
PERSONALIZED EXPERT RECOMMENDATION: MODELS AND ALGORITHMS

A Dissertation

by

HAOKAI LU

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, James Caverlee
Committee Members, Frank Shipman

Yoonsuck Choe
Patrick Burkart

Head of Department, Dilma Da Silva

December 2017

Major Subject: Computer Engineering

Copyright 2017 Haokai Lu



ABSTRACT

Many large-scale information sharing systems including social media systems, question-

answering sites and rating and reviewing applications have been growing rapidly, allowing

millions of human participants to generate and consume information on an unprecedented

scale. To manage the sheer growth of information generation, there comes the need to en-

able personalization of information resources for users — to surface high-quality content

and feeds, to provide personally relevant suggestions, and so on. A fundamental task in

creating and supporting user-centered personalization systems is to build rich user profile

to aid recommendation for better user experience.

Therefore, in this dissertation research, we propose models and algorithms to facilitate

the creation of new crowd-powered personalized information sharing systems. Specifi-

cally, we first give a principled framework to enable personalization of resources so that

information seekers can be matched with customized knowledgeable users based on their

previous historical actions and contextual information; We then focus on creating rich

user models that allows accurate and comprehensive modeling of user profiles for long

tail users, including discovering user’s known-for profile, user’s opinion bias and user’s

geo-topic profile. In particular, this dissertation research makes two unique contributions:

First, we introduce the problem of personalized expert recommendation and propose

the first principled framework for addressing this problem. To overcome the sparsity issue,

we investigate the use of user’s contextual information that can be exploited to build robust

models of personal expertise, study how spatial preference for personally-valuable exper-

tise varies across regions, across topics and based on different underlying social commu-

nities, and integrate these different forms of preferences into a matrix factorization-based

personalized expert recommender.
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Second, to support the personalized recommendation on experts, we focus on mod-

eling and inferring user profiles in online information sharing systems. In order to tap

the knowledge of most majority of users, we provide frameworks and algorithms to ac-

curately and comprehensively create user models by discovering user’s known-for profile,

user’s opinion bias and user’s geo-topic profile, with each described shortly as follows:

— We develop a probabilistic model called Bayesian Contextual Poisson Factorization

to discover what users are known for by others. Our model considers as input a small frac-

tion of users whose known-for profiles are already known and the vast majority of users for

whom we have little (or no) information, learns the implicit relationships between user?s

known-for profiles and their contextual signals, and finally predict known-for profiles for

those majority of users.

— We explore user’s topic-sensitive opinion bias, propose a lightweight semi-supervised

system called “BiasWatch” to semi-automatically infer the opinion bias of long-tail users,

and demonstrate how user’s opinion bias can be exploited to recommend other users with

similar opinion in social networks.

— We study how a user’s topical profile varies geo-spatially and how we can model

a user’s geo-spatial known-for profile as the last step in our dissertation for creation of

rich user profile. We propose a multi-layered Bayesian hierarchical user factorization to

overcome user heterogeneity and an enhanced model to alleviate the sparsity issue by inte-

grating user contexts into the two-layered hierarchical user model for better representation

of user’s geo-topic preference by others.
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1. INTRODUCTION

1.1 Motivation

We live in an age of unprecedented access to information and knowledge enabled by

many large-scale online sharing systems – from social media services (e.g., Facebook,

Twitter and LinkedIn), to question-answering sites sharing knowledge and expertise (e.g.,

Quora, Yahoo! Answers and Stack Overflow), to online encyclopedia sharing collec-

tive knowledge (e.g., Wikipedia), to rating and reviewing applications publishing crowd-

sourced reviews and ratings (e.g., Yelp, Foursquare and TripAdvisor).

A key feature of these information sharing systems is their increasing leverage of the

power of human crowds: as primary contributors of knowledge and content (e.g., users

who answer questions in Quora and share images in Pinterest), as annotators and raters

of other resources (e.g., for surfacing high-quality content), as the main channel for infor-

mation propagation (as in social media and networks), and so on. For example, Facebook

— launched in 2004 — has now over 2 billion monthly active users as of June 30, 2017,

generating over 695,000 status updates, 79,364 wall posts and 510,040 comments every

minute [1]. Quora, a question-answering website dedicated to sharing knowledge and ex-

pertise, has over 190 million monthly users since it is launched in 2009 with about 6,000

questions asked daily across 400 hundred topics [2]. Pinterest, an image-based online sys-

tem, has 150 million monthly active users including 70 million users from the US, with 50

billion pins∗ and 1 billion boards already generated [3]. Even for the non-profit encyclo-

pedia website Wikipedia, it now has over 5 million English articles as of July 2017 with

671 new articles added every day on average, and a total of about 30 thousand active edi-

tors contributing over 3 million edits per month [4]. This evidence showcases the massive

∗A pin is an image that has been uploaded or linked from a website; a board is a collection of pins
dedicated to a theme such as travel or food.
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scale of human crowds powering these online information sharing systems.

Given these large and growing services, there comes the need to enable personalization

of information resources for users in these services to surface high-quality content and

feeds, to provide personally relevant suggestions, and so on. For example, Facebook and

Twitter have adopted large-scale machine learning techniques to personalize timelines,

push notifications, and suggest news feed for users [5, 6]. Quora has resorted to supervised

machine learning approaches as well to rank answers [7] to show to viewers. Pinterest

has also relied upon state-of-the-art machine learnings models to prioritize pins with high

relevance scores and show them at the top of user’s home feed [8]. These personalization

systems are often focused on customizing specific items like timelines and news feed based

on user profiles, while not focused on the recommendation of users and experts.

Therefore, in this dissertation, we are focused on user-centered personalization in in-

formation sharing systems. User-centered personalization is often different from item-

centered personalization due to the unique nature and attributes of users, e.g., user’s de-

mographic profile, user’s interests and expertise and user’s topical opinion, and thus is

facing different sets of challenges. In the rest of the section, we will first present some

key research challenges in user-centered personalization, and then describe the main con-

tributions of this research, followed by high-level introductions of the rest sections in the

dissertation.

1.2 Research Challenges

Previously, we described the massive scale of human crowds present in many infor-

mation sharing systems, and how personalization is essential to providing user friendly

services and experience by creating rich user models. We now identify some of the re-

search challenges associated with these information sharing systems.

• First, a key challenge in large-scale information sharing systems is in effectively
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connecting the right person with the right resource. Many of the systems are opti-

mized towards seeking information from popular experts with broad appeal. Conse-

quently, users with specific information needs may not be satisfied with the answers

of these general experts. For example, a user may be interested in the expert opin-

ions of nearby local foodies, but less interested in the opinions of globally popular

celebrity chefs. Bridging this personalization gap is the first key challenge.

• Second, many of these information sharing systems rely on a small pool of active do-

main experts or prominent (top-ranked) users as the content contributors or sources

of expertise. Consequently, these systems are not able to take advantage of the

knowledge or expertise of the vast majority of users at large (long tail users). Fur-

thermore, those domain experts or prominent users may become inactive due to

retiring or simply loss of interests. Together, these factors may prevent the growth

of these systems, with their purpose for information distribution not fully realized.

Thus, how to effectively discover long tail users’ profiles is the second key chal-

lenge.

• Third, the geo-spatial variations of these information sharing systems are typically

not explored or distinguished. User interest or expertise, however, is inherently con-

strained within certain geo-scope. For example, a user may be known for some top-

ics only locally, while she is known for other topics more widely across the country.

An information sharing system can be improved by uncovering and distinguishing

such locality of user’s different topical expertise. Thus, how to effectively model

user’s geo-spatial profile is the third key challenge.

1.3 Dissertation Overview

Therefore, in this dissertation research, we propose models and algorithms to facilitate

the creation of new crowd-powered personalized information sharing systems. Our vision
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Figure 1.1: Overview of the dissertation.

is of an information sharing system where the majority of users, in addition to a few top

domain experts and prominent users, are able to provide high-quality information on their

knowledge and contribute to the overall knowledge reservoir. The system should be able

to automatically match information seekers to knowledgeable users in a personalized fash-

ion so that their customized information needs can be met. This user-centric information

sharing not only is able to tap the knowledge of most majority of users, but also bridge

the gap between general information seeking and more personalized needs. Overall, our

models and algorithms are able to provide: (i) personalized user recommendation to match

information seekers with customized knowledgeable users based on their previous histor-

ical actions and contextual information; (ii) accurate modeling of users’ profiles for long

tail users, where our models can reflect user’s salient characteristics such as user’s topical

interest, expertise and opinion. Figure 1.1 demonstrates a high level framework of the

dissertation. Specifically, this dissertation research makes two unique contributions:
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• The first contribution of this dissertation research lies in formalizing the problem

of personalized expert recommendation and in proposing the first principled frame-

work for addressing this problem. A major challenge for any approach (and indeed,

one that has limited prior efforts to typically focus on broad, general experts) is

the extreme sparsity of user behaviors that could be leveraged for building personal

recommenders. To overcome the sparsity issue, we investigate the use of contex-

tual information that can be exploited to build robust models of personal expertise.

Through a fine-grained GPS-tagged social media trace, we study how spatial pref-

erence for personally-valuable expertise varies across regions, across topics, and

based on different underlying social communities, which we denote region, topic,

and social-based locality, respectively. We integrate these different forms of prefer-

ences into a matrix factorization-based personalized expert recommender, and con-

duct extensive experiments. We conclude that our proposed model outperforms sev-

eral alternative baselines. Specifically, we show that the integration of region, topic

and social-based locality gives better performance over matrix factorization, respec-

tively, and that the combination of these influence gives the best result among all,

indicating that geo-spatial, topical and social factors are able to complement each

other in personalized expert recommendation.

• To support and complement the personalized recommendation on experts, the sec-

ond contribution of this dissertation research focuses on modeling and inferring user

profiles in online information sharing systems and social media. Our previous re-

search establishes a framework of personalized expert recommendation in which

users are recommended to connect to experts who are more likely to satisfy their

personalized information needs. However, many real-world systems usually rely

on a small portion of active domain experts or dominant (top-ranked) users among
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all participants, and are not able to take advantage of the knowledge and expertise

of the long tail of users. In order to tap the knowledge of most majority of users,

we provide frameworks and algorithms to accurately and comprehensively model

user profile. Specifically, we have investigated and explored user models to discover

user’s known-for profile, user’s opinion bias, and user’s geo-topic profile with each

described as follows:

— Discovering user’s known-for profile. We first develop a context-based model

called Bayesian Contextual Poisson Factorization to discover what users are known

for by others. Our model considers as input a small fraction of users whose known-

for profiles are already known and the vast majority of users for whom we have

little (or no) information, learns the implicit relationships between user’s known-

for profiles and their contextual signals, and finally predict known-for profiles for

those majority of users. Our method moves beyond just modeling the content a user

generated, and naturally models and integrated additional contextual factors that

provide implicit linkages between users for improved known-for profile estimation.

— Discovering user’s opinion bias. In a different aspect of user profiling, we ex-

plore and investigate user’s topic-sensitive opinion bias for richer user profiles, and

demonstrated how user’s opinion bias can be exploited to recommend other users

with similar opinion in social media systems. Specifically, we propose a lightweight

system called “BiasWatch” for (i) semi-automatically discovering and tracking bias

themes associated with opposing sides of a topic; (ii) identifying strong partisans

who drive the online discussion; and (iii) inferring the opinion bias of long-tail users.

By taking just two hand-picked seeds to characterize the topic-space (e.g., “pro-

choice” and “pro-life”) as weak labels, we develop an efficient optimization-based

opinion bias propagation method over social/information network. These inferred
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opinion bias can be used as a different dimension to augment user’s profiles.

— Discovering user’s geo-topic profile. Finally, we have studied how a user’s top-

ical profile varies geo-spatially, how we can model a user’s geo-topic profile, and the

implications for personalized user recommendation in information sharing system.

Generally, the quality of user’s profile is often dependent on the social-spatial prop-

erties of the systems in which they arise. Specifically, our analysis on the impact

of geo-location on user’s topical profile indicates the pair-wise interactions between

geo-locations and user’s topical profile. Motivated by the observations, we propose

the modeling of fine-grained user geo-topic profiles to capture the aforementioned

pair-wise interactions. Concretely, we first propose a multi-layered Bayesian hierar-

chical user factorization which can learn a more expressive user model than single-

layered models. We then investigate how user’s contextual information, specifically,

user’s geo-location and social ties, correlates with one’s geo-topic profile, and then

propose to integrate these contexts into the two-layered hierarchical user model for

better representation of user’s geo-topic preference by others.

The rest of this dissertation is organized as follows:

• Section 2: In this section, we discuss related work on user profiling, more specifically,

on user interests, expertise and opinion bias. We also discuss user context in social

systems and how it can be used to improve user profiling. Finally, we discuss some

related work on modeling user’s implicit feedback and more generally, on modeling

discrete count data.

• Section 3: In this section, we introduce the problem of personalized expert recom-

mendation, and propose a principled matrix factorization based approach to effectively

recommend personal experts to users. We evaluate the method against several alter-

native baselines and study the influence of different localities on the recommendation
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performance.

From Section 4 to Section 6, we focus on modeling and inferring user profiles by discov-

ering user’s known-for profile, by discovering user’s opinion bias, and by discovering

user’s geo-topic profile.

• Section 4: In this section, we introduce the problem of user known-for profile discovery

to model and propose a probabilistic generative framework called Bayesian Contextual

Poisson Factorization to effectively learn what a user is known for by others. We develop

an efficient variational inference to learn latent parameters, evaluate the method against

several baselines and study how user’s contextual information affects final performance.

• Section 5: In this section, we build a systematic framework – BiasWatch – to discover

biased themes and estimate user’s opinion bias quantitatively under the context of con-

troversial topics in social media. We propose an efficient optimization scheme to propa-

gate opinion bias from prominent users to “regular” users. We then evaluate BiasWatch

by comparing against several alternative approaches and study the effect of framework’s

parameters on classification performance. Finally, we demonstrate how these inferred

opinion bias scores can be exploited to recommend similar-minded users.

• Section 6: In this section, we introduce a multi-dimensional user profiling concept

called user’s geo-topic profile, and propose a multi-layered Bayesian hierarchical user

factorization to model where users are popular for what topic. We then investigate the

impact of user’s contexts on user’s geo-topic profile and propose an enhanced model to

integrate their influence. Finally, we evaluate our proposed models against several base-

line methods and study the effect of model parameters on final predicative performance.

• Section 7: We conclude with a summary of the contributions of this work, and provide

a discussion of two potential future research opportunities.
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2. RELATED WORK

In this section, we discuss several lines of work related to our dissertation including

user profiling, user context, and its application for different tasks in information systems.

We also discuss some related work on modeling user’s implicit feedback and more gener-

ally, on modeling discrete count data.

2.1 User Profiling

User profiling is an important task, with many efforts building user’s topic interests

and demographic profile for personalized search [9, 10, 11, 12], recommender systems

[13, 14, 15, 16, 17], expert mining [18, 19, 20] and targeted advertising [21]. User profiles

are also used to provide recommendations for online activities such as commenting on

news stories [15] and mentions in micro-blogging systems [22].

2.1.1 User Interests and Expertise

Finding user interests and expertise is critical for many important applications. Many

of these applications seek to find interests or expertise either explicitly [23, 24, 19, 13]

via user relevant features and tags, or uncover latent interest or expertise [21, 16, 17] with

models such as matrix factorization. Dou et al. [9] built user interest profile by prede-

fined topic categories for personalized webpage re-ranking. Ahmed et al. [21] proposed a

statistical framework to extract user’s dynamic interest profile for behavioral targeting.

To increase user base and engagement, many works [24, 25, 26, 27, 28, 16] create

rich user models for better user experience in social media. For example, Hong et al.

[26] focused on modeling retweeting behavior on Twitter using factorization machines

on users and tweets. Zhao et al. [16] proposed a matrix factorization based approach

to build topical profiles by distinguishing user behaviors. Jiang et al. [27] presented a
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probabilistic matrix factorization model to exploit social context to better predict user

adoption behaviors on Weibo. Chen et al. [24] built topic profiles of users with bag-of-

words model to recommend conversations in Twitter.

Besides user’s topic interest profile, other works[29, 30, 31] focus on inferring user’s

attribute and demographics profile such as gender and education. For example, Mislove et

al. [31] proposed community detection based approaches to infer user’s college and major.

Li et al. [29] presented a weakly-supervised approach to extract user’s job and education.

Many previous works [32, 33, 34, 35] have focused on finding general topic experts

in many domains (e.g., enterprise corporate, email networks), with a recent emphasis on

social media and microblogging sites [36, 37, 38]. Weng et al. [38] proposed a PageRank-

based approach to find topic experts by taking advantage of both topical similarity between

users and social link structure. Pal and Counts [37] introduced a probabilistic clustering

followed by a within-cluster Gaussian ranking framework to find topic authorities using

nodal and topical features on Twitter. Ghosh et al. [36] proposed and built a system

called Cognos to find topic experts by relying on Twitter Lists (though not with any geo-

spatial information, as in this work). Recently, Cheng et al. [39] addressed the problem of

identifying local experts on Twitter. Our dissertation work extends on these prior efforts

by focusing on personalized experts for users.

2.1.2 User Opinion Bias

There has been considerable research effort devoted to exploring political polariza-

tion, assessing media bias of major news outlets, and assessing user sentiment towards

particular topics.

Political polarization has been a topic of great interest in the past decade and studied in

news articles [40], online forums [41] and social media [42, 43, 44, 45, 46, 47, 48]. Adamic

and Glance [42] demonstrated the divided community structure in the citation network of
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political blogs. Conover et al. [45] and Livne et al. [47] showed that there exists a highly

segregated network structure using modularity. Guerra et al. [46] compared polarized and

non-polarized networks and proposed a new measure to determine whether a network is

polarized given that the network is also modular. Since knowing users’ political orienta-

tion can be of great importance for understanding the overall political landscape, many

approaches have been proposed to classify a user’s political identity. Conover et al. [44]

and Pennacchiotti and Popescu [48] exploit text and network features for classification.

Akoglu [41] proposed to use signed bipartite opinion networks for the classification and

ranking of user’s political polarity on forum data. Zhou et al. [40] applied semi-supervised

learning methods to classify news articles and users’ political standing. Cohen et al. [43]

employ supervised methods to classify political users into groups with different political

activities, and conclude that it is hard to infer “ordinary” users’ political orientation. In our

work, instead of simply focusing on the classification of user’s political orientation, we are

interested in developing a flexible tool to explore controversial themes and discover their

underlying users’ degree of opinion bias on a topic basis. We show that user’s opinion bias

can be leveraged to improve other applications such as user recommendation.

Apart from user-oriented political orientation, some works have explored media bias.

Groseclose et al. [49] proposed a new measure to quantify media bias by comparing

the number of citations to think tanks and policy groups to those of Congress members.

Gentzkow et al. [50] also proposed a media bias measure which considers the frequency

of phrases quoted by Congressional members of Republican and Democratic parties in

newspapers. Lin et al. [51] focused on the measure of coverage quantity to compare the

extent of bias between blogs and news media. Wong et al. [52] quantified the political

leanings of media outlets on Twitter using aggregated retweeting statistics. Our work

differs from these in that we target the opinion bias of “regular” users instead of prominent

media, and with respect to different controversial topics instead of only political leanings.
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There are also prior works which infer user’s sentiment toward a topic in social media

or online forums. Tan et al. [53] proposed a semi-supervised approach to inferring users’

sentiment using social network information. Kim et al. [54] and Gao et al. [55] proposed

to use a collaborative filtering like approach to estimate user-level sentiment. Lu et al. [56]

proposed to use content and social interactions to discover opinion networks in forum dis-

cussions. However, our work has two differences from these and other sentiment-oriented

approaches. The first is that many of these works require a significant amount of manually

labelled tweets or users as ground truth. In our work, we develop automatic approaches

using crowdsourced hashtags as seeds to substantially reduce manual labor. The second is

that we focus on intrinsic opinion bias instead of sentiment. Sentiment [57] centers around

users’ attitude or emotional state, usually reflected by the use of emotional words. How-

ever, opinion bias can also be reflected by the news or factual information she chooses to

post, which may lack any prominent emotional words.

2.2 Exploiting User Context

Contextual information in social media has been widely used in previous works [58,

59, 60, 61, 62, 63, 28, 64] to learn better user profiles and improve task performance.

Various contextual signals have been exploited to improve learning user’s interests and

expertise, including text [65, 63, 66, 67, 68], social networks [27, 60, 14], geographical

footprints [69, 70], behavioral signal [13, 71], temporal context [72, 28], emotions and

sentiment [73, 74], and linguistic activity [75].

A seminal work by Singh and Gordon [62] proposed collective matrix factorization to

simultaneously factor several matrices encoding contextual information for better predic-

tion of user-movie ratings. Wang and Blei [63] proposed collaborative topic regression to

learn latent user preference by modeling both ratings and content. Similarly, Gopalan et

al. [58] also modeled both user’s ratings and content but with Poisson factorization. Jamal
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et al. [59] proposed a context dependent factor model to learn general latent factors of

entities in social networks for better recommendation. Guy et al. exploited user’s tagging

behavior to improve content recommendation [13]. Temporal information has also been

used in [28] to learn both user-oriented topics and time-oriented topics. Other contex-

tual information used to learn user preference includes domain-specific communities [64]

and social relations [60, 61] which are used to regularize latent factors between socially

connected users.

Geographical footprints have also been widely explored in many location-based ap-

plications [76, 69, 77, 78, 79, 80, 81, 82, 83]. One of the most popular applications is

point-of-interest (POI) recommendation on social networks, where geographical influence

is combined with user preference for better performance. For example, Ye et al. [84]

explored the spatial clustering phenomenon and proposed a unified POI recommenda-

tion framework combining user preference, geographical influence, and social influence.

Cheng et al. [76] proposed a multi-center Gaussian model to model user’s check-in behav-

ior, which is used as input for a generalized matrix factorization framework. Liu et al. [85]

proposed a geographical probabilistic factor analysis framework, which jointly models the

effect of geographical distance, user preference, POI popularity and user mobility. Another

different application that utilizes geographical footprints is the rating prediction problem

in Yelp [86], where Hu et al. observed weak positive correlation between a business’s

ratings and its neighbor’s ratings, and used this observation to improve rating predictions.

Other works have used geographical influence for rating prediction in Yelp [69], activ-

ity recommendation with GPS history [83], expert recommendation [80] and event-based

group recommendation [82].
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2.3 Modeling User’s Implicit Feedback

In recommendations when only implicit feedback is available, one-class collaborative

filtering approach [87, 88, 82] can be used for learning rank between items. Rendle et al.

[88] proposed a pairwise method called bayesian personalized ranking (BPR) framework

which models the order of items. Following this, Rendle et at. [89] extended matrix

factorization to tensor factorization for tag recommendation. Chen et al. [87] adapted BPR

framework for tweet recommendation by incorporating tweet topic factors, social relation

factors and other explicit features. Zhang et al. [82] also used pairwise matrix factorization

to recommend event-based groups to users with location features, social features and tags.

Krohn-Grimberghe et al. [90] extended this framework to model both user’s feedback and

social relations by optimizing weighted loss functions so that social relation is considered

as part of objective function.

More generally, user’s implicit feedback is often in the form of binary data, which

can also be considered as discrete count more broadly. An emerging line of research

[72, 91, 92, 93, 94] has focused on modeling discrete count data with Gamma-Poisson

distribution instead of traditional Gaussians for recommender systems [95, 91], topic mod-

eling [58], spatial data analysis [93] and political science [96]. For example, Gopalan et

al. [91] proposed a hierarchical Poisson matrix factorization for item recommendation

to users based on implicit feedback, and later developed collaborative topic Poisson fac-

torization [58] by integrating topic modeling for better article recommendation with user

clicks. Yu et al. [93] proposed a weakly-supervised labeled Poisson factor model to pre-

dict the number of app openings at different locations through aggregated spatial data

from mobile app usage. Zhou et al. [94] proposed to use beta-negative binomial process

as a non-parametric Bayesian prior for an infinite Poisson factor analysis model. More

recently, Schein et al. [96] have generalized two dimensional Poisson factorization to
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Bayesian Poisson tensor factorization for inferring multilateral relations to analyze inter-

national affairs between countries based on political events data. Zhou et al. [97] proposed

Poisson gamma belief network, a multi-layer generative probabilistic framework based on

Poisson distribution for modeling two-dimensional discrete count data. In our dissertation

work, we exploit Bayesian Poisson factorization to model user’s implicit feedback and

user’s popularity counts instead of probabilistic matrix factorization based on Gaussian

distribution for better performance.
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3. PERSONALIZED EXPERT RECOMMENDATION∗

In this section, we begin to address the first challenge in large-scale information shar-

ing system — how to connect the right person with the right resource. To that end, we

formalize the problem of personalized expert recommendation, and propose a principled

matrix factorization based approach to effectively recommend personal experts to users.

3.1 Introduction

Finding and recommending experts is a critical component for many important tasks.

For example, the quality of movie recommenders can be improved by biasing the under-

lying models toward the opinions of experts [98]. Making sense of mobile and social in-

formation streams such as the Facebook newsfeed and the Twitter stream can be improved

by focusing on content contributed by experts. Along these lines, companies like Google

and Yelp are actively soliciting expert reviewers to improve the coverage and reliability of

their services [99]. More generally and in contrast to search engines and question-answer

systems, experts can provide ongoing help for evolving and ill-specified needs, as well as

personalized access to knowledge and experience that only experts possess.

Indeed, there has been considerable effort toward expert finding and recommendation,

e.g., [32, 33, 18, 19, 34, 37, 38, 35]. These efforts have typically sought to identify topical

experts with broad appeal, e.g., the top Java developer in an enterprise, the best lawyer in

Texas. However, there is a research gap in our understanding of both (i) identifying per-

sonal experts, that is experts who are of significance and importance to me, but perhaps not

viewed so more broadly. For example, I may be interested in the expert opinions of nearby

∗Reprinted with permission from “Exploiting Geo-Spatial Preference for Personalized Ex-
pert Recommendation” by Haokai Lu and James Caverlee, 2015. Proceedings of the 9th
ACM international conference on Recommender Systems, 67-74, Copyright 2015 by ACM. DOI:
http://dx.doi.org/10.1145/2792838.2800189.
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local foodies, but less interested in the opinions of globally popular celebrity chefs; and

(ii) how spatial preference for personally-valuable expertise varies across topics, across re-

gions, and based on different underlying social communities. For example, technologists

in Houston, TX may be more interested in the opinions of experts in nearby Austin and in

more distant Silicon Valley, but less so in the opinions of experts from New York. Simi-

larly, the reach of experts may vary by location, so that tech experts from Silicon Valley

have a larger footprint than do experts from other regions.

Hence, in this section, we are interested to study the problem of personalized expert

recommendation by integrating the geo-spatial preferences of users and the variation of

these preferences across different regions, topics, and social communities. These geo-

spatial preferences are increasingly being revealed through the fine-grained geo-spatial

footprints of Instagram, Foursquare, and Twitter, among other mobile location sharing

platforms. Concretely, we opportunistically leverage a collection of GPS-tagged Twitter

users and their relationships in Twitter lists, a form of crowd-sourced knowledge whereby

user A may label user B with a descriptor (like “technology”). In isolation these lists allow

a user to organize a personal Twitter stream; in aggregate, the many labels applied to a

target user in many lists can provide a crowdsourced expertise profile of the target user.

Specifically, we propose and evaluate a matrix factorization-based personalized expert

recommender that leverages three key factors:

• Region-based locality, reflecting the variation in spatial preference from region to re-

gion. For example, Figure 3.1c and Figure 3.1d shows that the preference of users for

food experts varies greatly based on the location of the user (in essence, local users pre-

fer local foodies). How can these regional differences be captured and incorporated into

a personalized expert recommender?

• Topic-based locality, reflecting the variation in spatial preference across different topics.
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(a) Food experts (b) Tech experts

(c) Users for SF-based food experts (d) Users for Chicago-based food experts

(e) Users for SF-based tech experts (f) Users for Chicago-based tech experts

Figure 3.1: Spatial distribution of experts (a, b) and for the users who have listed experts
(c, d, e, f) based on geo-tagged Twitter lists.
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For example, Figure 3.1c and Figure 3.1e demonstrate that spatial preference is much

less local for the topic technology than for food. How can this topical variation be

integrated into a personalized expert recommender?

• Social-based locality, reflecting the social connections between users and experts. For

example, are users who are connected in an underlying social network more “similar”

in their preferences for experts? Are experts who are more tightly coupled in the under-

lying social network preferred by the same set of users?

Through extensive experimental validation, we find that each of these factors – region,

topic, and social-based locality – improves the quality of personalized expert recommen-

dation. And together, the proposed model achieves around 24% improvement in precision

and 21% improvement in recall versus both a collaborative filtering and a baseline matrix

factorization based recommender. Furthermore, we also find that the proposed approach

can ameliorate the cold start problem when users have few experts on their lists, leading

to more than 20% improvement over the baseline in precision and recall.

3.2 Preliminaries

In this section, we introduce the problem of personalized expert recommendation and

outline our core approach.

3.2.1 Problem Statement

We assume there exists a set of usersU = {u1, u2, ..., uN}, whereN is the total number

of users. From this set U , there are a number of recognized experts denoted as E =

{e1, e2..., eM}, where M is the total number of experts. Each user has a preference over

some of these experts, expressed as a personalized expertise list. For example, Alice may

prefer Beth to Candace in the topic of “Java programming”, but have no opinion on Doug.

We then define the problem of personalized expert recommendation as: Given a user ui,

identify the top-n personally relevant experts to ui. That is, can we further identify experts
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Eva and Frank that are of personal interest to Alice?

3.2.2 Recommendation by Matrix Factorization

We tackle personalized expert recommendation using latent factor matrix factorization

[100]. We assume there is a factor pi associated with each user ui and a factor qj associated

with each expert ej . The model defines a rating score between the list and the expert,

denoted as yij , and factors the score into a latent space through pi and qj as follows:

yij = pTi qj + bj (3.1)

Through this factorization, we can think of qj as the latent properties for expert ej , pi

as the latent preference of user ui and bj as the popularity bias for ej . However, unlike

the standard recommendation task, we do not have a rating score for each expert on the

lists. Instead, we only have the implicit feedback for a list, which assumes a user prefers

an expert who is already on the list to an expert who is not. Accordingly, the learning

objective should be based on the pair-wise ranking between experts. In recommendations

when only implicit feedback is available, the one-class collaborative filtering approach

[87, 88, 82] can be used for learning a rank order among items. Similar efforts have been

targeted at tag recommendation [89], tweet recommendation [87], and event-based groups

[90, 82]. Here, we adapt the Bayesian Personalized Ranking (BPR) criterion proposed by

Rendle et al. in [88] to our problem.

Formally, for a user ui, an expert ek and an expert eh, suppose ui puts ek on the list

while not eh, we denote this pair as euik � euih , and the likelihood for this preference under

BPR can be written as:

p(euik � euih ) = σ(yik − yih) where σ(x) =
1

1 + e−x
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Therefore, the likelihood for all users could be written as:

p(R|Θ) =
∏

e
ui
k ∈P

ui ,e
ui
h ∈N

ui ,ui∈U

p(euik � euih )

where R is the set of all preference pairs, Θ is the set of all parameters, Pui is the set of

experts included on ui’s list and N ui is the set of absent experts for ui. If Θ has a prior

density p(Θ), we can derive a bayesian version of the likelihood, where the prior is used

to prevent the overfitting of the parameters as a form of regularization. Thus, the posterior

log-likelihood to maximize is

p(R|Θ) =
∑

e
ui
k ∈P

ui ,e
ui
h ∈N

ui ,ui∈U

ln(σ(yik − yih))− regularization

which can be learned through stochastic gradient descent (SGD) by iterating each of the

preference pairs and updating the corresponding parameters.

3.3 Region, Topic, and Social-Based Locality

While promising, the baseline matrix factorization approach ignores the geo-spatial

preferences of users and the variation of these preferences across different topics, regions,

and social communities (as suggested by Figure 3.1’s intuitive support for these notions).

Hence, we turn in this section to demonstrating how these factors manifest in real-world

Twitter-based data and how each of these factors can be incorporated into a new personal-

ized expert recommendation matrix factorization framework.

3.3.1 Data and Metrics

We begin by highlighting the data used here and two statistical measures – expert

entropy and expert spread – to characterize region and topic-based locality. We then turn

to the social properties of the dataset to demonstrate social-based locality.
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Table 3.1: Geo-tagged Twitter list data.

topic # of lists # of experts # of listings sparsity(%)
news 35,539 20,295 287,321 0.04

music 17,945 7,896 160,286 0.11
sports 16,018 5,395 139,838 0.16

food 10,476 5,485 96,661 0.17
celebs 9,783 4,090 104,004 0.26

tech 13,046 10,760 125,178 0.26
general 30,000 36,217 289,528 0.03

Data. We use the geo-tagged Twitter lists collected in [18]. In total, there are about 12

million crowd-generated lists and 14 million geo-tagged listings, where a geo-tagged list-

ing indicates a direct link from a list creator to an expert where both of their geo-locations

are known. That is, each user ui ∈ U is associated with geographical coordinates coordui .

Furthermore, for each list, there exist associated labels that list creators use to indicate

the topic of that list. In the following analysis, we selected lists which include the most

frequent unigram labels indicating typical topics as follows: news, music, tech, sports,

celebs, and food. Additionally, we randomly sampled lists which include any unigram

occurring more than 200 times in list labels. We denote this randomly sampled list data

as “general”. Furthermore, we excluded experts who have only occurred in one list and

also excluded lists which includes only one expert. After filtering, we have the geo-tagged

Twitter list data statistics shown in Table 6.2. In the following sections, we refer to list

creators as users and list members as experts.

Metrics. We discretize the continental US surface with a 1◦ by 1◦ geodesic grid to map the

coordinates to discrete regions.∗ Formally, we have a total number of K grids, which we

call regions. We denote K regions as R = {ri|i = 1, 2, ..., K}, to which each coordinate

∗1◦ by 1◦ is approximately 70 miles by 50 miles at latitude 40◦. We also tested a finer mesh of 0.1◦ by 0.1◦, which gave
quantitatively similar results.
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inside the US can be mapped. Furthermore, we assume for an expert e, there are totally

ne users who put e on their lists. Among them, we let U e be the set of users for expert e,

and U e
ri

be the set of users from the region ri. Thus, the probability of expert e’s user from

the region ri can be defined as peri =
|Ue

ri
|∑

ri∈R
|Ue

ri
| . With these preliminaries, we quantity the

geographical characteristics of expertise with:

Expert entropy. The expert entropy is defined as

H(e) = −
∑
ri∈R

perilog(peri)

This measure indicates the degree of randomness in spatial distribution of the users for an

expert. It ranges from 0 when all users for the expert are only from one region, to logK

when user’s distribution is uniform across all regions. Thus, it implicitly reflects the level

of an expert’s recognizability across the entire country.

Expert spread. While entropy provides insights into the spatial distribution of users, it

lacks explicit consideration for the distance between a user and an expert. Hence, we

define another measure called expert spread as follows:

S(e) = Medianui∈Ue(d(coorde, coordui))

where d is the distance between two locations, computed with Haversine function to ac-

count for the shape of the earth as follows:

d = 2rarcsin(
√
haversin(φ2 − φ1) + cos(φ1)cos(φ2)haversin(ψ2 − ψ1))

where haversin(θ) = sin(θ/2)2 is the Haversine function, r is the redius of the earth, φ

represents the latitude and ψ the longitude. The expert spread indicates how far a typical

labeler is from an expert, thus can be considered as the localness of an expert.
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Table 3.2: Average expert entropy for different cities.

topic SF NY Houston Chicago Seattle Denver
news 2.461 2.342 2.021 1.950 1.836 1.884
music 2.514 2.386 1.946 1.996 2.105 2.162
sports 2.518 2.703 1.956 2.281 2.217 2.060
food 1.689 2.105 1.315 1.172 1.439 1.327

celebs 3.274 2.777 3.013 2.781 2.950 2.842
tech 2.323 2.400 2.262 2.249 2.098 1.917

general 1.954 1.932 1.645 1.610 1.606 1.585

3.3.2 Region-Based Locality

In Figure 3.1c and 3.1d, we observed that food experts from San Francisco and Chicago

are preferred by users nearby. How does this observation manifest according to our sta-

tistical measures? To that end, we select experts from the following cities: San Francisco

(SF), New York (NY), Chicago, Houston, Denver and Seattle. We first show the average

expert entropy for these cities with respect to different topics in Table 3.2. As can be

observed from the table: (i) Experts from different geo-locations have different levels of

recognizability across the country; and (ii) Generally, experts from SF and NY are popular

in more regions than those from other geo-locations, indicating that SF and NY have a

greater impact on expertise curation for users on Twitter.

In Figure 3.2a, we examine expert spread for these cities. We can see that generally,

experts from different geo-locations have different levels of locality, with experts from

Chicago and SF having the smallest and largest expert spread. This indicates that com-

pared to other cities, Chicago has the most local influence on expertise curation while SF

reaches the farthest. Combined with the observations from Table 3.2, we conclude that

experts from different regions may have different levels of locality, i.e., some may reach a

wider geographical scope but others may be only locally popular.
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(a) (b)

Figure 3.2: CDF of expert spread (a) for different cities and (b) for different topics.

Integrating region-based locality. Since the observed region-based locality reflects col-

lective opinion, how can we integrate it into personalized expert recommendation? That is,

if we know the geo-location of a user, can we recommend experts who are popular around

the user’s geo-location? As can be observed in Figure 3.1, an expert’s popularity is not

necessarily linear in the distance between user and expert; rather, it is often in the form of

“clusters”, i.e., experts may be popular in one region but not in other regions. Thus, we

introduce the concept of “regional popularity”, where we parameterize the popularity of

each expert by regions, with the regional popularity to be learned from training.

Concretely, we assume the geographical space is partitioned into K regions. For an

expert ej and a region ri, we assume there is a popularity parameter sij associated with ri

and ej . This parameter is used to capture the degree of popularity that expert ej receives

in region ri. Thus, if we have a total of M experts, the popularity parameters constitute

the matrix S of dimension K by M , which represents regional popularity for all experts.

Each column s.j represents the popularity ej receives in all regions. Then, given a user ui,

the popularity ej receives at the region where ui is from is denoted as sc(ui)j , where c(x) is
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Table 3.3: Average expert entropy and expert spread (miles) when CDF = 0.5 for differ-
ent topics.

topic food news tech sports music celebs
entropy 1.661 2.048 2.235 2.247 2.267 2.868
spread 290 630 950 580 830 1060

a function mapping a user to its region. We use scij instead of sc(ui)j for convenience. By

integrating the matrix S to the original matrix factorization, we have:

yij = pTi qj + scij (3.2)

We denote Equation 3.2 as the Geo-Enhanced factorization (GEF). Note that GEF is re-

duced to Equation 3.1 when K = 1. The GEF approach has the advantage over the

baseline matrix factorization of explicitly capturing and learning expert regional popular-

ity.

3.3.3 Topic-Based Locality

In the previous analysis of expertise, we observed that expert entropy can be impacted

by geo-locations (see Table 3.2). Additionally, this table also implies that expert entropy

can be impacted by the choice of topic. To further observe the geo-spatial distribution

of expertise for different topics, we list the average expert entropy for the six sample

topics in Table 3.3. As we can see, celebs has the largest entropy, which indicates that

users interested in celebrity are most widely spread across the country; while food has

the smallest entropy, indicating that users interested in food experts are most concentrated

in certain regions. This is intuitively reasonable since a celebrity is very likely to have

a better chance of being known in the whole country than a food expert from a certain

location.
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In Figure 3.2b, we show the cumulative density function against expert spread for dif-

ferent topics. We can see that, for a fixed spread value, the topic food gives the largest

cumulative probability, indicating that users interested in food are closest to the experts;

while users interested in celebrity are farthest. We also show the expert spread when the

CDF is 0.5 in Table 3.3. We can see that the topics with increasing expert spread are or-

dered as: food < sports < news < music < tech < celebs, with food having the smallest ex-

pert spread of 290 miles, and celebs having the largest expert spread of 1060 miles, which

is almost half the distance from the west coast to east coast of the US. Combined with the

previous observation on expert entropy, we can conclude that the topic food is the most

local among all, with users mostly concentrated in local regions of experts, while the topic

celebs is the least local, with users scattered across the country. In another word, users

interested in food tend to select food expert nearby, while users interested in celebrity do

not have such geographical constraints, and users interested in other topics fall in between.

Overall, we can conclude that expert’s regional popularity can vary by topic; in other

words, users may have different regional preference for experts because of their topic

interests.

Integrating topic-based locality. Now that we have observed that topic locality can in-

fluence user’s preference for experts, it is important that user’s interests should be aligned

with the interests of the experts to be recommended. Since each Twitter list is labeled

with certain keywords, we can aggregate all of the labels for an expert in all lists he ap-

pears. As a result, an expert ej has a description dej consisting of the aggregated labels.

We then introduce a user latent topic factor tui , representing ui’s topical preference, and

expert topic factor t̄ej , representing the topical property of ej . Thus, the inner product

tTui t̄ej indicates an affinity score of user ui and expert ej with respect to topic. Here, t̄ej

is treated as known through dej , and tui is treated as unknown to be learned. The reason

to model in this way is that labels for lists often have only one term, e.g., lists with one
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term label “food” occupy about 60% percent of total lists with any “food” in its labels.

But often, a list is very focused on finer aspects of a topic. For example, a list labeled with

“food” may include many “wine” experts, implying that we should also consider expert

candidates labeled with “wine”. By making tui unknown, we are forcing the model to

learn topic aspects of a user from those of experts she selected. For convenience, we use

ti instead of tui and t̄j instead of t̄ej afterwards. Thus, our Topic-Enhanced factorization

(TEF) can be written as:

yij = pTi qj + tTi t̄j (3.3)

Here, we treat each label as a dimension of t̄j . Through the explicit handling of each user’s

topic aspects, it is expected that user’s interests are aligned with the interests of the experts

to be recommended.

Fusion of region and topic-based locality. Naturally, we can integrate both region and

topic-based locality into the model. We adopt a linear model for the integration of Equa-

tion 3.2 and Equation 3.3, resulting in our Geo-Topic Enhanced factorization (GTEF):

yij = pTi qj + scij + tTi t̄j (3.4)

The intuition is when we know the region of a user and her topic aspects (by looking

at the labels of her selected experts), we can recommend an expert both topically and

geographically relevant.

3.3.4 Social-Based Locality

In addition to the modeling of region and topic based locality, we are also interested

to explore if social connections among users and experts can improve expert recommen-

dation. Our intuition is that (i) people who are connected by social ties have a higher

probability to have similar interests; (ii) people who are socially related may have a higher
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(a) (b)

Figure 3.3: (a): CDF for similarity between experts; (b) CDF for the probability of an
expert on a list.

probability to select who they follow as experts.

As evidence of social-based locality, in Figure 3.3a, we compare the similarity of ex-

perts for two cases: (i) when one expert follows the other; (ii) when no tie exists between

two experts. Here, similarity of experts is defined as the cosine similarity computed by

viewing each expert as a vector of all users, with each element being a value indicating

whether the expert is listed by the user or not. Thus, a large similarity of two experts in-

dicates that they often occur on the same list. We can observe that experts who follow the

other generally have a larger similarity. We also compare the probability of an expert se-

lected on a list in Figure 3.3b for two cases: (i) when experts are followed by the user; and

(ii) when experts are not followed by the user. We can see that the chance for an expert to

be listed by a user is boosted significantly when that expert is already followed by the user.

Based on these observations, we individually model three kinds of social relationships:

User-user relationship. In this case, the following relationship is from a list creator to

another list creator. When one user follows another, we assume that their preference is

more similar to each other than those who do not. In terms of modeling, we adopt the
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approach of regulating their latent factors as in [101]. Formally, suppose there are user ui

and uj , assume Fui is the set of users ui follows, the social regularization incurred by user

user relationship can be written as:

N∑
i=1

∑
f∈Fu

i

w(ui, uf )||pi − pf ||2

where w(ui, uf ) represents the similarity between ui and uf . Thus, if ui and uf is more

similar, the latent preference factor pi and pf is also closer. Here, we use cosine similarity

of users as the weighting scheme. The cosine similarity of users is computed by viewing

each user as a vector of all experts, with each element taking a value — 1 if the expert is

on the list, 0 if not.

Expert-expert relationship. In this case, the following relationship is from an expert to

another expert. Using a similar approach as in the previous case, we regulate their latent

factors so that experts following the other have similar latent factors. Formally, assume

F ei is the set of experts ei follows, the social regularization incurred by expert expert

relationship can be written as:

M∑
j=1

∑
f∈Fe

j

w(ej, ef )||qj − qf ||2

where w(ej, ef ) represents the similarity between ej and ef . Here, we also use cosine

similarity of experts as the weighting scheme.

User-expert relationship. In this case, the following relationship is from a user to an

expert. Unlike the previous two kinds of social ties, this relationship links two different

entities, and so the regularization approach is ill-suited here. Instead, we explicitly model
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these relationships with a bias term added to Equation 3.4 as follows:

yij = pTi qj + scij + tTi t̄j + θibij (3.5)

where bij takes a boolean value 1 if ui follows ej , and 0 if not. θi is a weighting parameter

to be learned. Thus, by adding a personalized bias term for each user, the model can take

advantage of the following ties between user and expert.

3.3.5 Model Training

Combining the social regularization and Equation 3.5, the final objective function to

maximize can be written as:

∑
e
ui
k ∈P

ui ,e
ui
h ∈N

ui ,ui∈U

ln(
1

1 + e−(yik−yih)
)

− β1

2

N∑
i=1

∑
f∈Fu

i

w(ui, uf )||pi − pf ||2

− β2

2

M∑
j=1

∑
f∈Fe

j

w(ej, ef )||qj − qf ||2 − regularization

where L2-norm regularization is adopted, with β1 and β2 as the corresponding regu-

larization parameters. In summary, the parameter set Θ to be learned through SGD is

{pi, qj, ti, θi, s.j}. For each iteration of SGD, we need to sample a user ui, and from ui’s

list, an expert ek. Due to the large size of absent experts for each user, we also need to

sample the set N ui . Here, we adopt the strategy of random sampling. Then, for each

sampled triplet < li, ek, eh >, we update each parameter value by taking a step along its

gradient ascending:

Θt+1 = Θt + ε
∂Likh
∂Θ
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where Likh is the posterior log-likelihood for the triplet < li, ek, eh >, and ε is the step

size.

Update of S. For expert ek and eh, the corresponding parameters to update are s.k and s.h.

If the region of ui is ci, then the parameter s.k and s.h can be updated with

∂Likh
∂sjk

= −I(j = ci)ê+ βscik,

∂Likh
∂sjh

= I(j = ci)ê+ βscih

where ê = e−(yik−yih)

1+e−(yik−yih) , I(j = ci) is a Kronecker delta function that gives value 1 if and

only if j = ci, for j = 1, ..., K, and β is a regularization parameter.

Update of ti and θi. Similarly, we have the gradient for ti and θi as follows:

∂Likh
∂ti

= −ê(t̄k − t̄h) + βti,

∂Likh
∂θi

= −ê(bik − bih) + βθi

Update of pi, qk and qh. Since p and q are socially regularized, we have the following

socially regularized gradients:

∂Likh
∂pi

= −ê(pk − ph) + βpi + β1

∑
f∈Fu

i

w(ui, uf )(pi − pf )

∂Likh
∂qk

= −êpi + βqk + β2

∑
f∈Fe

i

w(ek, ef )(qk − qf )

The gradient for qh can be obtained similarly as qk.

3.4 Experimental Evaluation

In this section, we report on experiments to evaluate the proposed Geo-Topic Enhanced

Factorization with Social ties (GTEF-S) for personalized expert recommendation. Specif-
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ically, we seek answers to the following questions:

• How well does the proposed method perform compared to alternative baselines? Does

region, topic and social-based locality give improvement individually, and if they do, do

they complement each other?

• How well does it perform in cold-start situation, i.e., for users who have very few experts

on their lists?

• Does the number of regions affect performance? If so, how?

3.4.1 Data Preparation and Experimental Setup

For evaluation, we randomly partition experts for a user into 50% for training and 50%

for testing. To determine the number of negative experts for each user, we experimented

with {50, 100, 150, 200, 250} and selected 150 for a tradeoff between accuracy and com-

putational efficiency. For latent factor dimension, we empirically select 20 for all methods.

For regularization parameters β, β1 and β2, we use cross-validation for tuning and select

0.02, 0.01 and 0.015, respectively. For gradient step, we initialize it with the step size

0.025, and decrease it to its 98% after each pass throughout all triples. This strategy is

shown to be effective in reducing the number of iterations for the method to converge [69].

In the modeling of region locality, it is assumed that the continental US has been parti-

tioned into K regions. Instead of using a gridding approach, we resort to k-means cluster-

ing to obtain the partitions by clustering the geo-locations of the entire set of users U . We

choose a clustering approach based on Euclidean distance because the geo-spatial distribu-

tion of users exhibits a clustering effect, as shown in Figure 3.1, and can be satisfactorily

captured by k-means clustering. In section 3.4.5, we evaluate the effect of the number of

regions K. For other experiments, we select K to be 80.

For evaluation metrics, we adopt Precision@k (Prec@k) and Recall@k (Rec@k).

Prec@k represents the percentage of correctly recommended experts out of the top k rec-
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ommendations, while Rec@k represents what percentage of experts can emerge in the top

k recommendations. Formally, if we define Test(u) as the set of experts selected by user

u and Reco(u) as the set of top k recommended experts, we have

Prec@k =
1

N

N∑
i=1

|Test(ui) ∩Reco(ui)|
k

Rec@k =
1

N

N∑
i=1

|Test(ui) ∩Reco(ui)|
|Test(ui)|

In our experiments, we evaluate k at 5, 10 and 15.

3.4.2 Baselines

We consider the following baselines:

• Expert Popularity (EP). In this baseline, we recommend experts for each user by ranking

experts according to the number times each expert is listed by users.

• User-based Collaborative Filtering (UCF). Collaborative filtering method can be used to

discover user’s implicit preference by aggregating similar users. Formally, let aij take

a boolean value, where aij = 1 represents expert ej is selected by ui, while aij = 0

means the opposite. Thus, according to UCF, the prediction score c̄ij of ui selecting

ej can be obtained by c̄ij =
∑

k wik·ckj∑
k wik

, where wik is computed with cosine similarity.

We then rank the candidate experts according to c̄ij and select the top k experts for

recommendation. We select the number of neighbors for each user to be 100.

• MF. This is the basic pair-wise latent factor model shown in Equation 3.1 trained by

BPR.

• GEF. This model only considers region-based locality manifested through users’ geo-

graphical footprints, shown in Equation 3.2.

• TEF. This model only considers topic-based locality manifested through experts’ labels,
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shown in Equation 3.3.

• GTEF. This model is the fusion of GEF and TEF, considering both region and topic-

based locality as shown in Equation 3.4.

• Social MF. This model considers three different kinds of social ties. If the model only

considers user user relationship, it is denoted as MF-S1; if the model only considers

expert expert relationship, it is denoted as MF-S2; and if the model only considers user

expert relationship, it is denoted as MF-S3. We denote the model as MF-S if it considers

all three kinds of social ties.

3.4.3 Comparison with Baselines

How well does the proposed method compare to alternative approaches? To answer

this question, we first show the performance comparison in Figure 3.4, where we report

Prec@k and Rec@k for all topics. As we can see, overall, the proposed GTEF-S generally

gives the best performance for different k. Specifically, it gives an average improvement of

24.6% over the best of EP, UCF and MF for precision, and 21.3% for recall. GTEF-S gen-

erally performs better than either GTEF or MF-S, indicating the superiority of enhanced

pair-wise matrix factorization by considering region, topic and social-based locality, and

that these three factors are able to complement each other.

Comparison for MF, GEF, TEF and GTEF. By comparing these methods, we can ex-

amine if the explicit modeling of region and topic-based locality can provide any improve-

ment. In Figure 3.4, we can see that GEF, TEF and GTEF perform consistently better than

MF. Specifically, GEF gives an average improvement of 3.73% for precision and 3.43%

for recall over MF for all datasets. This indicates that the introduction of the regional pop-

ularity matrix S for modeling expert’s regional popularity can help distinguish regionally

popular experts if we know the geo-location of the user.

Furthermore, we can see that TEF also performs consistently better than MF, specifi-
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Figure 3.4: Evaluating personalized expert recommendation: Precision and Recall at 5,
10, and 15 for six different topics across 11 approaches.
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Figure 3.4 Continued.
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cally, giving an average improvement of 3.91% for precision and 3.16% for recall. This

indicates that modeling user topic factor through the labels of experts can help find experts

with similar topic aspect.

Finally, we can see that GTEF gives the best performance among all (an average im-

provement of 7.35% for precision and 6.28% for recall over MF). These improvements

are very close to the additive improvements of both GEF and TEF, thus indicating ge-

ographical influence is complementary to topic influence in modeling expert’s regional

popularity, and that they should be considered together for recommendation. Note that for

topic celebs, the improvement of GEF (1.44% for precision) is not as good as those for

other topics. This is probably because celebrities are heavily concentrated in the region

of Los Angeles, and since its expert entropy is very high, it would not be very useful to

model expert regional popularity. Also, TEF performs slightly worse than MF. Upon fur-

ther examining the labels for experts and user’s topic preference factors, we found that the

labeling information for experts is scarce and most experts are only labeled with “celebs”,

without finer topic aspects.

Comparison for MF-S1, MF-S2, MF-S3 and MF-S. By comparing these methods, we

can examine if the modeling of social-based locality can help recommend experts. Specifi-

cally, we have explored three kinds of relations: user following user (S1), expert following

expert (S2) and user following expert (S3). From Figure 3.4, we can see that MF-S1 gives

only slightly better performance than MF (0.43% for precision and 0.35% for recall), indi-

cating that social ties between users barely provide additional information for recommend-

ing experts. For MF-S2, we see that it provides descent improvement over MF (5.02% for

precision and 4.92% for recall), confirming that if an expert is similar to another expert,

i.e., if they often co-occur on other lists, it is likely that the other expert can be recom-

mended to this user. For MF-S3, it is shown to be rather effective. On average, it gives an

improvement of 16.6% for precision and 14.4% for recall over MF, which confirms that if
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a user is already following this expert, it is very likely that this user will include this expert

on the list. MF-S, modeling the previous three social relationships together, gives the best

improvement of all (21.4% for precision and 18.8% for recall), indicating three kinds of

social ties complement each other.

3.4.4 Recommendation for Cold-Start Lists

Previously, we found that the introduction of geographical, topical and social influ-

ence in pair-wise MF can improve expert recommendation. In this section, we examine

how the proposed methods perform in the cold-start situation. When there is only limited

number of experts on a list, there is little positive feedback for training, making it hard to

obtain accurate latent factors of users’ preferences. In consideration of this, we perform

experiments to investigate the recommendation performance of the proposed methods for

lists with few experts. Specifically, we select only lists which have fewer than 3 experts

on the list to examine the performance. In Figure 3.5, we report the prec@5 and rec@5

for the method MF, GTEF, MF-S and GTEF-S. As we can see, GTEF, MF-S and GTEF-S

consistently give better performance than MF for all topics, with GTEF-S showing the

best improvement on average (23.7% for precision and 22.3% for recall). This indicates

that the knowledge of user’s region, topic preference and social relations can help relieve

the cold-start problem. Also, MF-S gives better performance than GTEF, indicating that

social relation is a stronger signal than user’s geo-topic preference. Additionally, note

that GTEF-S brings the best improvement over MF-S for news and food. This implies

that modeling region and topic-based locality works best when users demonstrate strong

regional preference (see Table 3.3).

3.4.5 Effect of Number of Regions

In this section, we study the effect of the number of regionsK chosen to cluster the ge-

ographical coordinates of users. To that end, we select the number of regions from the set
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Figure 3.5: Comparing recommenders for cold start lists.

{10, 20, 40, 60, 80, 100}, and run GTEF with each number for ten random initializations

for topic food and tech (we ignore plots for other topics since they show similar trends).

In Figure 3.6, we show how prec@5 changes with K. We can see that as the number of

regions increases, the precision also generally increases, although the value ofK varies for

two topics when the performance reaches saturation. Specifically, for tech, the precision

reaches almost the best at a smaller K, while for food, the precision gradually increases

and reaches the best at a larger K. This can be explained by the observation from the pre-

vious analysis about topic locality. Specifically, topics such as food and news are relatively

more local, i.e., experts of these topics are listed by local people more often. Also, experts

of these topics are usually concentrated in many regions across the country, as shown in

Figure 3.1a. As a result, a finer clustering of regions would separate two close regions.

For example, it would separate the region of NY and Washington D.C. in Figure 3.1a, so

that a user interested in food in NY can be recommended with popular food experts from

NY instead of popular food experts from Washington D.C. On the other hand, topics such

as tech and celebs are less local, and considering most of these experts are concentrated in

fewer regions, it is not necessary to use a finer clustering.
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Figure 3.6: Effect of number of regions.

3.5 Conclusion

In this section, we tackled the problem of personalized expert recommendation in GPS-

enabled social media. Specifically, we investigated the geo-spatial preferences of users

and the variation of these preferences across different regions, topics and social commu-

nities. We proposed a matrix factorization-based personalized expert recommender that

leverages region, topic and social-based locality. Through experimental evaluation over

a Twitter list dataset, we found that the proposed approach achieves more than 20% in

precision and recall and can ameliorate the cold start problem compared to several base-

lines. This confirmed users’ geo-spatial preference of expertise and their underlying social

communities have great potential for personalized expert recommendation.

41



4. USER PROFILING: DISCOVERING USER’S KNOWN-FOR PROFILE∗

From this section, we will begin to explore and investigate several dimensions of user’s

profile including user’s known-for profile (Section 4), user’s opinion bias (Section 5) and

user’s geo-topic profile (Section 6), and propose models and algorithms to uncover these

different aspects of profiles for users. In this section, we start by discovering long-tail

user’s known-for profile which reflects one’s expertise viewed by others.

4.1 Introduction

Discovering what people are known for is valuable to many important applications,

including recommender systems and question-answering sites. For example, item-based

recommenders can be augmented to customize recommendations based on what knowl-

edgeable users prefer, rather than relying on all users [98]. While an individual’s personal

interests are often reflected in the media she consumes and generates, what a user is known

for is reflected by the views of others and is often not easily discerned. A few high-profile

people are easily recognized – for example, a researcher may be interested in basketball,

biking, and recommender systems, though mainly known for recommender systems. But

there is a long-tail of the vast majority of users for whom we have only limited insight into

what they are known for.

And yet accurate identification of a user’s known-for profile is challenging. First, the

content that a user chooses to post on social media is often noisy and ambiguous. What

users are truly known for can be buried among posts about daily routines and personal

interests. Second, many users post only infrequently, meaning extreme sparsity for the

∗Reprinted with permission from “Discovering What You’re Known for: A Contextual Poisson Fac-
torization Approach” by Haokai Lu, James Caverlee and Wei Niu, 2016. Proceedings of the 10th
ACM international conference on Recommender Systems, 253-260, Copyright 2016 by ACM. DOI:
http://dx.doi.org/10.1145/2959100.2959146.
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vast majority of all users. Third, while a natural step to overcoming this sparsity is the

integration of additional contextual factors (e.g., social links between users), it is not clear

how different contextual factors correlate with users’ known-for profiles and how we can

model these contextual influence and integrate them together.

Hence, in this section, we tackle the problem of discovering what users are known for

through a probabilistic factorization model called Bayesian Contextual Poisson Factoriza-

tion (BCPF). Three of the key features of the proposed BCPF model are: (i) It is jointly

learned on a small fraction of users whose known-for profiles are already known and the

vast majority of users for whom we have little (or no) information. (ii) Moving beyond

just modeling the content a user generates, it naturally models and integrates additional

contextual factors that provide implicit linkages between users for improved known-for

profile estimation. Concretely, we investigate the impact of geo-spatial footprints and so-

cial influence as additional contextual signals. (iii) It inherits the strengths of Bayesian

Poisson factorization (BPF), a variant of probabilistic matrix factorization recently pro-

posed in [102, 58], which demonstrates scalable inference for sparse data and outperforms

traditional matrix factorization [102].

In summary, this section makes the following contributions:

• First, we define the problem of discovering user’s known-for profile in social media,

and propose a probabilistic method called Bayesian Contextual Poisson Factorization.

This model can capture the implicit relationships between user’s known-for profile and

her content, geo-spatial and social influence. We then develop an efficient approximate

variational inference to learn the latent parameters of BCPF.

• Second, we evaluate the proposed method over two Twitter datasets and against several

alternative baselines. Overall, we see a significant improvement of 17.5% in precision

and 20.9% in recall on average over the next-best method.
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• Finally, we study the inferred geo-spatial and social influence latent factors, and observe

that the geo-spatial factors are able to capture the underlying distributions of user’s

known-for profile at different locations. We also show that friends have different social

influence on users with respect to different topics, and that our model is able to learn

this fine-grained social influence.

4.2 Preliminaries

Problem Formulation. We assume there exist a set of users U in a social network, and

a set of tags T used to describe what users are known for with respect to different topics

or aspects. The known-for profile pu of a user u ∈ U is defined to be a subset of tags

from T which can best describe what this user is known-for by others, instead of what

u is personally interested-in. To give an example: suppose Alice is known by others

as a chef and frequently posts many food recipes, but she also posts news and personal

related stories now and then as her personal interest. We associate Alice with tags “chef”

and “recipe” instead of “news” to best describe her perceived image by others, and treat

“chef” and “recipe” as the known-for profile for Alice.

With the above definition, we can define the task of discovering user’s known-for pro-

file in social media as follows:

User Known-For Profile Discovery. Given the users U old whose known-for profiles are

already known (labeled users), identify the known-for profiles for the rest of the users

Unew (unlabeled users) based on U old. Equivalently, the task is the same as identifying the

top-n tags from T for unlabeled users as their known-for profiles.

However, discovering user’s known-for profile is a classic cold-start problem. Since

unlabeled users do not have any identified tags in their profile, collaborative filtering tech-

niques fail to infer the profiles of unlabeled users since the corresponding rows of the user-

profile matrix are all zeros for unlabeled users. Thus, to overcome the cold-start situation,
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we propose to leverage a user’s contextual information to extract implicit relationships

between their profile and the context for the task as described in the following.

4.3 Known-For Profile Discovery

As a first pass, we can attack the problem of known-for profile discovery with Bayesian

Poisson factorization (BPF), a variant of probabilistic matrix factorization recently pro-

posed in [102, 58] to model implicit feedback for recommendation. Due to the assumption

of Poisson distribution instead of traditional Gaussian distribution in modeling the discrete

data, BPF can capture the long-tailed distribution of user behavior, enjoy scalable infer-

ence for sparse data and outperform traditional matrix factorization [102]. In our setting,

since a user’s known-for profile is inherently of discrete nature, i.e., either a tag exists in

the profile or not, it is a natural choice to adopt a Poisson distribution instead of a Gaussian

distribution to model user’s contextual influence.

Specifically, given the binary occurrence rut of tag t in the known-for profile for user

u, BPF assumes that rut is generated according to:

rut ∼ Poisson(θTu θt) (4.1)

where θu ∈ RK is the latent factor of u representing what u is known for in a latent space,

and θt ∈ RK is the latent attribute of t. Each component of these latent parameters is

drawn according to a Gamma distribution as follows:

θ·k ∼ Gamma(λa, λb) (4.2)

where λa and λb are the shape and rate parameter of the Gamma distribution, respectively.

Given a binary matrix of known-for profiles, BPF can find each user’s latent factors over

the tag’s latent attributes. These inferred latent factors can be further used to identify other
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related tags which may fit the user’s known-for profile.

4.3.1 Bayesian Contextual Poisson Factorization

While BPF is able to reveal the latent factors for users whose known-for profiles are

already known or partially known, it will fail to infer the known-for profiles of unlabeled

users, since these users are “zero rows” in the user-tag matrix. Hence, a natural approach

to extend BPF to these missing users is through the integration of additional contextual

information that may provide implicit linkages between users.

We refer to this extended framework as Bayesian Contextual Poisson Factorization

since it inherits the strengths of BPF and is extended to integrate valuable contextual in-

formation. Intuitively, BCPF is designed to learn the influence of each contextual feature

individually and combine them together for overall representation. Under the assumption

of Poisson factorization, since the sum of Poisson random variables is still a Poisson dis-

tribution, we can linearly add different contextual influence together without changing the

underlying probabilistic assumption.

In the rest of this section, we present how several important contextual factors can be

modeled under BCPF – user content, geo-spatial impact, and social influence – and how

these factors can be integrated into BCPF. Note that the proposed model is generalizable

and other contextual factors could be incorporated as well. Concretely, we model users in

a heterogeneous graph G = (V,E), consisting of four types of nodes V = (U,C, L, P ).

Each user u has a sample of the textual content that she posts online, denoted as cu ∈ C,

and a pair of geographical coordinates (llatu , llngu ) ∈ L indicating the approximate location

of this user’s posting activities. The known-for profile of a labeled user from U old is

denoted as pu ∈ P . All of the above relations are directly relevant to users themselves, and

can be regarded as user attributes. Furthermore, users may also have social relations with

each other. Together, user attributes and social relations constitute all edges V between
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different entities.

Content factor. The first baseline factor is a user’s content – that is, we assume that a

user’s known-for profile can be reflected by the usage of words in posts. Let Rc be a

sparse matrix describing the usage of words from all users, where each element ruw is the

count of word w adopted by user u. We then choose to model every count ruw using a

Poisson distribution, with the intensity parameter factorizing over u’s latent factor θu and

w’s latent factor θw as follows:

ruw ∼ Poisson(θTu θw) (4.3)

where θu and θw are both K-dimensional non-negative vectors with Gamma priors speci-

fied in Equation 4.2.

Factorizing over the word matrix Rc gives us an unsupervised version of users’ latent

preference over words. However, for labeled users U old, θu should also reflect their known-

for profiles. For instance, if both users are labeled with “sports”, it is likely that they may

share some common words in their sports-related posts. Thus, to capture this intuition,

θu should also be constrained by users’ known-for profiles. Let Rp be a binary matrix

describing known-for profiles for all users, where each element rut represents if user u is

labeled with tag t. Similarly, we model each binary rut with a Poisson distribution, with

its intensity parameter factorizing over θu and t’s latent factor θt as follows:

rut ∼ Poisson(θTu θt) (4.4)

where θt is a K dimensional non-negative vector parametrized with Gamma priors. By

sharing user’s latent factor for both factorization 4.3 and 4.4, the model can not only reflect

user’s latent preference over common use of words, but also ensure that users with similar
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profiles have similar θu. Note however that a user’s posts may be intertwined with other

non-revealing texts, and thus can be noisy. To enhance the representation for unlabeled

users, we also incorporate each user’s geo-spatial footprints and social connections to

further refine the model.

Geo-spatial factor. To demonstrate how geo-spatial location may reflect what a user is

known for, we first show heat maps of users in US who are known for “entrepreneur”

and “politics” in Figure 4.1 based on a sample of crowd-generated Twitter lists (described

more fully in Section 4.4). As we can observe, for both topics, these well-known users

are mostly distributed in a few areas, with a majority focused in San Francisco for “en-

trepreneur” and in Washington D.C. for “politics”. This suggests that (i) for a specific tag,

users do not distribute evenly across the entire geo-scope and may concentrate in a few

areas; (ii) geo-spatial distributions of well-known users may vary by different topics.

Given the above observations, how can we use geo-spatial coordinates to enhance the

representation of users? We notice from Figure 4.1 that users known for certain topical

tags often appear in clusters, i.e., they concentrate in several discrete regions. In light of

this, we introduce a region-dependent variable to represent a region’s affinity over tags.

Concretely, we assume that the geographical space is partitioned into I regions. Each

user can then be assigned into the region where she belongs, which gives a matrix Rul.

Each region corresponds to a K-dimensional location latent factor, denoted θl, indicat-

ing the region’s affinity over tags. If we consider that each rut in the matrix Rp is only

dependent on user’s location, then rut can be generated through the following Poisson

distribution:

rut ∼ Poisson(θTluθt) (4.5)

where lu represents the region where user u belongs, and the intensity parameter is deter-

mined by the inner product of the corresponding location and tag latent factor. Similarly,
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(a) entrepreneur

(b) politics

Figure 4.1: Geo-spatial distribution of users who are known for “entrepreneur” and “poli-
tics”.
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Figure 4.2: Proportion of followers who have the same tag in their known-for profile as
the users. user1: red; user2: blue.

each component of θl has a conjugate Gamma prior as specified in Equation 4.2. Thus,

through the explicit handling of tag’s dependence over locations, it is expected that θl

could indicate which tags are mostly dominant for the corresponding region.

Social influence factor. Homophily in social networks [103] suggests that people tend

to connect with others who are similar to themselves. Indeed, there already exists some

works [60, 61] exploiting social relations for item recommendations. Here, we would

like to explore how social relations may benefit user known-for profile discovery. An

immediate problem is that user’s social relations are often noisy, i.e., if a friend of a user

is known for a tag, it does not necessarily mean that the user is also known for the tag.

In Figure 4.2, we randomly select two Twitter users who are known for eight tags, and

examine the proportion of followers who have the same tag in their known-for profiles.

We can see that even though user1 is known for “ad”, very few followers of the user are

also known for “ad”. On the contrary, a significant portion of followers of user2 are known

for “ad”. This indicates that users may have different degree of social influence.

Thus, to capture this observation, we introduce a social influence parameter θf for each
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friend f of all users, indicating the degree of social influence of this friend on any user who

follows her. Thus, if we have a total of M friends, the influence parameters constitute a

vector of Θf with dimension M . Then, given user u’s friendsNu, if we consider that each

rut in the matrix Rp is only dependent on user’s friends’ known-for profiles, then rut could

be generated through the following Poisson distribution:

rut ∼ Poisson(
∑
f∈Nu

θfrft) (4.6)

where rft is the element in the matrix Rft indicating if friend f has the tag t. The intensity

parameter is obtained by aggregating all of the friends’ latent influence for the user.

However, since each friend may be labeled with multiple tags, it is very likely that this

friend has different levels of influence for different tags, as shown in Figure 4.2. In the

figure, many people following user2 have the tag “pr marketing” and “ad”. Thus, although

user2 is also known for “entertainment”, it is obvious that this user is more influential on

“pr marketing” and “ad”. As a result, if a new user starts to follow her, it is very likely that

this user follows her because she is also known for “pr marketing” or “ad”.

Hence, to capture this intuition, we assume that for each friend f of all users’ friends,

there is a latent factor θft for each tag t. This parameter is used to capture the degree of

influence that f has over t. Thus, if we have a total of N tags, the influence parameters

constitute a M by N matrix Θft. Thus, given user u’s friends Nu, similarly as above, rut

can be generated through the following:

rut ∼ Poisson(
∑
f∈Nu

θftrft) (4.7)

where the intensity parameter is obtained by aggregating all of the friends’ latent influence

for this user and the corresponding tag. Consequently, Equation 4.7 is able to model the
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above scenario where the new user is more likely to have the tag “pr marketing” or “ad”

instead of “entertainment” if she follows user2. Similarly, each nonzero component of Θft

is put on Gamma priors for inference.

Integrating contextual factors. So far, we can generate independent known-for profiles

through user’s content, geographical coordinates and social relations. However, it is nat-

ural to combine all types of contextual influence to form a better representation for users.

Since the sum of Poisson distributions is still a Poisson distribution, we can combine the

generative process specified by Equation 4.4, 4.5 and 4.7 together to obtain the overall

intensity parameter of the sum Poisson distribution as:

λut = αθTu θt + βθTluθt + γ
∑
f∈Nu

θftrft (4.8)

where α, β and γ are the tradeoff weights for content, geo-spatial and social contributions,

respectively. The entire generative process of BCPF is described in Algorithm 1.

4.3.2 Prediction

We have specified a Bayesian probabilistic model over the latent parameters Θu, Θw,

Θl, Θft and Θt, and the observed discrete data matrix Rp, Rc, Rul and Rft. To predict

the known-for profiles for new users, we need to estimate the posterior distributions of the

latent parameters p(Θu,Θw,Θl,Θft,Θt|Rp,Rc,Rul,Rft) given the observed data. Once

we have the posterior distributions of the latent factors, we can predict the known-for

profiles for new users with the expectation of the sum of weighted Poisson distributions.

This leads to computing the expectation of the intensity parameter λut, which gives:

E(rut) = αE(θu)
TE(θt) + βE(θlu)TE(θt) + γ

∑
f∈Nu

E(θft)rft
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Algorithm 1: Generative Process for BCPF
Input: hyper-parameter λwa , λwb , λua , λub , λla, λ

l
b, λ

t
a, λ

t
b, λ

ft
a , λftb

for each word w do
for k = 1 to K do

Draw θwk ∼ Gamma(λwa ,λwb )
end for

end for
for each user u do

for k = 1 to K do
Draw θuk ∼ Gamma(λua ,λub )

end for
end for
for each user u do

for each word w do
Draw ruw ∼ Poisson(θTu θw)

end for
end for
for each location l do

for k = 1 to K do
Draw θlk ∼ Gamma(λla,λ

l
b)

end for
end for
for each friend f do

for each tag t of f do
Draw θft ∼ Gamma(λfta ,λftb )

end for
end for
for each tag t do

for k = 1 to K do
Draw θtk ∼ Gamma(λta,λ

t
b)

end for
end for
for each user u do

for each tag t of u do
Draw rut ∼ Poisson(λut), where λut is determined
by Equation 4.8.

end for
end for
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where all expectations are with respect to the posterior distributions. By making use of a

new user’s contextual information, we can predict the ranking of the tags for this user by

their expected occurrence.

4.3.3 Learning with Variational Inference

Since it is not tractable to compute the exact posterior of the latent factors Θ, we pro-

pose to use variational methods [104] for approximate inference. Variational inference

casts the approximation process as an optimization problem. By defining a freely param-

eterized family of distributions over latent variables, variational methods seek to fit its

parameters so as to minimize the KL-divergence between the defined distribution and the

posterior distribution. In our case, variational inference solves the following minimization

problem:

q∗(Θ) = argminqKL(q(Θ)||p(Θ|Rp,Rc,Rul,Rft)) (4.9)

where q∗(Θ) is the optimized variational distribution that is used as the proxy for the

exact posterior. To facilitate the inference, we first introduce several auxiliary latent vari-

ables [102] for Equation 4.3 and 4.8. Specifically, let’s assume zuwk ∼ Poisson(θukθwk),

where
∑

k zuwk = ruw, and zcutk ∼ Poisson(αθukθwk), zlutk ∼ Poisson(βθlukθtk), zutf ∼

Poisson(γθftrft), where
∑

k z
c
utk +

∑
k z

l
utk +

∑
f∈Nu

zutf = rut. Since the sum of a set

of Poisson random variables is still a Poisson distribution, these auxiliary variables can

still preserve the marginal distribution of ruw and rut when marginalized out. Thus, our

latent variables include latent parameters Θ and auxiliary latent variables Zuw, Zut.

Before solving Equation 4.9, we need to derive the complete conditionals, i.e., the

conditional distributions of a latent variable given all other variables, for each of Θ, Zuw

and Zut. Since each of Θ has conjugate Gamma priors, the complete conditionals for Θ

are also Gamma distributions. For auxiliary latent variables, we follow the conclusion

from [105] that given a vector Zut of Poisson distributed count, Zut is distributed as a
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multinomial conditioned upon the observed sum rut. Similarly, Zuw is also a multinomial

given ruw. Thus, all complete conditionals can be derived.

Variational inference assumes q(Θ, Zuw, Zut) is in the same exponential family with

the complete conditionals [58]. Thus, we employ the following mean field variational

family, where each latent variable is independent with each other and governed by its own

variational parameters:

q(Θu,Θw,Θl,Θft,Θt, Zuw, Zut) =
∏
u,k

q(θuk|ηauk, ηbuk)

∏
w,k

q(θwk|ηawk, ηbwk)
∏
l,k

q(θlk|ηalk, ηblk)
∏
t,k

q(θtk|ηatk, ηbtk)

∏
f,t

q(θft|ηaft, ηbft)
∏
u,w,k

q(zuwk|φuwk)
∏
u,t,k

q(zcutk|φcutk)

∏
u,t,k

q(zlutk|φlutk)
∏

u,t,f∈Nu

q(zutk|φutf )

where ηa· and ηb· are the shape and rate parameter of the variational Gamma distributions;

and φut· is the parameter of the variational Multinomial distributions. To obtain optimal

values for ηa· , η
b
· , φuw· and φut·, we need to solve the minimization in Equation 4.9. Since

variational inference requires that the natural parameter of each q(·) is the expectation of

the natural parameter of the corresponding complete conditional under q(·) [106], we just

need to compute the expectation of the natural parameters of each complete conditional.

To give an example, we show how to compute parameter ηatk and ηbtk. The expectation of

the natural parameters on the complete conditional of θtk gives:

ηatk = λat +
∑
u

rutφ
c
utk +

∑
u

rutφ
l
utk

ηbtk = λbt + α
∑
u

ηauk
ηbuk

+ β
∑
u

ηaluk
ηbluk

(4.10)
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where we have applied the fact that the expectation of a Gamma random variable is equal

to the ratio of the shape parameter over the rate parameter. Similarly, we can derive the for-

mula to compute other latent parameters. For auxiliary latent variable Zut, the expectation

of its natural parameter of the complete conditional leads to

φcutk ∼ α exp(ψ(ηauk)− ln(ηbuk) + ψ(ηatk)− ln(ηbtk))

φlutk ∼ β exp(ψ(ηaluk)− ln(ηbluk) + ψ(ηatk)− ln(ηbtk))

φutf ∼ γrft exp(ψ(ηaft)− ln(ηbft))

(4.11)

where ψ(·) is the digamma function; and we have applied the fact that E(ln(X)) =

ψ(ηa) − ln(ηb) when X ∼ Gamma(ηa, ηb). Similarly, we could obtain the formula for

Zuw. We then use coordinate ascent to update each variational parameter by turns to obtain

the locally optimal values. The overall update algorithm is shown in Algorithm 2.

4.3.4 Complexity Analysis

One of the benefits using Poisson distribution to model discrete data is that the algo-

rithm only iterates through non-zero occurrence of data matrix [102]. Thus, the compu-

tational cost can be dramatically reduced if the data matrix is very sparse, as is the case

for our datasets. The complexity of Algorithm 2 is determined by coordinate ascent op-

timization, which essentially includes two parts: (i) optimizing the variational parameters

for auxiliary variables Zuw and Zut; and (ii) optimizing the variational parameters for Θ.

Suppose the number of non-zeros in Rp and Rc is |Rp| and |Rc|, respectively. Let’s

also assume the average number of friends for each user is Nu. Then the complexity for

the update of φuw· is K|Rc|. For the update of φut·, since it considers three factors, the

complexity of the update is (2K +Nu)|Rp|. For the update of Θft, the complexity must

consider the average number of friends Nu each user has, and is estimated to be Nu|Rft|,

where |Rft| represents the number of non-zeros in the data matrix Rft. For other parameter
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Algorithm 2: Variational inference for BCPF
Input: hyper-parameter λwa , λwb , λua , λub , λla, λ

l
b, λ

t
a, λ

t
b,

λfta , λftb , data matrix Rp, Rc, Rul, Rft

repeat
Initialize all variational parameters ηa· , η

b
· , φut·, φuw·

for each ruw
Update φuwk for each k with
φuwk ∼ exp(ψ(ηauk)− ln(ηbuk) + ψ(ηawk)− ln(ηbwk))

Normalize φuw·
for each rut
Update φcutk for each k, φlutk for each k, and
φutf for each f ∈ Nu with Equation 4.11

Normalize φut·
for each w, update ηawk and ηbwk for each k with
ηawk = λaw +

∑
u ruwφuwk, η

b
wk = λbw +

∑
u

ηauk
ηbuk

for each u, update ηauk and ηbuk for each k with
ηauk = λau +

∑
w ruwφuwk +

∑
t rutφ

c
utk

ηbuk = λbu +
∑

w

ηawk

ηbwk
+
∑

t

ηatk
ηbtk

for each l, update ηalk and ηblk for each k with
ηalk = λal +

∑
t

∑
u I(lu = l)rutφ

l
utk

ηblk = λbl +
∑

t

∑
u I(lu = l)

ηatk
ηbtk

for each t, update ηatk and ηbtk for each k with Equation 4.10
for each f and each t, where rft > 0
Update ηaft and ηbft with
ηaft = λaft +

∑
u I(f ∈ Nu)rutφutf

ηbft = λbft +
∑

u I(f ∈ Nu)rft
until Converge
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Table 4.1: Geo-tagged Twitter data.

Loc # of users # of tweets # of following links
US 10,552 317,436 24,676
World 19,776 594,929 30,853
Loc # of tags # of records sparsity
US 1,011 85,994 0.81%
World 1,456 136,625 0.47%

update, their complexities are much lower than the above parameter update. Thus, the

total computational complexity for one iteration of coordinate ascent can be estimated to

be K|Rc| + (2K + Nu)|Rp| + Nu|Rft|. Since usually Nu � K and |Rft| < |Rp|, the

complexity is determined by O(K ·max{|Rc|, |Rp|}). Therefore, the learning algorithm

is quite efficient for sparse data matrix.

4.4 Experimental Evaluation

In this section, we conduct several experiments to evaluate the proposed BCPF for user

known-for profile discovery.

Data. Our data is based on a sample of about 12 million Twitter lists collected from 2013

to 2014. Twitter lists [107, 19] are crowd-generated, for which a labeler can put a user

on a tagged list, if the labeler thinks the user is known for the topic indicated by the tags.

Thus, if a user is labeled by different labelers with certain tags, for example, “chef” and

“recipe”, then we consider this user is known for these topics. In our experiments, we

use the threshold of three labelers to determine the existence of a tag in user’s known-for

profile. In addition, we also filter out infrequent tags with fewer than 20 users to focus

on quality tags. We randomly sample two datasets (see Table 6.2), one in the US and one

across the world. We also crawled about 30 recent tweets for each user and sampled her

social relations.
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Experimental Setup. For evaluation, we randomly partition all users into 60% for train-

ing, 30% for testing, and 10% for cross-validation. For the dimension K of the latent

factors, we empirically select 100 for all methods. For the tradeoff weights α, β and γ in

Equation 4.8 for BCPF, we set them to 1, 1.2 and 0.2 via cross-validation. To initialize

the hyper-parameters of the Gamma priors in BCPF, we follow [58] and set them to 0.3

plus a small random variations on geo-spatial and social latent factors for sparse solutions;

for user content and word variational parameters, we adopt LDA [108] and use document

topic distribution and topic word distribution to initialize ηuk and ηwk, respectively. In the

modeling of geo-spatial influence, it is assumed that the geographical space is partitioned

into discrete regions. Here, we adopt k-means clustering instead of a simple gridding

by clustering users’ geo-coordinates. We choose a clustering-based approach because the

geo-spatial distribution of users exhibits a clustering effect, as shown in Figure 4.1. For

evaluation metrics, we adopt Precision@k (Prec@k) and Recall@k (Rec@k), defined as

below:

Prec@k =
1

N

N∑
i=1

|predk(ui) ∩ pu|
k

Rec@k =
1

N

N∑
i=1

|predk(ui) ∩ pu|
|pu|

Prec@k measures the percentage of the correctly identified tags over the top k predicted

tags. Rec@k represents what percentage of true tags can emerge in top k predicted tags.

Both measures are averaged over all testing users. In our experiments, we select k to be 5

and 10.

Baselines. We compare BCPF with the following baselines:

• k-Nearest Neighbors. In this baseline, we extract content features from user’s sampled

tweets, and apply kNN to find n most similar users to the testing user u. We then

compute tag’s score according to sut =
∑n

i wuirit, where wui is the similarity between
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user u and i, and select top k tags for prediction. We use two approaches to compute

textual similarity, one with the bag-of-words model (kNN-BoW), another with the topic

model (kNN-LDA) [108].

• One-Vs-Rest multi-label ranking [109]. We train a One-Vs-Rest multi-label classifier

with bag-of-words on user’s tweets. Logistic regression is used as the classification

method to have a probabilistic output for ranking tags.

• Wsabie [110]. Wsabie is an embedding-based model which learns a mapping from a

feature space to the joint space with the tags. Here, we train the model with WARP

loss on bags-of-words of user’s tweets, and use the learned user and tag embeddings for

ranking tags.

• Content-based Poisson Factorization (C-PF). This is the method where we only keep

the content factor in BCPF. It can be considered a form of CTPF proposed in [58] where

we treat user’s tweets as documents, and user’s known-for profiles as binary ratings. We

also ignore the topic offsets since the testing users are in complete cold-start situation.

• Geo-spatial CPF (GC-PF). This is the method in which we keep both content and geo-

spatial factor in BCPF.

• Social influenced CPF (SC-PF). This method keeps both content and social influence

factor in BCPF.

4.4.1 Effectiveness of BCPF

How well does the proposed BCPF perform compared to alternative baselines? In

Table 4.2, we report Prec@k and Rec@k for all methods. Overall, BCPF gives the best

results for all metrics and both datasets. Specifically, it gives an average improvement of

17.5% in precision and 20.9% in recall over the best content based method C-PF. This

indicates the superiority of BCPF by exploiting geo-spatial and social influence factors

other than user’s content.
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Table 4.2: Comparison of performance with alternative methods. BCPF generally gives
the best performance by integrating the contextual influence of textual, geo-spatial and
social factors, and these factors are able to complement each other.

Method
US World

Precision Recall Precision Recall
@5 @10 @5 @10 @5 @10 @5 @10

kNN-BoW 0.114 0.098 0.120 0.181 0.083 0.072 0.099 0.151
kNN-LDA 0.150 0.127 0.155 0.226 0.120 0.100 0.137 0.200
One-Vs-Rest 0.166 0.140 0.176 0.250 0.136 0.112 0.161 0.227
Wsabie 0.159 0.137 0.169 0.244 0.116 0.101 0.134 0.201
C-PF 0.188 0.160 0.194 0.279 0.147 0.126 0.168 0.246
GC-PF 0.199 0.174 0.212 0.312 0.159 0.138 0.186 0.277
SC-PF 0.209 0.177 0.217 0.309 0.165 0.138 0.189 0.270
BCPF 0.222 0.188 0.240 0.336 0.173 0.147 0.201 0.295

In content-based methods, neighborhood-based methods generally provide the worst

performance of all since only local information can be used in prediction. Here, LDA

based kNN performs better than BoW based kNN, since LDA can take advantage of the

global topic information in users’ posts. Supervised methods, however, give relatively

better performance than neighborhood methods, as shown by One-Vs-Rest multi-label

ranking and Wsabie. Both methods are trained with multiple labeled tags for each user

on the BoW features, where Wsabie obtains embeddings for each user and tag. However,

One-Vs-Rest clearly outperforms Wsabie, although Wsabie is more efficient and requires

less computation time. C-PF, however, gives the best performance of all content-based

methods, indicating the superiority of joint modeling by learning labeled users’ profiles

on content features and unlabeled users’ texts.

Furthermore, we can see from the table that both GC-PF and SC-PF provides better

performance against only content-based C-PF, respectively. Specifically, GC-PF gives an

average improvement of 8.07% in precision and 11.1% in recall, respectively. SC-PF gives

an average improvement of 10.9% in precision and 11.2% in recall, respectively. This in-
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dicates that geo-spatial features and parameterized social influence can both improve the

identification of user’s known-for profile. Given the overall improvement of the combina-

tion of these features, we can also conclude that these factors are able to complement each

other.

4.4.2 Geo-spatial Factor Analysis

In the modeling of geo-spatial influence on user’s known-for profile, we discretize the

US/world area into geographical regions, and treat user’s location as the region where she

belongs. An important question here is how to select the number of regions I. As we can

imagine, if I is too small, the model may not be able to reflect the geo-spatial distribution

of user’s known-for profile; if it is too large, regions may be too small, thus leads to sparse

observations. To that end, we select I for k-means clustering from 10 to 200, and run

GC-PF with each value for ten random initializations of parameters. In Figure 4.3, we

show how precision and recall changes with respect to the number of regions for both

datasets. We can see that as I goes up, precision generally also increases. However,

the performance plateaus when it is large. We attribute this to: first, when the number

of regions increases, we obtain finer-grained geo-spatial characterization of tags; second,

when it is large enough, a finer-grained discretization does not help distinguish tag’s local

distributions. It may even result in sparse counts in regions and also increases model

complexity, thus degrading the final performance. Note that it requires less number of

regions, i.e., larger partition of areas, for the US dataset than world to get to the best

average performance. The reason is that the world data may be more diverse in terms of

the geo-spatial distribution of user known-for profiles, thus requiring finer-grained geo-

segments to reach the best performance.

To further examine the inferred region factors, we show in Table 4.3 the top ranking

tags associated with selected areas. In particular, we compute the affinity score between a
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(a) US (b) World

Figure 4.3: Box plot for precision@5 with respect to the number of regions.

Table 4.3: Top ranking tags for different areas obtained from latent location factors and
tag factors.

Los Angeles D.C. SF Chicago
la dc sf chicago

celebrity politics geek chi
star progressive bay area illinois
tv baltimore dev pr

artist us technology advertising
actor conservative mobile social media

famous people government startup marketing
entertainment politico software marketer

location and a tag by taking the expected inner product of the latent factor of the location

and the tag, denoted as E(θTl θt). We can see from the table that, generally, the top ranking

tags can reflect the common knowledge of the characteristics of those selected areas. For

example, it is very likely that a user from the Washington D.C. area is well known for her

political activities/comments. Thus, these inferred region factors are capable of nudging

user’s known-for profile toward her region characteristics.
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4.4.3 Social Influence Factor Analysis

We have seen from the previous experiments that social influence plays an importance

role in representing user’s known-for profile by looking at her connections. In order to

get a further understanding of how social influence varies for different friends and tags,

we consider the following methods using social influence: (i) naive SC-PF (nSC-PF),

where we replace θf with a single parameter θnaive in Equation 4.6 for all friends and

tags; (ii) user weighted SC-PF (uSC-PF), which models social influence by a vector of

dimension M , with each element indicating the level of a friend’s social influence for all

tags (see Equation 4.6); and (iii) SC-PF, which models each friend’s social influence for

every tag of hers by matrix Θft. We compare these methods with C-PF to see which

method models social influence the best. Note that we also include the content factor as a

basic representation for users since not all users have social connections.

As we can see from Figure 4.4, overall, social connection is able to improve the per-

formance for predicting user’s known-for profile. Specifically, we can make the following

two conclusions: (i) it is generally better to differentiate social influence for different

friends, rather than treating all friends with the same influence; (ii) it is generally better to

differentiate social influence for different tags of each friend, rather than treating all tags

of each friend with the same influence.

Table 4.4 shows the inferred social influence for different users and their top-ranking

tags, which further exemplifies the observation that users may have different social influ-

ence on their followers with respect to different tags. In particular, user @UnderTheBar

shows little influence on his followers’ known-for profiles even if he may have tens of

thousands of followers. This indicates that users who follow @UnderTheBar are not nec-

essarily also known for “entrepreneur” or “health”. On the contrary, @mollyblock has

much larger social influence on her followers for her tag “marketer”, indicating that users
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(a) US

(b) World

Figure 4.4: Comparative performance of the methods modeling social influence. SC-PF
performs best by making it dependent on both friends and tags.

Table 4.4: User’s inferred social influence θf by uSC-PF and social influence θft for top
ranking tags by SC-PF.

User θf top-1/θft top-2/θft

@UnderTheBar 0.00290
entrepreneur health

0.0230 0.0226

@skwigg 0.00425
fit nutrition

0.0217 0.0190

@mollyblock 0.0143
marketer pr

0.104 0.0226

@bikehugger 0.210
bicycle cycling
0.435 0.303
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following @mollyblock are more likely to also be known for “marketer”, even if @molly-

block has fewer followers than @UnderTheBar. One explanation for this observation is

that people connect with others for different reasons on social media, and that popularity

itself is not necessarily an indicator of one’s social influence.

4.5 Conclusion

In this section, we tackled the problem of discovering what users are known for in

social media. By integrating user’s textual, geo-spatial and social influence, we proposed

Bayesian Contextual Poisson Factorization to overcome the noisiness of user’s posting ac-

tivities and social relations. Experimental results showed that BCPF can improve known-

for prediction by 17.5% in precision and 20.9% in recall on average. We also showed that

user’s connections have varying social influence for different topics, confirming our fine-

grained modeling of social influence by making it dependent on both users and topics. In

our future work, we are interested in exploring the impact of additional contextual signals

beyond the textual, geo-spatial and social influence studied here.
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5. USER PROFILING: DISCOVERING USER’S OPINION BIAS∗

In this section, we move to the second aspect of user profiling in the dissertation: user’s

opinion bias. Specifically, we will show how we can semi-automatically discover user’s

opinion bias through a very small amount of human guidance, and how we can exploit

user’s opinion bias for personalization.

5.1 Introduction

Social media has increasingly become a popular and important platform for “regular”

people to express their opinions, without the need to rely on expensive and fundamentally

limited conduits like newspapers and broadcast television. These opinions can be ex-

pressed on a variety of themes including politically-charged topics like abortion and gun

control as well as fun (but heated) rivalries like android vs. iOS and Cowboys vs. 49ers.

Our interest in this section is in creating a flexible tool for discovering and tracking the

themes of opinion bias around these topics, the strong partisans who drive the online dis-

cussion, and the degree of opinion bias of “regular” social media participants, to determine

to what degree particular participants support or oppose a topic of interest.

However, assessing topic-sensitive opinion bias is challenging. First, the opinion bias

of “regular” users may not be as pronounced as prominent figures, so discerning this bias

will require special care. Second, how opinion bias manifests will inevitably vary by topic,

so a system should be adaptable to each topic. Third, the themes by which people express

their opinions may change over time depending on the circumstances (e.g., gun control

debates may take different forms based on the ebb and flow of elections, recent shooting

∗Reprinted with permission from “BiasWatch: A Lightweight System for Discovering and Tracking
Topic-Sensitive Opinion Bias in Social Media” by Haokai Lu, James Caverlee and Wei Niu, 2015. Pro-
ceedings of the 24th ACM international conference on Information and Knowledge Management, 213-222,
Copyright 2015 by ACM. DOI: http://dx.doi.org/10.1145/2806416.2806573.
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incidents, and so forth). As a result, assessing bias should be adaptive to these temporal

changes.

Hence in this section, we develop a lightweight system – BiasWatch – for discov-

ering and tracking opinion bias in social media. BiasWatch begins by taking just two

hand-picked seeds to characterize the topic-space (e.g., “pro-choice” and “pro-life” for

abortion) as weak labels to bootstrap the opinion bias framework. Concretely, we lever-

age these hand-picked seeds to identify other emerging (and often unknown) themes in

social media, reflecting changes in discourse as new arguments and issues arise and fade

from public view (e.g., an upcoming election, a contentious news story). We propose

and evaluate two approaches for expanding the hand-picked seeds in the context of Twit-

ter to identify supporting and opposing hashtags – one based on co-occurrence and one

on signed information gain. We use these discovered hashtags to identify strong topic-

based partisans (what we dub anchors). Based on the social and information networks

around these anchors, we propose an efficient opinion-bias propagation method to deter-

mine user’s opinion bias – based on both content and retweeting similarity – and embed

this method in an optimization framework for estimating the topic-sensitive bias of social

media participants. In summary, this section makes the following contributions:

• First, we build a systematic framework – BiasWatch – to discover biased themes and

estimate user-based opinion bias quantitatively under the context of controversial topics

in social media. We propose an efficient optimization scheme – called User-guided

Opinion Propagation [UOP] – to propagate opinion bias. By feeding just two opposing

hashtags, the system can discover bias-related hashtags, find bias anchors, and assess

the degree of bias for “regular” users who tweet about controversial topics.

• Second, we evaluate the estimation of users’ opinion bias by comparing the quality of

the proposed opinion bias approach versus several alternative approaches over multiple
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Twitter datasets. Overall, we see a significant improvement of 20.0% in accuracy and

28.6% in AUC on average over the next-best method.

• Third, we study the effect of different approaches for biased theme discovery to measure

the impact of newly discovered biased hashtags as additional supervision. We observe

that the newly discovered hashtags are often associated with the underlying community

of similar opinion bias, and that they temporally fluctuate due to the impact of new

controversial events.

• Finally, we demonstrate how these inferred opinion bias scores can be integrated into

user recommendation by giving similar-minded users a higher ranking. We show that

the integration can improve the recommendation performance by 26.3% in precision@20

and 13.8% in MAP@20. This result implicitly confirms the principle of homophily in

the context of opinion bias, and demonstrates how topic-sensitive opinion bias can en-

rich user modeling in social media.

5.2 Lightweight Bias Discovery

Problem Statement. We assume there exists a set of users U = {u1, u2, ..., un} sampled

from Twitter. Each user has their corresponding tweets D = {d1, d2, ..., dn} related to a

controversial topic T , where di is a collection of tweets by ui. Since a person’s opinion

bias represents the intrinsic tendency that she chooses to support or oppose a concept under

a controversial context, we choose to quantize the degree of her opinion bias by a numeric

score ranging from -1 to 1. Specifically, we assign B = {b1, b2, ..., bn} for each user in U ,

respectively, where bi ∈ [−1, 1]. When bi is close to 1, it denotes that user ui has a strong

positive standing toward the topic; when bi is close to -1, it represents the opposite. Thus,

given a controversial topic T , a sampled set of users U and their on-topic tweets D, we

identify the following tasks of the system framework: (i) Discovering biased themes that

are discussed by opposing sides of users. We denote P as the set of positive themes and N
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Figure 5.1: Overall BiasWatch Framework

as the set of negative themes; (ii) Finding bias anchors who show strong degree of opinion

bias, which we denote as Uanchor; (iii) Determining “regular” participants’ opinion bias B.

Overall Approach. In order to tackle these tasks, we propose a lightweight framework

that propagates opinion bias scores based only on a few hand-picked seeds that character-

ize the topic-space (e.g., “pro-choice” and “pro-life” for abortion). The BiasWatch frame-

work, illustrated in Figure 6.3, takes as input these hand-picked seeds and then proceeds

through the following three key steps:

• Finding Bias Anchors. This first step identifies topic-based partisans whose opinion

bias is strongly revealed through their choice of hashtags. We develop two automatic

approaches to: (i) identify biased themes in the form of hashtags through initial seeds;

(ii) expand the pools of bias anchors with these identified biased themes.

• Propagating Bias. This second step builds a user similarity network around these ex-

panded anchors and other “regular” participants, and propagates bias along this network.

The edges here measure the similarities of two users through content and link features

from tweets.

• Noise-Aware Optimization. Lastly, we propose to embed the previous two steps into
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a noise-aware optimization framework where anchors’ opinion bias can be effectively

propagated to each “regular” participant throughout the network. A key facet is that

this optimization is tolerant of noisy labels on the initial bias anchors, so that initial

errors made in identifying bias anchors need not lead to cascading errors in “regular”

participants.

5.2.1 Finding Bias Anchors

Our first challenge is to identify strong topic-based partisans (what we dub anchors).

These anchors serve as the basis for propagating opinion bias throughout the social and

information network. One reasonable method for identifying anchors is to manually label

a number of users, among whom we hope that there exist a portion of users whose opinion

bias is clearly shown. However, there are two disadvantages of this approach: (i) it is po-

tentially expensive and time-consuming; and (ii) because of the random nature of labeling,

typically, we have to label many users whose opinion bias is not clear or neutral in order

to obtain anchors.

To overcome these difficulties, we propose to exploit crowd-generated hashtags in

Twitter. Hashtags are often used to tag tweets with a specific topic for better discover-

ability or to indicate the community to which the tweets are posted [111]. Some hashtags

may be viewed as a rich source of expressing opinions [112], potentially indicating user’s

opinion bias. For example, some most popular hashtags for “gun control” include #gun-

controlnow and #2ndamendment, which reveal strong user bias, with the former often used

by supporters of gun control and the latter by opponents. Hashtags of this nature can be es-

sentially considered as weak labels of the polarity of tweets with respect to a controversial

topic.

Hence, to find bias anchors we first seek to identify a candidate set of hashtags that

provide support for the topic and a candidate set of hashtags that express opposition. Since
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Table 5.1: Top ten themes at different times for “fracking” discovered by seed expansion;
red for pro-fracking; blue for anti-fracking.

Dec 2012 Mar 2013 June 2013 Sept 2013
#shale #dontfrackny #shale #balcombe
#natgas #shale #energy #shale

#oil #energy #natgas #frackoff
#energy #oil #oil #energy

#gas #gas #gas #greatgasgala
#tcot #natgas #banfracking #natgas
#jobs #frack #fracked #banfracking
#frack #banfracking #frack #gas

#marcellus #nokxl #tcot #oil
#naturalgas #tcot #dontfrackny #frack

the hashtags used to express an opinion may change over time as new issues arise and

fade from public view (e.g., an upcoming election, a contentious news story) and as new

arguments are reflected in online discourse, we leverage these seeds to identify emerging

themes in social media via seed expansion. To show a concrete example, Table 5.1 lists top

ranking opposing and supporting themes at different times for the topic “fracking” after

seed expansion is performed. We can see that new biased themes emerge as controversial

events occur. In the following, we consider two approaches for expanding the hand-picked

seeds to identify supporting and opposing hashtags:

Seed Expansion via Co-Occurrence. The first approach relies on hashtag co-occurrence

statistics to find other hashtags used by users with similar opinion bias. The intuition

is that if two hashtags are often used together by different users (whether in the same

tweet or different tweets with respect to a topic), these two hashtags are likely to indicate

the same opinion bias. Here, hashtag co-occurrence is based on users instead of tweets,

considering that a user’s opinion bias is not likely to change. Thus, for hashtags which

occur in different tweets, as long as they are used by the same user, they are still considered
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to occur together.

Let fi and fj represent the frequency of the hashtag hi and hj related to a topic, re-

spectively. Let f+ and f− represent the frequency of the pro-seed h+ and the anti-seed h−,

respectively. The similarity between two hashtags, denoted as σ(hi, hj), is computed by

Jaccard coefficient (JC) as:

σ(hi, hj) =
fhi∩hj
fhi∪hj

where fhi∩hj represents the co-occurrence frequency of hi and hj , and fhi∪hj represents

the total occurrence frequency of either hi or hj . Thus, σ(h+, hi) and σ(h−, hi) represents

the similarity of hi to the pro-seed and anti-seed, respectively. We select top hashtags

with the largest similarity to the pro-seed and anti-seed as the candidate set C+ and C−.

However, since some hashtags, for example, “#guncontrol”, are generic and co-occur with

both the pro-seed and anti-seed, these hashtags do not indicate any opinion bias. To filter

out common hashtags like these, we impose the following constraint on hashtag from C+

for pro-seed:

σ(h+, hi)/σ(h−, hi) > ε

where a large ε reflects more correlation with the pro-seed; similar constraint can also be

imposed to filter hashtags in C−. We then use the resulting m top hashtags for pro-seed as

positive theme set P , and m top hashtags for anti-seed as negative theme set N .

Seed Expansion via Signed Information Gain. Although the approach above does find

other biased hashtags, there are two disadvantages: (i) it often gives niche hashtags which

are only used by a small number of participants; (ii) it often misses event-related short-

lasting biased hashtags. In light of these issues, we propose the second approach which

relies on weak supervision to select the most distinguishing hashtags for each side. Specif-

ically, we perform the following procedure:

1. Training with pro-seed and anti-seed. First, we aggregate a user’s tweets and use a bag-

73



of-words model to compute TFIDF for each user. Users who have tweeted with at least one

hashtag are then selected and used. From these users, we treat users with only pro-seed as

positive class c+, users with only anti-seed as negative class c−, and the rest for prediction.

Finally, an SVM classifier is learned on the training data and used to predict the polarity

of users which are left. We now have an expanded set of users who are positive, and an

expanded set of users who are negative.

2. Selecting hashtags. From the expanded sets of users, we use signed information gain

(SIG) proposed by Zheng et al. [113] as the measure to select hashtags for pro-seed and

anti-seed, respectively.

SIG(hi, c) = sign(AD −BC)·∑
c∈{c+,c−}

∑
h∈{hi,h̄i}

p(h, c) · log p(h, c)

p(h) · p(c)

where A is the number of users with hi and in class c+, B is the number of users with hi

and in class c−, C is the number of users without hi and in class c+ and D is the number

of users without hi and in class c−. Also, h̄i represents hashtags other than hi. Here,

the probability p is obtained by maximum likelihood estimation. We select m hashtags

with the largest SIG as the finalized hashtag set P for pro-seed, and m hashtags with the

smallest SIG as the finalized hashtag set N for anti-seed.

As a result, this approach can not only filter out common hashtags used by both sides

of users without manually specifying any extra parameters, but also can discover popular

yet distinguished biased hashtags.

Bias Anchors. Given the expanded set of hashtags (both supporting and opposing a par-

ticular topic), we identify as our strong partisans users who consistently adopt hashtags

from only one opinion standpoint, which we denote as Uanchor. We assign an initial bias
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score b̃i to these anchors as follows:

b̃i =


+1, if ui ∈ UP

−1, if ui ∈ UN
(5.1)

where UP and UN is the set of anchors adopting hashtags from P and N , respectively, and

Uanchor = UP ∪ UN . These opinion bias anchors serve as the basis for propagating bias

throughout the social and information network, which we tackle next.

5.2.2 Bias Propagation Network

After the discovery of bias anchors, how do we determine the opinion bias of those

remaining participants? We propose to build a propagation network where two users are

only connected if their similarity passes a threshold. In the following, we adopt both

content and link features to determine user similarity.

Content-Based Propagation. The assumption of content induced propagation is that if

two users have a high textual similarity in their posts, it is likely that they may share

similar opinion bias. To compute the content similarity of two users, we aggregate each

user’s topic-related tweets and treat each user as a document. Thus, content similarity of

two users can be computed with document similarity. Here, we adopt cosine similarity of

the TFIDF of the two documents with a standard bi-gram model. Tokenization of tweets

is done through the tool provided by Owoputi et al. [114] for its robustness. Hashtags

and mentions are also included in the model as features. To reduce the size of feature

dimensions, we performed stop-word removal and kept only unigrams and bi-grams with

occurrence frequency greater than two. The content similarity between ui and uj can be
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written as:

wcontentij =


Cij, if uj ∈ N c(ui)

0, if uj /∈ N c(ui)

(5.2)

where Cij is the cosine similarity of ui and uj . To reduce the propagation complexity,

we construct a sparse network by only considering k-nearest neighbors N c(ui) for each

user ui. We choose k to be 10 for its efficiency without compromising much accuracy in

experiments.

Link-Based Propagation. Retweeting can be considered a form of endorsement for users

in Twitter [115, 45]. Based on this observation, it is expected that if a user retweets another

user on a topic, both users tend to share similar opinion bias. Thus, we define the link

similarity between ui and uj as follows:

wlinkij =


1, if uj ∈ N l(ui)

0, if uj /∈ N l(ui)

(5.3)

where uj is in the neighbors of ui if uj retweeted ui or ui retweeted uj . Besides

retweeting links, we can also take advantage of the follower/following network informa-

tion in Twitter. Here, we choose not to use it since following link is not as strong a signal

as retweeting. One reason is that a user whose opinion is on one side may choose to fol-

low someone on the opposite side for the purpose of receiving any topic related statuses or

refuting their arguments. Furthermore, we notice that the resource of retweeting activities

is usually sparse so that the propagation network constituted only from retweeting links

is separated into many isolated networks. Thus, a retweeting-based propagation is not

enough to be treated by itself but needs to be combined with content-based propagation,
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leading to the following fusion of similarity between users:

wij = wcontentij + λwlinkij (5.4)

where λ is a weighting parameter for content and link similarity.

5.2.3 Optimization Framework

Finally, we embed the discovered anchors and bias propagation network into an opti-

mization setting to propagate the opinion-bias score of all users more effectively. Since

the initial input to the approach is a set of weak labels (two user-specified opposite hash-

tags), we call this optimization User-guided Opinion Propagation [UOP]. Specifically, by

allowing each user’s true opinion bias bi to change as an optimization variable, we force

the following conditions: (i) for bias anchors, bi should be as close to the bias indicated

by adopting biased hashtags (Eqn. 5.1); (ii) for other participants, bi and bj should be

close to the degree indicated by their content and link similarity (Eqn. 5.4). Their opinion

bias is initialized randomly between [−1, 1] and can now be iteratively propagated through

optimization. Thus, we have the following objective function:

min
bi∈B

f =
∑

ui∈Uanchor

(bi − b̃i)2 + µ1

n∑
i=1

n∑
j=i+1

wij(bi − bj)2

subject to − 1 ≤ bi ≤ 1 ∀i ∈ {1, ..., n}

(5.5)

where µ1 is the tradeoff weight for different components. Thus, by solving this optimiza-

tion, each user’s opinion bias is propagated through the network in an optimized fashion.

Since the objective function is convex, we can use the standard L-BFGS method with con-

straints to solve it efficiently. Another advantage of this framework is that other similarity

signals such as location, profile demographics, and so on can be easily incorporated into

Equation 5.5.

77



Handling Noisy Bias Anchors. The essence of the above optimization framework is that

we propagate users’ opinion bias which we know with confidence to other users who we

have seldom knowledge of. We can see that anchor’s opinion bias b̃i is treated as the golden

truth and stays unchanged. However, a prominent issue is that users who consistently adopt

hashtags from either P or N are not guaranteed to have the corresponding opinion bias.

To give an example, one user’s tweet reads, “#Gosnell certainly a tragedy, also cautionary

tale, but not an argument against abortion rights in the US. Want more Gosnells? Ban

abortion.” This sarcastic pro-choice user adopted the hashtag #Gosnell, as we can observe

from many tweets, is a primary hashtag pro-life users would use. Hence, according to

Equation 5.1, this user is falsely identified as a pro-life anchor. Without manual inspection

of user’s profile and their related tweets, it is very hard to judge whether a bias anchor

determined from Equation 5.1 is correctly identified. To relieve this problem, we introduce

another variable yi for ui ∈ Uanchor as the ideal opinion bias. Intuitively, it should satisfy:

(i) yi should be close to the opinion bias inferred from neighbors; (ii) most yi should be

consistent with b̃i, with a few of them being noisy. Inspired by the annotation of noisy web

images in [116], we propose a modified minimization function as follows:

min
bi∈B

f =
∑

ui∈Uanchor

(bi − yi)2 + µ1

n∑
i=1

n∑
j=i+1

wij(bi − bj)2

+ µ2

∑
ui∈Uanchor

|yi − b̃i|

subject to − 1 ≤ bi ≤ 1 − 1 ≤ yi ≤ 1 ∀i ∈ {1, ..., n}

(5.6)

where µ1 and µ2 are the weighting parameters. We use l-1 norm to constrain the ideal

variable yi to b̃i since normally, only a small portion of bias anchors are noisy and l-1 norm

could force most anchors to stay as biased. We solve the above minimization through the

following steps:
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(i) Initialize yi to b̃i and solve Equation 5.5 to obtain bi.

(ii) Solve the following sub-minimization problem with bi to obtain yi:

min
bi∈B

f =
∑

ui∈Uanchor

(bi − yi)2 + µ2|yi − b̃i|

subject to − 1 ≤ yi ≤ 1 ∀i ∈ {1, ..., n}

(5.7)

We employ the package L1 General [117] to solve the problem.

(iii) Replace b̃i with yi in Equation 5.5 to get final bi. We could repeat step (i) and (ii) for

several times for further optimization but usually two to three iterations are enough shown

by experiments. In this way, errors made in identifying bias anchors can be mitigated,

leading to more accurate opinion bias estimation.

5.3 Experimental Evaluation

In this section, we perform several sets of experiments to evaluate the BiasWatch

framework for topic-sensitive opinion bias discovery. We investigate the impact of seed

expansion, the quality of bias propagation via both content and retweeting links, and com-

pare the performance versus alternative opinion bias approaches. We couple this study

with an application of the system on two more controversial datasets.

5.3.1 Data

The datasets that we use are collected with Twitter’s streaming API from October

2011 to September 2013. To create topic-related datasets for opinion discovery, we se-

lected three controversial topics: “gun control", “abortion" and “obamacare". We select

these topics because they are popular controversial topics discussed by a large number of

Twitter users with both opposing sides of opinion expressed in the time period. For each

topic, we extracted a base set of tweets (and their corresponding users) containing at least

one topic-related keyword: for “gun control": gun control, gun right, pro gun, anti gun,
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Table 5.2: Datasets

Topic Users Tweets Retweets
gun control 70,387 117,679 60,293
abortion 119,664 173,236 93,690
obamacare 67,937 123,320 70,008
vaccine 27,362 36,822 13,108
fracking 22,231 34,485 14,524

gun free, gun law, gun safety, gun violence; for “abortion": abortion, prolife, prochoice,

anti-abortion, pro-abortion, planned parenthood; and for “obamacare": obamacare, #aca.

Additionally, we created another two datasets on the topics “vaccine” and “fracking” for

demonstration. We select these two topics for further evaluation because they are relatively

recent controversial topics compared to the previous ones, and also their opposing sides

may not be fully entrenched in traditional left/right party politics. To extract “vaccine”

related tweets, we use the following keywords: vaccine, vaccination, vaccinate, #vaxfax;

for “fracking”, we use: fracking, #frack, hydraulic fracturing, shale, horizontal drilling.

We summarize the datasets in Table 6.2.

5.3.2 Gathering Ground Truth

In order to evaluate the framework, we need to know the true opinion of a randomly

sampled user set against which we can compare the optimization results. Without direct

access to user’s bias and considering the inherent difficulty of knowing a user’s bias degree

with respect to a controversial topic, we rely on an external labeling scheme using Amazon

Mechanical Turk. Since the bias score obtained from Equation 5.5 is continuous, we

discretize the opinion bias of a Twitter user into the following five categories: strong

support [+2], some support [+1], neutral or no evidence [0], some opposition [-1], strong

opposition [-2].

Thus, we can map the continuous range into the above categories for evaluation. For
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Table 5.3: Turker labeling results of HITs

topic
Number of users for each category
+2 +1 0 -1 -2

gun control 116 40 60 54 234
abortion 115 54 55 26 254
obamacare 82 26 33 26 337

each topic, we randomly selected 504 Twitter users from the total users in Table 6.2, and

assigned eight users in each human intelligence task (HIT), then ask the turkers (human

labeler) to select the most appropriate category for these users. For each user, we show her

twitter user ID and her topic related tweets for each turker to examine. We also highlight

the hyperlinks embedded in the tweets and make them clickable. To ensure good quality of

assessment, we follow the suggestions by Marshall and Shipman [118]. For each human

intelligence task, we put two additional users in random positions, making a total of ten

users in one HIT. Those users’ bias are already known through experts, which we refer to

as the golden users. If the label given by a turker for any of these golden users is very

different from that by experts, we discard the entire answer by this turker for the HIT.

Moreover, we ask five turkers to label one user and take the majority vote as the final label

for the user. The results are shown in Table 5.3.

Agreement of Opinion Bias Labels. To measure the reliability of the above human label-

ing tasks, we investigate the inter-rater agreement of the obtained assessment with Fleiss’

κ statistic. Specifically, we obtained the 5-category κ statistic of 0.264, 0.393 and 0.418

for “gun control”, “abortion” and “obamacare”, respectively. These values lie in the in-

terpretation of fair agreement by Landis and Koch [119]. In addition, we also adopt the

accuracy of agreement provided by Nowak [120] and adapt it into the following formula
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since each user is assessed by more than two turkers:

accuracy =
1

N

N∑
i=1

# of votes of the majority category for user i
# of votes for user i

whereN is the total number of users to be assessed by turkers for each topic. The accuracy

ranges from 0.304 when the majority is obtained by chance to 1 when every user’s bias

category is agreed by all turkers. The lower bound 0.304 is obtained by calculating the

average number of people in a majority out of five when they select one category from

five by chance. Hence, an accuracy of 0.6, for example, means that on average, 3 out of 5

turkers agree on a category. The accuracy for “gun control”, “abortion” and “obamacare”

is 0.646, 0.727 and 0.788, respectively, which means, on average, at least 3 turkers agree

on the majority category.

Furthermore, we aggregated the same polarity into one category, namely, category [+1]

and [+2] are combined to one category and vice versa. The 3-category κ statistic increases

to 0.461, 0.588 and 0.649, correspondingly, while the accuracy increases to 0.811, 0.857

and 0.906. The κ values can now be interpreted as moderate agreement. The accuracy

now means at least four out of five people agree on the majority bias polarity on average.

This indicates that humans are more capable of discerning the polarity of users’ opinion

bias than determining the extent of users’ bias.

In the following, we choose to use the 3 bias categories as ground truth since it has

the most consistent and reliable performance by human labelers. We additionally consider

only the support and opposition categories (ignoring the minority of users who are neutral

or do not show evidence, namely, category [0]) so we can cast the evaluation as a binary

class problem. We adopt the standard classification measures of accuracy and area under

the curve (AUC).
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5.3.3 Alternative Opinion Bias Estimators

To evaluate our approach of determining users’ opinion bias, we consider the following

alternative opinion bias estimators:

• SentiWordNet [SWN]. This is a simple sentiment detection approach, where we assign

a sentiment score to each user’s tweets according to SentiWordNet and classify each

user’s opinion bias with the relative portion of positive and negative tweets. Specifically,

for each tweet di of user ui, we classify it positive if
∑

wj∈di pos(wj) >
∑

wj∈di neg(wj),

and vice versa. We then classify user ui as positive if the number of positive tweets is

greater than the number of negative tweets, and vice versa.

• User Clustering with Content [uCC]. In this baseline, we construct a user graph and

perform user clustering with tweets. The nodes of the graph are users and the edges are

constructed based on k nearest neighbors with the largest content similarities of tweets.

We choose to use cosine similarity of the TFIDF of bi-grams as the similarity measure.

To perform graph clustering, we apply normalized cuts for graph partitioning by Shi and

Malik [121] due to its simplicity and good performance. This is essentially a max-cut

problem explored in [122, 123] to partition newsgroup and online debates into opposite

positions, respectively. The purpose of using this unsupervised baseline is to examine

whether the selected biased hashtags as a form of weak supervision can provide much

improvement.

• User Clustering with Content and Links [uCCL]. This baseline is the modified ver-

sion of uCC in which the edge weight combines both content and link similarity. Specif-

ically, if there exists a retweeting link between two users, we add a constant to its content

similarity, i.e., w = wcontent + θ ∗ wlink, where θ is used to balance the weights. The

purpose of this baseline is to examine if retweeting links can help distinguish opposing

sides of users’ opinion bias compared to uCC.
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• Weakly-supervised SVM [wSVM]. We train an SVM with a bi-gram model of bias

anchors’ tweets, which is then used to classify the test dataset. The parameters of SVM

are determined through 5-fold cross-validation. We denote the trained classifier with

bias anchors found through initial seeds (IS) as wSVM+IS, and the other two classifiers

trained on seed expansions as wSVM+JC and wSVM+SIG. Here, wSVM+IS is treated

as the baseline, and the other two as our improved versions.

• Local Consistency Global Consistency [LCGC]. This is a semi-supervised method

proposed by Zhou et al. [124] and applied in [40] for the classification of the political

learning of news articles. This method optimizes the tradeoff between local consistency

and global consistency among node labels. Here, we use Equation 5.4 as the affinity

between nodes for the method and adapt LCGC into our own version by incorporating

seed expansion from SIG, denoted as LCGC+SIG.

• UOP∗. This is the framework in which we only consider content based bias propagation

without handling noisy bias anchors.

• UOP†. This is the framework in which we consider both content and link based bias

propagation without handling noisy bias anchors, indicated by Equation 5.5.

• UOP. This is the full blown-approach indicated by Equation 5.6.

5.3.4 Biased Theme Discovery

Before experiments, we first select the following pro-seed and anti-seed manually as

the input to the system: #guncontrolnow and #2ndamendment for “gun control”; #pro-

choice and #prolife for “abortion”; #ilikeobamacare and #defundobamacare for “oba-

macare”. We later show in the experiments the effect of different seed selections.

We then highlight the seed expansion methods – both hashtag co-occurrence (JC) and

signed information gain (SIG) – used to identify biased hashtags adopted by users with

similar opinion bias. For seed expansion via SIG, we need to determine the value of
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Figure 5.2: Effect of m for seed expansion via SIG.

parameter m. To study the influence of this parameter, we adopt the method UOP* to

evaluate performance changes with values from {2, 6, 10, 14, 18}. Figure 5.2 shows that

the accuracy is highest when m is approximately at 10 for “gun control” and “abortion”,

and is slightly larger for “obamacare”. After those values, accuracy levels or even de-

creases, possibly because the additional discovered hashtags are noisy or do not imply

much opinion bias. Thus, in the following experiments, m is fixed at 10 for all topics. For

seed expansion via co-occurrence, we choose m to be 10 using the similar approach, and

empirically set ε to 3. The expanded hashtags, as we observed from the output, can be

approximately categorized as:

(i) Sentiment-oriented. These hashtags can be easily discerned and used directly by

participants to show opinion bias, such as #nowaynra for “gun control” and #dontfundit

for “obamacare”.

(ii) Community identification. These hashtags indicate personal or political identities

and are often used in a community, such as #p2, #tcot, #teaparty and #fem2 (for feminists);
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(iii) Thematic. These hashtags often indicate arguments used by participants to express

their opinion. For example, gun control antagonists say #gunrights as a constitutional right

protected by #2ndamendment (also #2a); abortion protagonists may emphasize #repror-

ights or #reprojustice in their arguments;

(iv) Action-oriented. Examples include #momsdemandaction, #stand4life, #standwith-

cruz (stand with Ted Cruz), #swtw (stand with Texas women) and #demandaplan (as in

“#demandaplan to end gun violence”);

Overall, we can conclude that seed expansion through our proposed approaches is able

to find other biased hashtags which are used by people with similar opinion bias. The

above categorization also serves as guidance for users to pick initial opposing seeds as

input to the system. Now that we have discovered the biased themes related to each side

of polarity for different controversial topics, can we leverage those to determine “regular”

participants’ opinion bias? Specifically, we ask the following questions:

(i) Can these newly discovered biased hashtags help to identify user’s opinion bias? If

so, how much better can they do?

(ii) Do different pro-seed and anti-seed selections affect performance? If so, can seed

expansion help us with the selection?

(iii) Can social ties, in the form of retweeting links, help us determine user’s opinion

bias?

Effect of Seed Expansion. To evaluate the performance of these expanded hashtags, we

use wSVM and UOP* as the base methods since both of them only rely on the information

provided by bias anchors and content. For UOP*, the weight parameter µ1 in Equation 5.5,

is empirically determined to be 0.1.

We now compare the performance between the version when opinion bias is propa-

gated only through initial seeds and the version when the seeds are expanded. Since the

result of accuracy is similar with AUC, we only show AUC in Figure 5.3. We can see that
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Figure 5.3: Effect of seed expansion.

both seed expansion approaches outperform initial seeds, with seed expansion via SIG giv-

ing the best performance. Specifically, AUC from seed expansion via SIG gives a 19.5%

and 6.8% improvement over IS and JC for wSVM, respectively, while the improvement is

12.5% and 5.6% for UOP*, respectively. This shows that (i) the newly discovered hash-

tag set through seed expansion provides additional amount of bias information for users;

and (ii) the quality of expanded hashtag set via SIG is generally the best, i.e., it is able to

discover higher quality of biased themes.

Effect of Different Seeds. Here, we are interested in studying the influence of different

choices of initial seeds to the system. To that end, we first rank hashtags by occurrence

frequency and then manually select top five pro-seeds and top five anti-seeds for “gun con-

trol” by observing tweets with those hashtags. The top five pro-seeds are: 1. #nowaynra;

2. #guncontrolnow; 3. #demandaplan; 4. #newtown; 5. #whatwillittake. The top five

anti-seeds are: 1. #tcot; 2. #2ndamendment; 3. #nj2as; 4. #2a; 5. #gunrights. We

represent a pro-seed and anti-seed combination with their corresponding number. For ex-

ample, “12” represents the combination “#nowaynra #2ndamendment”. We then use the

method UOP* to evaluate the performance of each combination for two cases: one with
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Figure 5.4: Performance for 25 pro-seed and anti-seed combinations.

initial seeds; the other with seed expansion via SIG. The results are shown in Figure 5.4.

Overall, we can see that for different choices of input seeds, the performance without seed

expansion is very sensitive to the choices, while it gives consistent high accuracy for seed

expansion with SIG. We can also observe that #nj2as is not a good anti-seed choice since

all combinations with #nj2as performs bad. Also, all combinations with #gunrights give

unsatisfactory results except “55”. These results indicate that it is difficult to choose the

most effective seed combinations, since very often a single pair of seeds can be noisy and

do not cover enough bias related themes. However, seed expansion can mitigate this ef-

fect by introducing other and often more complete biased hashtags for bias propagation.

Hence, even though the initial seeds are not well selected, the final performance does not

suffer much due to the benefits of seed expansion. For other topics, similar results are

observed, and thus are not reported due to the space limit.

Effect of Social Ties. Here, we evaluate the effect of social ties in the form of retweeting

links for different seed expansion approaches. The retweeting links are randomly sampled
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for ten times for each fraction since a different sample of retweeting links gives a different

propagation network. Here, we adopt UOP† for the evaluation, with the weight given to

the link-based propagation λ in Equation 5.4 empirically chosen to be 1. The final results

are averaged and plotted in Figure 5.5. We can see that as more retweeting links are added

for propagation, the performance increases for all three approaches, which confirms the

assumption that users linked via retweeting tend to share similar opinion bias.

Furthermore, among these three approaches, the performance obtained via SIG is al-

ways the best for different fractions of retweeting links at all topics. As the fraction gets

larger, the improvement generally gets smaller. This indicates that the effect of seed expan-

sion gets reduced when the fraction increases. For seed expansion via JC, the performance

is generally better than that of initial seeds when the fraction is small. However, this initial

improvement gets reduced or even disappears when retweeting link is abundant, hence,

making the extra hashtags obtained via co-occurrence less effective. This is probably be-

cause of the noisiness of those extra hashtags. Though beneficial at a small number of

retweeting links, they prevent the correct bias from being propagated when more of them

are added for optimization. This shows again that the key of seed expansion is that not

only more biased hashtags should be discovered, but also they should be of high quality.

5.3.5 Comparison with Baselines

In this section, we compare our proposed BiasWatch framework with the alternative

opinion bias estimators. For uCCL, the weight-balancing parameter θ is selected from

{0.05, 0.1, 0.15, 0.2, 0.25} to be 0.1 for best performance. For LCGC+SIG, we use the

same parameter setting as in [40]. Other parameter settings in UOP*, UOP† and UOP are

the same as in previous experiments. For µ2 in Equation 5.6, we empirically set it to 0.2

for handling noisy bias anchors. We choose the best seed expansion approach (via SIG)

for all methods. The final results are shown in Table 5.4 and Table 5.5.
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Figure 5.5: Performance for different seed expansion approaches with respect to different
fraction of retweeting links for all topics.
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Table 5.4: Accuracy Comparison with alternative opinion bias estimators. Boldface: the
best result for each topic among all methods. ‘∗’ marks statistically significant difference
against the best of alternative opinion bias estimators (with two sample t-test for p ≤ 0.05).

Method gun control abortion obamacare average
SWN 0.560 0.527 0.465 0.517
uCC 0.534 0.537 0.516 0.529
uCCL 0.586 0.530 0.520 0.545
wSVM+IS 0.696 0.825 0.786 0.769
wSVM+SIG 0.860 0.884 0.727 0.824
UOP∗ 0.851 0.847 0.826 0.841
LCGC+SIG 0.858 0.900 0.811 0.856
UOP† 0.881 0.906 0.894 0.894
UOP 0.908∗ 0.915 0.945∗ 0.923∗

Table 5.5: AUC Comparison with alternative opinion bias estimators. Boldface: the best
result for each topic among all methods. ‘∗’ marks statistically significant difference
against the best of alternative opinion bias estimators (with two sample t-test for p ≤ 0.05).

Method gun control abortion obamacare average
SWN 0.570 0.531 0.541 0.547
uCC 0.533 0.527 0.522 0.527
uCCL 0.584 0.531 0.546 0.554
wSVM+IS 0.745 0.790 0.594 0.710
wSVM+SIG 0.844 0.874 0.800 0.839
UOP∗ 0.853 0.843 0.842 0.846
LCGC+SIG 0.857 0.900 0.864 0.874
UOP† 0.861 0.903 0.915 0.893
UOP 0.883∗ 0.910 0.945∗ 0.913∗
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Overall, user-guided approaches give much better performance than unsupervised meth-

ods, indicating that by just a small amount of human guidance — two opposite seed

hashtags, the performance can be boosted significantly. Moreover, UOP gives the best

performance, reaching an average accuracy and AUC of 0.923 and 0.913, respectively (an

improvement of 20.0% and 28.6% over supervised baseline wSVM+IS). Note that the sen-

timent based approach SWN gives unsatisfactory results, probably because user’s opinion

bias is multifaceted and can be reflected by the topical arguments or factual information

published by the user. For example, one of the anti-obamacare tweets reads, "Double

Down: Obamacare Will Increase Avg. Individual-Market Insurance Premiums By 99%

For Men, 62% For Women. #Forbes". Also, we can see that UOP† gives better results

than LCGC+SIG, indicating that our framework works better in capturing user’s opinion

bias. UOP, however, gives better performance than UOP†, confirming that initial bias an-

chors determined through biased hashtags are noisy, and that UOP is able to correct some

wrongly determined bias anchors due to the l-1 norm regularization on ideal bias scores.

Furthermore, we see from the table that UOP† has an improvement of 0.053 and 0.047

for accuracy and AUC over UOP*, respectively. Compared to the corresponding improve-

ment of 0.016 and 0.027 by uCCL over uCC, it is considerably higher. This indicates that

retweeting links are more effective in contributing to bias propagation with the help of bias

anchors. When some users are correctly “labeled” by discovered biased hashtags, opinion

bias can be propagated more effectively through retweeting links.

5.3.6 Multi-Category Classification

In previous experiments, we mainly evaluate our framework as a binary class problem.

However, in this way, we lose the finer granularity of the inferred opinion bias score by

ignoring users who are neutral or do not show evidence. This category of users can not

only be beneficial to our understanding of the general landscape of controversial topics,
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but also can be targeted by polarized activists to influence their bias. Thus, in this section,

we are interested in a finer level of evaluation by casting it as a three-class problem. Here,

instead of combining the category +1 and +2, and the category -1 and -2, we aggregate

users in the category of +1, 0 and -1 into one neutral category 0 for a relatively larger pool

of users in the middle. We then partition the datasets into 50% for training and 50% for

testing, and compare the performance of wSWM+SIG, LCGC+SIG, UOP† and UOP. We

are interested to see how these methods perform in the recall defined by 1
3

∑
i

tpi
tpi+fni

. This

measure indicates the ability of finding out the correct user category in a three-category

setting for different methods.

For wSVM+SIG, we adopt the one-vs-rest multi-class implementation. For LCGC,

we modified it to consider three labels. For UOP based methods, we select two optimal

thresholds as boundaries: θp, used to distinguish category +2 and 0 and θn, used to distin-

guish category -2 and 0. These thresholds are selected by searching the range (-1,1) with

a step of 0.05 with the training data. For UOP, θn and θp are determined as -0.25 and 0.2

for “gun control”, -0.35 and 0.35 for “abortion”, -0.2 and 0.2 for “obamacare”. The final

results are shown in Table 5.6. As we can see, UOP gives the best performance of all,

indicating that it is the most capable in finding out users who are polarized and neutral.

wSVM and LCGC perform worse, probably because of the small amount of training sam-

ples for category 0. UOP based methods are able to mitigate this effect by propagating

constrained bias score without explicit consideration of neutral users and only with bias

anchors. Thus, we can conclude that UOP is effective in representing the degree of user’s

opinion bias under the controversial topics.

5.3.7 Case Study: Fracking and Vaccines

Now that we have demonstrated the effectiveness of the system in finding general

users’ opinion bias, we would like to test the framework further in another two datasets:
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Table 5.6: Multi-category classification performance.

Method gun control abortion obamacare
wSVM+SIG 0.611 0.592 0.573
LCGC+SIG 0.632 0.657 0.646

UOP† 0.690 0.699 0.673
UOP 0.705 0.701 0.716

“fracking” and “vaccine”. Since these two topics are relatively new compared to the above

politically-driven well-known topics, it would be interesting to discover what is being

posted and debated by opinionated users of both sides. For “fracking”, we pick the seeds

#dontfrackny and #jobs as the input to the system. We select #jobs as the pro-seed for

“fracking” because protagonists tend to emphasize the benefit of creating jobs as one of

the arguments for “fracking”. For “vaccine”, we pick the seeds #health and #autism as the

input to the system. Again, we select #autism as the anti-seed because antagonists tend to

focus the negative effect of vaccination. Overall, selection of input seeds is intuitive due

to the recognizability of some of the crowd-generated tags and thus does not require much

human effort.

We first demonstrate the biased themes discovered via SIG. Table 5.1 shows the top-

ranking biased hashtags for different time periods. We can see that some themes such

as #natgas and #frack remain constantly used by users supporting and opposing fracking,

respectively; some other themes, such as #dontfrackny and #balcombe, arise and fade as

related controversial events occur. For example, the occurrence of #dontfrackny corre-

sponds with a rally of New Yorkers in the mid February 2013 to urge Governor Cuomo

to resist fracking in the state of New York; the occurrence of #balcombe corresponds with

a protest against a license to drill near Balcombe in England granted by Environment

Agency. These changing themes indicate a strong degree of opinion bias and emerge as a

group of users start to use them together, making them a very useful signal to determine
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Table 5.7: Top ten themes at different times for “vaccine”; red for pro-vaccine; blue for
anti-vaccine.

Feb 2012 June 2012 Nov 2012 Apr 2013
#vaxfax #health #health #vaccineswork
#health #vaxfax #vaxfax #health

#flu #polio #flu #measles
#polio #hpv #autism #mmr
#hpv #vaccineswork #news #hiv

#autism #pakistan #polio #autism
#thrillers #autism #hiv #vaxfax
#measles #news #suspense #polio
#action #suspense #thrillers #flu
#flushot #action #hpv #news

Figure 5.6: Temporal volumes of top anti-fracking themes for seed expansions via co-
occurrence (Left) and via SIG (Right).
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Table 5.8: Sample opinionated users and their corresponding tweets for “fracking”; posi-
tive bias score represents pro-fracking.

users bias anchor bias score tweets

@Energy21 yes 0.91
Four real-life examples of how #shale

#energy is creating #jobs and improving
the economy: via @FreeEnterprise.

@Duffernutter yes -0.92

RT @ABFalecbaldwin: Together we can
help @NYGovCuomo see there is no

place for #fracking in NY. RT to let him
know #DontFrackNY.

@IntellisysUK no 0.15

RT @JimWoodsUK: Provocative article
from @James_BG on New

Environmentalism. Worth remembering
fracking has reduced US CO2 emissions.

@janet_ewan no -0.39

RT @IshtarsGate: A 5.7-magnitude
earthquake linked to fracking in

Oklahoma in 2011 knocked down 14
homes and injured two people.

and propagate user’s opinion bias. Furthermore, the transient property of these chang-

ing themes also makes the approach of seed expansion via co-occurrence less effective.

Figure 5.6 illustrates the temporal characteristics of discovered anti-fracking themes for

different seed expansion approaches. We can see that seed expansion via co-occurrence

failed discovering #balcombe and #nogas, as both of these hashtags do not co-occur with

#dontfrackny. In contrast, SIG tackles the problem by tapping into the power of content

to discover more related biased themes. Table 5.7 shows the top-ranking biased hash-

tags at different time periods for the dataset “vaccine”. To illustrate how the system can

uncover strong partisans, Table 5.8 shows two uncovered bias anchors – @Energy21, a

pro-fracking account from the Institute for 21st Century Energy, and @Duffernutter, an

anti-fracking account associated with TheEnvironmentTV.
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5.4 Integrating Opinion Bias into User Recommendation

In this section, we demonstrate the application of integrating opinion bias for user

recommendation in social media. The principle of homophily, observed both in political

blogosphere [42] and social media [45], states that people tend to associate with others

who are like-minded. Thus, when social media services recommend users to follow, it

is natural to consider recommending users who have similar opinion bias on shared topic

interests. User recommendation can also be considered as a task of link prediction in

graphs, and there has already exist many works [125] which specifically address this task,

mostly taking advantage of graph structure. Here, our goal is to demonstrate how opinion

bias can be utilized for user recommendation as a different dimension.

The task can be formally described as follows: Given a controversial topic T , a sam-

pled set of users U and their corresponding on-topic tweets D, recommend k friends to

follow for the target user. Note that we have only tweets to rely on to determine the rec-

ommendations. We provide two approaches for the task.

Content-Based approach. In this collaborative filtering approach, users with the highest

content similarities to the target user are recommended. Specifically, we aggregated the

corresponding tweets for each user and applied vector space model (VSM) with unigrams

and bi-grams, with the similarity computed by cosine measure.

Opinion-Weighted (OW) approach. Here, user similarity is considered as a weighted

sum of content similarity and opinion similarity. The content similarity is computed in the

same way as VSM. The opinion similarity is obtained as follows. First, user’s opinion bias

score is obtained through UOP. Then, we characterize the opinion similarity of two users

as:
simopi(ui, uj) = 1− |f(bi)− f(bj)|

where f(x) is a normalizing function with the form as 1
1+e−c·x . The value of parameter
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c should be chosen to make b’s transition to opposite sign steep enough, so that two bias

scores with small difference but opposite signs can still result in large difference after

transformation. Also, when bi and bj have the same sign, they can have a relatively large

opinion similarity. To this end, c is chosen to be 5. The final similarity is computed as the

weighted sum (α is the weighting parameter), which we use for ranking users:

sim(ui, uj) = αsimvsm(ui, uj) + (1− α)simopi(ui, uj)

5.4.1 Evaluating User Recommendation

For evaluation, we additionally crawled following links for the dataset “gun control”,

“abortion” and “obamacare”. These following links are used as the ground truth in our

experiments. We randomly sampled 500 users who have at least 20 followees for each

topic and used the following metrics to evaluate: (i) precision@K: which measures the

percent of the correct followees out of the top K recommended users; and (ii) mean av-

erage precision@K: which is the average of the precision at the position of each correct

followee out of the top K recommended users. This measure considers the positions of the

recommended users. K is chosen to be 20.

Figure 5.7 shows the performance comparisons between the two approaches. Here, α

is set to 0.5. For both metrics, the OW approach has a better performance than the vanilla

VSM for each topic. On average, it gives an improvement of 26.3% in precision@20

and 13.8% in MAP@20. These results indicate that user’s opinion similarity boosted the

rank of some of the true followees who have similar opinion bias as the target user, while

lowering the similarity with users who hold different opinion. Hence, it implicitly confirms

the principle of homophily that people tend to make friends who share similar opinions.

In Figure 5.8, we also show the performance at different values of α. As we can see,

the best performance is achieved neither at α = 0 or 1 for all topics, but at a mixed weight
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Figure 5.7: Performance comparison for VSM and OW.

Figure 5.8: Performance at different values of parameter α.

between content and opinion similarity. Even when the weight given to opinion similarity

is small, i.e., when α = 0.9, the improvement can reach 20.2% for precision@20 and 9.2%

for MAP@20 on average. The figure shows that the performance is not very sensitive to

the value of α when α is approximately in the range of (0.2, 0.8), indicating it does not

require fine tuning to reach a better performance.
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5.5 Conclusion and Next Steps

We have seen how the BiasWatch system can lead to an improvement of 20% in accu-

racy over the next-best alternative for bias estimation, as well as uncover opinion leaders

and bias themes that may evolve over time. We also demonstrated how the inferred opinion

bias can be integrated into user recommendation and showed that it gives a performance

improvement of 26% in precision. While our investigation has focused on textual and

relational features, it does not limit us from integrating new signals such as location and

profile demographics for better performance in future work. We are also interested in in-

corporating opinion bias into a social media dashboard, so that participants can be aware

of their own opinion dynamics as well as those of others.
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6. USER PROFILING: DISCOVERING USER’S GEO-TOPIC PROFILE

In this section, we move to the final aspect of user profiling in the dissertation: user’s

geo-topic profile, a multi-dimensional concept to describe geo-spatially aware topical pro-

file for users. Specifically, we first give the motivation on why we propose modeling user’s

geo-topic profile, then present and evaluate a principled framework to uncover what users

are known at what location.

6.1 Introduction

Uncovering user interests and expertise is a vital component of search and recommen-

dation systems on the web and social media [13, 26, 12, 16, 17]. These user topical profiles

reveal what a user is known for [19] and can be used to augment newsfeed ranking algo-

rithms to surface high-quality content, improve item-based recommenders by leveraging

the topical expertise of knowledgeable users [98], and enhance personalized web search

[11, 12] and targeted advertising [21].

Of course, the quality of these user topical profiles is dependent on the social-spatial

properties of the systems in which they arise. For example, several recent efforts [107,

18, 19] have demonstrated how to build profiles from Twitter Lists, where the aggregate

crowd-labeling of Twitter users can provide a window into what users are known for. The

user topical profiles derived from these Twitter Lists are impacted by the social connec-

tions of users on Twitter as well as their geo-locations, meaning that careful consideration

of these social-spatial properties is critical. To illustrate, Figure 1 shows the heat maps of

the locations of Twitter users who have labeled Michael Moore (@MMflint) and Roy Blunt

(@RoyBlunt). We observe that: (i) Generally, a user’s topical expertise is geographically

bounded, i.e., a user is not uniformly known across the entire geo-space; (ii) @MMFlint

and @RoyBlunt, even though both known for politics, are known by users from different
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regions, with @RoyBlunt known mainly in Missouri and D.C. while @MMFlint is known

in a much broader geo-scope; (iii) @MMFlint, as a filmmaker, is mainly known in New

York and LA, while he has a much broader impact for politics in other regions such as

San Francisco and D.C. as well. Thus, we can see that geo-location can impact user top-

ical profiles in two aspects: (i) Having the same topical profile, users can have impact in

different geo-locations; (ii) One user can be known at different geo-locations with varying

popularity for different topical expertise.

Motivated by these observations, we investigate the impact of social-spatial properties

on the creation of high-quality user topical profiles. Complementary to traditional user

topical profiles, we propose the modeling of fine-grained user geo-topic profiles. These

geo-topic profiles capture the variations of user popularity for topics across geo-locations;

essentially, a geo-topic profile is a multi-dimensional concept to describe and model a user,

and is expected to capture the pair-wise interactions involving geo-locations and users’

topical profiles. Modeling user geo-topic profiles faces two major challenges: (i) they

are often overdispersed. Unlike the ratings or content studied in many previous works

[95, 91, 58], the popularity counts in geo-topic profiles are heterogeneous with varying

scales for different users (some users are much more popular than others); and (ii) they are

often extremely sparse due to multi-dimensionality, with many users often known for very

few topics at certain locations.

Given these challenges, we first propose a multi-layered (two-layered in our case)

Bayesian hierarchical user factorization which extends the recently proposed Poisson gamma

belief network [97] from modeling two dimensional non-negative counts to multi-dimensional

heterogeneous counts. The extra layer of user factorization learns a more expressive user

model than that of single-layered factorization by allowing a larger variance-to-mean ratio

from the generative framework, thus making it better equipped at handling overdispersion

and user heterogeneity. To alleviate the sparsity issue, we investigate how user’s con-
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(a) @MMFlint known for politics

(b) @RoyBlunt known for politics

(c) @MMFlint known as filmmaker

Figure 6.1: Spatial distribution of Twitter users who have listed (a) @MMFlint for politics;
(b) @RoyBlunt for politics; (c) @MMFlint as a filmmaker.

103



textual information, specifically, user’s geo-location and social ties, correlates with one’s

geo-topic profile, and then propose to integrate these contexts into the two-layered hierar-

chical user model for better representation of user’s geo-topic preference by others. Due to

the non-conjugacy of the multi-layered factorization scheme, we exploit a data augmenta-

tion scheme for negative binomial (NB) distribution and develop an efficient closed-form

Gibbs sampling formula for scalable inference to obtain the posterior distributions of latent

factors and parameters. We summarize the contributions as follows:

• First, we introduce a multi-dimensional user profiling concept called user geo-topic pro-

file to capture the pair-wise interactions between geo-location and user’s topical profile,

and formulate the problem of learning user’s geo-topic profile to model where users are

popular for what topic.

• Second, to overcome overdispersed popularity counts caused by user heterogeneity,

we propose a two-layered Bayesian hierarchical user factorization (bHUF) generative

framework, which can be easily generalized to deep user factorization.

• Third, to alleviate sparsity, we investigate the impact of user’s contexts, specifically,

user’s geo-location and social ties, on user’s geo-topic profile, and then propose an en-

hanced model (bHUF+) by generating the first-layer user latent factor based on user’s

contextual information. We then develop an efficient closed-form Gibbs sampling scheme

for inference using a data augmentation scheme for NB distribution.

• Finally, we evaluate bHUF and bHUF+ against several baselines over GPS-tagged Twit-

ter datasets, and observe that bHUF gives about 5%~13% improvement in precision

and recall over the best alternative one-layered baseline, and an additional 6%~11%

improvement with user’s geo-location and social context.
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6.2 Preliminaries

We assume there exist a set of users U in a social-spatial network, a dictionary of tags

T that are used to indicate user’s topical profile and a total of locations L. We use capital

letters U , T and L to represent their sizes, respectively. In a social-spatial network such as

Twitter or Linkedin, a user u is often tagged or followed by people from different locations

for her topical expertise t. For instance, Twitter users are often tagged by others in lists

with their own selected keywords, with some examples shown in Figure 6.1. Linkedin

users can also use skill tags for their own profiles and be endorsed by others with these tags.

With these notations, we first define a user’s geo-topic token in a social-spatial network as

follows.

User’s Geo-Topic Token. A geo-topic token of user u is defined as a quadruplet {u t←−

v, l} indicating that user u is followed/tagged by user v at location l with a tag t. To study

user’s popularity of a topic t at a location l, we aggregate all of u’s geo-topic tokens with

respect to t and l, and obtain a count y that indicates the extent to which the user is popular.

We then give the following definition of user’s geo-topic profile.

User’s Geo-Topic Profile. A user u’s geo-topic profile in a social-spatial network is de-

fined to be a set of quadruplets Pu, with each quadruplet pu representing this user’s popu-

larity y, y ∈ Z≥0, for topic t at location l, denoted {u, t, l, y}.

From the definition of user’s geo-topic profile, we can easily obtain user’s topical pro-

file {u, t, y} ∈ Tu by aggregating quadruplets Pu with the same topic. Similarly, user’s

location profile {u, l, y} ∈ Lu can be obtained by aggregating Pu with the same location.

Thus, user’s geo-topic profile provides a more generalized and finer approach to profiling

users by considering geo-spatial influence. Based on the above definition, we formally

define the problem studied in this work as below.

Learning User’s Geo-Topic Profile. Given partially observed user geo-topic profile, i.e.,
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a subset of quadruplets Pou ∈ Pu, our task is to predict and rank user u’s popularity for dif-

ferent tags at different locations, i.e., identify top-ranking {u, t, l, ŷ} according to learned

score ŷ from each tag-location combination (t, l) for u.

Bayesian Poisson Tensor Factorization (BPTF). Bayesian Poisson factorization (BPF)

has shown promising performance for several tasks [91, 58] on modeling count-valued

data. By assuming Poisson distribution in modeling counts instead of Gaussian distri-

bution, it is better at capturing long tailed distribution of sparse discrete data and enjoys

scalable learning since only non-zeros are considered during inference. BPF is extended

to BPTF in [96] for modeling high dimensional sparse dyadic tensor data. Specifically, to

model user u’s popularity for tag t at location l, denoted yutl in our context, it is generated

through Canonical PARAFAC (CP) decomposition with Poisson distribution as follows,

yutl ∼ Poisson(
K∑
k=1

θukφtkψlk) (6.1)

where θuk is the latent factor of u representing user’s geo-topic preference by others. φtk

and ψlk represents tag t’s and location l’s latent factor. Each component of these latent

factors are drawn from conjugate Gamma distributions with shape parameter α and rate

parameter β. Small values of α induces sparsity and better interpretability of inferred

latent factors.

6.3 Bayesian Hierarchical User Factorization

As a first pass, we can attack the problem with BPTF since users’ geo-topic profiles

constitute a non-negative count tensor. We can then use inferred latent factors θuk, θtk

and θlk to compute the expected score to predict the missing values in a user’s geo-topic

profile. However, BPTF may struggle with the following challenges:

Geo-topic profiles are overdispersed. We first plot the probability mass function of user’s
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(a) a

(b) b

Figure 6.2: a: probability mass function of user’s popularity counts with a grid size of
2.5◦ × 2.5◦ in terms of latitude by longitude. b: histogram of the number of geo-topic
tokens for a user. Similar distributions have been observed in other sizes of grids.
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popularity counts in Figure 6.2a. As we can see, the non-zero counts follow the power law

distribution with most of counts very low, ranging from 1 to almost a few hundreds with

a variance-to-mean ratio about 15.4 in the data. Figure 6.2b also shows the histogram

of the number of user geo-topic tokens, which exhibits a heavy-tailed distribution. This

indicates that users are often known by others to different extent, i.e., some users can

be very popular while others are lesser known. This heterogeneity from users requires a

model that is capable of capturing this phenomenon. However, the modeling capability

of Poisson distribution in Equation 6.1 is limited due to its equal mean and variance, thus

may not perform well with these overdispersed popularity counts.

Geo-topic profiles are extremely sparse. User’s geo-topic profile, as is observed from

our data, is extremely sparse with only a small portion of non-zeros due to its multi-

dimensionality. Specifically, many users are often known for very few topics at certain

locations. Indeed, our data shows a sparsity level of having 0.047% or 0.018% of non-

zero counts at a grid size of 2.5◦ × 2.5◦ or 0.5◦ × 0.5◦ in terms of latitude by longitude.

One common approach to alleviate the issue is to exploit user’s contextual information

which commonly exists in social-spatial networks. However, it is not clear whether user’s

contexts have positive correlations with one’s geo-topic profile, and if there is, how to

model and integrate them to better learn user’s geo-topic profile.

In the following sections, we first propose a two-layered hierarchical model (bHUF)

to overcome overdispersion and user heterogeneity, then investigate how user’s contexts

influence one’s geo-topic profile, and finally present an enhanced model (bHUF+) by in-

tegrating user’s contexts to alleviate the sparsity issue.

6.3.1 Two-layered Hierarchical Model

bHUF is a hierarchically constructed multi-dimensional Bayesian framework which

extends the recently proposed Poisson Gamma belief network [97] from modeling two
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dimensional non-negative counts to modeling sparse and heterogeneous high dimensional

tensor counts. Specifically, it generates user latent factor with another layer of factorization

by decomposing it into the product of a second-layer user latent factor and a weight-

connection matrix. This multi-layered construction is equivalent to modeling the counts

with NB distribution which is shown in later section to have a variance-to-mean ratio larger

than that of single-layered construction by a multiplicative factor. As a result, it is better

equipped at handling overdispersed counts induced by user heterogeneity.

As in Equation 6.1, we assume user u’s popularity yutl for tag t at location l is generated

through CP decomposition with Poisson distribution. However, in Equation 6.1, user’s

latent factor is only generated through Gamma priors with hyper-parameters. Instead, we

let each user’s latent factor be generated through a second layer of factorization, with each

first-layer user latent factor conditioned upon a second-layer user dependent latent factor.

The overall generative framework, given yutl, is described as follows,

yutl ∼ Poisson(
K∑
k=1

θukφtkψlk)

θuk ∼ Gamma(θuk2Ω, βu)

θuk2 ∼ Gamma(ε0, β
(2)
u )

Ωk2: ∼ Dirichlet(η0, ..., η0)

(6.2)

where θuk is Gamma distributed according to a second user’s latent factor θuk2 . The second

user’s latent factor θuk2 is given a Gamma distribution as a prior.

The weight matrix Ω ∈ RK2×K connects the first layer user factor θuk to the second

layer user factor θuk2 , and is designed to capture the correlations between user’s latent fac-

tor θuk of the first layer. Thus, Ω can be treated as the weights between two hidden layers

from the perspective of a neural network. Each row of Ω is given Dirichlet distribution as
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Figure 6.3: Overall generative framework.

its prior so as to push the scale learning to Gamma distributed θuk2 . As we will later show,

it also permits a relatively easy inference process.

For tag and location latent factor, we impose Dirichlet distributions as their priors:

φ:m ∼ Dirichlet(ηt, ..., ηt)

ψ:m ∼ Dirichlet(ηl, ..., ηl)

where each column of the tag and location latent factor φ:m and ψ:m is Dirichlet distributed.

The use of Dirichlet distribution as priors brings several benefits: (i) it naturally imposes

non-negativity constraints [126]; (ii) Since each column of φ:m and ψ:m is restricted to

have L1 norm, they can be considered as a distribution over the corresponding entities,

resulting in better interpretability of inferred tag and location factors; (iii) The L1 norm

of these factors can also separate scale from tag and location factors, which makes the

tag and location factor not interact with user’s latent factor in terms of scale for all latent

dimensions. This property is desired to generalize our three-dimensional models to higher

dimensions, and as we will show in section 6.3.3, to maintain the validity of lemma 3.

For both layers of user’s rate parameter βu and β(2)
u , we place uninformative gamma
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priors on them: βu, β
(2)
u ∼ Gamma(ε0, ε0). These user-dependent rate parameters are

used to generate user’s latent factor θuk and θuk2 to explain the different degree of overall

popularity for each user. Thus, βu and β(2)
u shall be learnt to reflect the extent of user’s

overall popularity at different layers. Note that we can easily generalize the model to three

or more (deep) layers by continuously factorizing the second user’s latent factor θuk2 .

6.3.2 Modeling User’s Contextual Information

In this section, we present an enhanced contextual user model based on the previously

proposed hierarchical generative framework to alleviate the sparsity issue. Specifically,

we investigate two of the most common user contexts in social-spatial networks — geo-

location and social ties — among the many user contexts. We first explore how these two

factors correlate with user’s geo-topic profiles, and then propose a contextualized Bayesian

hierarchical user model to learn better representation of users.

6.3.2.1 User’s Geo-location Context

To study the influence of user’s geo-location, we need to define how to measure the

similarity between users’ geo-topic profiles. To that end, we treat each user’s geo-topic

profile Pu as a distribution of counts indexed by tag and location, and adopt Jenson-

Shannon (JS) divergence as the distance measure due to its symmetric and bounded prop-

erty. Thus, the similarity between two user’s geo-topic profile Pua and Pub is defined

as 1 − JS(Pua ,Pub) where JS(Pua ,Pub) = 1
2
KL(Pua ||M) + 1

2
KL(Pub||M). M is the

average of Pua and Pub and KL(·) represents Kullback-Leibler divergence. The similar-

ity ranges from 0 to 1, with a large value indicating similar distributions of two users’

geo-topic profiles.

We first show how geo-topic profile similarity between users changes with respect to

the geographical distance in Figure 6.4. As we can see, for both users in US and the world,

the average similarity is the highest when users are close to each other, specifically, when
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(a) a

(b) b

Figure 6.4: Left: average users’ geo-topic profile similarities with respect to the Haversine
distance between users. Right: boxplots for US GNN, US state, US random, world GNN,
world timezone, world random.
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they are within about 50 miles. It then drastically decreases as the distance increases.

This observation aligns with Tobler’s first law [127] of geography which states that “near

things are more related than distant things”. In light of this, we next explore how geo-topic

similarity between geographically nearest neighbors (GNN) compares against that of two

random users. Figure 6.4b also shows the boxplots of geo-topic similarities for a group

of GNN in US/the world (in terms of five neighbors) against a group of random users in

US/the world. As we can see, the similarities of GNN for both datasets are statistically

much higher than random users, suggesting that GNN are more likely to share similar

geo-topic profiles with each other. Furthermore, we also obtain the state for each user in

US and timezone for each user in the world through reverse geo-coding. We observe in

Figure 6.4b that users in the same state or timezone have statistically higher similarities

than random users, indicating that the state and timezone could also be useful geo-spatial

features for finding users with similar geo-topic profiles.

6.3.2.2 User’s Social Context

Due to the homophily effect [103], socially connected users often share similar inter-

ests with each other. Indeed, there have been many works [27, 14] that exploit social ties

in the applications such as recommendation and search. Here, we explore how social ties

in terms of a user following others may affect geo-topic profiles. To that end, we first

define the social similarity of two users with their corresponding followers. Let Fa and Fb

denote the set of users following user ua and ub. We define two user’s social similarity as

the cosine similarity of Fa and Fb: ||Fa ∩Fb||/(||Fa||||Fb||), where each user is treated as

a binary vector indexed by each follower f ∈ F . Thus, a large similarity of two users in-

dicates that they are often followed by the same followers. We then examine the Pearson

correlation coefficient between users’ geo-topic profile similarity and their social similar-

ity in Table 6.1. As we can see, for both users in US and the world, there exists weak
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Table 6.1: Pearson correlation coefficient between user’s profile similarity and their social
similarity.

Location Geo-topic profile Topic profile Geo profile
US 0.293 0.332 0.142

world 0.320 0.313 0.237

positive relationship between user’s geo-topic profile similarity and their social similarity.

This indicates that users tend to share similar geo-topic profile, i.e., known for the same

tags at the same locations, if they are followed by a similar set of users. Furthermore, we

also show Pearson correlation between user’s social similarity and user’s topical and geo

profile, as previously defined in the Section 6.2. As we can see, user’s social similarity

has a weak positive relationship with user’s topical profile for both users in US and the

world. It, however, does not share similar degree of positive relationship with user’s geo

profile. An intuitive explanation is that users often follow each other for similar topical

interest, as the social homophily indicates, and that social ties have more topical influence

than geo-spatial influence.

6.3.2.3 Modeling User’s Contextual Information

Previous analysis shows that user’s geo-location and social information has corre-

sponding influence over user’s geo-topic profile. One immediate question is that how

we can integrate these contexts into the model for better representation of users. In this

section, we propose an extension to the previous two-layered user factorization model.

Let X denote the discrete matrix of user’s contextual features, where each element

is a binary indicating whether a user has a corresponding feature. Specifically, we use

Xg ∈ ZU×G and Xf ∈ ZU×F to denote user’s geo-spatial and social features. For user’s

geo-spatial features, we empirically select five GNN for each user and their corresponding

states (US) or timezone (world), with each column of Xg representing a feature. For
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social features, each column of Xf represents one of F followers. To integrate Xg and

Xf , we propose to generate the first layer of user latent factor θuk on her corresponding

contextual information. Specifically, we linearly add feature’s latent factor to the shape

parameter of θuk, and let the inference process automatically learn feature’s latent factor

and its contribution to user’s latent factor. Thus, our contextual user factorization goes at

follows,

θuk ∼ Gamma(θuk2Ω +
G∑
g=1

Xugλgk +
F∑
f=1

Xufλfk, βu) (6.3)

where λgk and λfk represents the latent factor of geo context g and social context f , and

are placed with uninformative Gamma distribution as priors λgk, λfk ∼ Gamma(ε0, ε0).

All the rest latent factors are kept the same as in Equation 6.2. Since the first layer user

latent factor is also conditioned upon user’s contexts, θuk is expected to not only reflect

user’s preference through geo-topic popularity counts but also user’s contextual informa-

tion. This formulation is especially useful for “cold-start” users who have very few counts

in their geo-topic profiles. Our overall Bayesian contextual hierarchical user factorization

(bHUF+) is shown in Figure 6.3.

6.3.3 Inference

Since our model makes use of Gamma shape parameters for the construction of the

multi-layer factorization scheme on tensor counts, it is not tractable to compute the exact

posterior of the latent factors due to its non-conjugacy. However, we exploit the recently

proposed data augmentation scheme for NB distribution, and develop an efficient closed-

form Gibbs sampling formula to learn the latent factors with augmented distribution. We

first introduce two lemmas [128] that are frequently used in the derivation.

Lemma 1. Suppose that y1, ..., yK are independent random variables with yk ∼ Pois(θk)

and y =
∑K

k=1 yk. Set θ =
∑K

k=1 θk. The Poisson-multinomial equivalence states that

(y1, ..., yK) ∼Mult(y; θ1
θ
, ..., θK

θ
) and y ∼ Pois(θ).
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Lemma 2. Suppose y ∼ NB(r, p) and c ∼ CRT (y, r) is a Chinese restaurant table

distribution. Then y and c can also be jointly distributed as y ∼ SumLog(c, p) and c ∼

Pois(−rln(1 − p)), where SumLog is defined as y =
∑c

i=1 xi and xi ∼ Log(p) is

logarithmic-distributed random variable.

Gibbs sampling for bHUF+. Given a tensor count yutl, we first reparametrize it as yutl =∑K
k=1 yutlk, where each yutlk is a latent count and has a Poisson distribution,

yutlk ∼ Pois(θukφtkψlk)

Then by the Poisson-multinomial equivalence, yutlk can be sampled as

{yutlk} ∼Mult(yutl;
θukφtkψlk∑K
k=1 θukφtkψlk

) (6.4)

With the latent count sampled, we define several collective aggregates that are used in

sampling as follows:

yuk· =
T∑
t=1

L∑
l=1

yutlk

yttk· =
U∑
u=1

L∑
l=1

yutlk

yllk· =
U∑
u=1

T∑
t=1

yutlk

We sample each latent factor and parameter with Gibbs sampling as follows,

Sampling φtk. Due to the Dirichlet and Multinomial conjugacy, each column of φ:k has a

posterior Dirichlet distribution, which can be sampled with

φ:k ∼ Dir(yt1k· + ηt, yt2k· + ηt, ..., ytKk· + ηt)

Sampling ψlk. Similarly with φtk, each column of ψ:k also has the posterior Dirichlet
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distribution with

ψ:k ∼ Dir(yl1k· + ηl, yl2k· + ηl, ..., ylKk· + ηl)

Sampling θuk. Using Poisson-Gamma conjugacy, the posterior of θuk is still a Gamma

distribution and can be sampled with,

θuk ∼ Gamma(yuk· + θuk2Ω +
G∑
g=1

Xugλgk +
F∑
f=1

Xufλfk, 1 + βu)

Since the row of φt: and ψl: are Dirichlet distributed with the L1 norm 1, the posterior rate

parameter of θuk is simplified to 1 + βu. Thus, we can see that Dirichlet distributed φtk

and ψlk do not interact with θuk directly. This isolation by scale provides a nice property

for the derivation of sampling scheme for user related latent factors.

Sampling Ω. Using Poisson distribution’s additivity on yutlk ∼ Pois(θukφtkψlk) for each

t and l gives us yuk· ∼ Pois(θuk). Note that tag and location latent factor disappear due

to the unit L1 norm of Dirichlet distribution. Let θuk =
∑

i θuki, where θuki are latent

parameters defined as

θuki =


θk2Ωk2k, 1 ≤ i ≤ K2

Xugλgk, K2 + 1 ≤ i ≤ K2 +G

Xufλfk, K2 +G+ 1 ≤ i ≤ K2 +G+ F

(6.5)

Thus, by the Poisson-multinomial equivalence, we can sample corresponding yuki with

{yuki} ∼Mult(yuk·; θuki). For notation convenience, we let yukk2 = yuki for 1 ≤ i ≤ K2,

yukg = yuki for K2 + 1 ≤ i ≤ K2 + G and yukf = yuki for the rest of i. Then, for

1 ≤ i ≤ K2, we have yukk2 ∼ Pois(θuki) and θuki ∼ Gamma(θk2Ωk2k, βu) due to infinite

divisibility of Gamma distribution. Because
∑T

t=1 φtk = 1 and
∑L

l=1 ψlk = 1 due to unit
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L1 norm, we can integrate out θuki, and have

yukk2 ∼ NB(θuk2Ωk2k, γu) (6.6)

where γu = 1
1+βu

. Using data augmentation for NB distribution in Lemma 2, we can

sample c indexed by u, k and k2 with,

cukk2 ∼ CRT (yukk2 , θuk2Ωk2k) (6.7)

Then, given cukk2 , each row of Ωk2: has a posterior Dirichlet distribution which can be

sampled with,

Ωk2: ∼ Dir(
U∑
u=1

cu1k2 + η0, ...,
U∑
u=1

cuKk2 + η0) (6.8)

Sampling θuk2 . With Equation 6.6 and 6.7 and using the data augmentation in Lemma 2

again, the posterior θuk2 has a Gamma distribution, and can be sampled with

θuk2 ∼ Gamma(
K∑
k=1

cukk2 + ε0, β
(2)
u − ln(1− γu)) (6.9)

Sampling λgk. For each user who have the geographical feature g, i.e., Xug = 1, we have

yukg ∼ Pois(θuki) for K2 + 1 ≤ i ≤ K2 +G, and θuki ∼ Gamma(λgk, βu) due to infinite

divisibility of Gamma distribution. Integrating out θuki, we have

yukg ∼ NB(λgk, γu)

By using data augmentation in Lemma 2, we can sample c indexed by u, k and g with,

cukg ∼ CRT (yukg, λgk) (6.10)
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Given cukg, λgk has a posterior Gamma distribution which can be sampled with

λgk ∼ Gamma(
∑
u∈U(g)

cukg + ε0, ε0 −
∑
u∈U(g)

ln(1− γu)) (6.11)

where U(g) represents the set of users who have feature g.

Sampling λfk. For each user who have a follower f , i.e., Xuf = 1, we have yukf ∼

Pois(θuki) for K2 + G + 1 ≤ i ≤ K2 + G + F , and θuki ∼ Gamma(λfk, βu). We

can sample λfk similarly with λgk by integrating out θuki and use data augmentation for

negative binomial distribution in Lemma 2. Specifically, we first sample cukf as follows,

cukf ∼ CRT (yukf , λfk)

Then, λfk can be sampled with

λfk ∼ Gamma(
∑
u∈U(f)

cukf + ε0, ε0 −
∑
u∈U(f)

ln(1− γu))

where U(f) represents the set of users who have follower f .

Sampling βu. Since the rate parameter of Gamma distribution has conjugate Gamma prior,

the posterior of βu is also a Gamma distribution, which can be sampled with

βu ∼ Gamma(

K2∑
k2=1

θuk2 +
K∑
k=1

(
G∑
g=1

Xgkλgk +
F∑
f=1

Xfkλfk)

+ ε0, ε0 +
K∑
k=1

θuk)

Sampling β(2)
u . Similarly with βu, it has a posterior Gamma distribution which can be
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sampled with

β(2)
u ∼ Gamma((K2 + 1) ∗ ε0, ε0 +

K2∑
k2=1

θuk2)

Sampling CRT distribution. Our inference scheme repeatedly samples from Chinese

restaurant table (CRT) distributions, for which we use an equivalent sum of Bernoulli

distributions [128] as a substitute. Specifically, given c ∼ CRT (y, r), it is equivalent to

c ∼
y∑
i=1

Bernoulli(
r

r + i− 1
)

As we discover from the inference, the further factorization of θuk is more capable of

modeling overdispersed counts by allowing a larger variance-to-mean ratio. Since all scale

learning is pushed to θuk and θuk2 due to the Dirichlet distribution of φ:k, ψ:k and Ωk2:, we

can reach the following Lemma, with the proof given in [129].

Lemma 3. The variance-to-mean ratio of two-layered factorization of θuk to θuk2 in Equa-

tion 6.2 is larger than that of one-layered θuk by a factor of 1 + γu

β
(2)
u

.

Proof: From Equation 6.4 and Poisson-multinomial equivalence, we have

yuk· ∼ Pois(θuk

T∑
t=1

L∑
l=1

φtkψlk)

Since
∑T

t=1 φtk = 1 and
∑L

l=1 ψlk = 1, we have yuk· ∼ Pois(θuk). We then consider

two cases: the first is that θuk is without further factorization, and the second is that θuk

is further factorized to θuk2 as in bHUF. For the first case, let θuk ∼ Gamma(ε0, βu). By

integrating out θuk, we have

yuk· ∼ NB(ε0, γu)

where γu = 1
1+βu

. Thus the variance-to-mean ratio of yuk· is given by 1
1−γu . For case 2,
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from Equation 6.6, we have

yu·k2 ∼ NB(θuk2

K∑
k=1

Ωk2k, γu)

Since
∑K

k=1 Ωk2k = 1, we have

yu·k2 ∼ NB(θuk2 , γu)

Since θuk2 ∼ Gamma(ε0, β
(2)
u ), by the law of total expectation and law of total variance,

we obtain the expectation

E(yu·k2) =
γu

1− γu
ε0

β
(2)
u

and the variance

V ar(yu·k2) =
γu

(1− γu)2

ε0

β
(2)
u

(1 +
γu

β
(2)
u

)

Thus the variance-to-mean ratio of case 2 is 1
1−γu (1 + γu

β
(2)
u

). We then reach the conclusion

that the variance-to-mean ratio for case 2 is larger than case 1 by a factor of 1 + γu

β
(2)
u

.

6.4 Experimental Evaluation

In this section, we conduct several experiments for evaluation. Specifically, we seek

to answer the following questions: (i) How well does bHUF perform against alternative

baselines? (ii) Do user’s contexts help improve upon bHUF? (iii) How does bHUF and

bHUF+ perform in two subproblems — predicting user’s topical and geo profile? (iv)

What impact do some important parameters have?

Data. We use a sample of about 12 million geo-tagged Twitter lists collected from 2013 to

2014. Twitter lists [107, 19, 130] are crowd-generated lists where a labeler can choose to

place a user if the labeler thinks the user is known for the topic indicated by the list tags.

Thus, a user is considered to be widely known for a topic if the user is labeled by many
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Table 6.2: Twitter Datasets.

Dataset # of users # of tags # of labelers # of taggings
US 6,709 240 148,623 756,771
World 11,103 304 327,313 1,506,355

labelers with the same tag. In our experiments, we filter out infrequent tags which appear

in less than 50 lists to focus on quality tags. All users and labelers’ geo-coordinates (lat-

itude/longitude) are determined through their geo-tagged tweets by repetitively dividing

and selecting the grid which contains the most geo-tagged tweets as in [18]. We randomly

sample two datasets, show in Table 6.2: one is bounded in US in which users and labelers

are all in US, and the other is across the whole world. Note that with these datasets, a geo-

topic token {u t←− v, l} is formulated by treating a user as u, a labeler as v, the labeler’s

geo-coordinates as l and the list tag as t.

Experimental Setup. To evaluate the performance of our proposed bHUF and bHUF+ for

predicting and ranking user’s geo-topic profiles, we first randomly select 50% of users for

training and 50% of the users for testing. From the testing users, we then randomly remove

50% of non-zero popularity counts from each user for testing, and the rest for training. We

use the same data split ratio for all of the other experiments. In our experiments, we set the

latent dimension K to a large enough number K = 200 so that all models are evaluated

with sufficient number of latent factors. For K2, we empirically set it to 50 and examine

its impact in supplementary material [129] due to space limit. The hyperparameter ε0 is

empirically set to 0.1 to encourage sparse solutions. For Gibbs sampling, we use a burn-

in period of 1000 iterations, and then use another 1000 iterations to collect every tenth

sample for all models. All latent parameters are randomly initialized.

We measure the performance with three different metrics: RMSE, precision, recall.

RMSE is defined as the root mean square error on the hold-out non-zero counts. Pre-
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cision and recall are used to measure the ranking performance between predictions and

the hold-out ground truth. Specifically, let GroundTruth(ui, n) denote the set of top n

ranked tag-location combination (t, l) according to y out of the entire non-zero counts

GroundTruth(ui) for user ui in the testing set, and let Pred(ui, n) denote the set of top

n ranked tag-location combination (t, l) according to model’s predictions for user ui, then,

precision P@n and recall R@n are defined as

P@n =
1

N

N∑
i=1

|Pred(ui, n) ∩GroundTruth(ui, n)|
n

R@n =
1

N

N∑
i=1

|Pred(ui, n) ∩GroundTruth(ui)|
|GroundTruth(ui)|

Thus, we can see that P@n represents the fraction of correctly identified tag-location

combinations from the top n predictions, and R@n represents the fraction of true non-

zero tag-location combinations that are ranked in the top n predictions.

Baselines. We use the following baselines for comparison:

• Pairwise Interaction Tensor Factorization (PITF) [131]. This is a pairwise tensor fac-

torization model which captures the pairwise interactions between entities.

• Beta-Negative Binomial CP decomposition (BNBCP) [92]. This Bayesian Poisson CP

decomposition is based on a beta-negative binomial construction with each entity’s la-

tent factor generated by Dirichlet distribution, and is a one-layered factorization model.

• Bayesian Poisson Tensor Factorization (BPTF) [96]. This is the-state-of-art Bayesian

Poisson tensor model introduced in Preliminaries, with each entity’s latent factor gen-

erated through Gamma distribution, and is essentially a one-layered model.

• Bayesian Hierarchical User Factorization (bHUF). We use bHUF-1 and bHUF-2 to

represent one-layered and two-layered model.

• Two-layered bHUF integrated with only user’s geo-location context (g-bHUF-2) and
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Table 6.3: Overall comparison for the US dataset. ‘†’ marks statistically significant differ-
ence over the best one-layered baseline. ‘∗’ marks statistically significant difference over
bHUF-2. Both are evaluated according to two sample t-test at significant level 0.05.

Method RMSE P@10 P@20 R@10 R@20 Imp. (P/R)
PITF 4.7318 0.1249 0.1176 0.0811 0.1224 -
BNBCP 4.5438 0.1604 0.1578 0.1785 0.2218 -
BPTF 4.4973 0.1627 0.1587 0.1788 0.2245 -
bHUF-1 4.4998 0.1534 0.1526 0.1628 0.2157 -
bHUF-2 4.4869 0.1703 0.1664 0.1912 0.2462 4.76%†/8.30%†

g-bHUF-2 4.4705 0.1787 0.1742 0.1979 0.2558 4.80%∗/3.70%∗

s-bHUF-2 4.4767 0.1763 0.1730 0.1964 0.2547 3.74%∗/3.08%∗

bHUF+ 4.4642 0.1834 0.1791 0.2022 0.2636 7.66%∗/6.41%∗

Table 6.4: Overall comparison for the world dataset. ‘†’ marks statistically significant
difference over the best one-layered baseline. ‘∗’ marks statistically significant difference
over bHUF-2. Both are evaluated according to two sample t-test at significant level 0.05.

Method RMSE P@10 P@20 R@10 R@20 Imp. (P/R)
PITF 4.7318 0.1249 0.1176 0.0811 0.1224 -
BNBCP 4.5438 0.1604 0.1578 0.1785 0.2218 -
BPTF 4.4973 0.1627 0.1587 0.1788 0.2245 -
bHUF-1 4.4998 0.1534 0.1526 0.1628 0.2157 -
bHUF-2 4.4869 0.1703 0.1664 0.1912 0.2462 4.76%†/8.30%†

g-bHUF-2 4.4705 0.1787 0.1742 0.1979 0.2558 4.80%∗/3.70%∗

s-bHUF-2 4.4767 0.1763 0.1730 0.1964 0.2547 3.74%∗/3.08%∗

bHUF+ 4.4642 0.1834 0.1791 0.2022 0.2636 7.66%∗/6.41%∗

only user’s social context (s-bHUF-2).

6.4.1 Comparison with Baselines

We first show overall performance comparison in Table 6.3, with all results averaged

over 10 runs for Gibbs sampling. The grid size in this experiment is set to 2.5◦ ∗ 2.5◦

(equivalent to approximately 175 miles ∗ 130 miles at latitude 40◦) for both datasets.

Other choices of grid size are examined in later experiments. As we can see, overall,
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the proposed bHUF+ gives the best performance among all methods in terms of RMSE,

precision and recall. This indicates the superiority of the two-layered user factorization

integrated with user’s geo-location and social contexts.

Comparison without user’s context. As shown in Table 6.3, two-layered user factoriza-

tion bUHF-2 generally gives better performance than single-layered model. Specifically,

it gives an average improvement of 7.06% and 13.4% for precision and recall over the best

one-layered model for the US dataset, and an average improvement of 4.76% and 8.30%

for precision and recall for the world dataset. This confirms that the two-layered factor-

ization has more expressive modeling power over the single-layered model. Moreover, by

examining the inferred user factors θuk and θuk2 , we obtain that the variance for θuk and

θuk2 is 26.83 and 0.804, indicating that the second-layer user factor has much less variance

and a more uniform distribution compared to the first-layer user factor.

To show that bHUF-2 can roughly capture user’s geo-topic profile, we examine the top-

ranking tags and locations for user @MMFlint. We first compute the ranking of topical

tags for @MMFlint according to the inner product of θuk and all tag factors, with the top

five tags shown as: politics, entertainment, movie, tv and art. We can see that these topical

tags can roughly capture @MMFlint’s topical interest and expertise. For the tag politics,

we examine the top ranking regions for @MMFlint, with the top five grid center coordi-

nates give as: (40.319◦, −74.638◦), (41.931◦, −71.238◦), (37.096◦, −122.243◦), (38.707◦,

−76.339◦) and (33.872◦, −118.843◦). Each location is close to New York, Boston, San

Jose, Washington D.C. and Los Angeles, respectively, which generally agrees with the

heat map in Figure 6.1. Note that these coordinates are not exactly in these cities due to

grid granularity.

Comparison with user’s context. From Table 6.3, we can observe that bHUF+ enhanced

with user’s contexts shows significant improvement over models without them. Specifi-

cally, the model integrated with user’s geo-location g-bHUF-2 gives an average improve-
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ment of 5.90% for precision and 4.86% for recall over bHUF-2, while s-BHUF-2 gives an

average improvement of 4.24% and 4.13% for precision and recall over bHUF-2, respec-

tively. This confirms that (i) user’s context, specifically, user’s geo-location and social ties,

can be used to improve predicting user’s geo-topic profile; and (ii) Equation 6.3 — con-

ditioning the first-layer user factor on a linear combination of the second-layer user factor

and her corresponding contexts — can effectively learn the impact of contextual factors.

Furthermore, the integration with both contexts gives better performance than either of

them, suggesting that user’s geo-location is complementary to the social context in terms

of predicting one’s geo-topic profile.

6.4.2 Predicting User’s Topical and Geo Profiles

Very often, we are interested in knowing only user’s topic profile – what a user is

known for – or user’s geo profile – where this user is known for. Both problems can

be considered as lower dimensional subproblems of predicting user’s geo-topic profile by

aggregating quadruplets {u, t, l, y} ∈ Pu with respect to locations/tags for each user. In

this section, we show how modeling a more generalized user geo-topic profile can improve

on either two subproblems. Specifically, we use user, tag and location latent factor θuk, φtk

and ψlk inferred by three-dimensional models to obtain user-tag and user-location score

by computing the inner product of θuk and φtk, and of θuk and ψlk. To compare with a

two-dimensional model, we use BPF [91] for modeling user-tag counts and user-location

counts. All models are evaluated with P@5 and R@5.

Predicting user’s topical profile. We show performance comparison in Figure 6.5. As we

can see, three dimensional models by considering user’s geo-topic profile generally give

much better performance. This indicates that by distinguishing user’s topical profile with

geo-space, we can better predict user’s topical profile. Among all methods, bHUF+ gives

the best performance overall, while bHUF-2 outperforms the one-layered models, which
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Figure 6.5: Precision and recall for predicting user’s topical (top) and geo (down) profile.
Left: US. Right: world.
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agrees with the previous observation for predicting user’s geo-topic profile. Furthermore,

we can see that models enhanced with user’s contextual information significantly outper-

forms those without it, confirming the importance of user’s contextual information. Specif-

ically, s-bHUF-2 gives better performance than g-bHUF-2, indicating that social context

in terms of user’s followers is more informative than user’s geo-location on learning user’s

topical profile, which agrees with the correlation analysis in Table 6.1.

Predicting user’s geo profile. We also show performance comparison in Figure 6.5. Sim-

ilarly with user topical profile prediction, three dimensional methods generally outperform

BPF, and bUHF-2 performs better than one-layered models. Different from user topical

profile prediction, g-bHUF-2 gives the best performance, while s-bHUF-2 does not show

as much improvement over bHUF-2. This indicates that when predicting where a user is

known by others, user’s geo-location is more informative than user’s social context. To-

gether with the previous results, we conclude that user’s geo-location and social context

improves on different aspects of user geo-topic profile, and that one should select the ap-

propriate context to improve performance depending on the problem on hand. Note that

the improvement among all methods is generally not as significant as that of user topical

profile prediction. One possible reason could be that user’s geo profile has less inherent

structure to learn from than user’s topical profile, thus making it less likely to be influenced

by model improvements.

6.4.3 Parameter Analysis

One important parameter in this study is grid size. A larger size of grid means that the

total number of grids is smaller. This indicates a larger geographical area for each location

and results in a smaller total number of locations in our models. Thus, if we set the grid

large, user geo-topic profile is coarse-grained with respect to locations, while more fine-

grained when it is small. Therefore, it is important to see how the models perform with
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respect to grid size.

To that purpose, we run our models with respect to four different sizes of grid (latitude

* longitude): 0.5◦ ∗ 0.5◦, 0.8◦ ∗ 0.8◦, 1.2◦ ∗ 1.2◦ and 2.5◦ ∗ 2.5◦. For each size, we compare

RMSE, precision and recall for BPTF, bHUF-2, bHUF+. In Figure 6.6, we can see that

as the grid size becomes smaller (smaller area for each location), RMSE decreases for

both datasets. The reason is that since the total number of user’s geo-topic tokens is the

same, as we increase the number of grids, the average number of tokens assigned to each

grid becomes smaller, resulting in a smaller RMSE. More importantly, we can see that

two-layered user factorization performs better than BPTF, and that bHUF+ outperforms

bHUF-2 for all grid sizes.

We also show P@10 and R@10 in Figure 6.6. For US dataset, we observe that the

precision first increases when the grid size is small, and starts to decrease passing 0.8◦ ∗

0.8◦. This indicates that for US dataset, a grid size of about 0.8◦ ∗ 0.8◦ could be the best

geo-space partitioning for describing and modeling user’s geo-topic profile. A larger grid

may combine geo-topic tokens at two different locations into one grid; while a smaller

grid may over-partition a location, thus causing sparsity issue. For precision on the world

dataset, we can see that it gives best performance when the grid is 2.5◦ ∗ 2.5◦ (possibly

larger), and that it always decreases when the grid gets smaller. This indicates that a

coarse-grained geo-partitioning is more suited for the world dataset. As for R@10, all

performance increases as the grid gets larger. This could be explained by the fact that as

grid gets larger, there will be less number of grids with non-zero counts to be retrieved,

making the denominator in recall definition smaller. Furthermore, similarly with RMSE,

no matter how we choose the grid size, bHUF-2 consistently performs better than BPTF;

and that bHUF+, integrated with user’s geo-location and social contexts, also consistently

outperforms bHUF-2. This indicates that our proposed models are robust with respect to

grid size, and that one could choose an appropriate grid size to her needs without degrading
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Figure 6.6: Performance comparison with respect to the size of grid. Left: US. Right:
world.
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the relative performance.

Impact of K2. How does the second-layer user latent dimension size K2 affect the perfor-

mance? To that end, we run bHUF-2 for US dataset with different values of K2 ranging

from 10 to 200, and show the boxplots of P@10 and R@10 in Figure 6.7. As we can see,

as we increase the value ofK2, both performance increases until it saturates at about 40 for

P@10 and R@100. We obtain similar trends for the world dataset. We use 50 for K2 for

all previous experiments for tradeoff between performance and efficiency. Furthermore,

we can see that even when K2 is as small as 10, it still outperforms the one-layered user

models, indicating the superiority of an extra layer of factorization.

6.5 Conclusion

In this section, we introduced multi-dimensional user geo-topic profile to capture the

pair-wise interactions between geo-location and user topical profile in social-spatial net-

works. To overcome overdispersion and user heterogeneity in geo-topic profiles, we pro-

posed a two-layered multi-dimensional Bayesian hierarchical user factorization frame-

work. To alleviate the sparsity issue, we studied how user’s contexts — user’s geo-location

and social ties — correlates with geo-topic profile, and proposed an enhanced model to in-

tegrate user’s contexts. Through Twitter-based social-spatial datasets, we find bHUF leads

to a 5~13% improvement in precision and recall and an additional 6~11% improvement

with user’s contexts.
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Figure 6.7: Precision@10 and recall@10 with respect to K2.

132



7. CONCLUSIONS AND FUTURE WORK

In this section, we present the conclusion of this dissertation and potential future re-

search opportunities.

7.1 Conclusion

In recent years, large-scale information sharing systems – including social media sys-

tems, question-answering sites and rating and reviewing applications – have continued to

grow and become popular with the number of users who generate, share and consume in-

formation. To manage the sheer growth of information generation, there comes the need to

enable personalization of information resources for users. A fundamental task in creating

personalization systems is to build rich user profiles for better user experience.

Therefore, in this dissertation research, we propose models and algorithms to facilitate

the creation of new crowd-powered personalized information sharing systems. Specifi-

cally, we first give a principled framework to enable personalization of resources so that

information seekers can be matched with customized knowledgeable users based on their

previous historical actions; We then focus on creating rich user models that allows accurate

modeling of user profiles for long tail users, including discovering user’s known-for pro-

file, user’s opinion bias and user’s geo-topic profile. In particular, this dissertation research

made the following contributions:

First, we introduced the problem of personalized expert recommendation and proposed

the first principled framework for addressing this problem. To overcome the sparsity issue,

we investigated the use of user’s contextual information that can be exploited to build

robust models of personal expertise. In particular, we studied how spatial preference for

personally-valuable expertise varies across regions, across topics, and based on different

underlying social communities. We integrated these different forms of preferences into
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a matrix factorization-based personalized expert recommender, and demonstrated that the

integration of region, topic and social-based locality gives better performance over matrix

factorization, and that the combination of these influence gives the best result among all,

indicating that geo-spatial, topical and social factors are able to complement each other in

personalized expert recommendation.

Second, to tap the knowledge of the majority of users (long tail users) and as a first

step to create rich user profiles, we formulated the problem of user known-for profile

discovery, and developed a context-based probabilistic model called Bayesian Contextual

Poisson Factorization to discover what users are known for by others. Our model considers

as input a small fraction of users whose known-for profiles are already known and the

vast majority of users for whom we have little (or no) information, learns the implicit

relationships between user’s known-for profiles and their contextual signals, and finally

predicts known-for profiles for those majority of users.

As a second step to create rich user profile, we have explored user’s topic-sensitive

opinion bias, and demonstrated how user’s opinion bias can be exploited to recommend

other users with similar opinion in social networks. Specifically, we developed a lightweight

semi-supervised system called “BiasWatch” to semi-automatically infer the opinion bias

of long-tail users. We proposed an efficient optimization scheme to propagate opinion bias

on social and information networks, and evaluated the system by showing the discovered

biased themes and their temporal fluctuation, and by comparing against several opinion

estimation baselines. This inferred opinion bias can be used as a different dimension to

augment user’s profiles.

As the last step for user profiling, we have studied how a user’s topical profile varies

geo-spatially and how we can model a user’s geo-spatial known-for profile as the last

step in our dissertation for creation of rich user profiles. Specifically, our analysis on the

impact of geo-location on user’s topical profile indicates the existence of pair-wise inter-
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actions between geo-locations and user’s topical profile. Motivated by these observations,

we proposed the modeling of fine-grained user geo-topic profiles to capture these pair-wise

interactions. We then presented a multi-layered Bayesian hierarchical user factorization

which can overcome user heterogeneity and learn a more expressive user model. To al-

leviate the sparsity issue, we investigated how user’s contextual information, specifically,

user’s geo-location and social ties, correlates with one’s geo-topic profile, and then pro-

posed to integrate these contexts into the two-layered hierarchical user model for better

representation of user’s geo-topic preference by others.

7.2 Further Research Opportunities

We identify two future research directions as follows:

• The first is on how we can use inferred user profiles for better resource personalization to

users through interpretable recommendation. Traditionally, matrix factorization/latent

factor models have been at the heart of many popular recommender systems, such as

Amazon and Etsy. However, one limitation of the matrix factorization based approach

is that the inferred factors can be difficult to interpret and to explain why users prefer

some specific resource (items, other users, etc.). One way to improve the interpretability

of a personalization system is to utilize user profiles to help explain user’s decisions on

selected resources. For example, user A interested in cooking selects to follow another

user B because B is known as a celebrity cook often posting recipes. This can be in-

terpretable as long as we know user B’s known-for profile. As another example, user

A selects to become friends with user B because B has a similar opinion on gun con-

trol with user A. This is interpretable as long as we know user’s opinion profile. These

two examples indicate how we can use rich user profiles to improve recommendation

performance, not only by providing useful signals about users which can be used by fol-

lowing recommendation machines, but also by providing suggestions to help interpret
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user’s decisions on resource selections.

• The second is to improve personalization by investigating temporal changes of user pro-

files. Traditionally, user profiles are often considered static without temporal changes.

However, a user’s taste and preference can often change over time; and a user’s profile,

e.g., user’s interests, opinion and expertise, can also change as users become inter-

ested in different items or acquire some new skills. Thus, a research question is to ask

how temporal activities of users can affect personalization systems, and how we could

develop time-sensitive models to incorporate this influence. Indeed, there have been

some works to illustrate and tackle such influence [132, 133, 134, 135]. For example,

Lathia et al. [134] have demonstrated how user’s rating patterns change over time in

Netflix movie datasets. Koren [133] also observed temporal changes in user ratings

on movies in Netflix movie datasets and proposed a time-aware latent factor model.

More recently, Wu et al. [135] proposed a recurrent recommender system by using

Long Short-Term Memory (LSTM) to capture the temporal dynamics of user’s rating

behavior and achieved state-of-the-art performance. Thus, in this direction, we can ask

more specific questions such as how a user’s profile changes over time and how we can

develop principled time-aware methods to capture these temporal dynamics.
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