.

3 Preliminaries

In this section, we briefly define knowledge graphs followed by the funda-
mentals of unstructured P2P networks and indexing in such network that
ColChain builds upon.

3.1 Knowledge Graphs

The standard format for encoding knowledge graphs is RDF1. RDF structures
data as triples describing edges in a knowledge graph, i.e., a triple consists of a
subject, a predicate, and an object.

Definition D.1 (RDF Triple)
Given the infinite and disjoint sets U, B, and L, describing the set of all
URIs/IRIs, blank nodes, and literals, an RDF triple is a triple of the form
(s, p, o) ∈ (U ∪ B) × U × (U ∪ B ∪ L), where s, p, o are called the subject,
predicate, and object.

A knowledge graph G is a set of RDF triples. The de facto query language
for querying over knowledge graphs is SPARQL2. A SPARQL query consists
of a set of triple patterns.

Definition D.2 (Triple Pattern)
Given the infinite and disjoint sets U, B, L, and V, describing the set of all
URIs/IRIs, blank nodes, literals, and variables, a triple pattern is a triple of
the form (s, p, o) ∈ (U ∪ B ∪V)× (U ∪V)× (U ∪ B ∪ L ∪V).

1https://www.w3.org/TR/rdf11-concepts/
2https://www.w3.org/TR/sparql11-overview/

159

https://www.w3.org/TR/rdf11-concepts/
https://www.w3.org/TR/sparql11-overview/

Paper D.

We say that a triple pattern p matches a knowledge graph G iff there exists
a mapping from the variables in p to nodes or edges in G such that applying
the mapping to p yields an RDF triple in G. A Basic Graph Pattern (BGP)
P is a set of (conjunctive) triple patterns. A SPARQL query consists of BGPs
combined with operators. such as UNION or OPTIONAL. The answer to a BGP P
over a knowledge graph G is given as a solution mapping, defined as follows.

Definition D.3 (Solution mapping [35])
Given a BGP P and a knowledge graph G, U, B, L are the sets of URIs, blank
nodes, and literals in G, and V is the set of variables in P. A solution mapping
µ is a partial mapping µ : V 7→ (U ∪ B ∪ L).

Given a triple pattern tp and a solution mapping µ, the notation µ[tp]
denotes the triple (pattern) obtained by replacing variables in tp according to
the bindings in µ. A triple t is said to be a matching triple to tp if there exists
a solution mapping µ such that t = µ[tp]. Furthermore, dom(µ) returns the
domain of µ, i.e., the set of variables that are bound in µ and vars(tp) returns
the variables in tp.

3.2 ColChain Peer-to-Peer Layer

This section defines the basics of unstructured P2P networks and decentral-
ized indexing [4, 5] that ColChain builds upon.

An unstructured P2P network consists of a set of (possibly heterogeneous)
interconnected nodes. Each node in the network maintains a local datastore
(a set of knowledge graphs). Furthermore, due to the lack of global knowl-
edge in such a network, each node maintains a partial view over the network,
i.e., a set of remote nodes to interact with. By replicating datasets across sev-
eral nodes, such a network can ensure the availability of the data even if the
data provider fails. However, since knowledge graphs today can contain sev-
eral billions of triples, and nodes in a P2P network are relatively resource
restricted, uploaded knowledge graphs are divided into smaller disjoint frag-
ments. Fragments can be obtained from a knowledge graph by applying a
fragmentation function, defined as follows.

Definition D.4 (Fragmentation function)
A fragmentation function F is a function that maps from a knowledge graph
G to a set of fragments, i.e., F : G 7→ 2G such that ∀ f1, f2 ∈ F(G) : f1 ∩ f2 = ∅.

An example of a fragmentation function is the very coarse-granular func-
tion FC(G) = {G} that does not split up the original dataset. Another ex-
ample is the slightly more fine-granular predicate-based fragmentation func-
tion that creates a fragment for each predicate in the knowledge graph [4].
This means that fragments can be adapted to various characteristics of each

160

3. Preliminaries

knowledge graph. Each fragment has an identifier denoted u f . To achieve
replications of fragments over several nodes, the uploading node selects a
neighbor and propagates the fragment in a chain. Furthermore, updates to
fragments are only possible if the owner node issues an update and propa-
gates it throughout the network until all replicas are reached.

To speed up query processing, using routing indexes can help limiting the
number of nodes to query by identifying which nodes are relevant to a given
subquery. As a result, the network overhead is reduced and query processing
performance increased. In order to process queries over fragments not in the
local datastore, nodes must include indexes for fragments in their distributed
index. A distributed index is defined as follows.

Definition D.5 (Distributed Index)
Let n be a node, N be the set of nodes within a network, T be the (infinite)
set of possible triple patterns, and F be the (finite) set of fragments that n has
access to. A distributed index on n is a tuple In = (ν, η) with ν : T 7→ 2F and
η : F 7→ 2N . For a triple pattern t, ν(t) returns the set of fragments in F that
t matches. For a fragment f , η(f) returns the nodes on which f is located.

Definition D.6 (Node Mapping)
For any BGP P and distributed index I, there exists a function match(P, I)
that returns a node mapping M : T 7→ 2N where T is the set of triple patterns
in P, such that M(t) returns the indexed nodes that have fragments matching
t.

To include indexes for remote fragments, nodes have to share particular
parts of their distributed index with other nodes. In order to facilitate this,
the nodes compute or download slices for each fragment not in their local
datastore and combine these to form a distributed index. In simple terms, a
slice is the part of a distributed index that describes a particular fragment.
Formally, a slice is defined as follows.

Definition D.7 (Index Slice)
Let f be a fragment. A slice of f , s f , is a tuple s f = (ν′, η′) where ν′(t) returns
f if there exists a triple in f that matches t, and η′(f) returns the set of all
nodes that contain f in their local datastore. The function s(f) returns the
slice of f .

For instance, in [5], the function ν′ within the fragment slice definition
is implemented as a partitioned bitvector that summarizes the subject and
object values of a particular fragment, while η′ is implemented as a dictio-
nary that maps fragments to the nodes that have the fragment. Fragment
slices can be combined, using the ⊕ operator, into a distributed index, Prefix-
Partitioned Bloom Filter Index in [5]. For example, slices s f1 = (ν′1, η′1) and

161

Paper D.

s f2 = (ν′2, η′2) are combined into index In = (ν′1⊕ ν′2, η′1⊕ η′2).
3 The distributed

index is then used to check the overlap of fragments during query time to de-
termine which combinations of fragments produce join results. Distributed
indexes are composed of the slices of all the accessible fragments, i.e., both
locally and remotely available fragments. For a local fragment, the node
computes ν′ and η′, while for a remote fragment, the node retrieves ν′ and η′

from nodes that have the fragment locally available. Given a set of slices S,
the index of S, I(S) can be computed as follows.

I(S) =

(⊕
s∈S

s.ν′,
⊕
s∈S

s.η′
)

(D.1)

Query processing in such a setup uses the following general steps:

1. Use indexes to determine which nodes to process each triple pattern
over, i.e., retrieve node mappings (Definition D.6).

2. Determine the join order of the triple patterns using, for example, vari-
able counting or cardinality estimations.

3. Process each triple pattern in the determined order, at each step using
previously obtained bindings to limit the intermediate results.

4 ColChain

In this section, we provide a brief overview of a ColChain network and
the architecture of a ColChain node, followed by a formal definition of
ColChain.

4.1 Design and Overview

In conventional blockchains [27], it is up to the nodes to agree on the current
status of the chain [37]. To allow for consensual updates to knowledge graphs
and to overcome the limitations posed by blockchains (Section 2.3), we make
six design choices:

1. Knowledge graphs are divided into smaller fragments according to a
specific fragmentation function4.

2. The network is divided into communities of nodes.
3. Rather than a common ledger (henceforth called a chain), there is a

distinct chain associated with each fragment.

3⊕ is defined in [5] as (f ⊕ g)(x) = f (x) ∪ g(x) if f and g are defined at x; (f ⊕ g)(x) = f (x)
if f is defined at x; (f ⊕ g)(x) = g(x) if g is defined at x.

4By default ColChain uses the predicate-based fragmentation function [4]

162

4. ColChain

4. The chains contain updates to fragments, i.e., inserting or removing
triples, as well as provenance information.

5. We distinguish between participants (storing fragments and validating
updates) and observers (storing index slices).

6. Participants are allowed to upload new fragments and propose updates
to fragments within the community; if there is a community-wide con-
sensus, the updates will be applied.

By dividing the entire network into smaller communities of nodes (defined
in Section 4.2) and using fragmentation functions (Definition D.4), we avoid
storing large knowledge graphs on each node. Furthermore, replicating frag-
ments on participants in a community ensures that the data will be available
even if the uploading node fails. By also letting the nodes participate in or ob-
serve any community (participants and observers are defined in Section 4.2)
and join multiple communities at the same time, we ensure that nodes have
the autonomy to decide for themselves what data to store. Furthermore,
by relying on the collaboration of participating nodes, ColChain supports
consensual updates to the published fragments. Last, by attaching chains of
updates (including timestamps describing the point in time the update was
applied) to the fragments themselves, nodes are able to roll-back fragments
to a specific point in time and process queries over previous versions.

Since ColChain builds on top of unstructured P2P networks [4, 5], each
node has a limited view over the entire network. However, in contrast to such
networks, where the local view consists of a set of random neighbors, the
local view of a ColChain node is entirely delimited by the communities the
node participates in or observes. That is, a ColChain node is connected to
all other nodes that participate in or observe at least one of the communities
that it participates in or observes. Furthermore, fragments published within
a community are replicated on all participants along with their update chain
and index slice; observers index the fragments in a community but do not
store the fragment itself. Fragments can only be published in one community.
ColChain satisfies ACID; that is, it is ensured that transactions are atomic,
contain only valid RDF triples, and are serialized in the order of the update
chains, and that fragments are stored in permanent data storage.

Any node can create new communities and upload data to them; boot-
strapping a ColChain network relies on some of the nodes to create commu-
nities and the data providers to upload datasets to these communities (only
participants can upload fragments). To discover new communities, nodes ask
other nodes for a list of communities they participate in. In order to gain ac-
cess to the data within a community, a node has to either participate in (and
replicate the fragments) or observe (and index the fragments) the community.
After a node has joined a community, it expands its local view over the net-
work to include the other participants and observers in the community; when

163

Paper D.

leaving a community, it shrinks its local view to exclude the other nodes in
that community but not in any of the other communities that it participates
in or observes. As such, nodes are able to choose the fragments available
in their local view and the fragments they store, but they do not choose the
nodes that are part of their local view.

C1 C2

Datastore

Index

Datastore

IndexDatastore

Index

participant observer

Node A

Node B

Node C

Fig. D.1: A typical ColChain network.

Figure D.1 shows such a typical ColChain network with two communi-
ties (C1 and C2), each giving access to several fragments. The communities
are defined by the nodes that participate in and observe them and the frag-
ments published within them. Figure D.1 visualizes which fragments each
community gives access to, as well as participating and observing nodes. In
this example, there are three nodes (A, B, and C). Node A participates in C1
and observes C2, while node C participates in C2 and observes C1. Node B
participates in both communities. Since nodes A and C do not participate
in both communities, they do not replicate all fragments within the network;
thus, to answer queries that require data from both communities, they have
to reach out to a node participating in the community they observe. Despite
not participating in both communities, nodes A and C can reach complete
query answers since they, at least, observe both communities, thus indexing
all fragments and participants.

Updates in ColChain are structured in chains of so-called transactions;
a transaction is a set of bundled operations (either addition or deletion of
a triple). While ColChain relies on the consensus of participants to ac-
cept transactions, it allows the owner nodes of fragments (i.e., the upload-
ing nodes) to enforce transactions without consensus. Owners can also
veto transactions proposed by participants. Therefore, we use the signature
scheme RSA [28]; when proposing a transaction, the node will attach a sig-
nature based on its private key. Participants then validate this signature with
the owner’s public key to validate ownership over fragments.

Figure D.2 shows the general architecture of a ColChain node (Sec-

164

4. ColChain

Fragments and Chains
nil

nil

nil

Web Interface

Index

SPARQL Query
Processor

User

Node Interface

Node Mapping
Triple Pattern
Mappings

Local Datastore

SPARQL
Queries

Other Nodes

Triple Pattern
Requests

Community
Manager

Community
Management

Updates

Updates

Transaction
Consensus

Fig. D.2: Architecture of a ColChain node.

tion 4.2 provides a formal definition). Such a node combines the conventional
data storage and blockchain layers in its local datastore. In particular, each
fragment in the local datastore is directly associated with a chain of updates
called a secure hash chain, i.e., each element in the chain is linked to the previ-
ous element using its hash value [27]. The SPARQL query processor is able to
process full SPARQL queries and triple pattern requests. To process SPARQL
queries, ColChain first uses the index to identify the set of relevant nodes
and processes the query according to the method described in Section 6. A
node has two interfaces; one for users to issue queries, manage communities,
and propose updates, i.e., a Web interface, and one for communication be-
tween nodes, i.e., the node interface. Each interface communicates with the
community manager to manage communities and updates to fragments, and
the query processor for SPARQL queries and triple pattern requests.

4.2 Formal Definition of ColChain

A ColChain network consists of a set of nodes {n1, n2, . . . , nn}. Each node in
such a network contains a local datastore with fragments from zero or more
communities.

Definition D.8 (Node)
A node n is a triple n = (K, an, un) where

• K = (κn, ρn) is a key-pair such that κn is n’s private key and ρn is n’s

165

Paper D.

public key
• an is n’s address
• un is a valid URI and n’s unique identifier

Given the definition of a node, we now define the state of a node.

Definition D.9 (Node State)
Let n be a node. n’s state is Sn = (Σ, S, In,M) where

• Σ = {σ1, σ2, . . . , σm} and ∀σi ∈ Σ : σi = (Xi, fi) such that

– Xi is a secure hash chain
– fi is a fragment
– All updates represented in Xi have been applied to fi
– All f j, fk such that 1 ≤ j, k ≤ m and j 6= k refer to different (unique)

fragments in n’s local datastore
– σi is said to be an entry in n’s local datastore

• S is a set of index slices and ∀σi ∈ Σ : s(fi) ∈ S
• In is n’s distributed index, In = I(S), consisting of index slices from

local and remote fragments
• M is a set of metadata triples

The metadata triples describe a node’s local view over the network. These
triples include the metadata of all the communities that the node participates
in or observes (described in Definition D.11). They include, for instance, other
nodes that have joined the community. Since the metadata is structured as a
set of triples (i.e., a knowledge graph), it can be stored and managed similarly
to fragments. Note, however, that since the number of metadata triples is
small, it can be stored in memory. Moreover, versioning and consensus over
metadata updates is out of the scope of this paper, and therefore there is
no update chain associated to the metadata. Note also that the set of index
slices S might contain slices from fragments not included in the node’s local
datastore. This is the case for fragments in communities observed by the
node.

Definition D.10 (Community)
A community C contains two sets of nodes called participants and observers
(defined in Definitions D.12 and D.13) and a set of fragments, each owned by
a node, i.e., C = (N, FC , υ, uC) where

• N = (PC , OC) such that PC and OC are the sets of participants and
observers, respectively

• FC is a set of fragments
• υ is an ownership-mapping function such that ∀ f ∈ FC : υ(f) = ρ f where
∃n ∈ PC

⋃
OC : ρ f = ρn

• uC is a valid URI and C’s unique identifier

166

4. ColChain

The ownership-mapping function ν maps fragments to the public key of
the owner node. ν is used for validating ownership over fragments during
consensus (Section 5.2). Given a fragment f , assume that u f is a valid URI
and a unique identifier for f . We now define the state of a community as
follows5.
Definition D.11 (Community State)
Let C be a community. C’s state is SC = (Φ,M) where

• Φ = {φ1, φ2, . . . , φm} and ∀φi ∈ Φ : φi = (Xi, fi)

– Xi is a secure hash chain
– fi is a fragment

• M is a set of metadata triples such that

– ∀n ∈ PC : 〈uC , cc : participant, un〉 ∈ M
– ∀n ∈ OC : 〈uC , cc : observer, un〉 ∈ M
– ∀ f ∈ FC : 〈uC , cc : fragment, u f 〉 ∈ M and
〈u f , cc : author, C.υ(f)〉 ∈ M

The metadata of a community,M, contains triples detailing all the partic-
ipating and observing nodes, as well as the fragments within that community
and their ownership. Upon joining a community, nodes add these triples to
their local metadata,i.e., nodes expand their local view of the network.

Nodes can both participate in or observe a community. Given the def-
inition of a community state, we thus define participants and observers as
follows.
Definition D.12 (Participant)
Given a community C and a node n, n is said to be a participant in C iff for
all φ = (X , f) ∈ SC .Φ it is the case that (X , f) ∈ Sn.Σ, s(f) ∈ Sn.S, and
∀t ∈ SC .M : t ∈ Sn.M.

A participant is a node that, in its local datastore, contains replicas of
the fragments and chains within the community. Note that a node is not
limited to participate in just one community. Instead, nodes are free to par-
ticipate in any community, and as many as they like. By participating in
communities, nodes gain more efficient access to the data provided by that
community since it is then available from the local datastore. Furthermore,
to avoid routing attacks, and to still ensure complete query processing, nodes
can also observe communities. This gives them access to the data within the
community without having to replicate all the fragments.

Definition D.13 (Observer)
Given a community C and a node n, n is said to be an observer in C iff for all
φ = (X , f) ∈ SC .Φ it is the case that s(f) ∈ Sn.S, and ∀t ∈ SC .M : t ∈ Sn.M.

5The prefix cc : describes the URI http://colchain.org/properties#.

167

Paper D.

Even though an observer does not store replicas of the fragments itself, it
can still access the fragments during query processing by sending requests
to community participants. This is done by downloading the index slice of
the fragments within the community, and include those in the index. During
query processing, the node will then ask participants for the relevant data
based on the node mapping provided by the index. Observers are thus able
to obtain complete query answers since observing communities requires far
less resources than participating.

5 Consensual Updates

In this section, we outline how ColChain enables consensual updates. We
provide a formalize updates to fragments and discuss our approach for reach-
ing consensus on proposed updates.

5.1 Updates

In ColChain, there are two types of updates that need to be accounted for;
updates to fragments (for participants) and updates to the metadata (e.g.,
when a node leaves a community). ColChain represents updates to both
fragments or metadata as transactions that consist of operations. To provide
access to previous dataset versions, ColChain organizes and stores the trans-
actions done to a fragment over time as a chain. However, since providing
access to previous network configurations (e.g., former community members)
is out of the scope of this paper, ColChain does not keep the transactions
done to the metadata. For ease of presentation, we therefore focus on up-
dates to fragments in this section. Operations can be insertions or deletions
and thus updates are in this paper described as deletions followed by inser-
tions. Formally, an operation is defined over a fragment as follows.

Definition D.14 (Operation)
An operation o over a fragment f is a tuple o = (α, t), where α describes
whether the operation is an insertion (α = +) or deletion (α = −) of a triple,
and t is the triple that is to be inserted or deleted.

Applying an operation o to a fragment f , denoted o(f), results in a state
where the fragment either does not contain the triple (if α = −), or contains
the triple (if α = +). An operation thus represents a change to a fragment in
the local datastore. As operations typically occur in sets, we combine updates
into transactions. Transactions are defined as follows.

Definition D.15 (Transaction)
A transaction γ is a triple γ = (O, fi, λ) where O = {o1, o2, . . . , on} is a set
of operations, fi is a fragment, and λ = (un, αγ, ι) is provenance information,

168

5. Consensual Updates

where un is the unique identifier of the node proposing the transaction n, αγ

is a signature obtained using n’s private key, and ι is a timestamp.

Note that while blocks in conventional blockchains [27] have a fixed size,
transactions in ColChain can have varying sizes, i.e., any number of oper-
ations. This allows for more efficient storage of updates in situations where
updates to knowledge graphs contain different numbers of operations.

Applying all operations in a transaction γ to a fragment f is denoted by
[[f]]γ. Notice also that a transaction can be applied to the metadata triples.
This is denoted [[M]]γ.

Table D.1: Fragment f

Fragment f
〈a, p1, c〉 〈a, p2, d〉 〈b, p2, d〉
〈b, p3, e〉 〈c, p1, d〉 〈c, p3, a〉
〈 f , p4, d〉 〈d, p4, f 〉 〈e, p5, g〉

Consider fragment f in Table D.1 and the following transaction:

γ = ({(+, 〈a, p1, b〉), (−, 〈a, p1, c〉)}, f , λ)

The result of applying the transaction γ to the fragment f , [[f]]γ, is the frag-
ment that exchanges the triple 〈a, p1, c〉 with 〈a, p1, b〉, and can be seen in
Table D.2.

Table D.2: The result after applying γ to f , [[f]]γ

Fragment [[f]]γ
〈a, p1, b〉 〈a, p2, d〉 〈b, p2, d〉
〈b, p3, e〉 〈c, p1, d〉 〈c, p3, a〉
〈 f , p4, d〉 〈d, p4, f 〉 〈e, p5, g〉

State transition functions describe how ColChain allows for fragment
updates. Transition functions are defined for fragment updates (on partici-
pants) as well as fragment slice updates (on both participants and observers).
These functions are, upon achieved consensus (described in Section 5.2), trig-
gered on participants and observers. First we define the transition function
for the fragments in a state as follows.

Definition D.16 (Fragment Transition Function)
Given a transaction γ, a state Sn of a node n, and a secure hash function
H, the fragment transition function is for all σi = (Xi, fi) ∈ Sn.Σ defined as
follows.

τΣ(σi, γ) = (τX (Xi, γ), τf (fi, γ)) (D.2)

169

Paper D.

Where

τX (Xi, γ) = Xi ∪ {xi+1} s.t.

xi+1 = (h, γ)

h = (H(γ), y)

y = {H(xj) | j < i}

(D.3)

And

τf (fi, γ) = [[fi]]γ (D.4)

The value h in Equation D.3 can be seen as a header that contains a hash
value of the transaction and links to previous headers (and thus transactions),
forming a chain. Since the metadata M is a set of triples, applying a trans-
action γ toM is given by applying τf (M, γ) (τf as defined in Equation D.4)
on the nodes within the community. Given a transaction γ and a state Sn of
a node n, we therefore define a slice transition function as follows.

Definition D.17 (Slice Transition Function)
Given a transaction γ = (O, fi, λ) and a state Sn of a node n such that s fi

∈
Sn.S, the slice transition function is defined as follows.

τS(s fi
, γ) = s([[fi]]γ) (D.5)

After a transaction is applied to a fragment, the participants compute a
new index slice for the fragment using the slice transition function. After-
wards, participants and observers replace the slice of that fragment with the
new slice in their distributed indexes.

5.2 Consensus Protocol

To obtain a consensus on a proposed update, ColChain relies on the partic-
ipants to actively vote on a transaction. This means that a transaction is not
applied until a majority of participants accepts. While this could take some
time (since users are active at different times), it prevents faulty or malicious
updates from being applied. Furthermore, the data provider can enforce up-
dates to the fragment (i.e., circumvent the majority).

Consensus is reached by a majority of nodes accepting the transac-
tion. The acceptance protocol of a participant is defined as follows. Let
veri f y(αγ, ρ f) be a function that returns true iff the signature αγ matches
the public key ρ f , i.e., if γ was signed by the owner of f , and validate(γ) be
a function that returns true iff the user actively accepts the transaction. The
acceptance protocol uses the following steps:

170

5. Consensual Updates

1. Let γ = (O, f , αγ), M be the set of metadata triples of n, Sn.M, and
σi = (Xi, fi) ∈ Sn.Σ be the unique state entry such that u fi

= u f . Find
〈u f , cc : author, ρ f 〉 ∈ M.

2. If veri f y(αγ, ρ f) = true, accept γ on σi.
3. If validate(γ) = true, accept γ on σi.
4. If veri f y(αγ, ρ f) = false and validate(γ) = false, reject γ on σi.

Participant Participant Participant Observer

accept(γ, n1)

node n1 node n2 node n3 node n4node n0

τΣ (σi , γ)

γ

PoO Commit Accept Reject

Participant

accept(γ, n2) accept(γ, n3)

τΣ (σi , γ) τΣ (σi , γ)

τS (s f , γ) τS (s f , γ) τS (s f , γ) τS (s f , γ)

Fig. D.3: Example flowchart of transaction proposition, validation and application.

In a ColChain network, similarly as in [6], transactions are propagated
through the community as shown in Figure D.3. First, a node proposes a can-
didate transaction and calls the acceptance method on each participant in the
community.6 Then, each participant validates the transaction and forwards
the result of accept(γ, n) to all the other participants. By receiving the ac-
ceptance messages from all other participants, nodes are able to, at all times,
locally determine when a majority has accepted. In this example, two out of
three participants accept the transaction and thus a consensus is reached. Af-
ter reaching consensus, each participant triggers its state transition functions
with the proposed transaction, thereby committing the transaction. Last, the
participant that proposed the update forwards the updated index slice to the
observers which will, upon receiving an accept message from a majority of
nodes, update their index accordingly. This way, changes to the fragments
within the community can be collaboratively determined.

Relying on a majority of the users to actively accept transactions creates
a practical limitation on the number and size of transactions a user can vote
on in reality. This limitation could be addressed by using different consensus
protocols in different situations that make active participation of users more
scalable, e.g., by detecting non-trivial changes in large updates or malicious

6community participants and their addresses are available in the node’s metadata

171

Paper D.

updates. This is part of our future work (Section 8).

6 Query Processing

In line with the state of the art [4, 5], a ColChain node processes SPARQL
queries by requesting reachable fragments that match the query’s triple pat-
terns, while operations like joins are evaluated locally on the querying node.
In line with [4, 16] we attach the bindings from previously evaluated triple
patterns to the requests when evaluating subsequent triple patterns. This is
to reduce the cardinality of the retrieved fragment, i.e., sizes of intermedi-
ate results. Furthermore, by using the node’s distributed index (as defined
in Definition D.5), it is possible to limit the number of nodes to query for
each triple pattern and avoid having to flood the network, i.e., forwarding
requests through several layers of neighbors, which is the basic strategy in
unstructured P2P networks [4]. Similarly to [4], a ColChain node has a lim-
ited view over the entire network. However, differently from [4], this view is
not random but determined by the communities the node has joined.

Recall in Definition D.6 the function match(P, I) for a BGP P and index
I. The function returns a node mapping M that, given a triple pattern tp,
M(tp), returns the set of nodes N with relevant fragments, i.e., fragments
that tp matches. Each node n contains a selector function that formalizes
how triple pattern requests are processed over an entry in n’s local datastore.
Since ColChain bulks bindings from previously evaluated triple patterns,
we define a selector function in line with [16] that takes these bindings into
account. Furthermore, to allow for queries over previous dataset versions,
we extend the selector function to also take into account a timestamp ι. Let
σi = (Xi, fi) be an entry in n’s local datastore. ι(σi) denotes the fragment
obtained by reversing the operations in the transactions encoded within Xi
with a timestamp greater than or equal to ι, i.e., γj with γj.λ.ι ≥ ι, i.e., the
fragment that was available at ι. The selector function is defined as follows.

Definition D.18 (Selector Function)
Given a node n, a triple pattern tp, a finite set of distinct solution mappings
Ω, and a timestamp ι, the fragment-based bindings-restricted triple pattern
selector for tp, Ω, and ι, denoted s(tp,Ω,ι), is for every entry σ in n’s local
datastore defined as follows.

s(tp,Ω,ι)(σ) =

{t ∈ ι(σ) | t ∈ ι(σ) ∧ ∃µ : t = µ[tp] if Ω = ∅
{t ∈ ι(σ) | t ∈ ι(σ) ∧ ∃µ : t = µ[tp]∧

∃µ′ ∈ Ω : µ′ ⊆ µ} otherwise.

In line with the state of the art, we apply pagination [16, 35], i.e., we group
the results into reasonably sized pages (e.g., 100 results per page in [35]) to

172

6. Query Processing

avoid excessive data transfer. For ease of presentation though, we focus on
the case where all answers fit into a single page. Given a node n, a triple
pattern tp, a set of solution mappings Ω, and a timestamp ι, we define two
additional functions that call the selector function (Definition D.18) to process
triple pattern requests: nc(tp, Ω, ι) and np(tp, Ω, ι).

• nc(tp, Ω, ι) returns a cardinality estimation of the result of invoking
s(tp,Ω,ι) on n.

• np(tp, Ω, ι) returns the result of invoking s(tp,Ω,ι) on n.

Note that in some cases nodes will process triple patterns over fragments
available in the local datastore. In this case, the returned node n from the
node mapping is the local node, and the node does not actually perform a
request to itself; rather it just processes the triple pattern locally and forwards
the result to the query processor.

Algorithm 11 Evaluate a BGP on a ColChain node

Input: A BGP P = {tp1, . . . , tpn}; a node n; a timestamp ι; a set of
solution mappings Ω; a node mapping M
Output: A set of solution mappings

1: function evaluateBGP(P,n,ι,Ω = ∅,M = ∅)
2: if M = ∅ then M← match(P,Sn.In);
3: for all tpi ∈ P do
4: cnti ← Σn1∈M(tpi)

nc
1(tpi, Ω, ι);

5: if cnti = 0 then return ∅;
6: tpε ← tpk where tpk ∈ P and cntk ≤ cntj∀tpj ∈ P;
7: φε ← ⋃

n1∈M(tpε) np
1 (tpε, Ω, ι);

8: Ωε ← Ω ./ {µ | dom(µ) = vars(tpε) and µ[tpε] ∈ φε};
9: P′ ← P \ {tpε};

10: if P′ = ∅ then return Ωε;
11: return evaluateBGP(P′, n, ι, Ωε, M);

Given a BGP P and timestamp ι specifying which fragment versions to
process P over, Algorithm 11 defines a recursive algorithm to process P over
the fragments reachable for a node n (i.e., covered by n’s index). First, we ob-
tain the node mapping (Section 3, Definition D.6) from n’s index (Section 3,
Definition D.5) in line 2. Recall that a node mapping given a triple pattern
tp, M(tp), returns a set of nodes that contain relevant fragments to tp. Us-
ing the previously defined function np(tp, Ω, ι), we then obtain a cardinality
estimation for each triple pattern by summing the cardinality estimations ob-
tained by each node specified by the node mapping we found in the previous
step (lines 3-5). The triple pattern with lowest cardinality estimation is then

173

Paper D.

evaluated first by sending it to all sources specified by the node mapping to
obtain the bindings for this triple pattern (line 7). The output results from
previous triple patterns are then joined with the bindings just obtained (line
8). Last, the evaluated triple pattern is removed from the BGP (line 9) and,
if there are any remaining triple patterns, the algorithm is called recursively
with the new BGP and set of bindings (line 11).

7 Experimental Evaluation

We compare ColChain with state-of-the-art decentralized architectures for
sharing and querying semantic data in terms of performance. Moreover,
we investigate the impact of community sizes on ColChain’s performance
and updates and study ColChain’s performance when processing queries
against previous versions.

7.1 Implementation Details

A prototype of ColChain was implemented in Java 87. Both the Web in-
terface and node interface (Figure D.2) are implemented as Java 8 Servlets
using Jetty8. The query processor is implemented as an extension to Apache
Jena9 and can process SPARQL queries that Jena can process (e.g., with UNION
and OPTIONAL). Our implementation uses Prefix-Partitioned Bloom Filter in-
dexes from [5] as distributed index (In) and the predicate-based fragmenta-
tion function from [4]. The fragments themselves are stored as separate HDT
files [14] that allow for efficient processing of triple patterns. The chains of
transactions are stored separately from the fragments and if possible in main
memory.

7.2 Experimental Setup

Datasets and Queries. We use the datasets and queries from the extended
LargeRDFBench [17] benchmark, which comprises 13 interconnected datasets
that totals over 1 billion triples. LargeRDFBench includes 40 SPARQL queries
divided into 5 different categories: Simple (S), Complex (C), Large Data (L),
and Complex and Large Data (CH). We generated chains of 1, 10, and 100
transactions for each fragment. Each transaction has a random number of
operations between 10 and 100. We assessed the correctness of query answers
by comparing the output to the results obtained using the same data and

7The prototype is available at https://github.com/ColChain/ColChain-Java.
8https://www.eclipse.org/jetty/
9https://jena.apache.org/

174

https://github.com/ColChain/ColChain-Java
https://www.eclipse.org/jetty/
https://jena.apache.org/

7. Experimental Evaluation

queries in a standard triple store. In our experiments, all queries that finished
returned complete results.

Experimental Setup. We ran our experiments on a network with 128 nodes.
We created 4004 fragments from the LargeRDFBench data in total and 200
communities each with between 10 and 31 fragments (randomly assigned).
Nodes are assigned randomly to participate and observe each of the com-
munities. The nodes observe all communities they do not participate in, i.e.,
all the fragments are reachable from all the nodes, and therefore complete
query results can be obtained during query processing. We compare the fol-
lowing systems: (i) an unstructured P2P network with flooding [4] (Piqnic),
(ii) the same system with decentralized indexes [5] (PiqnicPPBF), and (iii)
ColChain using the same indexes as PiqnicPPBF. In Piqnic, fragments are
replicated randomly throughout the network and connections are random.
We match the replication factor in Piqnic and PiqnicPPBF (i.e., the number
of replicas per fragment) with the number of participants in each community
for ColChain. For each experiment, we ran the 40 queries in the benchmark
sequentially at three random nodes and report the average over the three
runs.

Parameters. To test how the characteristics of a ColChain network affect per-
formance and update overhead time, we ran experiments with 5, 10, and 20
participants per community. Moreover, to assess ColChain in a more realis-
tic setup with varying community sizes, we ran experiments using a Zipfian
distribution of the community sizes, i.e., the most popular community has
all 128 nodes as participants, after which the nth most popular community
has 128/n, or at least one, participants. In the versioning experiments, we as-
sessed how scalable ColChain is for different chain lengths (i.e., the number
of transactions to roll back for a single query) when processing queries over
previous versions. Specifically, we processed queries with chain lengths of 1,
10, and 100.

Hardware Configuration. We ran, for each P2P system, 128 nodes on a virtual
machine (VM) with 128 vCPU cores with a clock speed of 2.5GHz, 64KB L1
cache, 512KB L2 cache, 8192KB L3 cache and 2TB main memory. Since all
clients are run concurrently on the same machine, they are limited to use 1
core and 15GB memory, and the connection between them is limited to 20
MBit/sec.

Evaluation Metrics. We measure the following metrics:
• Query Execution Time (QET): The amount of time (in milliseconds) it

takes to obtain the full query answer.
• Query Response Time (QRT): The amount of time (in milliseconds) it takes

to obtain the first query answer.
• Update Overhead Time (UOT): The amount of time (in milliseconds)

175

Paper D.

elapsed from when an update is proposed to when it is committed
on all targets (assuming a consensus is reached instantly).

• Version Materialization Time (VMT): The amount of time (in milliseconds)
it takes to materialize previous versions of requested fragments.

• Number of Exchanged Messages (NEM): The number of messages ex-
changed between nodes.

• Number of Transferred Bytes (NTB): The amount of data transferred (in
bytes) between nodes.

Software Configuration. The number of results that each system is allowed
to attach to requests is set to |Ω| = 30 (Section 6), and the page size to
100 (i.e., each system can only send 100 results at a time). The timeout is
set to 1,200 seconds (20 minutes). For Piqnic, we use the following values
(as recommended by [4]). Time-to-Live (number of hops): 5, Number of
Neighbors: 5.

7.3 Experimental Results

Due to space limitations, we will only show the most interesting experimental
results in this section. The full experimental results are available at https:
//relweb.cs.aau.dk/colchain.

Fig. D.4: Execution time for queries in the C and CH categories for Piqnic, PiqnicPPBF , and
ColChain (y-axis in log scale).

(a) Transferred KBs (b) Messages (c) Response Time

Fig. D.5: Number of transferred bytes (NTB) in KBs, number of exchanged messages (NEM), and
response time (QRT) for each approach over the different query categories excluding queries that
timed out (y-axis in log scale).

Query Processing Performance. Figure D.4 shows the query execution time
(QET) for each system over the queries in the C and CH query categories.
ColChain has similar performance to PiqnicPPBF. This is due to the fact that

176

https://relweb.cs.aau.dk/colchain
https://relweb.cs.aau.dk/colchain

7. Experimental Evaluation

the characteristics of a ColChain network are similar to that of a Piqnic net-
work; in our setup, the number of participants in a community was matched
to the replication factor in Piqnic. As such, since ColChain and PiqnicPPBF
use the same indexing scheme, they have similar overall performance. Only
a few queries, such as C3 and CH7, show a slight difference in execution
time for ColChain and PiqnicPPBF. This is due to the particular topology
of the networks and that the randomly chosen nodes have different frag-
ments available in the local datastore, e.g., for CH7, one of the PiqnicPPBF
nodes was able execute the query issuing just 2,058 triple pattern requests,
while all the ColChain nodes required at least 2,423 triple pattern requests
to gather the fragments that were not available locally at the issuing node.
The decerease in execution time this caused the particular node to have was
significant enough to still be visible even with the value averaged over three
separate nodes. Furthermore, ColChain and PiqnicPPBF have better query
processing performance across all queries compared to Piqnic. This is con-
sistent across not just the C and CH query categories, but all remaining query
categories in our experiments as well. ColChain and PiqnicPPBF timed out
for 5 out of the 40 queries, and Piqnic timed out for 14 out of the 40 queries.
The timeouts were in the L and CH query categories and were queries for
which even federated systems timed out [17].

Figure D.5 shows, for each query category and over each compared sys-
tem, the number of transferred bytes (Figure D.5a), number of exchanges
messages (Figure D.5b), and the query response time (Figure D.5c). Both
ColChain and PIQNICPPBF generate significantly less network load than
PIQNIC. This is due to the ability to accurately determine which other
nodes to query for specific data, thus removing the need to flood the net-
work. A similar trend can be observed in Figure D.5b where ColChain and
PIQNICPPBF incur significantly fewer exchanged messages than Piqnic. As
a result, ColChain is able to maintain a comparatively low response time
similar to PIQNICPPBF’s (Figure D.5c).

Overall, our results clearly show that ColChain’s performance is compa-
rable to state-of-the-art systems without incurring in any additional network
load. This was expected since improving query processing performance was
not part of our contributions, and emphasizes that the additional functional-
ity of consensual updates and query processing over previous versions does
not decrease the performance when comparing to state-of-the-art systems.

Impact of the Size of the Communities. Figure D.6 shows the query execu-
tion time (QET) for each query in the S query category over each community
size. It is clear that in most cases the networks with larger community sizes
show slightly better performance overall. This is due to the fact that commu-
nities with larger numbers of participants have more fragments replicated at
each node, and therefore executing a query naturally incurs in a lower num-

177

Paper D.

Fig. D.6: Execution time for queries in the S query category for different community sizes (y-axis
in log scale).

(a) Execution Time (b) Materialization Time
(c) Update Overhead Time

Fig. D.7: Execution and materialization time for the versioning experiments excluding queries
that timed out (y-axis in log scale) and update overhead time over different community sizes (log
scale).

ber of requests. In our experiments, the network with five participants per
community has between 47 and 332 fragments per node, while the network
with 20 participants per community has between 408 and 885. There were a
few exceptions, e.g., queries S2 and S5, but this comes naturally from the fact
that the additional replicas were placed randomly and were not necessarily
located at the node issuing the query. In all cases, the network with five par-
ticipants in each community is the slowest, and for some queries this margin
is quite significant (e.g., up to 7 times slower for S9 compared to the setup
with 20 participants in each community). These results are consistent across
all query categories and show that there is a correlation between the sizes
of the communities and the performance. Finally, we have also considered
a configuration where the number of the participants per community varies
according to a Zipfian distribution. For this configuration, the results show
that query processing is less efficient than in the setup where all communi-
ties have 10 or 20 participants. This is the case since in a Zipfian distribution
there will on average be fewer participants per communities, resulting in
fewer fragments locally available on each node. In fact, in our experiments,
nodes have between 19 and 258 fragments available, which is significantly
less than in any other setup. Still, the performance is similar to the setup
with 5 participants. Moreover, for a few queries such as S1 and S9, the per-
formance is close to the setup with 20 participants. This is a result of many of
those fragments being part of a popular community, i.e., there is a high like-

178

7. Experimental Evaluation

lihood of such fragments being available in the local datastore of the node
issuing the query.

Cost of Processing Queries over Previous Dataset Versions. In order to
study ColChain’s performance when processing queries against previous
dataset versions, we created update chains with 1, 10, and 100 transactions
per fragment. We applied these updates to the fragments and saved only the
latest version in the local datastore. All queries were evaluated over the ini-
tial version of the datasets by rolling back the entire chain and computing the
initial version during query processing. Figures D.7a-D.7b shows, for each
query category the query execution time (Figure D.7a) and the version mate-
rialization time (Figure D.7b). Our experiments show that while processing
queries over a previous dataset version clearly takes more time, the length
of the chain (i.e., number of transactions to roll back) actually has very little
impact. This is a sub-linear effect since it is not necessary to materialize each
version in between the current version and the target version; rather it is suffi-
cient to simply combine all the operations in the transactions and materialize
the target version by rolling back those operations on the current version.
Moreover, it is clearly visible that the materialization time (Figure D.7b) does
not significantly vary with the number of transactions; instead, it is mostly
impacted by the query category. One of the main differences between the
different query categories is the number of transferred bytes. In particular,
while the S query category requires at most the transfer of 856 kilobytes, the
L query category requires at most the transfer of 154 megabytes. Clearly, the
materialization time is the main component of the query execution time (cf.
Figure D.7a and Figure D.7b), where up to 94% of the materialization time
is spent in decompressing the fragment triples and compressing the triples
in the fragment’s target version. This suggests that while HDT favors effi-
cient processing of triple pattern requests, using this encoding in the context
of writable linked data has clear limitations. Additionally, our experimental
setup with fragments of up to 10 million triples clearly exacerbates these lim-
itations. Nevertheless, our experiments still show that it is possible to process
queries over previous dataset versions within a relatively low query timeout,
i.e., 31 out of 40 queries were executed within a timeout of 20 minutes; all
timed out queries are either queries in the L and CH query groups, resulting
in larger fragments to be materialized and therefore longer materialization
time, or including triple patterns with variables as predicates, resulting in a
large number of fragments to be materialized. Notice that these queries time
out even when processed by state-of-the-art federated systems [17].

Update Overhead. To assess how consensual updates in ColChain scale in
relation to the size of the community and the size of the fragments, we ran
experiments where we applied updates to 338 randomly chosen fragments
(out of the 4004 fragments in the network) of varying sizes in communities

179

Paper D.

of different sizes. We measured the update overhead time (UOT), including
the time it takes for nodes within the community to forward acceptance mes-
sages. In this experiment, the updates are performed by a random non-owner
node, and we assume that the participants in the community instantly accept
the transactions. Figure D.7c shows the update time for different transactions
applied to the 338 randomly chosen fragments. While the number of mes-
sages sent between nodes should rise polynomially with the community size
(from 20 for the communities with five participants to 380 for communities
with 20 participants), this has relatively little impact on the overhead of the
updates. In line with the versioning experiments, the materialization of the
updated file represents the biggest overhead. This highlights the limitations
with updates that HDT entails.

7.4 Summary

Our experimental evaluations clearly show that ColChain is able to not only
support consensual updates and query processing over previous dataset ver-
sions, but achieves comparable query processing performance to state-of-the-
art decentralized architectures. The overhead of processing queries over pre-
vious dataset versions is mostly affected by the materialization of the older
fragment itself, and ColChain is able to handle increasing chain lengths rel-
atively efficiently in comparison. Furthermore, the overhead of consensual
updates to fragments is also mostly affected by the materialization of the
new version rather than the validation protocols. This highlights that the
used RDF encoding has an impact on the performance with regards to ver-
sioning and consensual updates, and that a different encoding that allows for
efficient updates could be more suitable for ColChain. Overall, our experi-
mental evaluation clearly shows that ColChain is able to efficiently handle
consensual updates, provides an approach to processing queries over previ-
ous versions that is scalable in relation to the length of the chain, and achieves
good query processing performance in comparison to state-of-the-art decen-
tralized architectures.

8 Conclusion

In this paper, we presented ColChain (COLlaborative knowledge CHAINs),
a novel decentralized system that allows for users to provide updates to
published knowledge graphs while enabling querying previous dataset ver-
sions. ColChain divides unstructured Peer-to-Peer networks into smaller
communities of nodes and applies community-based chains of updates to
data fragments. By relying on the consensus of participating nodes in a com-
munity, ColChain is able to let nodes propose and vote on updates to the

180

References

fragments. Furthermore, by structuring changes to fragments over time as
chains, ColChain allows nodes to roll back updates and obtain query an-
swers over previous dataset versions. Our experimental evaluation shows
that ColChain achieves comparable performance to state-of-the-art inter-
faces, while the overhead of processing queries over previous dataset ver-
sions is mostly affected by the materialization of the older fragment and the
used RDF encoding rather than the validation protocol. As part of our fu-
ture work, we will investigate how to include measures to detect and avoid
malicious activity. Furthermore, we will assess whether sharing the query
processing load between nodes could improve query processing performance
in ColChain and assess alternative RDF compression techniques to improve
efficiency when processing queries over previous versions. We also plan to
explore the possibility of using different consensus protocols that make active
participation of users more scalable, e.g., by letting fragment owners specify
a qualified majority or detecting malicious updates automatically. This could
be done by expanding the metadata triples and adding routines for alterna-
tive consensus strategies.

References

[1] I. Abdelaziz, E. Mansour, M. Ouzzani, A. Aboulnaga, and P. Kalnis, “Lusail: A
system for querying linked data at scale,” Proc. VLDB Endow., vol. 11, no. 4, pp.
485–498, 2017.

[2] M. Acosta, A. Zaveri, E. Simperl, D. Kontokostas, S. Auer, and J. Lehmann,
“Crowdsourcing linked data quality assessment,” in ISWC 2013, 2013, pp. 260–
276.

[3] C. Aebeloe, I. Keles, G. Montoya, and K. Hose, “Star pattern fragments:
Accessing knowledge graphs through star patterns,” CoRR, vol. abs/2002.09172,
2020. [Online]. Available: https://arxiv.org/abs/2002.09172

[4] C. Aebeloe, G. Montoya, and K. Hose, “A decentralized architecture for sharing
and querying semantic data,” in ESWC 2019, 2019, pp. 3–18.

[5] ——, “Decentralized indexing over a network of rdf peers,” in ISWC 2019, 2019,
pp. 3–20.

[6] M. J. Amiri, D. Agrawal, and A. E. Abbadi, “CAPER: A cross-application per-
missioned blockchain,” VLDB, vol. 12, no. 11, pp. 1385–1398, 2019.

[7] C. B. Aranda, A. Hogan, J. Umbrich, and P. Vandenbussche, “SPARQL Web-
Querying Infrastructure: Ready for Action?” in ISWC 2013, 2013, pp. 277–293.

[8] A. Azzam, J. D. Fernández, M. Acosta, M. Beno, and A. Polleres, “SMART-KG:
hybrid shipping for SPARQL querying on the web,” in WWW 2020, 2020, pp.
984–994.

[9] A. Azzam, C. A. I. Keles, G. Montoya, A. Polleres, and K. Hose, “WiseKG: bal-
anced access to web knowledge graphs,” in WWW 2021, 2021.

181

https://arxiv.org/abs/2002.09172

References

[10] M. Cai and M. R. Frank, “RDFPeers: a scalable distributed RDF repository based
on a structured peer-to-peer network,” in WWW, 2004, pp. 650–657.

[11] A. Crespo and H. Garcia-Molina, “Routing indices for peer-to-peer systems,” in
ICDCS 2002, 2002, pp. 23–32.

[12] M. Dumontier, A. Callahan, J. Cruz-Toledo, P. Ansell, V. Emonet, F. Belleau, and
A. Droit, “Bio2rdf release 3: A larger, more connected network of linked data for
the life sciences,” in ISWC 2014 Posters & Demonstrations Track, vol. 1272, 2014,
pp. 401–404.

[13] M. El-Hindi, C. Binnig, A. Arasu, D. Kossmann, and R. Ramamurthy,
“Blockchaindb - A shared database on blockchains,” PVLDB, vol. 12, no. 11,
pp. 1597–1609, 2019.

[14] J. D. Fernández, M. A. Martínez-Prieto, C. Gutiérrez, A. Polleres, and M. Arias,
“Binary RDF representation for publication and exchange (HDT),” J. Web Se-
mant., vol. 19, pp. 22–41, 2013.

[15] D. Graux, G. Sejdiu, H. Jabeen, J. Lehmann, D. Sui, D. Muhs, and J. Pfeffer,
“Profiting from kitties on ethereum: Leveraging blockchain RDF with SANSA,”
in ISWC Posters and Demos, 2018.

[16] O. Hartig and C. B. Aranda, “Bindings-restricted triple pattern fragments,” in
OTM 2016 Conferences, 2016, pp. 762–779.

[17] A. Hasnain, M. Saleem, A. N. Ngomo, and D. Rebholz-Schuhmann, “Extending
largerdfbench for multi-source data at scale for SPARQL endpoint federation,”
in SSWS@ISWC, 2018, pp. 28–44.

[18] L. Heling, M. Acosta, M. Maleshkova, and Y. Sure-Vetter, “Querying Large
Knowledge Graphs over Triple Pattern Fragments: An Empirical Study,” in
ISWC 2018, 2018, pp. 86–102.

[19] L. D. Ibáñez, H. Skaf-Molli, P. Molli, and O. Corby, “Col-graph: Towards writable
and scalable linked open data,” in ISWC 2014, 2014, pp. 325–340.

[20] Z. Kaoudi, M. Koubarakis, K. Kyzirakos, I. Miliaraki, M. Magiridou, and
A. Papadakis-Pesaresi, “Atlas: Storing, updating and querying RDF(S) data on
top of DHTs,” J. Web Sem., vol. 8, no. 4, 2010.

[21] M. Karnstedt, K. Sattler, M. Richtarsky, J. Müller, M. Hauswirth, R. Schmidt, and
R. John, “UniStore: Querying a DHT-based universal storage,” in ICDE 2007,
2007, pp. 1503–1504.

[22] E. Mansour, A. V. Sambra, S. Hawke, M. Zereba, S. Capadisli, A. Ghanem,
A. Aboulnaga, and T. Berners-Lee, “A demonstration of the solid platform for
social web applications,” in WWW 2016 Posters and Demos, 2016, pp. 223–226.

[23] S. Metzger, K. Hose, and R. Schenkel, “Colledge: a vision of collaborative knowl-
edge networks,” in SSW 2012, 2012, pp. 1–8.

[24] T. Minier, H. Skaf-Molli, and P. Molli, “Sage: Web preemption for public SPARQL
query services,” in WWW, 2019, pp. 1268–1278.

[25] G. Montoya, C. Aebeloe, and K. Hose, “Towards efficient query processing over
heterogeneous RDF interfaces,” in DeSemWeb@ISWC, 2018.

182

References

[26] G. Montoya, H. Skaf-Molli, and K. Hose, “The Odyssey Approach for Optimizing
Federated SPARQL Queries,” in ISWC 2017, 2017, pp. 471–489.

[27] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2009. [Online].
Available: http://www.bitcoin.org/bitcoin.pdf

[28] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital signa-
tures and public-key cryptosystems,” Communications of the ACM, pp. 120–126,
1978.

[29] M. Saleem, M. I. Ali, A. Hogan, Q. Mehmood, and A. N. Ngomo, “LSQ: the
linked SPARQL queries dataset,” in ISWC 2015, 2015, pp. 261–269.

[30] M. Saleem and A. N. Ngomo, “Hibiscus: Hypergraph-based source selection for
SPARQL endpoint federation,” in ESWC 2014, 2014, pp. 176–191.

[31] A. Schwarte, P. Haase, K. Hose, R. Schenkel, and M. Schmidt, “FedX: A Feder-
ation Layer for Distributed Query Processing on Linked Open Data,” in ESWC
2011, 2011, pp. 481–486.

[32] M. Sopek, P. Gradzki, W. Kosowski, D. Kuzinski, R. Trójczak, and R. Trypuz,
“Graphchain: A distributed database with explicit semantics and chained RDF
graphs,” in WWW Companion, 2018, pp. 1171–1178.

[33] C. Stadler, J. Lehmann, K. Höffner, and S. Auer, “Linkedgeodata: A core for a
web of spatial open data,” Semantic Web, vol. 3, no. 4, pp. 333–354, 2012.

[34] P. Vandenbussche, J. Umbrich, L. Matteis, A. Hogan, and C. B. Aranda, “SPAR-
QLES: monitoring public SPARQL endpoints,” Semantic Web, vol. 8, no. 6, pp.
1049–1065, 2017.

[35] R. Verborgh, M. V. Sande, O. Hartig, J. V. Herwegen, L. D. Vocht, B. D. Meester,
G. Haesendonck, and P. Colpaert, “Triple Pattern Fragments: A low-cost knowl-
edge graph interface for the Web,” J. Web Sem., vol. 37-38, pp. 184–206, 2016.

[36] D. Vrandecic and M. Krötzsch, “Wikidata: a free collaborative knowledgebase,”
Commun. ACM, vol. 57, no. 10, pp. 78–85, 2014.

[37] Z. Zheng, S. Xie, H. Dai, X. Chen, and H. Wang, “Blockchain challenges and
opportunities: a survey,” IJWGS, vol. 14, no. 4, pp. 352–375, 2018.

183

http://www.bitcoin.org/bitcoin.pdf

References

184

Paper E

A Demonstration of ColChain: Collaborative
Knowledge Chains

Christian Aebeloe, Gabriela Montoya, Katja Hose

The paper has been published in the
Proceedings of the ISWC 2021 Posters, Demos and Industry Tracks (ISWC 2021),

2021.

Abstract

The current architecture of the Semantic Web fully relies on the individual data
providers to maintain access to their data and to keep their data up to date. While
this may seem like a practical and straightforward solution, it often results in the
data being unavailable or outdated. In this paper, we present a fully functioning
client along with a user-friendly interface for ColChain, a system that increases
availability of knowledge graphs and enables users to update the data in a community-
driven way while still allowing them to query old versions.

© 2021 for this paper by its authors, published under Creative Commons CC-
BY 4.0 License. Reprinted, with permission from Christian Aebeloe, Gabriela
Montoya, and Katja Hose.
Aebeloe C., Montoya G., Hose K. (2021) A Demonstration of ColChain: Col-
laborative Knowledge Chains. In: Proceedings of the ISWC 2021 Posters, Demos
and Industry Tracks (ISWC 2021).
The layout has been revised.

1. Introduction

1 Introduction

In recent years, the continued development of Semantic Web technologies
has led to a rapid increase of the amount of data published as Linked Open
Data. However, the proliferation of data on the Semantic Web and the fact
that we currently rely on the data providers to maintain access to their
datasets and keep them up-to-date represents a significant burden on the
data providers [1, 5]. As a result, public SPARQL endpoints often experience
downtime [3] and available data is sometimes outdated [2].
SELECT ? pr2 WHERE {

dbr : P r e s i d en t _o f _ t h e_ U n i t e d_ S ta t es dbo : incumbent ? pr1 .
? pr1 dbo : party ?pa .
? pr2 dct : s u b j e c t dbr : Category : P r e s i d e n t s _ o f _ t h e _ U n i t e d _ S t a t e s .
? pr2 dbo : party ?pa

}

Listing E.1: SPARQL query Q that finds former U.S. presidents of the same party as the current
(incumbent) U.S. president.

Consider, for instance, the query Q in Listing E.1. Q finds all former U.S.
presidents that have been a member of the same party as the current (incum-
bent) U.S. president. However, as of the submission of this paper, processing
Q over the latest DBpedia release (version 2021-01)1 results in ?pr1, i.e., the
current (incumbent) president, being bound to dbr:Donald_Trump although
the inauguration of President Biden took place months ago. While this is
likely to be changed in the next release, the delay in the update shows that
information available on the Semantic Web is not always up-to-date.

In this paper, we demonstrate ColChain (COLlaborative knowledge
CHAINs) [2], a system that builds on unstructured Peer-to-Peer (P2P) net-
works [1] and uses replication of data fragments across several nodes to
maintain high availability. Furthermore, ColChain enables users to collab-
oratively update datasets while also allowing users to process queries over
previous versions. ColChain divides the P2P network into smaller commu-
nities of nodes that collaborate on keeping certain data up-to-date relying on
community-wide consensus. Updates in ColChain are stored in blockchain-
like chains; when a consensus for an update is reached, it is applied to the
end of the chain. This allows any user to propose updates to any dataset
while making malicious updates less likely. Furthermore, the update chains
allow users to access previous versions of the datasets. While [2] presents
the theoretical framework, this demo paper presents a working ColChain

implementation with a user-friendly interface2.
This paper is structured as follows. In Section 2, we present an architec-

tural overview of ColChain while in Section 3 we describe the demonstra-
tion that will be conducted at the conference.

1https://www.dbpedia.org/resources/latest-core/
2The client and source code are available at https://relweb.cs.aau.dk/colchain/

187

https://www.dbpedia.org/resources/latest-core/
https://relweb.cs.aau.dk/colchain/

Paper E.

C1 C2

Datastore

Index

Datastore

IndexDatastore

Index

participant observer

Node A

Node B

Node C

(a) Example ColChain network.

Web Interface

SPARQL Query
Processor

User

Node Interface

Triple Pattern Mappings

Data Storage Layer

SPARQL
Queries

Other Nodes

Triple Pattern
Requests

Community
Manager

Community
Management

Updates

Transaction
Consensus

Communication Layer

nil

nil

nil
Processing
Layer

(b) Architecture of a ColChain node.

Fig. E.1: An example ColChain network and the architecture of a ColChain node (adapted
from [2]).

2 System Overview

Figure E.1a shows an example of a ColChain network that consists of three
nodes that store data from two communities, where the nodes either partic-
ipate in or observe the communities. Participanting nodes share a set of data
fragments with the community they participate in and collaborate on keep-
ing those fragments up-to-date. In Figure E.1a, since node A participates in
community C1, it stores the fragments in its local datastore. Furthermore,
A observes community C2, and thus only indexes the fragments, relying on
asking either node B or C (i.e., participants) to access the data. Due to space
restrictions, we do not go into details with aspects, such as how to create
and maintain communities, but refer the interested reader to [2] for a more
technically detailed description.

2.1 Architecture of a ColChain Client

A ColChain node generally consists of several architectural layers as illus-
trated in Figure E.1b. These layers are as follows.

Communication Layer. The communication layer exposes two components:
the Web interface and the node interface. The Web interface provides a GUI
that allows users to interact with the system, e.g., to issue SPARQL queries
(on current or previous versions of the data), propose updates, and decide
whether to accept or reject updates proposed by other users. The node in-
terface accepts messages from other nodes, e.g., when another participant
accepts an update.

Processing Layer. The processing layer consists of two components: the

188

2. System Overview

Fig. E.2: ColChain’s graphical interface when proposing an update to a fragment.

community manager and the query processor. The community manager val-
idates updates, and manages chains and fragments as well as community
membership. The query processor is able to process SPARQL queries over
current and old dataset versions available at any user-specified point in time.

Data Storage Layer. The data storage layer contains the node’s local data
store. ColChain nodes use HDT [4] as backend for storing data fragments.
Changes to fragments are applied to the data storage layer by the community
manager and appended to the chain for the given fragment.

2.2 Graphical User Interface for ColChain

Consider again query Q from Listing E.1 and a user who wants to suggest
an update to obtain the expected result. Figure E.2 shows how the user
interacts with ColChain to propose an update over a fragment. The user
searches for the URI dbr:President_of_the_United_States (Figure E.2a)
and finds the triple with dbr:Donald_Trump as object (Figure E.2b), which
they then remove. The user then adds the triple with dbr:Joe_Biden as
object to the fragment (Figure E.2c). Figure E.2d shows the changes made by
the user. Once the user saves the update (Figure E.2e), it is forwarded to the
other participants in the community, which are notified (Figure E.2f). Once a
majority accepts the update, it is applied across the community.

189

References

3 Demonstration

At the conference, we will demonstrate ColChain using two separate sce-
narios that attendees can explore. We will run a network with the data from
LargeRDFBench [6], which comprises 13 interlinked datasets with over a bil-
lion triples in total. Furthermore, we will run a separate network with data
from a subset of DBpedia that includes update chains back to version 2015-
04, i.e., attendees will have the opportunity to explore query answers over
different versions of DBpedia. ColChain will be showcased using networks
with varying numbers of nodes and community sizes that follow different
distributions (e.g., Zipfian as in [2]). A video demonstration of ColChain

using the DBpedia scenario is available on our website3.
To ease interaction with the system, we will provide several interesting

SPARQL queries for attendees to explore each scenario. Attendees will be
invited to build upon these queries, formulate queries on their own, explore
query answers over different versions, and propose updates. For instance,
attendees could propose the update shown in Figure E.2. Query Q from
Listing E.1 could then be processed over the updated data as well as over
DBpedia version 2015-04 when ?pr1 would be bound to dbr:Barack_Obama.

References

[1] C. Aebeloe, G. Montoya, and K. Hose, “A decentralized architecture for sharing
and querying semantic data,” in ESWC 2019, 2019, pp. 3–18.

[2] ——, “ColChain: Collaborative linked data networks,” in WWW 2021, 2021, pp.
1385–1396.

[3] C. B. Aranda, A. Hogan, J. Umbrich, and P. Vandenbussche, “SPARQL Web-
Querying Infrastructure: Ready for Action?” in ISWC 2013, 2013, pp. 277–293.

[4] J. D. Fernández, M. A. Martínez-Prieto, C. Gutiérrez, A. Polleres, and M. Arias,
“Binary RDF representation for publication and exchange (HDT),” J. Web Semant.,
vol. 19, pp. 22–41, 2013.

[5] L. Heling, M. Acosta, M. Maleshkova, and Y. Sure-Vetter, “Querying Large Knowl-
edge Graphs over Triple Pattern Fragments: An Empirical Study,” in ISWC 2018,
2018, pp. 86–102.

[6] M. Saleem, A. Hasnain, and A. N. Ngomo, “Largerdfbench: A billion triples
benchmark for SPARQL endpoint federation,” vol. 48, 2018, pp. 85–125.

3https://relweb.cs.aau.dk/colchain#demonstration

190

https://relweb.cs.aau.dk/colchain#demonstration

Paper F

Optimizing SPARQL Queries over Decentralized
Knowledge Graphs

Christian Aebeloe, Gabriela Montoya, Katja Hose

Unpublished Manuscript

Abstract

While the Web of Data in principle offers access to a wide range of interlinked data,
the architecture of the Semantic Web today relies mostly on the data providers to
maintain access to their data through SPARQL endpoints. Several studies, however,
have shown that such endpoints often experience downtime, meaning that the data
they maintain becomes inaccessible. While decentralized systems based on Peer-to-
Peer (P2P) technology have previously shown to increase the availability of knowl-
edge graphs, even when a large proportion of the nodes fail, processing queries in
such a setup can be an expensive task since data necessary to answer a single query
might be distributed over multiple nodes. In this paper, we therefore propose an ap-
proach to optimizing SPARQL queries over decentralized knowledge graphs, called
Lothbrok. While there are potentially many aspects to consider when optimizing
such queries, we focus on three aspects: cardinality estimation, locality awareness,
and data fragmentation. We empirically show that Lothbrok is able to achieve sig-
nificantly faster query processing performance compared to the state of the art when
processing challenging queries as well as when the network is under high load.

© 2022 for this paper by its authors. Reprinted, with permission from Chris-
tian Aebeloe, Gabriela Montoya, and Katja Hose.
Unpublished manuscript.
The layout has been revised.

1. Introduction

1 Introduction

Due to the popularity of decentralized knowledge graphs on the Web, more
and increasingly large knowledge graphs encoded in RDF are becoming
available [36]. Furthermore, RDF knowledge graphs made available today are
becoming exceedingly large. For instance, Wikidata [68] and Bio2RDF [21]
contain more than 14 billion triples each. As a result, data providers experi-
ence an increasing burden of maintaining access to the datasets; and without
any monetary incentives to do so, datasets often end up becoming unavail-
able [4, 12, 65] and outdated [6].

In recent years, several decentralized systems [3, 4, 6, 13, 43, 66] have been
proposed to alleviate the aforementioned burden from the data providers
by reducing the computational load required to keep the data available, al-
beit using different methods to do so. For instance, Linked Data Fragments
(LDF)-based approaches [3, 13, 14, 33, 66] reduce the computational load on
the server by distributing some of the query processing effort to the client,
ensuring that the server only processes requests with low time complexity.
On the other hand, Peer-to-Peer (P2P) systems [4, 6, 43] remove the central-
ized point of failure that a server represents and replicate the data across
several nodes in a decentralized fashion, ensuring that even if the upload-
ing node fails, the data is still accessible. For instance, RDFPeers [17] uses a
structured overlay over a P2P network that relies on Dynamic Hash Tables
(DHTs) to determine where to replicate certain data. However, in situations
where nodes frequently leave or join the network (i.e., churn), and data is
often uploaded to the network, nodes have to go through a costly adjustment
process to update the overlay and redistribute the data. Instead, systems like
Piqnic [4] and ColChain [6] use unstructured P2P systems as foundation,
where there is no global control over where data is replicated, making the
network more stable under churn.

ColChain builds upon Piqnic and divides the entire network into com-
munities of nodes that not only replicate the same data, but also collabo-
rate on keeping certain data (fragments) up-to-date. This is done by using
blockchain technology [26, 52, 63, 69] where chains of updates maintain the
history of changes to the data fragments. By linking such update chains to
the data fragments in a community, ColChain allows community partici-
pants to collaborate on keeping the data up-to-date while using consensus to
make malicious updates less likely and allowing users to roll-back updates
to an earlier version on request. Furthermore, the decentralized nature of
ColChain also increases the availability of the uploaded data by replicating
the data on nodes within the community.

Nevertheless, while Piqnic and ColChain already use decentralized in-
dexes [5] to determine where data is located during query time, subgraphs

193

Paper F.

needed to answer a query are usually scattered across multiple nodes. Fur-
thermore, the indexes provide limited information that prevents the nodes
from considering locality and accurately estimating join cardinalities when
optimizing queries. As a result, such systems often experience an unneces-
sarily large amount of intermediate results when processing a query. This
problem is exacerbated by the decentralized nature of the systems, since the
intermediate results have to be transferred between nodes, causing a signifi-
cant communication overhead.

While there are potentially many aspects to consider when optimizing
queries in a decentralized setup, we will focus on three such aspects: car-
dinality estimation, locality awareness, and data fragmentation. Suboptimal
solutions to any of these three aspects can lead to an increased communi-
cation overhead and lower performance. For instance, while fragmenting
large knowledge graphs into smaller fragments ensures that nodes do not
have to replicate entire knowledge graphs, using a fragmentation technique
that spreads out the data relevant to a single (sub)query across several frag-
ments can increase the communication overhead since nodes might have to
send an excessive number of requests to obtain all relevant data to answer
a particular query [7, 8, 23, 38]. On the other hand, inaccurate cardinality
estimations can lead to a suboptimal join strategy that increases the amount
of intermediate results and therefore runtime [50, 53]. And while several
approaches have proposed reasonably accurate cardinality estimation tech-
niques [50, 53, 55] over knowledge graphs, and for federated engines in par-
ticular [29, 37, 50, 64], such approaches cannot easily be transferred to a de-
centralized setup since nodes in a decentralized setup lack a global overview
of the network and the data is scattered across multiple nodes. Finally, con-
sidering locality of the data when processing queries can help ensure that
larger subqueries are delegated to nodes that can process them without com-
municating with other nodes, lowering the data transfer overall.

Nevertheless, while an optimization approach that maximizes the degree
to which entire queries can be processed by a single node could decrease the
communication overhead, a study [7] found that processing entire queries on
one node can actually decrease the overall performance when the network is
under heavy load, and that it is equally important to balance out the query
load between nodes. As such, there is a need for a more holistic approach
to query optimization that is able to delegate the processing of subqueries
to other nodes in the network, thus reducing the communication overhead
to the extent possible. For instance, query optimization techniques that are
based on star-shaped subqueries have previously been shown to increase per-
formance by at least an order of magnitude [3, 13, 14, 67]. This, and the fact
that conjunctive subqueries are relatively efficient to process [56], means that
decomposing and processing queries based on star-shaped subqueries can
significantly reduce the communication overhead in decentralized systems.

194

2. Related Work

In this paper, we therefore extend our work on Piqnic [4] and
ColChain [6] in three aspects that work together to reduce the communi-
cation overhead when processing SPARQL queries, and in doing so, improve
query processing performance in an approach that we call Lothbrok. Loth-
brok adapts Characteristic Sets [3, 13, 14, 53] to fragment data in decentral-
ized P2P systems. Furthermore, Lothbrok builds upon Prefix-Partitioned
Bloom Filters (PPBFs) [5] and proposes a new indexing scheme called Se-
mantically Partitioned Bloom Filters (SPBFs) to obtain more accurate cardi-
nality estimations. Lastly, Lothbrok also introduces a locality-aware query
optimization strategy that takes advantage of the SPBF indexes and is able to
delegate the processing of (sub)queries to neighboring nodes in the network
holding relevant data. We evaluate Lothbrok thoroughly using LargeRDF-
Bench [59], a benchmark suite for federated RDF systems that comprises 13
datasets with over a billion triples and includes 40 queries of varying com-
plexity and sizes of intermediate results. Furthermore, we evaluate Loth-
brok using synthetic data and queries from WatDiv [9] to test the scalability
of Lothbrok under load. In summary, we make the following contributions:

• A data fragmentation technique that builds on Characteristic Sets [53]
• SPBF indexes adapted to the characteristic set fragmentation technique
• A cardinality estimation approach over decentralized RDF fragments

using the SPBF indexes to provide more accurate cardinality estima-
tions

• A locality-aware query optimization algorithm that uses SPBF indexes
to delegate subqueries to neighboring nodes and reduce the communi-
cation overhead

• A thorough experimental evaluation of the impact of the presented
techniques on query processing performance using real-world data
from a well-known benchmark suite, and large-scale synthetic datasets

The paper is structured as follows: Section 2 discusses related work while
Section 3 describes background information. Then, Section 4 presents Loth-
brok, Section 5 details how Lothbrok optimizes queries, and Section 6 de-
scribes the query execution approach, while Section 7 presents our experi-
mental evaluation. Lastly, Section 8 concludes the paper with an outlook to
future work.

2 Related Work

The availability problem has prompted significant amount of research in the
areas of decentralized query processing and decentralized architectures for
knowledge graphs. In this section, we therefore discuss existing approaches

195

Paper F.

related to Lothbrok; client-server architectures, federated systems, and P2P
systems.

2.1 Client-Server Architectures

SPARQL endpoints are Web services providing an HTTP interface that ac-
cepts SPARQL queries and remain some of the most popular interfaces for
querying RDF data on the Web. However, several studies [12, 65] have found
that such endpoints are often unavailable and experience downtime.

Linked Data Fragment (LDF) interfaces, such as Triple Pattern Fragments
(TPF) [66], attempt to increase the availability of the server by shifting some of
the query processing load towards the client while the server only processes
requests with low time complexity. For instance, TPF servers only process in-
dividual triple patterns while the TPF clients process joins and other expen-
sive operations. Today, several TPF clients exist that rely on either a greedy
algorithm [66], a metadata based strategy [35], or star-shaped query decom-
position combined with adaptive query processing techniques [1] to deter-
mine the join order of the triple patterns in a query. However, while in all
these approaches the server can handle more concurrent requests in compar-
ison to SPARQL endpoints without becoming unresponsive, TPF naturally
incurs a large network overhead when processing queries since intermediate
bindings from previously evaluated triple patterns are transferred along with
subsequently evaluated triple patterns to limit the amount of intermediate re-
sults, one by one. Furthermore, studies found that the performance of TPF is
heavily affected by the type of triple pattern (i.e., the position of variables in
the triple pattern) [33] and the shape of the query [48, 49].

Several different systems have since been proposed to lower the network
overhead. For instance, Bindings-Restricted TPF (brTPF) [30] bulks bindings
from previously evaluated triple patterns such that multiple bindings can be
attached to a single request. While this reduces the number of requests made
for a triple pattern, it still incurs a somewhat large data transfer overhead,
since each request still evaluates a single triple pattern. hybridSE [47] com-
bines a brTPF server with a SPARQL endpoint and takes advantage of the
strengths of each approach; subqueries with large numbers of intermediate
results are sent to the SPARQL endpoint to overcome the limitations posed
by LDF systems. However, hybridSE often answers complex queries using
the SPARQL endpoint and is thus vulnerable to server failure.

To further limit the network overhead, Star Pattern Fragments (SPF) [3]
clients send conjunctive subqueries in the shape of stars (star patterns) to the
server and process more complex patterns locally on the client. Such con-
junctive subqueries can be processed relatively efficiently by the server [56],
which results in the transfer of significantly fewer intermediate results than
in systems like TPF and brTPF. On the other hand, Smart-KG [14] ships

196

2. Related Work

predicate-family partitions (i.e., characteristic sets) to the client and processes
the entire query locally; however, triple patterns with infrequent predicate
values (according to a certain threshold) are sent to and evaluated by the
server. While this takes advantage of the distributed resources that the clients
possess, Smart-KG often ends up transferring excessive amounts of data un-
necessarily since entire partitions of a dataset are transferred regardless of
any bindings from previously evaluated star patterns. WiseKG [13] com-
bines SPF and Smart-KG and uses a cost model to determine which strategy
(SPF or Smart-KG) is the most cost-effective to process a given star-shaped
subquery. Like SPF and Smart-KG, WiseKG processes more complex patterns
on the client. Nevertheless, all the aforementioned LDF approaches rely on a
centralized server or a fixed set of servers that are subject to failure.

Lastly, different from LDF approaches, SaGe [46] decreases the load on
the server by suspending queries after a fixed time quantum to prevent long-
running queries from exhausting server resources; the queries can then be
restarted by making a new request to the server. However, SaGe processes
entire, and possibly complex, queries on the server, and as stated above, such
servers are subject to failure.

2.2 Federated Systems

Federated systems enable answering queries over data spread out across mul-
tiple independent SPARQL endpoints [2, 18, 25, 39, 62] or LDF servers [32]
offering access to different datasets. While such approaches spread out query
processing over several servers, lowering the load on each individual server,
they sometimes generate suboptimal query execution plans that increase the
number of intermediate results and the load on individual servers [41]. As
such, several approaches [29, 37, 50, 51, 60, 64] have attempted to optimize
federated queries in different ways. For instance, [62] builds an index over
time by remembering which endpoints in the federation can provide an-
swers to which triple patterns. Furthermore, [51] decomposes queries into
subqueries that can be evaluated by a single endpoint. While [51] uses a
similar query decomposition strategy as Lothbrok, they target federations
over SPARQL endpoints, and as previously mentioned, such endpoints suf-
fer from availability issues. On the other hand, [50, 60] estimate the selec-
tivity of joins to produce more efficient join plans. For instance, [50] uses
characteristic sets [53] and pairs [27] to index the data in the federation and
combines this with Dynamic Programming (DP) to optimize query execu-
tion plans. Furthermore, [32] proposes an interface for processing federated
queries over heterogeneous LDF interfaces. To achieve this, the query opti-
mizer is adapted to the characteristics of the different interfaces as well as the
locality of the data, i.e., knowledge of which nodes hold which data. Inspired
by these approaches, Lothbrok fragments knowledge graphs based on char-

197

Paper F.

acteristic sets and uses a similar cardinality estimation technique to optimize
join plans in consideration of data locality in the network.

2.3 Peer-to-Peer Systems

Peer-to-Peer (P2P) systems [4, 6, 17, 23, 42, 43, 45] tackle the availability issue
from a different perspective: by removing the central point of failure com-
pletely and replicating the data across multiple nodes in a P2P network, they
can ensure the data remains available even if the original node that uploaded
the data fails. As such, they consist of a set of nodes (often resource limited)
that act both as servers and clients, maintaining a limited local datastore.
The structure of the network, i.e., connections between the nodes, as well as
data placement (data allocation), varies from system to system. For instance,
some systems [17, 42, 43] enforce data placement by applying a structured
overlay over the network, such as Dynamic Hash Tables (DHTs) [44]. On the
other hand, Piqnic [4] imposes no structure on top the network; nodes are
connected randomly to a set of neighbors that are shuffled periodically with
another node’s neighbors to increase the degree of joinability between the
fragments of neighboring nodes. Lastly, ColChain [6] extends Piqnic and
divides the entire network into smaller communities of nodes that collaborate
on keeping certain data available and up-to-date. By applying community-
based ledgers of updates and relying on a consensus protocol within a com-
munity, ColChain lets users actively participate in keeping the data up-to-
date.

Each P2P system has different ways of processing queries. For instance,
due to the lack of global knowledge over the network, basic P2P systems have
to flood the network with requests for a given horizon to increase the like-
lyhood of receiving complete query results. To counteract this, distributed
indexes [5, 20, 64] like Prefix-Partitioned Bloom Filter (PPBF) indexes [5] de-
termine which nodes may include relevant data for a given query and thus
allow the system to prune nodes from consideration during query optimiza-
tion. Yet, the aforementioned systems still experience a significant overhead
partly caused by inaccurate cardinality estimations, query optimization that
does not consider the locality of data, as well as data fragmentation that
splits up closely related data. For instance, Piqnic and ColChain both use a
predicate-based fragmentation strategy that creates a fragment for each pred-
icate. This, together with the replication and allocation strategy used, means
that data relevant to a single query is distributed over a significant number
of fragments and nodes.

However, while an approach that maximizes the degree to which entire
queries can be processed by one node can lower the communication over-
head, distributing some of the query processing load across multiple nodes
is equally important when optimizing queries in a decentralized context [7]

198

3. Background

to avoid overloading individual nodes. As such, Lothbrok limits the com-
munication overhead by fragmenting data based on characteristic sets and in-
troducing a new indexing scheme that lets nodes take advantage of the frag-
mentation to more accurately estimate subquery cardinality and distribute
the processing of subqueries to nodes in the network based on data locality.
Furthermore, since fragments are created based on characteristic sets, entire
star patterns can be processed efficiently by single nodes, further distributing
the query processing load, lowering the communication overhead at the same
time, and increasing the query throughput.

3 Background

A commonly used format for storing semantic data is the Resource Descrip-
tion Framework (RDF) [16]. RDF structures data as triples, defined as follows.

Definition F.1 (RDF Triple)
Let I, B, and L be the disjoint sets of IRIs, blank nodes, and literals. An RDF
triple is a triple t of the form t = (s, p, o) ∈ (I ∪ B)× I × (I ∪ B ∪ L), where s,
p, and o are called subject, predicate, and object.

Given the definition of an RDF triple, a knowledge graph G is a finite set
of RDF triples. The most popular language to query knowledge graphs is
SPARQL [19]. A SPARQL query consists of one or more triple patterns. A
triple pattern t is a triple of the form t = (s, p, o) ∈ (I ∪ B ∪ V)× (I ∪ V)×
(I ∪ B ∪ L ∪ V) where V is the set of all variables. A Basic Graph Pattern
(BGP) is a set of conjunctive triple patterns. Without loss of generality, we
focus our discussion in the main part of this paper on BGPs and describe in
Section 5 how our approach can support other operators, such as UNION and
OPTIONAL; our experimental evaluation in Section 7 includes queries with a
variety of SPARQL operators including UNION and OPTIONAL.

A complex BGP P can be decomposed into a set of star patterns. A star
pattern P′ is a set of triple patterns that share the same subject, i.e., ∀t1 =
(s1, p1, o1), t2 = (s2, p2, o2) such that t1, t2 ∈ P′, it is the case that s1 = s2.
Note that while star patterns can be defined as both subject-based and object-
based star patterns, for ease of presentation, we focus on subject-based star
patterns only since subject-subject joins are much more common in real query
loads [61]; Lothbrok can trivially be adapted to object-based star patterns by
using the same principles presented in this paper for object-object joins rather
than subject-subject joins.

Definition F.2 (Star Decomposition [3])
Given a BGP P = {t1, . . . , tn} with subjects SP = {s1, . . . , sm}, the star decom-
position of P, S(P) = {Ps(P) | s ∈ SP}, is a set of star patterns Ps(P) for each

199

Paper F.

s ∈ SP, such that P = ∪s∈SP Ps(P) where Ps(P) = {(s′, p′, o′) | (s′, p′, o′) ∈
P ∧ s′ = s}.

The answer to a BGP P over a knowledge graph G is a set of solution
mappings, defined as follows.

Definition F.3 (Solution mapping [6, 66])
Given a BGP P and a knowledge graph G, the sets IG , BG , and LG are the sets
of IRIs, blank nodes, and literals in G, and VP is the set of variables in P, a
solution mapping µ is a partial mapping µ : VP 7→ (UG ∪ BG ∪ LG).

Given a BGP P and a solution mapping µ, the notation µ[P] denotes the
triple (patterns) obtained by replacing variables in P according to the bind-
ings in µ. Furthermore, given a knowledge graph G and BGP P, [[P]]G de-
notes the set of solution mappings that constitute the answer to P over G,
i.e., ∀µ ∈ [[P]]G , µ[P] ∈ G, and ∀T ∈ µ[P], T is a set of matching triples to P,
denoted T[P]. Furthermore, dom(µ) returns the domain of µ, i.e., the set of
variables that are bound in µ and vars(P) returns the variables in P.

3.1 Peer-to-Peer

In its simplest form, an unstructured P2P system consists of a set of intercon-
nected nodes that all maintain a local datastore managing a set of (partial)
knowledge graphs, where each node maintains a local view over the network,
i.e., a set of neighboring nodes (nodes within the local view over the network).

ormally, we define a P2P network N as a set of interconnected nodes
N = {n1, . . . , nn} where each node maintains a local datastore and a local
view over the network. The data uploaded to a node in N is replicated
throughout the network. Furthermore, in line with previous work [5, 6],
each node maintains a distributed index describing the knowledge graphs
reachable within a certain number of steps (also known as hops), called the
horizon of a node. A node n is defined as follows:

Definition F.4 (Node [4, 5])
A node n is a triple n = (G, I, Nn) where:

• G is the set of knowledge graphs in n’s local datastore
• I is n’s distributed index
• Nn is a set of neighboring nodes

While maintaining the structure of the network is important for P2P sys-
tems, it is not relevant for the data and query processing techniques that this
paper is focusing on. As such, we do not go into detail on network topol-
ogy, data replication and allocation, and periodic shuffles. Instead, we refer
the interested reader to related work such as [4, 6] for more details. In the
following, we define data fragmentation and introduce a running example.

200

3. Background

In line with previous work [4, 6], and to avoid having to replicate large
knowledge graphs throughout the network, Lothbrok divides knowledge
graphs into smaller disjoint fragments, i.e., partial knowledge graphs, which
can be replicated more easily. Fragments can be obtained using a fragmenta-
tion function. A fragmentation function is a function that, given a knowledge
graph, returns a set of disjoint fragments, and is formally defined as follows:

Definition F.5 (Fragmentation Function [4, 6])
A fragmentation function F is a function that maps a knowledge graph G to a
set of knowledge graph fragments, i.e., F : G 7→ 2G .

Different fragmentation functions can have different granularities. For in-
stance, the most coarse-granular fragmentation function is FC(G) = {G},
i.e., the fragmentation function does not split up the original knowledge
graph. ColChain [6] as well as Piqnic [4] use a predicate-based fragmen-
tation function for G, i.e., FP(G) = {{(s′, p′, o′) | (s′, p′, o′) ∈ G ∧ p′ = p} |
∃s, o : (s, p, o) ∈ G}, which creates a fragment for each unique predicate in
G. Lothbrok uses a fragmentation function based on characteristic sets [53]
(i.e., predicate families) that is detailed in Section 4.2.

The fragments created by the fragmentation function are replicated and
allocated at multiple nodes in the network to ensure availability in case the
original provider of the knowledge graph becomes unavailable and to enable
load balancing. The replication and allocation factor are parameters of the
underlying network; for instance, in Piqnic [4], fragments are replicated and
allocated across the node’s neighbors, and nodes index all fragments avail-
able within a certain horizon. On the other hand, ColChain [6] replicates
and allocates fragments at nodes that participate within the same communi-
ties. Since this paper focuses on data fragmentation and query optimization,
we omit details on data replication and allocation and refer the interested
reader to related work [4, 6] for details.

n1

n2

n3

n4

n5

f1
f2
f3
f4
f5

(a) Example network N

Datastore

Index

node n5

Neighbors

n2 n4

(b) Node n5

Fig. F.1: (a) Example of an unstructured P2P network N = {n1, . . . , n5} and (b) architecture of a
single node n5 that indexes data within a horizon of 2 nodes.

Consider, as a running example, the unstructured P2P network in Fig-
ure F.1a consisting of five nodes (N = {n1, . . . , n5}) that replicate a total of

201

Paper F.

five fragments (f1, . . . , f5). In this example, each node maintains a set of two
neighbors and each fragment is replicated across two nodes. For instance,
node n5 has {n2, n4} as its set of neighbors, and replicates the fragments
{ f2, f4, f5} in its local datastore. While the running example is based on an
unstructured network, such as the one presented in [4], Lothbrok could be
adapted to more structured setups, such as the one presented in [6].

3.2 Distributed Indexes

To speed up query processing performance, systems like Piqnic [4] and
ColChain [6] use distributed indexes [5, 20] to efficiently identify nodes
holding relevant data for a given SPARQL query. The indexes capture in-
formation about the fragments stored locally at the node itself as well as
information about fragments that can be accessed via its neighbors.

In [5, 6], a distributed index is formally defined as consisting of two map-
pings; (1) from a triple pattern to the set of fragments containing relevant
data to the triple pattern, and (2) from a fragment to the set of nodes that
store the fragment. Furthermore, to build the indexes for a node’s local view
over the network, nodes share partial indexes, i.e., partial mappings, for the
fragments that they have access to, called index slices. In line with [5, 6], we
define distributed indexes and index slices in the following.

Definition F.6 (Distributed Index [5, 6])
Let N be the set of nodes within a network, n be a node such that n ∈ N , T
be the set of all possible triple patterns, and F be the set of fragments that n
has access to within its local view over the network. A distributed index on n
is a tuple In = (ν, η) with ν : T 7→ 2F and η : F 7→ 2N . For a triple pattern t,
ν(t) returns the set of fragments in F that t matches. For a fragment f ∈ F ,
η(f) returns the nodes on which f is located.

Given a node n, n’s distributed index is denoted In. Given the definition
of a distributed index, we define a node mapping as a mapping from a triple
pattern t in a BGP P to a set of nodes that contain relevant fragments to t, as
follows:

Definition F.7 (Node Mapping [5, 6])
For any BPG P and distributed index I, there exists a function match(P, I)
that returns a node mapping M : P 7→ 2N , such that ∀t ∈ P, M(t) returns the
indexed nodes that have fragments holding data matching the triple t.

An index slice for a fragment is a partial mapping from triple patterns to
the fragments that contain relevant triples to the triple patterns, as well as a
mapping from the fragment to the nodes that replicate it, and is defined as
follows:

202

3. Background

Definition F.8 (Index Slice [5, 6])
Let f be a fragment. The index slice of f , s f , is a tuple s f = (ν′, η′), where
ν′(t) returns { f } if there exists a triple in f that matches t, and η′(f) returns
the set of all nodes that contain f in their local datastore. The function s(f)
returns the index slice describing f .

Index slices for the fragments that a node has access to are combined into
a distributed index for that particular node using the ⊕ operator1. The dis-
tributed index is then used to check the relevancy and overlap of fragments
during query time to optimize the query. Given a set of slices S, the index ob-
tained by combining the slices in S, I(S), can be computed using the formula
in Equation F.1 [5, 6].

I(S) =

(⊕
s∈S

s.ν′,
⊕
s∈S

s.η′
)

(F.1)

While the definition of distributed indexes allows for several different
types of indexes, the index slices used in Piqnic [4] and ColChain [6] corre-
spond to Prefix-Partitioned Bloom Filters (PPBFs) [5], which extend regular
Bloom filters [15]. A Bloom filter B for a set S of IRIs such that |S| = n
is a tuple B = (b̂, H) where b̂ is a bitvector of size m and H is a set of k
hash functions [5]. Each hash function in H maps the elements from S (i.e.,
IRIs) to a position in b̂; these positions are thus set to 1 whereas the posi-
tions not mapped to by a function in H are 0. In other words, [5] represents
the combined set of subjects and objects in a fragment in a prefix-partitioned
bitvector. Looking up whether an element e is in S using the Bloom filter for
S is done by hashing e using the hash functions in H and checking the value
of each position in b̂. If at least one of those positions is set to 0, it is certain
that e 6∈ S. However, if all corresponding bits are set to 1, it is not certain that
e ∈ S, since it could be a false positive caused by hash collisions, i.e., different
values are mapped to the same positions in the underlying bitvector. In this
case, we say that e may be in S, denoted e ∃S.

To check the compatibility of two fragments relevant for conjunctive triple
patterns, we check whether or not they produce any join results. To do this,
we could check whether or not the intersection of the bitvectors describing
the subjects and objects of the fragments is empty (i.e., if they have some
IRI in common). Given two Bloom filters B1 = (b̂1, H) and B2 = (b̂2, H), the
intersection of B1 and B2 is approximated by the logic AND operation between
b̂1 and b̂2, B1 ∩ B2 ≈ b̂1&b̂2.

To avoid exceedingly large bitvectors, PPBFs partition the bitvector based
on the prefix of the IRIs. A PPBF is formally defined in [5] as follows.

1⊕ is defined in [5, 6] as (f ⊕ g)(x) = f (x)∪ g(x) if f and g are defined at x; (f ⊕ g)(x) = f (x)
if f is defined at x; (f ⊕ g)(x) = g(x) if g is defined at x.

203

Paper F.

Definition F.9 (Prefix-Partitioned Bloom Filter [5])
A PPBF BP is a 4-tuple BP = (P, B̂, θ, H) where

• P a set of prefixes
• B̂ is a set of bitvectors such that ∀b̂1, b̂2 ∈ B̂ : |b̂1| = |b̂2|
• θ : P→ B̂ is a prefix-mapping function
• H is a set of hash functions

For each pi ∈ P, Bi = (θ(pi), H) is the Bloom Filter that encodes the names
of the IRIs with prefix pi and is called a partition of BP.

Consider the example where the IRI dbr:Copenhagen is inserted into a
PPBF, visualized in Figure F.2a. In this case, the IRI is matched to the pre-
fix dbr, and the IRI is hashed using each hash function in the PPBF; each
corresponding bit in the bitvector for the dbr prefix is thus set to 1.

...

h1 h2 hk

dbr:Copenhagen

...

dbo

...
dbpdbr

......

(a) PPBF BP
1

...

dbr

...

dbp

...
dbo

...

...

(b) BP
1 ∩ BP

2

Fig. F.2: Example of (a) inserting an IRI into a PPBF BP
1 and (b) intersection between two PPBFs

BP
1 ∩ BP

2 [5].

Like for regular Bloom filters, we say that an IRI i with prefix p may
be in a PPBF BP, denoted i ∃BP, if and only if all positions given by h(i)
such that h ∈ H are set to 1 in the bitvector θ(p). PPBFs are used by Piqnic

and ColChain to prune non-overlapping fragments of joining triple patterns
from the query execution plan (i.e., the match(P, I) function in Definition F.7).
This is done by finding the intersection of the two PPBFs to check whether
or not they overlap; if the intersection of the two PPBFs is empty, the corre-
sponding fragments do not produce any join results. The PPBF intersection
is defined in [5] as follows.

Definition F.10 (Prefix-Partitioned Bloom Filter Intersection [5])
The intersection of two PPBFs with the same set of hash functions H and
bitvectors of the same size, denoted BP

1 ∩ BP
2 , is BP

1 ∩ BP
2 = (P∩, B̂∩, θ∩, H),

where P∩ = BP
1 .P ∩ BP

2 .P, B̂∩ = {BP
1 .θ(p)&BP

2 .θ(p) | p ∈ P∩}, and θ∩ : P∩ →
B̂∩.

Consider the example intersection visualized in Figure F.2b. As described
above, the intersection of two PPBFs is the bitwise AND operation on the
bitvectors for the prefixes that BP

1 and BP
2 have in common. In this exam-

ple, BP
2 does not have a bitvector with the prefix dbp, thus this partition is

204

4. The Lothbrok Approach

omitted from the intersection. Similarly, the bitvector partition with the dbo
prefix is omitted. Since both PPBFs have bitvectors for the dbr prefix, the re-
sulting PPBF has one partition for the dbr prefix that is a result of the bitwise
AND operation between the two corresponding partitions in BP

1 and BP
2 .

4 The Lothbrok Approach

Differently from Piqnic and ColChain, Lothbrok uses a fragmentation
strategy based on characteristic sets. To accommodate efficient query process-
ing over such fragments, as well as to enable locality-awareness and more ac-
curate cardinality estimation, Lothbrok introduces an indexing scheme that
maps star patterns to fragments rather than triple patterns. In the remain-
der of this section, we provide a brief overview of the Lothbrok architecture
and how Lothbrok optimizes SPARQL queries over decentralized knowl-
edge graphs, followed by a formal definition of the fragmentation and index-
ing approach. Query optimization with details on how to exploit locality-
awareness and join ordering are explained in Section 5.

4.1 Design and Overview

Lothbrok introduces three contributions, that altogether decrease the com-
munication overhead and in doing so increases query processing perfor-
mance. First, Lothbrok creates fragments based on characteristic sets such
that entire star patterns can be answered by a single fragment. This is bene-
ficial since, as we discussed in Section 1, such star patterns are relatively effi-
ciently processed by the nodes [56] and reduce the communication overhead.
The characteristic set of a subject value (entity) is the set of predicates that oc-
cur in triples with that subject. As such, Lothbrok creates one fragment per
unique characteristic set and each fragment thus contains all the triples with
the subjects that match the characteristic set of the fragment. Consider, for in-
stance, the example network in Figure F.1 and query Q shown in Figure F.3a.
Table F.3b shows the characteristic sets of each fragment in the network. Us-
ing this fragmentation method, each fragment can provide answers to entire
star patterns; for instance, P3 ∈ S(Q) can be processed over just f5, since it is
the only fragment containing triples with both predicates present in P3. The
formal definition of the fragmentation approach is presented in Section 4.2.

Second, to accommodate processing entire star patterns over individual
fragments, and to encode structural information that can be used for car-
dinality estimation and locality awareness, Lothbrok introduces a novel in-
dexing scheme, called Semantically Partitioned Blooms Filter (SPBF) Indexes,
that builds upon the Prefix-Partitioned Bloom Filter (PPBF) indexes presented
in [5]. In particular, SPBFs partition the bitvectors based on the IRI’s position

205

Paper F.

select ∗ where {
?person dbo: nationality ?country . # tp1 (P1)
?person dbo:author ? publication . # tp2 (P1)
?country dbo: capital ? capital . # tp3 (P2)
?country dbo:currency ?currency . # tp4 (P2)
? publication dbo: publisher ? publisher . #tp5 (P3)
? publication dbp:language ?language . #tp6 (P3)

}

(a) Query Q

Fragment CS
f1 {dbo:nationality,dbo:author,dbo:deathDate}
f2 {dbo:nationality,dbo:author}
f3 {dbo:capital,dbo:currency,dbo:population}
f4 {dbo:capital,dbo:currency}
f5 {dbo:publisher,dbo:language}

(b) CSs of each fragment in the running example

Fig. F.3: (a) Example SPARQL query Q and (b) corresponding characteristic sets in the example
network.

in the fragment, i.e., whether it is a subject, predicate, or object. For instance,
in the running example, the SPBF for f5 contains a partition encoding all the
subjects with the characteristic set {dbo:publisher,dbo:language}, as well
as partitions encoding all the objects in f5 that occur in a triple with each
predicate. The formal definition of SPBF indexes is discussed in Section 4.3.

Third, Lothbrok proposes a query optimization technique that takes ad-
vantage of the fragmentation based on characteristic sets and the SPBF in-
dexes to estimate cardinalities and consider data locality while optimizing
the query execution plan. First, Lothbrok builds a compatibility graph using
the SPBF indexes that describes, for a given query, which fragments are com-
patible with one another for each star join in the query (i.e., which fragments
may produce results for the joins). Then, Lothbrok builds a query execu-
tion plan using a Dynamic Programming (DP) algorithm that considers the
compatibility of fragments in the compatibility graph and the locality of the
fragments in the index.

In the remainder of this section, we detail data fragmentation (Section 4.2)
and indexing (Section 4.3) in Lothbrok. Section 5 details the query optimiza-
tion approach used by Lothbrok.

4.2 Data Fragmentation

As discussed in Section 1, star-shaped subqueries can be processed relatively
efficiently over a fragment [56], thus they can also help achieving a better
balance between reducing the communication overhead and distributing the
query processing load [3, 13, 14]. To facilitate processing such star patterns
on single nodes, we propose to fragment the uploaded knowledge graphs
based on characteristic sets [13, 14, 53]. Formally, a characteristic set is defined
as follows:

Definition F.11 (Characteristic Set [13, 14, 53])
The characteristic set for a subject s in a given knowledge graph G, CG(s), is
the set of predicates associated with s, i.e., CG(s) = {p | (s, p, o) ∈ G}. The set
of characteristic sets of a knowledge graph G is C(G) = {CG(s) | (s, p, o) ∈
G}.

206

4. The Lothbrok Approach

In other words, the characteristic set of a subject is the set
of predicates (i.e., predicate combination) used to describe the sub-
ject, i.e., that occur in the same triples as the subject. For in-
stance, if the triples (dbr:Denmark,dbo:capital,dbr:Copenhagen) and
(dbr:Denmark,dbo:currency,dbr:Danish_Krone) are the only ones with sub-
ject dbr:Denmark, then this subject is described by the characteristic set
{dbo:capital,dbo:currency}.

Characteristic sets were first introduced in [53], used for cardinality es-
timation and, in extension of that, join ordering. WiseKG [13] and Smart-
KG [14] used the notion of characteristic sets for fragmentation of knowledge
graphs in LDF systems to balance the query load between clients and servers.
In this paper, we use characteristic set based fragments as an alternative to
the purely predicate-based fragmentation used by for example Piqnic. We
define the characteristic set based fragmentation function as follows:

Definition F.12 (Characteristic Set Fragmentation Function)
Let G be a knowledge graph, then the characteristic set fragmentation function
of G, FC(G), is defined using the notation introduced in Definition F.11, as:

FC(G) = {{(s, p, o) | (s, p, o) ∈ G ∧ CG(s) = Ci} | Ci ∈ C(G)} (F.2)

That is, the characteristic set fragmentation function creates a fragment
for each characteristic set in the knowledge graph. In the characteristic sets
shown in Figure F.3b, f4 thus contains all triples of all subjects that are de-
scribed by the characteristic set {dbo:capital,dbo:currency}.

Lothbrok nodes can then use these fragments to process entire star pat-
terns. However, for relatively unstructured knowledge graphs, using frag-
mentation purely based on characteristic sets can lead to an unwieldy num-
ber of fragments. For instance, in our experimental evaluation in Section 7,
fragmenting the data from LargeRDFBench [59] using Equation F.2 led to
181,859 distinct fragments, most of which contain very few subjects. Usually,
these fragments are created for subjects that are unique due to one or two
predicates, while the remaining predicates could fit into larger fragments.

Consider, for instance, in the running example, the situation where the
following five characteristic sets are found in the uploaded knowledge graph;
for illustration purposes we have extended the notation with the number of
subjects covered by each characteristic set:

CS1 = ({dbo : nationality, dbo : author, dbo : deathDate}, 500)

CS2 = ({dbo : nationality, dbo : author}, 500)

CS3 = ({dbo : publisher, dbo : language}, 1000)

CS4 = ({dbo : nationality, dbo : author, dbo : language}, 2)

CS5 = ({dbo : nationality}, 1)

207

Paper F.

In this case, a separate fragment is created for CS4 even though it does not
carry very much information because it describes only two subjects. While
this is not such a big issue in terms of space, it affects the lookup time when
optimizing the join order and estimating the cardinalities, since the query
processor has to consider potentially thousands of such small fragments. As
such, and similar to [53], we merge infrequent characteristic sets into frag-
ments with a larger number of subjects. After fragmenting datasets using
Equation F.2, we apply a strategy with two sequential steps for fragments
with infrequent characteristic sets.

First, we merge a fragment f1 with characteristic set CS1 into a fragment
f2 with characteristic set CS2 if CS1 ⊆ CS2 by adding the triples of f1 to f2;
if there are multiple candidates for f2, we select the one with the smallest set
of predicates. In the example above, for instance, we merge CS5 into CS2 by
adding the subject from the fragment with CS5 to the fragment with CS2.

Second, we split fragments f with infrequent characteristic sets into two
separate fragments, f1 and f2, such that f1 and f2 can be merged into other
fragments with more frequent characteristic sets. In the example above, we
thus split the fragment with CS4 into two smaller fragments f ′4 and f ′′4 such
that f ′4 has the characteristic set {dbo:nationality,dbo:author} and f ′′4 has
the characteristic set {dbo:language}; f ′4 is then merged into the fragment
with CS2 and f ′′4 is merged into the fragment with CS3. For example, in the
example above, we end up with the following fragments:

CS1 = ({dbo : nationality, dbo : author, dbo : deathDate}, 500)

CS2 = ({dbo : nationality, dbo : author}, 503)

CS3 = ({dbo : publisher, dbo : language}, 1002)

4.3 Semantically Partitioned Bloom Filter Indexes

The indexing schema presented in [5] (Definition F.6) represents the set of
subject and object values as prefix-partitioned bitvectors based on Bloom fil-
ters [15] called Prefix-Partitioned Bloom Filters (PPBFs). However, PPBFs
encode the entire set of subjects and objects in a fragment as a single set and
ignore the position (subject or object) of the IRIs in the triples; as such, in a
situation where two fragments, for instance, use the same IRIs in the object
position, the intersection of the two PPBFs is non-empty. Then, if the cor-
responding triple patterns in the query are joined with a subject-object join,
the fragments are not pruned since the PPBFs overlap; however, since we are
looking for a subject-object join rather than an object-object join, these frag-
ments could have been pruned without affecting the query completeness.
Furthermore, PPBF indexes do not include the predicate values in the in-
dex slices, rather they associate the predicate value with the index slice itself

208

4. The Lothbrok Approach

(Definition F.9), thus maintaining information about the links between the
subjects, predicates, and objects. This is possible since the implementations
of Piqnic and ColChain use the predicate-based fragmentation function;
however, Lothbrok allows for fragments with several distinct predicates.

Hence, to efficiently estimate whether or not fragments join for a par-
ticular query and to maintain the connection between the subjets, predi-
cates, and objects for fragments with multiple predicates, we propose an
indexing schema called Semantically Partitioned Bloom Filters (SPBFs), which
builds upon PPBF as baseline. As the triples contained in fragments defined
based on characteristic sets (Section 4.2) share the same subjects, SPBFs en-
code the subject values in a single prefix-partitioned bitvector, while there
is one prefix-partitioned bitvector for each predicate in the fragment that
encodes the objects occurring in triples with that predicate. For instance,
in the running example, each subject within f2 occurs in triples with both
dbo:nationality and dbo:author as predicates. The SPBF for f2 contains
one partition describing the subject values, one partition describing the ob-
ject values connected with the dbo:nationality predicate, and one partition
describing the object values connected with the dbo:author predicate. For-
mally, an SPBF is defined as follows:

Definition F.13 (Semantically Partitioned Bloom Filter)
An SPBF BS is a 5-tuple BS = (P,Bs, Bo, Φ, H) where:

• P is a set of distinct predicate values
• Bs is the prefix-partitioned bitvector that summarizes the subjects
• Bo is the set of prefix-partitioned bitvectors that summarize the objects
• ∀Bi ∈ {Bs} ∪ Bo , Bi = (Pi, B̂i, θi) where:

– Pi is a set of prefixes
– B̂i is a set of bitvectors such that ∀b̂1, b̂2 ∈ B̂i : |b̂1| = |b̂2|
– θi : Pi → B̂i is a prefix-mapping function

• Φ : P→ Bo is a predicate-mapping function s.t. ∀p ∈ P : Φ(p) ∈ Bo
• H is a set of hash functions

Similarly to prefix-partitioned bitvectors, we say that an IRI i at position
ρ ∈ {s, p, o} may be in an SPBF BS, denoted i ∃ρ BS, if and only if i ∃BS.Bs
if ρ = s, ∃p ∈ BS.P : i ∃BS.Φ(p) if ρ = o, or i ∈ BS.P if ρ = p. Furthermore,
Bp(BS) denotes a function that computes and returns the prefix-partitioned
bitvector that contains all predicates in BS.P. Given a fragment f , BS(f)
describes the SPBF for f .

Consider again the running example from Figure F.1. Figure 22 shows
the SPBFs of fragments f1 (Figure F.4a) and f4 (Figure F.4b). The SPBF for
f1 contains a prefix-partitioned bitvector that encodes all the subject values
in f1, BS(f1).Bs, as well as a prefix-partitioned bitvector for each predicate
that encodes the object values that are connected with the predicates, i.e., the

209

Paper F.

partition BS(f1).Φ(dbo:author) that describes the objects that are connected
with the dbo:author predicate, and so on. Similar for the SPBF for f4, BS(f4).

...
BS(f1).Bs

dbr ...dbo

...
BS(f1).Φ(dbo:author)

dbr ...dbp

...
BS(f1).Φ(dbo:nationality)

dbr ...dbp

...
BS(f1).Φ(dbo:deathDate)

dbr ...dbp

(a) SPBF BS(f1)

...
BS(f4).Bs

dbr ...dbo

...
BS(f4).Φ(dbo:capital)

dbr ...dbp

...
BS(f4).Φ(dbo:currency)

dbr ...dbp

(b) SPBF BS(f4)

Fig. F.4: SPBFs of f1, BS(f1) (a) and f4, BS(f4) (b) in the running example.

A distributed index as defined in Definition F.6 and [5, 6] associates triple
patterns in the query with fragments that contain relevant data to the triple
patterns. However, since Lothbrok partitions data based on characteristic
sets, we adapt the definition of a distributed index to the fragmentation
based on characteristic sets and SPBF indexes. Let relevantFragment(P, f)
be a function that returns true if ∀t = (s, p, o) ∈ P, s ∈ V or s ∃s BS(f),
p ∈ V or p ∃p BS(f), and o ∈ V or o ∃BS(f).Φ(p), or false otherwise. We
define an SPBF index as follows:
Definition F.14 (Semantically Partitioned Bloom Filter Index [5, 6])
Let n be a node and N be the set of nodes within n’s local view of the net-
work, P be the set of all possible star patterns, and F be the set of fragments
stored by at least one node in N . The SPBF index on n is a tuple IS

n = (υ, η)
with υ : P 7→ 2F and η : F 7→ 2N . υ(P) returns the set of fragments F such
that ∀ f ∈ F, relevantFragment(P, f) = true. η(f) returns the set of nodes N
such that f ∈ ni.G, ∀ni ∈ N and ni ∈ N .

In other words, an SPBF index maps a star pattern to the fragments that
may contain all the constants within the star pattern, and the fragments to
the nodes that store them. Furthermore, since Lothbrok, like Piqnic and
ColChain, builds partial indexes, i.e., slices, for each fragment that are com-
bined to form the node’s distributed index, we define an SPBF index slice as
follows:
Definition F.15 (SPBF Slice)
Let f be a fragment. The SPBF slice describing f is a tuple sS

f = (υ′, η′) where
υ′(P) returns { f } if and only if relevantFragment(P, f) = true, and η′(f)
returns the set of all nodes that contain f in its local datastore.

The function sS(f) finds the SPBF slice describing f . The SPBF slice de-
scribing a fragment is the SPBF obtained from the respective fragment. For
instance, in the running example, the SPBF slice of f1 corresponds to the

210

5. Query Optimization

SPBF obtained from f1, i.e., the one in Figure F.4a. In Section 5, we detail
how SPBF indexes are used to optimize queries using cardinality estimations
and the locality of the data.

5 Query Optimization

To optimize queries over the network, Lothbrok first determines which frag-
ments are compatible i.e., produce join results for the given query. To do this,
Lothbrok builds a graph that includes the fragments that are compatible for
star patterns in the given query, called a compatibility graph. In other words,
the nodes in a compatibility graph are fragments, and the edges connect the
compatible ones.

Compatibility graphs encapsulate two things. First, the fragments within
a compatibility graph are the fragments that contribute to the overall query
result, i.e., fragments that do not contribute to the result are pruned. Sec-
ond, different branches of a compatibility graph for the same subqueries can
be processed in parallel. Take, for instance, again query Q in Figure F.3a.
In this case, assuming the join order P2 ./ P1 ./ P3 (details on join order
optimization in Section 5.3) and the compatibility of the fragments given in
Figure F.5g (details on compatibility graphs in Section 5.1), then subquery
P2 ./ P1 could be processed concurrently over { f1, f4} and { f2, f3} since f1
only depends on the intermediate results from f4 and f2 only depends on the
intermediate results from f3. Hence, it could be beneficial to process P1 ∪ P2
by delegating the subquery to nodes n2 and n3 concurrently such that n2
processes [[P2]] f4 ./ [[P1]] f1 locally and n3 processes [[P2]] f3 ./ [[P1]] f2 locally,
and using the combined (by union) results as intermediate bindings when
processing [[P3]] f5 on node n1.

To this end, Lothbrok applies Dynamic Programming (DP) similar
to [50, 53] to build a query execution plan specifying join delegations and
parallel processing of subqueries. To further decrease the network overhead,
we adapt the cost function in the DP algorithm to consider data locality and
cardinality estimations available using the SPBF indexes. In other words, the
cost function estimates, given a query execution plan, how many interme-
diate results processing the join on a particular node incurs, and selects the
execution plan that incurs the least data transfer overhead.

In summary, given a BGP P, Lothbrok optimizes P by applying the fol-
lowing steps:

1. Select the relevant fragments for each star pattern in P using the SPBF
index.

2. Build the compatibility graph GC for P (Section 5.1) by checking the
overlap of the corresponding bitvector partitions in the SPBF index.

211

Paper F.

3. Build a query execution plan using Dynamic Programming (DP) on
P and GC in consideration of cardinality estimations (Section 5.2) and
data locality (Section 5.3).

The output of the above steps is a query execution plan. In the remainder
of this section, we go into details with source selection using compatibility
graphs, cardinality estimation, and the query optimization strategy using
Dynamic Programming. In Section 6, we describe how a query execution
plan is processed.

5.1 Fragment and Source Selection

As mentioned above, query optimization in Lothbrok exploits fragment com-
patibility. To achieve this, nodes build a compatibility graph describing which
fragments are compatible for a given query. Two fragments are said to be
compatible for a given query if the intersection of the corresponding SPBF
partitions is non-empty. A compatibility graph is thus an undirected graph
where nodes are the relevant fragments for the star patterns in the query
(determined using the SPBF index) and edges describe the compatible ones.

Recall the function BS(f) that returns the SPBF for a fragment f , and let
vars(P) be a function that returns all the variables in a star pattern P. Further-
more, given an SPBF BS, a star pattern P, and a variable v, let B(BS, P, v) de-
note a function that returns (assuming v can only occur once in P) BS.Bs if v
is the subject in P, BS.Φ(p) if v is the object with predicate p, i.e., (s, p, v) ∈ P,
or Bp(BS) if v is a predicate in P. Then, a compatibility graph of a BGP P
and SPBF index IS is formally defined as follows.

Definition F.16 (Compatibility Graph)
Given an SPBF index IS and a BGP P, the compatibility graph GC of P
over IS is a tuple GC(P, IS) = (F, C) such that ∀P1, P2 ∈ S(P) where
vars(P1) ∩ vars(P2) 6= ∅ and ∀v ∈ vars(P1) ∩ vars(P2), it is the case that
∀ f1 ∈ IS.υ(P1), f2 ∈ IS.υ(P2) where B(BS(f1), P1, v) ∩ B(BS(f2), P2, v) 6= ∅,
(f1, f2) ∈ C and f1, f2 ∈ F. Furthermore, ∀P′ ⊆ P where vars(P′) ∩ vars(P−
P′) = ∅ (i.e., for Cartesian products), it is the case that ∀ f1 ∈ F such that
f1 ∈ IS.υ(P1) for some P1 ∈ S(P′) and ∀ f2 ∈ F such that f2 ∈ IS.υ(P2) for
some P2 ∈ S(P− P′), (f1, f2) ∈ C.

For instance, in the running example, let BS(f1).Φ(dbo : nationality) ∩
BS(f4).Bs 6= ∅, i.e., f1 and f4 produce join results, and
BS(f1).Φ(dbo : nationality) ∩ BS(f3).Bs = ∅, i.e., f1 and f3 do not
overlap. Then, the compatibility graph for query Q in Figure F.3a contains
an edge between f1 and f4, but no edge between f1 and f3. We denote
the empty compatibility graph (i.e., where F and C are empty sets) as GC

∅.
Algorithm 12 defines the GC(P, IS) function in lines 1-16 that computes a
compatibility graph given a BGP P and SPBF index IS.

212

5. Query Optimization

Algorithm 12 Compute the Compatibility Graph of a BGP over an SPBF index

Input: A BGP P = P1 ∪ · · · ∪ Pn; an SPBF index IS = (υ, η)
Output: A compatibility graph GC

1: function GC(P,IS)
2: P′ ← Pk where Pk ∈ S(P) and cardB(Pk) ≤ cardB(Pj)∀Pj ∈ S(P);
3: Pε ← P′;
4: F, C ← ∅;
5: for all f ∈ IS.υ(P′) do
6: GC

ε ← buildBranch(P− P′, IS, f , P′, Pε);
7: F ← F ∪ GC

ε .F;
8: C ← C ∪ GC

ε .C;
9: if P− Pε 6= ∅ then

10: GC
ε ← GC(P− Pε, IS);

11: if GC
ε = GC

∅ then return GC
∅

12: for all f1 ∈ F, f2 ∈ GC
ε .F do

13: C ← C ∪ {(f1, f2)};
14: F ← F ∪ GC

ε .F;
15: C ← C ∪ GC

ε .C;
16: return (F, C);
17: function buildBranch(P,IS, f ,P′,Pε)
18: if P = ∅ or ∀P′′ ∈ S(P) : vars(P′) ∩ vars(P′′) = ∅ then
19: return ({ f }, ∅);

20: F, C ← ∅;
21: for all P′′ ∈ S(P) s.t. vars(P′) ∩ vars(P′′) 6= ∅ do
22: P′ε ← Pε ∪ P′′;
23: V ← vars(P′) ∩ vars(P′′);
24: for all f ′ ∈ IS.υ(P′′) s.t. ∀v ∈ V : B(BS(f), P′, v) ∩
B(BS(f ′), P′′, v) 6= ∅ do

25: GC
ε ← buildBranch(P− P′′, IS, f ′, P′′, P′ε);

26: if GC
ε 6= GC

∅ then
27: F ← F ∪ GC

ε .F ∪ { f };
28: C ← C ∪ GC

ε .C ∪ {(f , f ′)};
29: Pε ← Pε ∪ P′ε;
30: return (F, C);

Figure F.5 shows how Algorithm 12 builds the compatibility graph for
query Q in Figure F.3a. In the following, we go through each intermediate
step of the algorithm, describing the intermediate compatibility graphs built
in the process. First, the GC function selects the star pattern in S(P) with
the lowest estimated cardinality in line 2 (cardinality estimation is detailed

213

Paper F.

in Section 5.2). Assume in the running example, that P2 is the star pattern
with the lowest estimated cardinality (Section 5.2), and that it is therefore
selected in line 2 as the first star pattern. Furthermore, assume that f1 is only
compatible with f4 and f2 is compatible with f3.

Then, the relevant fragments for the selected star pattern are found using
the IS.υ function from the SPBF index (Definition F.14) and iterated over in
the for loop in lines 5-8; for each of these fragments, the function calls the
buildBranch(P, IS, f , P′, Pε) function in lines 17-30 that builds the (sub)graph
starting from the current fragment. In the example, the loop in lines 5-8
iterates over { f3, f4}, since these are the fragments relevant for P2.

The buildBranch(P, IS, f , P′, Pε) function defines a recursive function that
builds a sub-graph starting from a specific fragment and star pattern. In the
first iteration in the running example (i.e., for f3), buildBranch is called with
P = P1 ∪ P3, f = f3, and P′ = P2 as parameters. First, if P does not contain
any star patterns that join with P′, i.e., if P′ is the outer-most star pattern in
the join tree or for a Cartesian product, the function returns the compatibility
graph just containing f without any edges (lines 18-19). In the example, since
P1 joins with P2, the algorithm does not enter the if statement in line 19.

Instead, the for loop in lines 21-29 iterates through the star patterns
P′′ ∈ P that join with P′, i.e., star patterns that have at least one variable
in common. For each fragment f ′ relevant for P′′ (again found using the
SPBF index), the function checks the compatibility of f and f ′ for each join
variable v in line 24, i.e., whether or not f and f ′ may produce join results for
each join variable, by intersecting the corresponding partitioned bitvectors in
BS(f) and BS(f ′). If the fragments may produce join results, a recursive call
is made in line 25 with the P = P− P′′, f = f ′, and P′ = P′′ as parameters.
In the example, the for loop in line 21 has only one iteration for P′′ = P1,
i.e., the only star pattern in S(P) that joins with P2. Hence, the for loop in
line 24 checks the compatibility of each fragment relevant for P1 (f1 and f2)
with f3 (since f = f3 in this call to the function). Since f2 is compatible with
f3 (cf. the join cardinalities in Table F.1), a recursive call is made in line 25
with P = P3, f = f2, and P′ = P1.

Since P3 joins with P1, the for loop in line 24 checks the compatibility of f5
and f2 and makes another recursive call to the function in line 25 with P = ∅,
f = f5, and P′ = P3. In this iteration of the function, P is empty, thus the
graph ({ f5}, ∅) is returned in line 19. This graph is visualized in Figure F.5a
and contains only f5 with no edges. Since this compatibility graph is non-
empty, it is added to the output graph in lines 26-28 together with f2 (since
f = f2 in this iteration of buildBranch) and the edge between f5 and f2. This
graph is visualized in Figure F.5b and returned by the current iteration of the
buildBranch function. Upon receiving the graph in Figure F.5b, the function
adds f3 (since f = f3 in the current iteration) and an edge between f2 and f3
in lines 26-28, resulting in the compatibility graph shown on Figure F.5c that

214

5. Query Optimization

f5

(a)

f2

f5

(b)

f3

f2

f5

(c)

f5

(d)

f1

f5

(e)

f4

f1

f5

(f)

f4 f3

f1 f2

f5

(g)

Fig. F.5: Recursively building the compatibility graph for the query in Figure F.3a by applying
Algorithm 12 resulting in GC(Q, IS

n1
). Yellow nodes denote the fragments relevant for P2, blue

nodes the fragments relevant for P1, and the green nodes the fragments relevant for P3.

is returned in line 30.
In the next iteration of the for loop in line 5, the buildBranch is called

with P = P1 ∪ P3, f = f4, and P′ = P2. Following the same procedure
as described above for f3, we first build the subgraph containing only f5
shown in Figure F.5d. Then, f1 is added to the graph along with an edge
between f1 and f5 (since they produce join results), resulting in the subgraph
shown in Figure F.5e. Next, f4 is added along with an edge between f4 and
f1, resulting in the compatibility graph for f4 shown in Figure F.5f. After
merging this in lines 7-8 with the compatibility graph in Figure F.5c, the
resulting compatibility graph can be seen in Figure F.5g.

The if statement in lines 9-15 ensures that subqueries with star patterns
that do not join (i.e., in the case of Cartesian products) are included in the
compatibility graph. This is done by keeping track of the considered star pat-
terns in P using the accumulator Pε defined in line 3 and updated in line 29.
The example query contains no Cartesian products and so the compatibility
graph on Figure F.5g is returned by the algorithm.

The output of Algorithm 12 in the example is the compatibility graph
shown in Figure F.5g, specifying that f1 is compatible with { f4, f5} and f2 is
compatible with { f3, f5}.

5.2 Cardinality Estimation

In Section 4.2 we have described how Lothbrok fragments knowledge
graphs based on characteristic sets. Furthermore, in Section 4.3 we described
how SPBF indexes connect the objects in a fragment to the predicates they oc-
cur in triples with. Since the SPBF of a fragment includes partitioned bitvec-
tors describing the subjects and objects (Definition F.14), we can estimate the
number of values within these partitioned bitvectors and use those estima-
tions to obtain cardinality estimations in a similar way as [50, 53]. To achieve
this, we first define the estimated number of values in a partitioned bitvector.

215

Paper F.

Given a partitioned bitvector B and b̂ ∈ B.B̂, let t(b̂) be a function that
returns the number of bits in b̂ that are set. Then, the estimated cardinality
of a partitioned bitvector B, denoted cardP(B), is the sum of the estimated
cardinality for all bitvector partitions in B.B̂ [5, 54] and is formally defined
as follows:

cardP(B) = ∑
b̂∈B.B̂

ln(1− t(b̂)/|b̂|)
|B.H| · ln(1− 1/|b̂|)

(F.3)

Consider, for instance, again the running example introduced in Section 3.1
and the SPBF for f4, BS(f4), in Figure F.4b. Assume that |BS(f4).H| = 5 and
that |b̂| = 20000 for all b̂ ∈ BS(f4).B̂. Since the partitioned bitvector for the
predicate dbo:capital in f4 (Figure F.4b) has two partitions, dbr and dbp,
obtaining the estimated cardinality for BS(f4).Φ(dbo:capital) is the sum of
estimating the cardinality of both prefix partitions. Let the number of set
bits in the bitvector for the dbr prefix be 736 and the number of set bits in
the bitvector for the dbp prefix be 249. Then, the estimated cardinality using
Equation F.3 is:

cardP(BS(f4).Φ(dbo:capital)) =
ln(1− 736/20000)
5 · ln(1− 1/20000)

+
ln(1− 249/20000)
5 · ln(1− 1/20000)

≈ −0.0375
−0.00025

+
−0.0125
−0.00025

≈ 150 + 50 ≈ 200

Table F.1: Estimated cardinalities for the SPBFs BS(f1), BS(f2), BS(f3), and BS(f4) for the
running example in Figure F.1

Partitioned Bitvector cardP Partitioned Bitvector cardP

BS(f1).Bs 1000 BS(f3).Bs 100
BS(f1).Φ(dbo:author) 5000 BS(f3).Φ(dbo:capital) 100
BS(f1).Φ(dbo:nationality) 1000 BS(f3).Φ(dbo:currency) 150
BS(f1).Φ(dbo:deathDate) 1000 BS(f3).Φ(dbo:population) 100
BS(f2).Bs 2000 BS(f4).Bs 200
BS(f2).Φ(dbo:author) 3000 BS(f4).Φ(dbo:capital) 200
BS(f2).Φ(dbo:nationality) 2000 BS(f4).Φ(dbo:currency) 500
BS(f1).Φ(dbo:nationality) ∩ BS(f3).Bs 0 BS(f2).Φ(dbo:nationality) ∩ BS(f3).Bs 100
BS(f1).Φ(dbo:nationality) ∩ BS(f4).Bs 50 BS(f2).Φ(dbo:nationality) ∩ BS(f4).Bs 0
BS(f5).Bs 8000 BS(f1).Φ(dbo:author) ∩ BS(f5).Bs 500
BS(f5).Φ(dbo:publisher) 8000 BS(f2).Φ(dbo:author) ∩ BS(f5).Bs 1000
BS(f5).Φ(dbo:language) 9000

Table F.1 shows the estimated cardinalities of each partitioned bitvector in the
running example.

To estimate the cardinality of star-shaped subqueries, we utilize the fact
that the subjects are described by a single partitioned bitvector. For a star-
shaped subquery asking for the set of unique subject values described by a

216

5. Query Optimization

given set of predicates (i.e., queries with the DISTINCT keyword), the cardi-
nality can be estimated as the sum of the number of subjects in each fragment
that includes all the predicates in the query. For instance, the cardinality of
P1 in the query in Figure F.3a is the number of distinct subject values in f1
and f2.

Given a star pattern P and a fragment f , the cardinality of P over f ,
assuming that f is a relevant fragment for P, is the number of values in the
partitioned bitvector on the subject position in BS(f), and is formally defined
as:

cardD(P, f) = cardP(BS(f).Bs) (F.4)

For queries not including the DISTINCT keyword, we need to account for
duplicates by considering, on average, the number of triples for each non-
variable predicate value in P that each subject value is associated with. Given
a star pattern P and fragment f , let preds(P) denote the non-variable pred-
icate values in P (in the case of a variable on the predicate position in P,
we consider the average number of predicate occurences in the characteristic
set). The cardinality of P is thus estimated as follows [50, 53]:

cardS(P, f) = cardD(P, f) · ∏
pi∈preds(P)

cardP(BS(f).Φ(pi))

cardP(BS(f).Bs)
(F.5)

Henceforth, we will refer to the more generalized function card rather than
cardD and cardS to be equivalent to cardD for queries with the DISTINCT mod-
ifier and cardS for queries without. Using Equations F.4 or F.5, the cardinality
of a star pattern P over a node n’s SPBF index is, for all queries (both with
and without the DISTINCT keyword), the aggregated cardinality over each
relevant fragment to P, and is formally defined as follows:

cardn(P) = ∑
f∈IS

n .η(P)

card(P, f) (F.6)

Bs

BS(f1)
Φ (dbo:author)

Φ (dbo:deathDate)Φ (dbo:nationality)

Bs

BS(f2)
Φ (dbo:author)

Φ (dbo:nationality)

1000 + = 30002000

Fig. F.6: Estimating the cardinality of P1 with the DISTINCT modifier as the number of subjects
in f1 and f2 found using Equation F.4.

217

Paper F.

Consider, for instance, in the running example, the star-shaped BGP P1
in Figure F.3a and the estimated cardinalities of the partitioned bitvectors for
each fragment in Table F.1. Assume in this case that the DISTINCT keyword is
given in the query. Then, cardn1(P1) is computed as the aggregated estima-
tion of subject values in f1 and f2, cardn1(P1) = 1000 + 2000 = 3000. This is
visualized in Figure F.6.

BS(f1) BS(f2)

1000 + = 8000·
5000

1000

·
1000

1000
2000 ·

3000

2000

·
2000

2000

Bs Φ (dbo:author)

Φ (dbo:deathDate)Φ (dbo:nationality)

Bs Φ (dbo:author)

Φ (dbo:nationality)

Fig. F.7: Estimating the cardinality of P1 without the DISTINCT modifier. Outlines show which
bitvector each value is computed from.

If, instead, the DISTINCT keyword was not included in the query, the car-
dinality cardn1(P1) is, for each relevant fragment (f1 and f2), the number
of subject values within the fragment multiplied with the average number of
triples with each predicate pi ∈ preds(P1) that each subject value is associated
with, cardn1(P1) = 1000 · (5000/1000) · (1000/1000) + 2000 · (3000/2000) ·
(2000/2000) = 5000 + 3000 = 8000. Figure F.7 visualizes the above com-
putations and shows which bitvector each value is computed from.

Until now, the cardinality estimations presented in this section are useful
for estimating the cardinality of individual star patterns in a query [50, 53].
However, to estimate the cardinality of arbitrary BGPs, [27] introduced char-
acteristic pairs that describe the connections between IRIs described by dif-
ferent characteristic sets. In our case, however, we rely on the SPBFs of the
relevant fragments to compute characteristic pairs without storing additional
information; by intersecting the partitioned bitvectors on the positions corre-
sponding to the join variable, we can estimate the selectivity of a given join
and use that to estimate the cardinality of the join.

Formally, for queries including the DISTINCT keyword, given two star
patterns Pk and Pl that join on a variable v such that (s, p, v) ∈ Pk and v is
the subject of all triple patterns in Pl , and two fragments fk and fl that are
relevant for Pk and Pl respectively, the cardinality of the join is estimated as
the number of IRIs on the subject position in fk multiplied by the selectivity
of the join, i.e., the chance that each subject in the right side corresponds to a
value in the join. This is defined as follows:

218

5. Query Optimization

cardD(Pk, Pl , p, fk, fl) = cardP(BS(fk).Bs)

·
(

cardP(BS(fk).Φ(p) ∩ BS(fl).Bs)

cardP(BS(fk).Φ(p))

)
(F.7)

For queries that do not include the DISTINCT keyword, we again consider
the average predicate occurrences for each triple pattern in both Pk and Pl ,
similar to Equation F.5 [27, 50]:

cardS(Pk, Pl , p, fk, fl) = cardD(Pk, Pl , p, fk, fl)

· ∏
pk∈Pk−{p}

(
cardP(BS(fk).Φ(pk))

cardP(BS(fk).Bs)

)
· ∏

pl∈Pl

(
cardP(BS(fl).Φ(pl))

cardP(BS(fl).Bs)

)
(F.8)

Processing a join between two star patterns over a node n’s SPBF is the aggre-
gated cardinality over each pair of relevant fragments to the two star patterns,
and is for all queries formally defined as follows:

cardn(Pk, Pl , p) = ∑
fk∈IS

n .η(Pk)∧ fl∈IS
n .η(Pl)

card(Pk, Pl , p, fk, fl) (F.9)

BS(f1)

Bs

BS(f4)
Φ (dbo:capital)

Φ (dbo:currency)

Bs Φ (dbo:author)

Φ (dbo:deathDate)Φ (dbo:nationality)

= 1501000
1000

0
·
∩

Φ (dbo:population)

BS(f2)

Bs

BS(f3)
Φ (dbo:capital)

Φ (dbo:currency)

Bs Φ (dbo:author)

Φ (dbo:nationality)

1000
1000

50
·
∩

+ 2000
2000

100
·
∩

1000
1000

0
·
∩

++

Fig. F.8: Estimating the cardinality of P1 ./ P2 with the DISTINCT modifier.

For instance, consider the join between P1 and P2 in Figure F.3a
where the DISTINCT keyword is given in the query. Here, the cardi-
nality cardn1(P1, P2,dbo:nationality) is the aggregated cardinality of the
partitioned bitvectors obtained by intersecting the partitioned bitvector on

219

Paper F.

the object position for the dbo:nationality for each fk ∈ { f1, f2} with
the partitioned bitvector on the subject position for each fl ∈ { f3, f4}.
That is, given the cardinalities of the intersections shown in Table F.1,
cardn1(P1, P2,dbo:nationality) = 1000 · (0/1000) + 1000 · (50/1000) + 2000 ·
(100/2000) + 2000 · (0/1000) = 150. We have visualized this computation in
Figure F.8.

BS(f1) BS(f4)

·
5000

1000

·
200

200

·
500

200
= 625

Bs Φ (dbo:author)

Φ (dbo:deathDate)Φ (dbo:nationality)

Bs Φ (dbo:capital)

Φ (dbo:currency)

1000
1000

50
·
∩

(a) Cardinality of P1 ./ P2 over { f1, f4}

BS(f2) BS(f3)

·
3000

2000

·
100

100

·
150

100
= 225

Bs Φ (dbo:author)

Φ (dbo:nationality) Φ (dbo:population)

Bs Φ (dbo:capital)

Φ (dbo:currency)

2000
2000

100
·
∩

(b) Cardinality of P1 ./ P2 over { f2, f3}

Fig. F.9: Estimating the cardinality of P1 ./ P2 without the DISTINCT modifier over (a) { f1, f4} and
(b) { f2, f3}. The output of Equation F.9 is thus the sum of the two formulas (625 + 225 = 850).

In the case where the DISTINCT keyword is not included in the
query, the join between P1 and P2 in Figure F.3a given the parti-
tioned bitvector cardinalities in Table F.1 yields the following equation:
cardn1(P1, P2,dbo:nationality) = 1000 · (50/1000) · (5000/1000) · (200/200) ·
(500/200) + 2000 · (100/2000) · (3000/2000) · (100/100) · (150/100) = 625 +
225 = 850. Figure F.9 visualizes the above computation; Figure F.9a shows
the computation over { f1, f4} and Figure F.9b over { f2, f3}. The outlines
show which partitioned bitvector is used to compute each number, e.g., the
value 50 is found by computing the cardinality of the bitvector intersection
BS(f1).Φ(dbo : nationality) ∩ BS(f4).Bs. The result is the sum of the for-
mulas.

220

5. Query Optimization

5.3 Optimizing Query Execution Plans

Based on the compatibility graph (Section 5.1), the locality of fragments, and
cardinality estimations (Section 5.2), Lothbrok builds a query execution plan
that specifies which subqueries can be processed in parallel and which joins
are delegated to which nodes as well as the join order. A query execution
plan is defined as follows:

Definition F.17 (Query Execution Plan)
A query execution plan Π consists of the execution plan and the node that
processes the plan, called a delegation. A query execution plan can be one of
four types:

• Join Π = Π1 ./n Π2 where Π1 and Π2 are two (sub)plans and n is the
node the join is delegated to.

• Cartesian product Π = Π1 ×n Π2 where Π1 and Π2 are two (sub)plans
and n is the node the Cartesian product is delegated to.

• Union Π = Π1 ∪n Π2 where Π1 and Π2 are two (sub)plans and n is the
node the union is delegated to.

• Selection Π = [[P]]nf where P is a star pattern, f is the fragment that P
is processed over, and n is the node the selection is delegated to.

Since unions are not explicitly executed by any node, instead the partial
results of each subplan in the union are transferred to the nodes that use
those intermediate results, we simply omit the specification of delegations
for unions from the description below. Furthermore, we assume that query
execution plans are always left-deep, i.e., the right side of a join can only
consist of a selection or a union of selections. For instance, the execution plan
for query Q, Π = (([[P2]]

n2
f4
./n2 [[P1]]

n2
f1
) ∪ ([[P2]]

n3
f3
./n3 [[P1]]

n3
f2
)) ./n1 [[P3]]

n1
f5

(Figure F.12g) specifies that the join [[P2]] f4 ./ [[P1]] f1 is delegated to n2 and
processed in parallel with [[P2]] f3 ./ [[P1]] f2 on n3 (specified by the union),
the result of which is transferred to n1 and joined with [[P3]] f5 .

Since our cost function includes the estimated cardinality of a particular
subplan, we first extend the framework for cardinality estimation described
in Section 5.2 to enable cardinality estimation of an entire query execution
plan. This is straightforward for Cartesian products, unions, and selec-
tions; for Cartesian products it is the multiplication of the cardinality of the
operands, for unions it is the sum of the cardinality of the operands, and
for selections it is the cardinality of the star pattern over a specific fragment
defined in Equations F.4 and F.5. Given the reasoning above, we define the
cardinality of a query execution plan Π, card(Π), covering all types of Π, as
follows:

221

Paper F.

card(Π) =

card(Π1) · card(Π2), if Π = Π1 ×n Π2

card(Π1) + card(Π2), if Π = Π1 ∪Π2

card(P, f), if Π = [[P]]nf
card(Π1 ./n Π2), if Π = Π1 ./n Π2

(F.10)

To generalize Equation F.9 such that we can compute the cardinality of any
join Π = Π1 ./n Π2 (e.g., including joins between a BGP with multiple star
patterns and a star pattern), we consider two cases: (1) where Π2 is a union
Π2 = Π′2 ∪Π′′2 , and (2) where Π2 is a selection Π2 = [[P]]n1

f . The cardinality
of the join can thus be estimated using the following formula:

card(Π1 ./n Π2) =

card(Π1 ./n Π′2)+

card(Π1 ./n Π′′2), if Π2 = Π′2 ∪Π′′2
card./(Π1, P, f), if Π2 = [[P]]n1

f

(F.11)

The function card./(Π, P, f) in the second case of Equation F.11 computes
the cardinality of the join for a particular selection on the right side of the
join, [[P]] f . To achieve this estimation, we consider the estimated cardinality
of Π and the selectivity of the join similar to Equation F.7. To avoid a sig-
nificant overestimation due to the possible correlation between multiple join
variables in the same join, we only consider the most selective join variable
for any specific join. Recall the B(BS, P, v) function that returns the parti-
tioned bitvector in BS that corresponds to v’s position in P, and let S(Π, P)
denote the set of star patterns in Π that join with P and F(Π, f) denote the
set of fragments in Π that join with f . For instance, for the execution plan
in Figure F.12d and the compatibility graph in Figure F.5g, S(Π, P3) = {P1}
and F(Π, f5) = { f1, f2}. Furthermore, given two star patterns P1 and P2, let
v(P1, P2) = {v | v ∈ vars(P1) ∩ vars(P2)}, i.e., the set of join variables. The
cardinality of the join between a plan Π and a selection [[P]] f is, given the
DISTINCT keyword, generalized from Equation F.7 as follows:

card./D (Π, P, f) = card(Π)·

min
P′∈S(Π,P)∧v∈v(P,P′)

∑ f ′∈F(Π, f) cardP(B(BS(f), P, v) ∩ B(BS(f ′), P′, v))

∑ f ′∈F(Π, f) cardP(B(BS(f ′), P′, v))
(F.12)

As an example, consider computing the cardinality card(Π) of the plan
Π visualized in Figure F.12d using the DISTINCT keyword. Since Π is
a union, we compute the cardinality of Π1 = [[P2]]

n2
f4

./n2 [[P1]]
n2
f1

and

Π2 = [[P2]]
n3
f3

./n3 [[P1]]
n3
f2

and let card(Π) = card(Π1) + card(Π2). Using

222

5. Query Optimization

BS(f4)

= 150

BS(f1)

200
200

50
·
∩

Bs Φ (dbo:author)

Φ (dbo:deathDate)Φ (dbo:nationality)

Bs Φ (dbo:capital)

Φ (dbo:currency)

BS(f3)BS(f2)

Φ (dbo:population)

Bs Φ (dbo:capital)

Φ (dbo:currency)

Bs Φ (dbo:author)

Φ (dbo:nationality)

+ 100
100

100
·
∩

Fig. F.10: Estimating the cardinality of Π = ([[P2]]
n2
f4

./n2 [[P1]]
n2
f1
) ∪ ([[P2]]

n3
f3

./n3 [[P1]]
n3
f2
) with

the DISTINCT keyword using the cardinalities from Table F.1 and Equation F.12.

Equation F.12 on Π1 and Π2, we get the formula card(Π) = 200 · (50/200) +
100 · (100/100) = 150 as visualized in Figure F.10 (the gray values are the
cardinalities of the left selections in each join obtained using Equation F.4).

For queries without the DISTINCT keyword, we once again consider the
average predicate occurences. However, since the predicate occurrences in
Π are already considered in card(Π) in Equation F.12, we only consider the
average number of occurrences in f for each triple pattern in P that does not
join with Π on the object. The cardinality of the join between a plan Π and
selection [[P]] f , without the DISTINCT keyword, is computed as:

card./S (Π, P, f) = card./D (Π, P, f)·

∏
p∈preds(P):(s,p,o)∈P∧o 6∈v(P,P′)∀P′∈S(Π,P)

(
cardP(BS(f).Φ(p))

cardP(BS(f).Bs)

)
(F.13)

Once again, computing the cardinality of Π in Figure F.12d not including the
DISTINCT keyword is card(Π) = card(Π1) + card(Π2). Using Equation F.13
on each of these yields the equation card(Π) = 500 · (50/200) · (5000/1000) +
150 · (100/100) · (3000/2000) = 625 + 225 = 850. Figure F.11 visualizes this
computation.

Using the cardinality estimation shown in Equation F.10, Algorithm 13
shows how the transfer cost of a query execution plan Π on a node n is com-
puted taking into account the locality of the fragments. First, if Π = [[P]]ni

f ,
i.e., Π is a selection, the algorithm checks whether n = ni (line 4); if they are
equal it is 0 (since it incurs no transfer cost), otherwise the transfer cost of

223

Paper F.

BS(f4)

= 625

BS(f1)

500
200

50
·
∩

Bs Φ (dbo:author)

Φ (dbo:deathDate)Φ (dbo:nationality)

Bs Φ (dbo:capital)

Φ (dbo:currency)

1000

·
5000

(a) Cardinality of Π1 = [[P2]]
n2
f4

./n2 [[P1]]
n2
f1

BS(f3)BS(f2)

Φ (dbo:population)

Bs Φ (dbo:capital)

Φ (dbo:currency)

Bs Φ (dbo:author)

Φ (dbo:nationality)

= 225150
100

100
·
∩

2000
·

3000

(b) Cardinality of Π2 = [[P2]]
n3
f3

./n3 [[P1]]
n3
f2

Fig. F.11: Estimating the cardinality of Π in Figure F.12d without the DISTINCT modifier for (a)
Π1 = [[P2]]

n2
f4

./n2 [[P1]]
n2
f1

and (b) Π2 = [[P2]]
n3
f3

./n3 [[P1]]
n3
f2

. The output of Equation F.10 is thus
the sum of the two formulas (625 + 225 = 850).

Π is equal to the cardinality of the selection (Equation F.5). For instance, the
transfer cost of the execution plan shown in Figure F.12c ([[P3]]

n1
f5

) on n1 is 0
since f5 is available on n1.

If, instead, Π = Π1 ∪Π2, i.e., Π is a union, the transfer cost is the sum
of the transfer costs for Π1 and Π2 (line 6). For instance, the transfer cost of
the execution plan shown in Figure F.12a ([[P1]]

n2
f1
∪ [[P1]]

n3
f2

) on n1 is 5000 +

3000 = 8000, since neither f1 or f2 is available on n1.
Otherwise, if Π = Π1 ×ni Π2, i.e., Π is a Cartesian product, the transfer

cost is the sum of the transfer costs for Π1 and Π2 (line 6), plus the cardinality
of the Cartesian product if it is delegated to a different node than the one
processing the (sub)plan, i.e., if n 6= ni (since they have to be transferred
from ni to n).

Finally, if Π = Π1 ./ni Π2, i.e., Π is a join, we once again take advantage
of the fact that the right side of a join is always either a selection or a union of
selections; in the latter case, we aggregate the transfer cost over each subplan
in the union (line 12). However, if the right side of the join is a selection
Π2 = [[P]]

nj
f , we start by estimating the transfer cost of the left side of the

join (line 14); if nj 6= ni, we further add in line 15 the cardinality of the join

224

5. Query Optimization

Algorithm 13 Compute the transfer cost of a query execution plan

Input: A query execution plan Π; a node n
Output: The estimated transfer cost cost

1: function transferCost(Π,n)
2: cost← 0;
3: if Π = [[P]]ni

f then
4: if n 6= ni then cost← card(P, f);
5: else if Π = Π1 ∪Π2 then
6: cost← transferCost(Π1, n) + transferCost(Π2, n);
7: else if Π = Π1 ×ni Π2 then
8: cost← transferCost(Π1, ni) + transferCost(Π2, ni);
9: if ni 6= n then cost← cost + card(Π);

10: else if Π = Π1 ./ni Π2 then
11: if Π2 = Π′2 ∪Π′′2 then
12: cost ← transferCost(Π1 ./ni Π′2, n) + transferCost(Π1 ./ni

Π′′2 , n);
13: else if Π2 = [[P]]

nj
f then

14: cost← transferCost(Π1, ni);
15: if ni 6= nj then cost← cost + card./S (Π1, P, f);

16: if n 6= ni then cost← cost + card(Π);
17: return cost;

⋃
[[P1]]

n3
f2[[P1]]

n2
f1

(a) P1

⋃
[[P2]]

n2
f4[[P2]]

n3
f3

(b) P2

[[P3]]
n1
f5

(c) P3

⋃

[[P1]]
n3
f2

n3

[[P2]]
n3
f3

[[P1]]
n2
f1

n2

[[P2]]
n2
f4

(d) P2 ./ P1

⋃
[[P2]]

n2
f4

[[P2]]
n3
f3

[[P3]]
n1
f5

n1×

(e) P2 ./ P3

⋃
[[P1]]

n3
f2

[[P1]]
n2
f1

[[P3]]
n1
f5

n1

(f) P1 ./ P3

[[P3]]
n1
f5

n1⋃

[[P1]]
n3
f2

n3

[[P2]]
n3
f3

[[P1]]
n2
f1

n2

[[P2]]
n2
f4

(g) P1 ./ P2 ./ P3

Fig. F.12: Best query execution plan for each subquery in the DP table (Table F.2).

(since these results should have to be sent back to ni). Furthermore, if ni 6= n,
we add in line 16 the cardinality of the execution plan to the cost, since the
results have to be transferred from ni to n.

Given the transfer cost in Algorithm 13, the cost of processing a query

225

Paper F.

execution plan Π on a node n is the transfer cost plus the cardinality of Π.
This is formally defined as follows:

costn(Π) = trans f erCost(Π, n) + card(Π) (F.14)

Given the cost function in Equation F.14, we compute the cost of each pos-
sible join delegation and apply Dynamic Programming (DP) to achieve the
execution plan with the lowest cost. Table F.2 shows the best execution plan
in the DP table for each (sub)plan for processing query Q (Figure F.3a) on
node n1 in the running example; Figure F.12 visualizes the execution plans in
Table F.2.

Table F.2: Entries in the DP table for query Q (Figure F.3a)

Subquery Execution Plan Cardinality Cost
P1 [[P1]]

n2
f1
∪ [[P1]]

n3
f2

8,000 8,000
P2 [[P2]]

n3
f3
∪ [[P2]]

n2
f4

650 650
P3 [[P3]]

n1
f5

9,000 9,000
P2 ./ P1 ([[P2]]

n2
f4
./n2 [[P1]]

n2
f1
) ∪ ([[P2]]

n3
f3
./n3 [[P1]]

n3
f2
) 850 1,700

P2 ./ P3 ([[P2]]
n3
f3
∪ [[P2]]

n2
f4
)×n1 [[P3]]

n1
f5

5,850,000 5,850,650
P1 ./ P3 ([[P1]]

n2
f1
∪ [[P1]]

n3
f2
) ./n1 [[P3]]

n1
f5

1,688 9,688
P2 ./ P1 ./ P3 (([[P2]]

n2
f4
./n2 [[P1]]

n2
f1
) ∪ ([[P2]]

n3
f3
./n3 [[P1]]

n3
f2
)) ./n1 [[P3]]

n1
f5

154 1,004

6 Query Execution

Until now, we have described in Section 5 how Lothbrok obtains a query
execution plan using compatibility graphs and locality information provided
by the SPBF indexes. In this section, we detail how Lothbrok evaluates a
query given a query execution plan.

Given a BGP P, a compatibility graph GC = GC(P, IS), and a query execu-
tion plan Π over P and GC, Lothbrok processes P by processing the opera-
tions specified in Π and, in doing so, delegating joins and Cartesian products
to the nodes specified in Π. The intermediate results from previous steps are
used as input to subqueries at a later stage in the query execution plan. In
case of a distributed join, the intermediate results are transferred along with
the partial query to use local bind joins similar to [3, 30]. To formalize how
star patterns in the query execution plan are processed over the fragments,
we define a so-called selector function in line with related work [3, 6, 30]. The
selector function returns the results of processing the star pattern over a frag-
ment given a set of solution mappings, i.e., the set of stars in the fragment
that constitute the answer to the star pattern, as follows:

226

6. Query Execution

Definition F.18 (Selector Function [3, 6, 30])
Given a node n, a star pattern P, and a finite set of distinct solution mappings
Ω, the star pattern-based selector function for P and Ω, denoted s(P,Ω) is for
every fragment f in n’s local datastore defined as follows.

s(P,Ω)(f) =

{t ∈ T | T ⊆ f ∧ T[P]} if Ω = ∅
{t ∈ T | T ⊆ f ∧ ∃µ ∈ [[P]] f ,

µ′ ∈ Ω : µ[P] = T ∧ µ′ ⊆ µ} otherwise.

In line with [3, 6, 30], and to avoid long-running requests on each node,
we apply pagination to the results of star pattern requests, i.e., we group
the results into reasonably sized pages to avoid excessive data transfer. The
page size used in our experimental evaluation (Section 7) is the page size
recommended by related work [3, 6, 30], i.e., 100. However, for ease of pre-
sentation, we assume that all results can fit into one page when presenting
the approach to query processing. Furthermore, to avoid underestimating
costs caused by the selector function returning some duplicate values (e.g.,
when the same subject has multiple object values for a specific predicate), our
implementation always uses cardS (Equation F.5) and card./S (Equation F.13)
for cardinality estimations, regardless of whether or not the DISTINCT key-
word is given. Last, given a star pattern P, a node n, a fragment fi, and a
finite set of solution mappings Ω, seln(fi, P, Ω) denotes the result of invoking
s(P,Ω)(fi) on n.

Let IS
n denote a node n’s SPBF index. The evaluatePlan function in Algo-

rithm 14 defines a recursive function that processes a query execution plan on
a node n by using the selector function defined in Definition 33 for selections
in the plan and making recursive calls to the nodes specified in the plan.

Consider, for instance, the query execution plan Π shown in Figure F.12g
for query Q in Figure F.3a processed by node n1 in the running example.
Figure F.13 shows an overview of which parts of the query are sent to which
node during query processing. Since Π is of type join, the function enters the
if statement in line 6. Here, the function first makes a recursive call (since
the join was delegated to node n1) with the left-most subplan, i.e., Π1 =
([[P2]] f4 ./n2 [[P1]] f1) ∪ ([[P2]] f3 ./n3 [[P1]] f2) (visualized in Figure F.12d), in
line 7.

Since Π1 is of type union, Algorithm 14 in lines 10-11 makes two recursive
calls for the two subplans Π1 = [[P2]] f4 ./n2 [[P1]] f1 and Π2 = [[P2]] f3 ./n3

[[P1]] f2 . Note that these two recursive calls can be processed concurrently and
indeed is done so in the implementation of Lothbrok. This step is shown in
Figure F.13a where Π1 is sent to node n2 and Π2 is sent to node n3. Since both
subplans follow the same structure, and thus the same evaluation process, we
will only explain what happens when processing Π1.

When processing the plan Π1 from above, Algorithm 14 first calls the

227

Paper F.

Algorithm 14 Evaluate a join plan

Input: A join plan Π; a node n; a set of solution mappings Ω
Output: A set of solution mappings Ω

1: function evaluatePlan(Π,n,Ω = {∅})
2: if Π = Π1 ×ni Π2 then
3: Ω1 ← evaluatePlan(Π1, ni, Ω);
4: Ω2 ← evaluatePlan(Π2, ni, Ω);
5: Ω← Ω1 ×Ω2;
6: else if Π = Π1 ./ni Π2 then
7: Ω← evaluatePlan(Π1, ni, Ω);
8: Ω← evaluatePlan(Π2, ni, Ω);
9: else if Π = Π1 ∪Π2 then

10: Ω1 ← evaluatePlan(Π1, n, Ω);
11: Ω2 ← evaluatePlan(Π2, n, Ω);
12: Ω← Ω1 ∪Ω2;
13: else if Π = [[P]] f then
14: N ← IS

n .η(f);
15: if n ∈ N then ni ← n;
16: else ni ← takeOne(N);
17: φ← selni (f , P, Ω);
18: Ω← Ω ./ {µ | dom(µ) = vars(P) and µ[P] ∈ φ};
19: return Ω;

evaluatePlan on node n2 for the subplan [[P2]] f4 , i.e., the selection for P2
over f4, in line 7. The takeOne function in line 16 selects a random node with
the fragment in its local datastore if the node that processes the subquery
does not store the fragment locally. In this case, since n2 stores f4, it calls the
selector function for P2 over f4 locally in line 17. The 500 results of processing
P2 over f4 (cf. Table F.1) are then joined with the singleton set of bindings
Ω that includes the empty mapping (i.e., a mapping compatible with any
mapping) in line 18 and returned in line 19.

Upon receiving the 500 results in line 7, Algorithm 14 makes another
recursive call in line 8 to evaluatePlan on node n2 for the subplan [[P1]] f1 ,
i.e., the selection for P1 over f1 with the 500 intermediate results in Ω. Again,
n2 calls the local selector for P1 over f1 using the intermediate results in Ω
as bindings. This results in 625 intermediate results in Ω that are the result
of processing P1 ./ P2 over f1 and f4, which are returned by the function in
line 19.

While n2 found the 625 results from processing [[P2]] f4 ./n2 [[P1]] f1 in the
recursive call in line 10, n3 found the additional 225 results of processing
[[P2]] f3 ./n3 [[P1]] f2 in the recursive call in line 11 following the same steps

228

7. Experimental Evaluation

n1

n2

n3

[[P1]] f1

[[P2]] f4

[[P1]]f2

[[P2]]f3

225 results

625 results

(a) Delegating subqueries to n2 and n3

n1

n2

n3

[[P3]] f5

f1
f2
f3
f4
f5

850 results

154 results

(b) Processing [[P3]] f5 locally on node n1

Fig. F.13: Processing Π in Figure F.12g on n1 by (a) delegating [[P2]] f4 ./n2 [[P1]] f1 to n2 and
[[P2]] f3 ./n3 [[P1]] f2 to n3 concurrently and (b) processing the join between these 850 results
and [[P3]] f5 locally on n1 to achieve the 154 results (solid arrows denote neighbors, dotted ar-
rows subquery delegation, and dashed arrows transferring of intermediate results). n1 can send
intermediate results to n3 since it is within its horizon.

as described above for n2. In line 12, these results are combined and 850
bindings are returned in line 19, which is visualized on Figure F.13a as n2
returning 625 results to n1 and n3 returning 225 results to n1.

The 850 intermediate results in Ω found by processing ([[P2]] f4 ./n2

[[P1]] f1)∪ ([[P2]] f3 ./n3 [[P1]] f2) in line 7 are used as bindings for the recursive
call made in line 8 for the subplan [[P3]] f5 . This is visualized in Figure F.13b.
Since n1 stores f5 locally, it calls the local selector for P3 over f5 and Ω in
line 17. The 154 results of processing P3 over f5 are joined with Ω in line 18
and returned as the final results in line 19.

As mentioned above, our implementation uses pagination of the results
meaning, for instance, when processing the subplan [[P2]] f4 in line 7, the
500 results would be split into multiple pages. In the implementation of
Lothbrok, nodes at subsequent steps in the pipeline start processing joins as
soon as they receive some intermediate bindings. For instance, in the running
example, n1 starts processing the join between P2 ./ P1 ./ P3 locally as soon
as it receives results for P2 ./ P1 from either n2 or n3.

7 Experimental Evaluation

The experimental evaluation compares Lothbrok with two state-of-the-art
approaches building on P2P systems: Piqnic [4] and ColChain [6] with the
query optimization approach outlined in [5]. To do this, we implemented the
fragmentation, indexing, and cardinality estimation approach as a separate
package in Java 8 and modified Piqnic’s and ColChain’s query processors
to use it. Like ColChain and Piqnic, Lothbrok’s query processor is imple-

229

Paper F.

mented as an extension to Apache Jena2. Fragments in our implementation
are stored as HDT files [22], allowing for efficient processing of the star pat-
terns. We provide all source code, experimental setup (queries, datasets, etc.),
and the full experimental results on our website3.

7.1 Experimental Setup

In this section, we detail the experimental setup, including a characterization
of the used datasets and queries, the hardware and software setup, experi-
mental configuration, as well as the evaluation metrics.

Datasets and Queries. To test the scalability of the approaches when the
network is under heavy load, and to assess the impact of the query pattern
on performance and network usage, we ran experiments with the synthetic
WatDiv [9] benchmark using different dataset sizes: 10 million triples to 1 bil-
lion triples. Furthermore, to test Lothbrok in a realistic setting where users
would upload several interlinked datasets to a network, and ask queries with
varying complexity, we ran experiments using a well-known benchmark suite
for federated RDF engines called LargeRDFBench [59]. LargeRDFBench com-
prises 13 different, interlinked datasets with over a billion triples in total. To
provide a fair comparison between the systems with and without Lothbrok,
we created an equal number of fragments for both fragmentations: character-
istic sets (Section 4.2) and predicate-based. To do this, we iteratively merged
the characteristic set fragments with the fewest number of subjects into larger
fragments following the approach outlined in Section 4.2 until the number of
fragments equalled the number of predicate-based fragments. The character-
istics of the datasets are shown in Table F.3. Furthermore, to assess the impact
of reducing the number of characteristic sets on query completeness, we ran
similar experiments where we did not create an equal number of fragments
for Lothbrok, i.e., where we created one fragment for each characteristic set
that describes at least 50 subjects and provide the results on our website3;
since these results are quite similar to the ones presented in this section, we
will not report on them further.

LargeRDFBench includes 40 different queries [59] that are divided into
five different categories of varying complexity and result set sizes: Simple
(S), Complex (C), Large Data (L), and Complex and High Data Sources (CH).

For WatDiv, we used WatDiv star query loads from [3] consisting of 1-3
star patterns, called the watdiv-1_star, watdiv-2_star, and watdiv-3_star
query loads, as well as a query load consisting of path queries, i.e., queries
where each star pattern only has one triple pattern, called the watdiv_path
query load. Each of these query loads consists of 6,400 different queries.
Furthermore, we combine the aforementioned query loads into a single

2https://jena.apache.org
3https://relweb.cs.aau.dk/lothbrok

230

https://jena.apache.org

7. Experimental Evaluation

Table F.3: Characteristics of the used datasets

Dataset #triples #subjects #predicates #objects
LargeRDFBench 1,003,960,176 165,785,212 2,160 326,209,517

LinkedTCGA-M 415,030,327 83,006,609 6 166,106,744
LinkedTCGA-E 344,576,146 57,429,904 7 84,403,402
LinkedTCGA-A 35,329,868 5,782,962 383 8,329,393
ChEBI 4,772,706 50,477 28 772,138
DBPedia-Subset 42,849,609 9,495,865 1,063 13,620,028
DrugBank 517,023 19,693 119 276,142
GeoNames 107,950,085 7,479,714 26 35,799,392
Jamendo 1,049,647 335,925 26 440,686
KEGG 1,090,830 34,260 21 939,258
LinkedMDB 6,147,996 694,400 222 2,052,959
NYT 335,198 21,666 36 191,538
SWDF 103,595 11,974 118 37,547
Affymetrix 44,207,146 1,421,763 105 13,240,270

watdiv10M 10,916,457 521,585 86 1,005,832
watdiv100M 108,997,714 5,212,385 86 9,753,266
watdiv1000M 1,092,155,948 52,120,385 86 92,220,397

query load called watdiv-union. Last, we created a query load with 19,968
queries from the WatDiv stress testing query templates (156 per node)
called watdiv-sts. The complete set of queries is available on our web-
site3. Figure F.14 shows an overview of the following characteristics of each
load [3, 10]: Triple pattern count #TP (Figure F.14a), join vertex count #JV
(Figure F.14b), join vertex degree deg (Figure F.14c), result cardinality #Re-
sults (Figure F.14d), mean triple pattern selectivity selG(tp) (Figure F.14e),
and join vertex type (Figure F.14f).

Experimental Configuration. We compare the following systems: (1)
Piqnic [4] using PPBF indexes [5] (Piqnic), (2) Lothbrok on top of Piqnic

(Lothbrok Piqnic), (3) ColChain [6] using PPBF indexes (ColChain), and
(4) Lothbrok on top of ColChain (Lothbrok ColChain

). All configurations
were run on networks with 128 nodes. To assess the scalability of Lothbrok

under load, we ran 156 watdiv-sts queries concurrently on each node over 8
different configurations where 2i nodes issue queries concurrently such that
0 ≤ i ≤ 7 (i.e., up to all 128 nodes). Furthermore, to analyze the impact of the
query pattern on performance, we ran the WatDiv star query loads over each
WatDiv dataset size such that for each star query load, each node issued 50
queries. Lastly, we tested the performance of Lothbrok over each individ-
ual query in LargeRDFBench by running the queries sequentially in random
order on three randomly selected nodes and report the average result.

Hardware Configuration. For all configurations and P2P systems, we ran
128 nodes concurrently on a virtual machine (VM) with 128 vCPU cores with

231

Paper F.

(a) Triple pattern count (#TP) (b) Join vertex count (#JV)

(c) Join vertex degree (deg) (d) Result cardinality (#Results)

(e) Mean TP selectivity (selG (tp))

Query load SS SO OO
watdiv-1_star 100% 0% 0%
watdiv-2_stars 55.38% 34.31% 10.31%
watdiv-3_stars 57.67% 30.77% 11.53%
watdiv-paths 0% 100% 0%
watdiv-union 53.27% 41.27% 5.46%
watdiv-sts 55.57% 35.83% 8.6%
largerdfbench 41.41% 45.81% 12.78%

(f) Join vertex type over each query load

Fig. F.14: Characteristics of all query loads (WatDiv query loads over watdiv100M; statistics over
the watdiv10M and watdiv100M datasets can be found on our website3).

a clock speed of 2.5GHz, 64KB L1 cache, 512KB L2 cache, 8192KB L3, and a
total of 2TB main memory. To spread out resources evenly across nodes, all
nodes were restricted to use 1 vCPU core and 15GB memory, enforced using
the -Xmx and -XX:ActiveProcessorCount options for the JVM. Furthermore,
to simulate a more realistic scenario, where nodes are not run on the same
machine, we simulated a connection speed of 20 MB/s.

Evaluation Metrics. We used measured the following metrics:

• Workload Time (WT): The amount of time (in milliseconds) it takes to
complete an entire workload including queries that time out.

• Throughput (TP): The number of completed queries in the workload di-
vided by the total workload time (i.e., number of queries per minute).

• Number of Timeouts (NTO): The number of queries that timed out (time-
out being 1200 seconds).

• Query Execution Time (QET): The amount of time (in milliseconds)
elapsed between when a query is issued and when its processing has
finished.

• Query Response Time (QRT): The amount of time (in milliseconds)
elapsed between when a query is issued and when the first result is
computed.

• Query Optimization Time (QOT): The amount of time (in miliseconds)
elapsed between when a query is issued and when the optimizer has

232

7. Experimental Evaluation

finished (i.e., when query execution starts).
• Number of Requests (REQ): The number of requests made between nodes

when processing a query (including requests made from nodes that
have been delegated subqueries).

• Number of Transferred Bytes (NTB): The amount of data (in bytes) trans-
ferred between nodes when processing a query (including data trans-
ferred to and from nodes that have been delegated subqueries).

• Number of Relevant Nodes (NRN): The number of distinct nodes that
replicate fragments containing relevant data to a query.

• Number of Relevant Fragments (NRF): The number of distinct fragments
containing relevant data to a query.

Software Configuration. Unless otherwise specified, we used the following
parameters when running the systems. For ColChain, we used the following
parameters recommended in [6]: Community Size: 20, Number of Communi-
ties: 200. For Piqnic, we use the following parameters recommended in [4]:
Time-to-Live (number of hops): 5, Number of Neighbors: 5. The replication
factor for Piqnic (i.e., the percentage of nodes replicating each fragment)
was matched with the size of the communities in ColChain to provide a
better comparison. Nodes were randomly assigned neighbors throughout
the network. The page size (i.e., how many results can be returned with each
request, was set to 100. Furthermore, to limit the size of HTTP requests, the
number of results that each system was allowed to attach to each request (i.e.,
|Ω| in Section 6) was set to |Ω| = 30 The timeout for all systems and queries
was set to 20 minutes (1,200 seconds).

7.2 Scalability under Load

In these experiments, we ran the watdiv-sts queries over each WatDiv
dataset in configurations where 2i nodes issued 156 queries from the
watdiv-sts query load concurrently such that 0 ≤ i ≤ 7. Figures F.15a-F.15c
show the throughput (TP) of the watdiv-sts query load over each config-
uration in the scalability tests for the watdiv10M (Figure F.15a), watdiv100M
(Figure F.15b), and watdiv1000M (Figure F.15c) datasets in logarithmic scale.
Clearly, Lothbrok has a significantly higher throughput across all datasets
and configurations compared to the approaches that do not include Loth-
brok (i.e., Piqnic and ColChain). In fact, for watdiv10M, this increase
in throughput is close to two orders of magnitude. While the increase in
throughput that Lothbrok provides is smaller for both watdiv100M and
watdiv1000M, Lothbrok still increases the throughput by close to an order
of magnitude for these datasets. Furthermore, while some results show that
ColChain has a slightly higher throughput than Piqnic, both with and with-
out Lothbrok on top, this difference is relatively negligible. Last, the results

233

Paper F.

(a) Throughput (TP) over watdiv10M (b) Throughput (TP) over watdiv100M

(c) Throughput (TP) over watdiv1000M (d) Number of timeouts (NTO) over watdiv10M

(e) Number of timeouts (NTO) over watdiv100M (f) Number of timeouts (NTO) over watdiv1000M

(g) Workload time (WT) over watdiv10M (h) Workload time (WT) over watdiv100M

(i) Workload time (WT) over watdiv1000M

Fig. F.15: Throughput (TP), number of timeouts (NTO), and workload time (WT) for watdiv-sts
over the watdiv10M, watdiv100M, and watdiv1000M datasets.

show that the throughput of Lothbrok is relatively stable when increasing
numbers of nodes issue queries concurrently. In fact, even when every node
in the network issue queries concurrently, the throughput is relatively close
to the highest throughput throughout the configurations.

Figures F.15d-F.15f show the number of queries that timed out (TO) of
the watdiv-sts query load over each configuration for each WatDiv dataset.
As expected, the number of timeouts increases relatively linearly with the
number of nodes issuing queries concurrently. This is due to the fact that
when more nodes issue queries, more queries in total are executed, meaning
the total number of the queries that time out increases. Generally, the queries

234

7. Experimental Evaluation

that time out correspond to query templates that result in a large number of
intermediate results, e.g., by using the owl:sameAs predicate. Furthermore,
Piqnic and ColChain incur significantly more timeouts without Lothbrok

compared to with Lothbrok. In fact, for both watdiv10M and watdiv100M,
Lothbrok experiences no timeouts while Piqnic and ColChain experience
267 timeouts for watdiv10M and 1,148 timeouts for watdiv1000M. Even for
watdiv1000M, the number of timeouts experienced by Lothbrok is just 1,151
while Piqnic and ColChain both experience 4,036 timeouts. Furthermore,
Piqnic and ColChain incur the exact same number of timeouts.

Figures F.15g-F.15i show the workload time (WT) for each configuration.
In line with the throughput and number of timeouts, Lothbrok incurs a
significantly lower average workload time than Piqnic and ColChain across
all experiments and datasets. The slight decrease in the workload time for
fewer nodes can be attributed to the network being able to process more
queries concurrently when the overall load is relatively low. Nevertheless,
the average workload time only increases slightly even when all nodes issue
queries concurrently.

Overall, our experimental results show that, even when the network is un-
der heavy query processing load, Lothbrok increases the query throughput
and decreases the average workload time significantly compared to state-of-
the-art decentralized systems. In fact, the increase in performance is up to
two orders of magnitude. As a result, Lothbrok is also able to finish more
queries without timing out.

7.3 Impact of Query Pattern

To test the impact of the query pattern on the performance of Lothbrok,
we ran the watdiv-1_star, watdiv-2_star, watdiv-3_star, watdiv-path,
watdiv-union, and watdiv-sts query loads on each system; the watdiv-sts
queries consist of, on average, more selective star patterns compared to the
other WatDiv query loads (Figure F.14).

Figures F.16a-F.16c show the execution time (QET) for each WatDiv query
load over each WatDiv dataset, and Figures F.16d-F.16f show the response
time (QRT) for each WatDiv query load in logarithmic scale. Our results
show that Lothbrok has significantly better performance across all datasets
for almost every query load. As expected, the improvement in performance
is more significant for the query loads with a lower number of star pat-
terns. This is due to the fact that since the star patterns within these queries
represent a large part of the query, Lothbrok has to issue fewer requests
overall, lowering the network overhead. For instance, the queries in the
watdiv-1_star query load can by Lothbrok be answered by issuing 0.89

235

Paper F.

(a) Query execution time (QET) over watdiv10M (b) Query execution time (QET) over watdiv100M

(c) Query execution time (QET) over watdiv1000M (d) Query response time (QRT) over watdiv10M

(e) Query response time (QRT) over watdiv100M (f) Query response time (QRT) over watdiv1000M

Fig. F.16: Query execution time (QET) and query response time (QRT) for the WatDiv datasets
and star queries.

requests per 90 results4, whereas Piqnic and ColChain have to issue 9.27
requests per 90 results on average, for watdiv1000M in our experiments. In the
watdiv-3_star query load, the improvement in performance is more mod-
est across the datasets since each star pattern is a relatively small part of the
query resulting in a higher number of requests; however, on average, we still
see a performance increase of up to an order of magnitude.

We notice that for the watdiv-path query load, Lothbrok actually has
a slightly worse performance both in terms of QET and QRT compared to
Piqnic and ColChain due to higher network usage. Figure F.17 shows
the number of relevant fragments (NRF) and the number of relevant nodes
(NRN) for each query load over each dataset after optimization (similar
figures are provided for NRF and NRN before optimization on our web-
site3). Analyzing these results, we see that the decreased performance for
watdiv-path is caused by Lothbrok having a significantly larger number of
relevant fragments and by extension a larger number of relevant nodes com-
pared to Piqnic and ColChain. In fact, this is the case for all the WatDiv
query loads (9 times larger for watdiv-path while up to 5 times larger for the
other query loads); however, for the other query loads, this is compensated
by the increased performance that the query optimization approach provides.

4Even though one request can fetch up to 90 results, the average number of requests is lower
than 1 since the nodes store some data locally.

236

7. Experimental Evaluation

(a) Number of relevant fragments (NRF) over
watdiv10M

(b) Number of relevant fragments (NRF) over
watdiv100M

(c) Number of relevant fragments (NRF) over
watdiv1000M (d) Number of relevant nodes (NRN) over watdiv10M

(e) Number of relevant nodes (NRN) over
watdiv100M

(f) Number of relevant nodes (NRN) over
watdiv1000M

Fig. F.17: Number of relevant fragments (NRF) and number of relevant nodes (NRN) for the
WatDiv datasets and star queries.

This analysis is corroborated by the number of fragments pruned during
optimization for each query load (figures provided on our website3); the
watdiv-path query load has significantly less pruned fragments compared
to the other query loads except watdiv-1_star. For Piqnic and ColChain,
the number of relevant fragments will always equal the number of unique
predicates in the query since one fragment is created per predicate; how-
ever, due to fragmenting the data based on characteristic sets, Lothbrok can
encounter multiple fragments for each unique predicate in the query. Fur-
thermore, the number of relevant fragments is, on average, more than twice
as high for Lothbrok over the watdiv-path query load than over the other
query loads. This is because most of the path queries use common predicates
like owl:sameAs.

Nevertheless, the slightly worse performance for Lothbrok over
watdiv-path is compensated by the significantly improved performance
over the other query loads, so we still see a performance increase for the
watdiv-union query load. As such, our experimental results show that Loth-
brok is generally able to increase performance over queries with star-shaped
subqueries (i.e., all other queries than path queries) significantly and that the
increase in performance depends on the shape of the query; queries with

237

Paper F.

(a) Number of requests (REQ) over watdiv10M (b) Number of requests (REQ) over watdiv100M

(c) Number of requests (REQ) over watdiv1000M
(d) Number of transferred bytes (NTB) over
watdiv10M

(e) Number of transferred bytes (NTB) over
watdiv100M

(f) Number of transferred bytes (NTB) over
watdiv1000M

Fig. F.18: Number of requests (REQ) and number of transferred bytes (NTB) for the WatDiv
datasets and star queries.

fewer but larger star patterns (cf. Figure F.14c) show a bigger performance
increase than queries with many but small star patterns.

7.4 Network Usage

Figure F.18 shows the network usage when processing WatDiv queries over
each WatDiv dataset in terms of the number of requests (Figures F.18a-F.18c)
and the number of transferred bytes (Figures F.18d-F.18f) in logarithmic scale.
Lothbrok incurs a significant lower network overhead for all query loads ex-
cept watdiv-path despite the larger number of relevant fragments as dis-
cussed in Section 7.3. This is caused by Lothbrok having to send sig-
nificantly fewer requests for each star pattern since a star pattern can be
processed entirely over the relevant fragments, even if there are more frag-
ments (and thus nodes) to send the requests to. Again, the query loads
with a smaller number of star patterns see a larger decrease in network us-
age since larger parts of the queries can be processed by individual nodes.
Since the queries in the watdiv-path query load do not benefit from the
star pattern-based query processing, the network usage is slightly higher;
however, even still, the watdiv-union shows an improvement in the network
usage for Lothbrok. These results are in line with the experiments shown

238

7. Experimental Evaluation

(a) Execution time (QET)

(b) Response time (QRT)

(c) Optimization time (QOT)

Fig. F.19: Query execution time (a), response time (b), and optimization time (c) for the C query
load over LargeRDFBench.

in Sections 7.2 and 7.3 and support the hypothesis that Lothbrok increases
performance by lowering the network overhead when processing queries,
compared to state-of-the-art systems such as Piqnic and ColChain.

7.5 Performance of Individual Queries

In these experiments, we ran the LargeRDFBench queries three times on
each system sequentially to test the performance of those individual queries
and report the average results. Figure F.19 shows the execution time (Fig-
ure F.19a), response time (Figure F.19b), and optimization time (Figure F.19c)
for the C query load over LargeRDFBench in logarithmic scale. Similar fig-
ures for the other LargeRDFBench query loads are provided on our website3.
The results in Figure F.19 are similar to the remaining query loads; we show
the C query load since this query load had the most diversity in the perfor-
mance across the queries.

239

Paper F.

While, in our experiments, Lothbrok provides an improvement for the
execution time (Figure F.19a) across all the queries in LargeRDFBench, the im-
provement varies based on the query shape in line with the findings of [3, 13]
and the query shape experiments shown in Section 7.3. For instance, query
C4 consists of one highly selective star pattern with 6 unique predicates.
Lothbrok is thus able to answer C4 with one request to the only fragment
with that predicate combination, while Piqnic and ColChain have to send
at least one request per triple pattern. Hence, Lothbrok has around two
orders of magnitude better performance for this particular query. On the
other hand, query C5 consists of four star patterns, two of which contain
only one triple pattern with one of them being the very common rdfs:label
predicate. As a result, Lothbrok has more than twice the number of rele-
vant fragments for C5 compared to both Piqnic and ColChain. Neverthe-
less, Lothbrok still has slightly improved performance for C5 compared to
Piqnic and ColChain since the query still contains two star patterns with
three triple patterns each, meaning the increased optimization and communi-
cation overhead that the additional relevant fragments entail is offset by the
benefits of processing the star patterns over the individual fragments. The
response times (Figure F.19b) show a similar comparison between the sys-
tems as the execution times (Figure F.19a) with the exception of query C4.
Again, the reason being that Lothbrok can process this query with a single
request, and therefore the first result is obtained immediately after receiving
the response to the request.

However, the optimization times (Figure F.19c) differ quite significantly
depending on the number of relevant fragments to the query. For instance,
queries like C5 and C6 (that contain a star pattern consisting of a single triple
pattern with a very common predicate) incur a significant number of relevant
fragments for Lothbrok (286 for C5 and 144 for C6) and thus a higher opti-
mization time. This is the case, since a higher number of relevant fragments
means a higher number of SPBFs have to be intersected which represents an
overhead. In all of these cases, however, the benefits of processing entire star
patterns over the fragments, in terms of decreased network overhead mean
that the overall execution time is still lower for Lothbrok. This is especially
the case for C6, which contains a star pattern with 6 triple patterns that in
Piqnic and ColChain have to be processed individually. On the other hand,
queries like C4 that contain few very selective star patterns have a low opti-
mization time for Lothbrok, since each star pattern have very few relevant
fragments. In the case of C4, Piqnic and ColChain have a relatively high
number of relevant fragments due to one of the predicates being the common
owl:sameAs predicate that occurs in multiple datasets. As a result, Piqnic

and ColChain have a significantly higher optimization time for this query
compared to Lothbrok.

Figure F.20 shows the number of transferred bytes (Figure F.20a), the

240

7. Experimental Evaluation

(a) Number of Transferred Bytes (NTB) (b) Number of Requests (REQ)

(c) Number of Relevant Fragments (NRF) (d) Number of Relevant Nodes (NRN)

Fig. F.20: Number of Transferred Bytes (NTB) (a), Number of Requests (REQ) (b), Number of
Relevant Fragments (NRF) (c), and Number of Relevant Nodes (NRN) (d) for each LArgeRDF-
Bench query load.

number of requests (Figure F.20b), the number of relevant fragments (Fig-
ure F.20c), and the number of relevant nodes (Figure F.20d) for each Larg-
eRDFBench query load in logarithmic scale. We provide figures displaying
each measure in Figure F.20 for each individual LargeRDFBench query on our
website3. As with the experiments shown in Section 7.4, Lothbrok clearly in-
curs a lower network usage than both Piqnic and ColChain, both in terms of
data transfer (Figure F.20a) and the number of requests made (Figure F.20b).
This, together with the performance experiments, shows that Lothbrok is
able to reduce the network overhead significantly across all query loads and,
in doing so, increase the performance overall.

Interestingly, while for most query loads, Lothbrok has a higher number
of relevant fragments (Figure F.20c) in line with the experiments presented in
Section 7.3, for the L query load, Lothbrok has a lower number of relevant
fragments in most queries. The reason is that the queries in this query load
mostly use data from the quite structured linkedTCGA datasets which contain
few similar characteristic sets, thus incurring a low number of relevant frag-
ments per star pattern. On the other hand, for Piqnic and ColChain, the fact
that some star patterns with a low number of triple patterns include common
predicates like rdf:type increases the number of relevant fragments. The
number of relevant nodes (Figure F.20d) shows a similar trend to the number
of relevant fragments since each fragment is replicated across 20 nodes; in
some cases, however, where two relevant fragments are simultaneously repli-

241

Paper F.

cated by some of the same nodes, the actual number of relevant nodes will
be a bit lower than when the relevant nodes replicate exactly one relevant
fragment.

Our results are similar for all query loads (figures provided on our web-
site3) and show that even for the complex queries in query loads C and CH
and the queries with a large number of intermediate results in query load
L, Lothbrok presents a significant performance increase because it lowers
the communication overhead. For some queries, this is quite significant; for
instance the queries C4 and S3 where Lothbrok increases execution time by
up to two orders of magnitude. Furthermore, some queries in the L and CH
groups that timed out for Piqnic and ColChain, such as L3 and CH2, fin-
ished within the timeout of 1200 seconds for Lothbrok. This is in line with
the results presented in Section 7.2 and suggests that Lothbrok is able to
complete more queries within the timeout than the state-of-the-art systems.

7.6 Summary

Our experimental evaluations show that Lothbrok significantly improves
query performance while lowering the communication overhead compared
to Piqnic and ColChain. Lothbrok does so by distributing subqueries to
other nodes such that the estimated network cost is limited as much as possi-
ble, and by processing entire star patterns over the individual fragments. In
doing so, Lothbrok decreases the network usage both in terms of the data
transfer and number of requests, and increases performance by up to two
orders of magnitude compared to the state of the art. Moreover, Lothbrok

does so while providing scalable performance under load; in fact, even when
all nodes in the network issue queries concurrently, Lothbrok maintains ef-
ficient query processing.

8 Conclusions

In this paper, we proposed Lothbrok a novel query optimization approach
for SPARQL queries over decentralized knowledge graphs. Lothbrok builds
upon recent work on decentralized Peer-to-Peer (P2P) systems [4, 6] and in-
troduces a novel fragmentation technique based on characteristic sets [53],
i.e., predicate families, as well as a novel indexing scheme that summarizes
the sets of subjects and objects in a fragment using partitioned bitvectors.
Furthermore, Lothbrok proposes a query optimization strategy based on
cardinality estimation, fragment compatibility, and data locality that is able
to delegate the processing of (sub)queries to other, neighboring nodes in the
network that hold relevant data. We implemented our approach on top of
two recent systems and evaluated Lothbrok’s capabilities over well-known

242

References

benchmarking suites containing real-world data and queries, as well as the
performance of Lothbrok under load using large-scale synthetic datasets
and stress-testing query templates. The experimental results show that Loth-
brok significantly reduces the network overhead when processing queries in
a P2P network and, in doing so, increases performance by up to two orders
of magnitude.

While we presented a novel distribution of the workload across nodes in
a P2P network, Lothbrok also presents an opportunity to explore the ef-
fects of alternative strategies, e.g., for cost estimation, considering fragments
optimized for object-object joins (Figure F.14f), or alternative fragmentation
and allocation strategies, e.g., based on SHACL/ShEx shapes [57, 58]. Fur-
thermore, we plan to expand the range of supported queries to include ag-
gregation and analytical queries [24, 40] and to expand the framework with
support of provenance both for data [11, 28, 31], so that the system has infor-
mation about the origin of the data it uses, as well as for queries [34] so that
the system can explain how query answers were computed.

References

[1] M. Acosta and M. Vidal, “Networks of linked data eddies: An adaptive web
query processing engine for RDF data,” in ISWC 2015. Springer, 2015, pp. 111–
127.

[2] M. Acosta, M. Vidal, T. Lampo, J. Castillo, and E. Ruckhaus, “ANAPSID: an
adaptive query processing engine for SPARQL endpoints,” in ISWC 2011, 2011,
pp. 18–34.

[3] C. Aebeloe, I. Keles, G. Montoya, and K. Hose, “Star pattern fragments:
Accessing knowledge graphs through star patterns,” CoRR, vol. abs/2002.09172,
2020. [Online]. Available: https://arxiv.org/abs/2002.09172

[4] C. Aebeloe, G. Montoya, and K. Hose, “A decentralized architecture for sharing
and querying semantic data,” in ESWC 2019, 2019, pp. 3–18.

[5] ——, “Decentralized indexing over a network of rdf peers,” in ISWC 2019, 2019,
pp. 3–20.

[6] ——, “ColChain: Collaborative linked data networks,” in WWW 2021, 2021, pp.
1385–1396.

[7] A. Ailamaki, D. J. DeWitt, M. D. Hill, and D. A. Wood, “Dbmss on a modern
processor: Where does time go?” in VLDB 1999, 1999, pp. 266–277.

[8] A. Akhter, M. Saleem, A. Bigerl, and A.-C. Ngonga Ngomo, “Efficient rdf knowl-
edge graph partitioning using querying workload,” in K-Cap 2021, 11 2021.

[9] G. Aluç, O. Hartig, M. T. Özsu, and K. Daudjee, “Diversified Stress Testing of
RDF Data Management Systems,” in ISWC 2014, 2014, pp. 197–212.

[10] ——, “Diversified stress testing of RDF data management systems,” in ISWC
2014, 2014, pp. 197–212.

243

https://arxiv.org/abs/2002.09172

References

[11] A. B. Andersen, N. Gür, K. Hose, K. A. Jakobsen, and T. B. Pedersen, “Publishing
Danish Agricultural Government Data as Semantic Web Data,” in JIST, vol. 8943,
2014, pp. 178–186.

[12] C. B. Aranda, A. Hogan, J. Umbrich, and P. Vandenbussche, “SPARQL Web-
Querying Infrastructure: Ready for Action?” in ISWC 2013, 2013, pp. 277–293.

[13] A. Azzam, C. Aebeloe, G. Montoya, I. Keles, A. Polleres, and K. Hose, “Wisekg:
Balanced access to web knowledge graphs,” in WWW 2021, 2021, pp. 1422–1434.

[14] A. Azzam, J. D. Fernández, M. Acosta, M. Beno, and A. Polleres, “SMART-KG:
hybrid shipping for SPARQL querying on the web,” in WWW 2020, 2020, pp.
984–994.

[15] B. H. Bloom, “Space/time trade-offs in hash coding with allowable errors,” Com-
mun. ACM, vol. 13, no. 7, pp. 422–426, 1970.

[16] D. Brickley, R. V. Guha, and B. McBride, “Rdf schema 1.1,” W3C recommendation,
vol. 25, pp. 2004–2014, 2014.

[17] M. Cai and M. R. Frank, “RDFPeers: a scalable distributed RDF repository based
on a structured peer-to-peer network,” in WWW, 2004, pp. 650–657.

[18] A. Charalambidis, A. Troumpoukis, and S. Konstantopoulos, “Semagrow: opti-
mizing federated SPARQL queries,” in SEMANTiCS 2015, 2015, pp. 121–128.

[19] W. W. W. Consortium et al., “Sparql 1.1 overview,” 2013.

[20] A. Crespo and H. Garcia-Molina, “Routing indices for peer-to-peer systems,” in
ICDCS 2002, 2002, pp. 23–32.

[21] M. Dumontier, A. Callahan, J. Cruz-Toledo, P. Ansell, V. Emonet, F. Belleau, and
A. Droit, “Bio2rdf release 3: A larger, more connected network of linked data for
the life sciences,” in ISWC 2014 Posters & Demonstrations Track, vol. 1272, 2014,
pp. 401–404.

[22] J. D. Fernández, M. A. Martínez-Prieto, C. Gutiérrez, A. Polleres, and M. Arias,
“Binary RDF representation for publication and exchange (HDT),” J. Web Se-
mant., vol. 19, pp. 22–41, 2013.

[23] L. Galárraga, K. Hose, and R. Schenkel, “Partout: a distributed engine for effi-
cient RDF processing,” in WWW 2014. ACM, 2014, pp. 267–268.

[24] L. Galárraga, K. A. Jakobsen, K. Hose, and T. B. Pedersen, “Answering
Provenance-Aware Queries on RDF Data Cubes Under Memory Budgets,” in
ISWC, 2018, pp. 547–565.

[25] O. Görlitz and S. Staab, “SPLENDID: SPARQL endpoint federation exploiting
VOID descriptions,” in (COLD2011), 2011.

[26] D. Graux, G. Sejdiu, H. Jabeen, J. Lehmann, D. Sui, D. Muhs, and J. Pfeffer,
“Profiting from kitties on ethereum: Leveraging blockchain RDF with SANSA,”
in ISWC Posters and Demos, 2018.

[27] A. Gubichev and T. Neumann, “Exploiting the query structure for efficient join
ordering in SPARQL queries,” in EDBT 2014, 2014, pp. 439–450.

244

References

[28] E. R. Hansen, M. Lissandrini, A. Ghose, S. Løkke, C. Thomsen, and K. Hose,
“Transparent Integration and Sharing of Life Cycle Sustainability Data with
Provenance,” in ISWC, vol. 12507, 2020, pp. 378–394.

[29] A. Harth, K. Hose, M. Karnstedt, A. Polleres, K. Sattler, and J. Umbrich, “Data
summaries for on-demand queries over linked data,” in WWW 2010. ACM,
2010, pp. 411–420.

[30] O. Hartig and C. Buil-Aranda, “Bindings-restricted triple pattern fragments,” in
OTM Conferences, 2016.

[31] O. Hartig and et al., “RDF-star and SPARQL-star. W3C Draft Community
Group. Report. W3C Community,” 2021. [Online]. Available: https://w3c.
github.io/rdf-star/cg-spec/2021-12-17.html

[32] L. Heling and M. Acosta, “A framework for federated SPARQL query processing
over heterogeneous linked data fragments,” CoRR, vol. abs/2102.03269, 2021.
[Online]. Available: https://arxiv.org/abs/2102.03269

[33] L. Heling, M. Acosta, M. Maleshkova, and Y. Sure-Vetter, “Querying large knowl-
edge graphs over triple pattern fragments: An empirical study,” in ISWC 2018,
2018, pp. 86–102.

[34] D. Hernández, L. Galárraga, and K. Hose, “Computing How-Provenance for
SPARQL Queries via Query Rewriting,” Proc. VLDB Endow., vol. 14, no. 13, pp.
3389–3401, 2021.

[35] J. V. Herwegen, R. Verborgh, E. Mannens, and R. V. de Walle, “Query execution
optimization for clients of triple pattern fragments,” in ESWC 2015, 2015, pp.
302–318.

[36] K. Hose, “Knowledge graph (r) evolution and the web of data,” in MEPDaW
2021, 2021.

[37] K. Hose and R. Schenkel, “Towards benefit-based RDF source selection for
SPARQL queries,” in SWIM 2012. ACM, 2012, p. 2.

[38] ——, “WARP: workload-aware replication and partitioning for RDF,” in ICDE
2013 Workshops, 2013, pp. 1–6.

[39] D. Ibragimov, K. Hose, T. B. Pedersen, and E. Zimányi, “Processing Aggregate
Queries in a Federation of SPARQL Endpoints,” in ESWC, 2015, pp. 269–285.

[40] ——, “Optimizing Aggregate SPARQL Queries Using Materialized RDF Views,”
in ISWC, 2016, pp. 341–359.

[41] A. L. Jakobsen, G. Montoya, and K. Hose, “How diverse are federated query
execution plans really?” in ESWC 2019, 2019, pp. 105–110.

[42] Z. Kaoudi, M. Koubarakis, K. Kyzirakos, I. Miliaraki, M. Magiridou, and
A. Papadakis-Pesaresi, “Atlas: Storing, updating and querying RDF(S) data on
top of dhts,” J. Web Semant., vol. 8, no. 4, pp. 271–277, 2010.

[43] M. Karnstedt, K. Sattler, M. Richtarsky, J. Müller, M. Hauswirth, R. Schmidt, and
R. John, “UniStore: Querying a DHT-based universal storage,” in ICDE 2007,
2007, pp. 1503–1504.

245

https://w3c.github.io/rdf-star/cg-spec/2021-12-17.html
https://w3c.github.io/rdf-star/cg-spec/2021-12-17.html
https://arxiv.org/abs/2102.03269

References

[44] P. Larson, “Dynamic hash tables,” Commun. ACM, vol. 31, no. 4, pp. 446–457,
1988.

[45] E. Mansour, A. V. Sambra, S. Hawke, M. Zereba, S. Capadisli, A. Ghanem,
A. Aboulnaga, and T. Berners-Lee, “A demonstration of the solid platform for
social web applications,” in WWW 2016. ACM, 2016, pp. 223–226.

[46] T. Minier, H. Skaf-Molli, and P. Molli, “Sage: Web preemption for public SPARQL
query services,” in WWW 2019. ACM, 2019, pp. 1268–1278.

[47] G. Montoya, C. Aebeloe, and K. Hose, “Towards efficient query processing over
heterogeneous RDF interfaces,” in DeSemWeb@ISWC 2018, 2018.

[48] G. Montoya, I. Keles, and K. Hose, “Analysis of the effect of query shapes on
performance over LDF interfaces,” in QuWeDa@ISWC 2019, 2019, pp. 51–66.

[49] ——, “Querying linked data: An experimental evaluation of state-of-
the-art interfaces,” CoRR, vol. abs/1912.08010, 2019. [Online]. Available:
http://arxiv.org/abs/1912.08010

[50] G. Montoya, H. Skaf-Molli, and K. Hose, “The odyssey approach for optimizing
federated SPARQL queries,” in ISWC 2017, pp. 471–489. [Online]. Available:
https://doi.org/10.1007/978-3-319-68288-4_28

[51] G. Montoya, M. Vidal, and M. Acosta, “A heuristic-based approach for planning
federated SPARQL queries,” in COLD 2012, 2012.

[52] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2009. [Online].
Available: http://www.bitcoin.org/bitcoin.pdf

[53] T. Neumann and G. Moerkotte, “Characteristic sets: Accurate cardinality estima-
tion for RDF queries with multiple joins,” in ICDE 2011, 2011, pp. 984–994.

[54] O. Papapetrou, W. Siberski, and W. Nejdl, “Cardinality estimation and dynamic
length adaptation for bloom filters,” Distributed Parallel Databases, vol. 28, no. 2-3,
pp. 119–156, 2010.

[55] Y. Park, S. Ko, S. S. Bhowmick, K. Kim, K. Hong, and W. Han, “G-CARE: A
framework for performance benchmarking of cardinality estimation techniques
for subgraph matching,” in SIGMOD 2020. ACM, 2020, pp. 1099–1114.

[56] J. Pérez, M. Arenas, and C. Gutiérrez, “Semantics and complexity of SPARQL,”
ACM Trans. Database Syst., vol. 34, no. 3, pp. 16:1–16:45, 2009.

[57] K. Rabbani, M. Lissandrini, and K. Hose, “Optimizing SPARQL Queries using
Shape Statistics,” in EDBT 2021, 2021, pp. 505–510.

[58] ——, “SHACL and ShEx in the Wild: A Community Survey on Validating Shapes
Generation and Adoption,” in WWW’22 Companion, April 25–29, 2022, Virtual
Event, Lyon, France, 2022.

[59] M. Saleem, A. Hasnain, and A. N. Ngomo, “Largerdfbench: A billion triples
benchmark for SPARQL endpoint federation,” vol. 48, 2018, pp. 85–125.

[60] M. Saleem, A. Potocki, T. Soru, O. Hartig, and A. N. Ngomo, “Costfed: Cost-
based query optimization for SPARQL endpoint federation,” in SEMANTiCS
2018, 2018, pp. 163–174.

246

http://arxiv.org/abs/1912.08010
https://doi.org/10.1007/978-3-319-68288-4_28
http://www.bitcoin.org/bitcoin.pdf

References

[61] M. Saleem, G. Szárnyas, F. Conrads, S. A. C. Bukhari, Q. Mehmood, and A. N.
Ngomo, “How representative is a SPARQL benchmark? an analysis of RDF
triplestore benchmarks,” in WWW 2019. ACM, 2019, pp. 1623–1633.

[62] A. Schwarte, P. Haase, K. Hose, R. Schenkel, and M. Schmidt, “Fedx: Optimiza-
tion techniques for federated query processing on linked data,” in ISWC 2011,
2011, pp. 601–616.

[63] M. Sopek, P. Gradzki, W. Kosowski, D. Kuzinski, R. Trójczak, and R. Trypuz,
“Graphchain: A distributed database with explicit semantics and chained RDF
graphs,” in WWW Companion, 2018, pp. 1171–1178.

[64] J. Umbrich, K. Hose, M. Karnstedt, A. Harth, and A. Polleres, “Comparing data
summaries for processing live queries over linked data,” World Wide Web, vol. 14,
no. 5-6, pp. 495–544, 2011.

[65] P. Vandenbussche, J. Umbrich, L. Matteis, A. Hogan, and C. B. Aranda, “SPAR-
QLES: monitoring public SPARQL endpoints,” Semantic Web, vol. 8, no. 6, pp.
1049–1065, 2017.

[66] R. Verborgh, M. V. Sande, O. Hartig, J. V. Herwegen, L. D. Vocht, B. D. Meester,
G. Haesendonck, and P. Colpaert, “Triple Pattern Fragments: A low-cost knowl-
edge graph interface for the Web,” J. Web Sem., vol. 37-38, pp. 184–206, 2016.

[67] M. Vidal, E. Ruckhaus, T. Lampo, A. Martínez, J. Sierra, and A. Polleres, “Ef-
ficiently joining group patterns in SPARQL queries,” in ESWC 2010, 2010, pp.
228–242.

[68] D. Vrandecic and M. Krötzsch, “Wikidata: a free collaborative knowledgebase,”
Commun. ACM, vol. 57, no. 10, pp. 78–85, 2014.

[69] Z. Zheng, S. Xie, H. Dai, X. Chen, and H. Wang, “Blockchain challenges and
opportunities: a survey,” IJWGS, vol. 14, no. 4, pp. 352–375, 2018.

247

C
h

r
istia

n
 a

eb
elo

e
D

eC
en

tr
a

lizeD
 K

n
o

w
leD

g
e g

r
a

ph
s o

n
 th

e w
eb

ISSN (online): 2446-1628
ISBN (online): 978-87-7573-863-2

	Omslag_CA.pdf
	PHD_CA_TRYK.pdf
	Kolofon_CA.pdf
	PhD_Thesis.pdf
	Front page
	Abstract
	Resumé
	Acknowledgments
	Contents
	Thesis Details
	I Thesis Summary
	Decentralized Knowledge Graphs on the Web
	1 Introduction
	1.1 Background and Motivation
	1.2 Contributions of the Thesis
	1.3 Structure of the Thesis

	2 State of the Art
	2.1 Client-Server Architectures
	2.2 Federated Systems
	2.3 Peer-to-Peer Systems
	2.4 Blockchains

	3 Scalable Access to Knowledge Graphs
	3.1 Motivation and Problem Statement
	3.2 Preliminaries
	3.3 WiseKG: Balanced Access to Web Knowledge Graphs
	3.4 Query Processing
	3.5 Evaluation and Discussion

	4 An Unstructured Peer-to-Peer Architecture
	4.1 Motivation and Problem Statement
	4.2 PIQNIC: A Decentralized Architecture for Sharing and Querying Semantic Data
	4.3 Query Processing
	4.4 Evaluation and Discussion

	5 Indexing Decentralized Knowledge Graphs
	5.1 Motivation and Problem Statement
	5.2 Locational Indexes
	5.3 Prefix-Partitioned Bloom Filter Indexes
	5.4 Query Processing
	5.5 Evaluation and Discussion

	6 Collaborative Updates
	6.1 Motivation and Problem Statement
	6.2 Preliminaries
	6.3 ColChain: Collaborative Linked Data Networks
	6.4 Query Processing
	6.5 Demonstration
	6.6 Evaluation and Discussion

	7 Optimizing Decentralized SPARQL Queries
	7.1 Motivation and Problem Statement
	7.2 The Lothbrok approach
	7.3 Query Optimization
	7.4 Query Execution
	7.5 Evaluation and Discussion

	8 Conclusions and Summary of Contributions
	9 Future Research Directions
	References

	II Papers
	A WiseKG: Balanced Access to Web Knowledge Graphs
	1 Introduction
	2 Background
	2.1 Existing KG Interfaces
	2.2 RDF HDT Compression

	3 Motivating Example
	4 WiseKG
	4.1 Overview
	4.2 Server-Side Cost Model

	5 Query Processing
	5.1 Server-Side Query Processing
	5.2 Client-Side Query Processing

	6 Experimental Evaluation
	6.1 Experimental Setup
	6.2 Experimental Results

	7 Conclusions and Future Work
	References

	B A Decentralized Architecture for Sharing and Querying Semantic Data
	1 Introduction
	2 Related Work
	3 PIQNIC
	3.1 Data Fragmentation
	3.2 Network Architecture
	3.3 Replication of Datasets

	4 Query Processing
	5 Evaluation
	6 Conclusions
	References

	C Decentralized Indexing over a Network of RDF Peers
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Locational Index
	5 Prefix-Partitioned Bloom Filters
	5.1 Partitioning Bloom Filters
	5.2 Matching Triple Patterns to Nodes

	6 Query Processing
	7 Evaluation
	7.1 Experimental Setup
	7.2 Experimental Results

	8 Conclusions
	References

	D ColChain: Collaborative Linked Data Networks
	1 Introduction
	2 Related Work
	2.1 Client-Server Architectures
	2.2 Decentralized Architectures
	2.3 Blockchains

	3 Preliminaries
	3.1 Knowledge Graphs
	3.2 ColChain Peer-to-Peer Layer

	4 ColChain
	4.1 Design and Overview
	4.2 Formal Definition of ColChain

	5 Consensual Updates
	5.1 Updates
	5.2 Consensus Protocol

	6 Query Processing
	7 Experimental Evaluation
	7.1 Implementation Details
	7.2 Experimental Setup
	7.3 Experimental Results
	7.4 Summary

	8 Conclusion
	References

	E A Demonstration of ColChain: Collaborative Knowledge Chains
	1 Introduction
	2 System Overview
	2.1 Architecture of a ColChain Client
	2.2 Graphical User Interface for ColChain

	3 Demonstration
	References

	F Optimizing SPARQL Queries over Decentralized Knowledge Graphs
	1 Introduction
	2 Related Work
	2.1 Client-Server Architectures
	2.2 Federated Systems
	2.3 Peer-to-Peer Systems

	3 Background
	3.1 Peer-to-Peer
	3.2 Distributed Indexes

	4 The Lothbrok Approach
	4.1 Design and Overview
	4.2 Data Fragmentation
	4.3 Semantically Partitioned Bloom Filter Indexes

	5 Query Optimization
	5.1 Fragment and Source Selection
	5.2 Cardinality Estimation
	5.3 Optimizing Query Execution Plans

	6 Query Execution
	7 Experimental Evaluation
	7.1 Experimental Setup
	7.2 Scalability under Load
	7.3 Impact of Query Pattern
	7.4 Network Usage
	7.5 Performance of Individual Queries
	7.6 Summary

	8 Conclusions
	References

	Blank Page

	Omslag_CA
	Blank Page
	Blank Page

