147 research outputs found

    Hemodynamic Measurement Using Four-Dimensional Phase-Contrast MRI: Quantification of Hemodynamic Parameters and Clinical Applications

    Get PDF
    Recent improvements have been made to the use of time-resolved, three-dimensional phase-contrast (PC) magnetic resonance imaging (MRI), which is also named four-dimensional (4D) PC-MRI or 4D flow MRI, in the investigation of spatial and temporal variations in hemodynamic features in cardiovascular blood flow. The present article reviews the principle and analytical procedures of 4D PC-MRI. Various fluid dynamic biomarkers for possible clinical usage are also described, including wall shear stress, turbulent kinetic energy, and relative pressure. Lastly, this article provides an overview of the clinical applications of 4D PC-MRI in various cardiovascular regions.113Ysciescopuskc

    A comparison of phase unwrapping methods in velocity-encoded MRI for aortic flows

    Get PDF
    Purpose: The phase of a MRI signal is used to encode the velocity of blood flow. Phase unwrapping artifacts may appear when aiming to improve the velocity-to-noise ratio (VNR) of the measured velocity field. This study aims to compare various unwrapping algorithms on ground-truth synthetic data generated using computational fluid dynamics (CFD) simulations. Methods: We compare four different phase unwrapping algorithms on two different synthetic datasets of four-dimensional flow MRI and 26 datasets of 2D PC-MRI acquisitions including the ascending and descending aorta. The synthetic datasets are constructed using CFD simulations of an aorta with a coarctation, with different levels of spatiotemporal resolutions and noise. The error of the unwrapped images was assessed by comparison against the ground truth velocity field in the synthetic data and dual-VENC reconstructions in the in vivo data. Results: Using the unwrapping algorithms, we were able to remove aliased voxels in the data almost entirely, reducing the L2-error compared to the ground truth by 50%–80%. Results indicated that the best choice of algorithm depend on the spatiotemporal resolution and noise level of the dataset. Temporal unwrapping is most successful with a high temporal and low spatial resolution ((Figure presented.) ms, (Figure presented.) mm), reducing the L2-error by 70%–85%, while Laplacian unwrapping performs better with a lower temporal or better spatial resolution ((Figure presented.) ms, (Figure presented.) mm), especially for signal-to-noise ratio (SNR) 12 as opposed to SNR 15, with an error reduction of 55%–85% compared to the 50%–75% achieved by the Temporal method. The differences in performance between the methods are statistically significant. Conclusions: The temporal method and spatiotemporal Laplacian method provide the best results, with the spatiotemporal Laplacian being more robust. However, single- (Figure presented.) methods only situationally and not generally reach the performance of dual- (Figure presented.) unwrapping methods.</p

    4D Flow cardiovascular magnetic resonance consensus statement: 2023 update

    Get PDF
    4D Flow MRI; Hemodynamics; RecommendationsRessonància magnètica de flux 4D; Hemodinàmica; RecomanacionsResonancia magnética de flujo 4D; Hemodinámica; RecomendacionesHemodynamic assessment is an integral part of the diagnosis and management of cardiovascular disease. Four-dimensional cardiovascular magnetic resonance flow imaging (4D Flow CMR) allows comprehensive and accurate assessment of flow in a single acquisition. This consensus paper is an update from the 2015 ‘4D Flow CMR Consensus Statement’. We elaborate on 4D Flow CMR sequence options and imaging considerations. The document aims to assist centers starting out with 4D Flow CMR of the heart and great vessels with advice on acquisition parameters, post-processing workflows and integration into clinical practice. Furthermore, we define minimum quality assurance and validation standards for clinical centers. We also address the challenges faced in quality assurance and validation in the research setting. We also include a checklist for recommended publication standards, specifically for 4D Flow CMR. Finally, we discuss the current limitations and the future of 4D Flow CMR. This updated consensus paper will further facilitate widespread adoption of 4D Flow CMR in the clinical workflow across the globe and aid consistently high-quality publication standards.1R01HL149787-01A1 (S. Schnell, M. Markl), 1R21NS122511-01 (S. Schnell), 1R01CA233878-01 (J.Collins) J.Sotelo thanks to ANID–Millennium Science Initiative Program–ICN2021_004 and FONDECYT de iniciación en investigación #11200481. Dr. Oechtering receives funding from the German Research Foundation (OE 746/1-1)

    4D Flow cardiovascular magnetic resonance consensus statement: 2023 update

    Full text link
    Hemodynamic assessment is an integral part of the diagnosis and management of cardiovascular disease. Four-dimensional cardiovascular magnetic resonance flow imaging (4D Flow CMR) allows comprehensive and accurate assessment of flow in a single acquisition. This consensus paper is an update from the 2015 '4D Flow CMR Consensus Statement'. We elaborate on 4D Flow CMR sequence options and imaging considerations. The document aims to assist centers starting out with 4D Flow CMR of the heart and great vessels with advice on acquisition parameters, post-processing workflows and integration into clinical practice. Furthermore, we define minimum quality assurance and validation standards for clinical centers. We also address the challenges faced in quality assurance and validation in the research setting. We also include a checklist for recommended publication standards, specifically for 4D Flow CMR. Finally, we discuss the current limitations and the future of 4D Flow CMR. This updated consensus paper will further facilitate widespread adoption of 4D Flow CMR in the clinical workflow across the globe and aid consistently high-quality publication standards

    A method for determining venous contribution to BOLD contrast sensory activation

    Get PDF
    While BOLD contrast reflects haemodynamic changes within capillaries serving neural tissue, it also has a venous component. Studies that have determined the relation of large blood vessels to the activation map indicate that veins are the source of the largest response, and the most delayed in time. It would be informative if the location of these large veins could be extracted from the properties of the functional responses, since vessels are not visible in BOLD contrast images. The present study describes a method for investigating whether measures taken from the functional response can reliably predict vein location, or at least be useful in down-weighting the venous contribution to the activation response, and illustrates this method using data from one subject. We combined fMRI at 3 Tesla with high-resolution anatomical imaging and MR venography to test whether the intrinsic properties of activation time courses corresponded to tissue type. Measures were taken from a gamma fit to the functional response. Mean magnitude showed a significant effect of tissue type (P veins ≈ grey matter > white matter. Mean delays displayed the same ranking across tissue types (P grey matter. However, measures for all tissue types were distributed across an overlapping range. A logistic regression model correctly discriminated 72% of the veins from grey matter in the absence of independent information of macroscopic vessels (ROC=0.72). Whilst tissue classification was not perfect for this subject, weighting the T contrast by the predicted probabilities materially reduced the venous component to the activation map

    Focal Spot, Fall/Winter 1996

    Get PDF
    https://digitalcommons.wustl.edu/focal_spot_archives/1071/thumbnail.jp

    Analytical method to measure three-dimensional strain patterns in the left ventricle from single slice displacement data

    Get PDF
    Background: Displacement encoded Cardiovascular MR (CMR) can provide high spatial resolution measurements of three-dimensional (3D) Lagrangian displacement. Spatial gradients of the Lagrangian displacement field are used to measure regional myocardial strain. In general, adjacent parallel slices are needed in order to calculate the spatial gradient in the through-slice direction. This necessitates the acquisition of additional data and prolongs the scan time. The goal of this study is to define an analytic solution that supports the reconstruction of the out-of-plane components of the Lagrangian strain tensor in addition to the in-plane components from a single-slice displacement CMR dataset with high spatio-temporal resolution. The technique assumes incompressibility of the myocardium as a physical constraint. Results: The feasibility of the method is demonstrated in a healthy human subject and the results are compared to those of other studies. The proposed method was validated with simulated data and strain estimates from experimentally measured DENSE data, which were compared to the strain calculation from a conventional two-slice acquisition. Conclusion: This analytical method reduces the need to acquire data from adjacent slices when calculating regional Lagrangian strains and can effectively reduce the long scan time by a factor of two

    Cardiovascular magnetic resonance phase contrast imaging

    Get PDF

    4D flow cardiovascular magnetic resonance consensus statement

    Get PDF

    Phase unwrapping : geometric distortions correction on MRI

    Get PDF
    Magnetic Resonance Imaging has entered clinical practice about fifteen years ago, and has become one of the most widely used imaging modality. MRI suffers from important geometric distortions, leading to pixel shifts and intensity variations in the acquired images. Correction of these distortions is clearly required in stereotactic surgery using frame-based registrations or neuro-navigation. These distortions can be corrected using the phase of signal or image. However, as in Inverse Synthetic Aperture Radar (ISAR), the phase of the signal is obtained modulo 2 π. The goal of Phase unwrapping is to retrieve the initial phase of the signal. After a brief summary of related works and applications mainly using ISAR data, this paper presents a new algorithm for phase unwrapping. This algorithm is fast, robust to noise and takes into account the discontinuities of the acquired object. It is based upon the notion of homogeneous region. This homogeneity is defined by phase jumps and no parameters have to be determined a priori. Experiments on noisy phantoms exhibit good robustness to noise. An application to the correction of MRI of the head is presented.Les images du corps humain acquises par résonance magnétique sont une des modalités les plus utilisées à des fins cliniques depuis une quinzaine d'années. Elles souffrent cependant de distorsions géométriques importantes sous forme de décalages de pixels et de variations d'intensité. Ces distorsions doivent être corrigées pour utiliser ces imagés dans des applications de neuro-navigation ou de neuro-chirurgie stéréotaxiques. Une des solutions pour la correction exploite les images de phase issues de l'imageur. Cependant, comme en Interférométrie Radar à Ouverture Synthétique (ISAR), cette phase est codée modulo 2 π. Le déroulement de phase a pour objectif de retrouver la phase réelle du signal. Après un rapide bilan des outils existants, principalement dans le domaine ISAR, nous proposons dans cet article un algorithme de déroulement de phase original, rapide, robuste au bruit et qui prend en compte les discontinuités réelles de l'objet imagé. Il est basé sur la notion de région homogène du point de vue des sauts de phase et ne nécessite pas la détermination de paramètres. Les tests sur des fantômes bruités démontrent la bonne robustesse au bruit. Cet algorithme est ensuite utilisé pour la correction d'images IRM et illustre le bon déroulement de la phase
    corecore