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Purpose: The phase of a MRI signal is used to encode the velocity of blood
flow. Phase unwrapping artifacts may appear when aiming to improve the
velocity-to-noise ratio (VNR) of the measured velocity field. This study aims
to compare various unwrapping algorithms on ground-truth synthetic data
generated using computational fluid dynamics (CFD) simulations.
Methods: We compare four different phase unwrapping algorithms on two
different synthetic datasets of four-dimensional flow MRI and 26 datasets of
2D PC-MRI acquisitions including the ascending and descending aorta. The
synthetic datasets are constructed using CFD simulations of an aorta with a
coarctation, with different levels of spatiotemporal resolutions and noise. The
error of the unwrapped images was assessed by comparison against the ground
truth velocity field in the synthetic data and dual-VENC reconstructions in the
in vivo data.
Results: Using the unwrapping algorithms, we were able to remove aliased
voxels in the data almost entirely, reducing the L2-error compared to the
ground truth by 50%–80%. Results indicated that the best choice of algorithm
depend on the spatiotemporal resolution and noise level of the dataset. Tem-
poral unwrapping is most successful with a high temporal and low spatial
resolution (𝛿t = 30 ms, h = 2.5 mm), reducing the L2-error by 70%–85%, while
Laplacian unwrapping performs better with a lower temporal or better spatial
resolution (𝛿t = 60 ms, h = 1.5 mm), especially for signal-to-noise ratio (SNR)
12 as opposed to SNR 15, with an error reduction of 55%–85% compared to the
50%–75% achieved by the Temporal method. The differences in performance
between the methods are statistically significant.
Conclusions: The temporal method and spatiotemporal Laplacian method pro-
vide the best results, with the spatiotemporal Laplacian being more robust.
However, single-Venc methods only situationally and not generally reach the
performance of dual-Venc unwrapping methods.
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1 INTRODUCTION

Phase contrast MRI is an important technique for evalu-
ating vascular hemodynamics.1,2 This technique encodes
velocity information in the data phase, so all values are
restrained to the range [−𝜋, 𝜋), where the maximum
encoded velocity Venc is mapped to 𝜋. If Venc is set lower
than the actual velocity, an image error known as “phase
wrapping” occurs as the phase value is wrapped back into
the range [−𝜋, 𝜋).

Conversely, choosing a Venc that is too high decreases
the velocity-to-noise ratio, thus lowering the quality of the
data.3 Since the range of measured velocities in MRI can
be very large, the selection of the proper Venc may involve
repeated scans. This makes it attractive to postprocess the
acquired velocity data with phase unwrapping techniques
to correct the wraps introduced by using a low Venc. This
also allows the utilization of high-velocity-to-noise ratio
data acquired with a lower Venc.

This can be performed in a number of different ways
by assuming regularity in the spatial4-6 or the temporal
dimension7-9 or both.10,11

Loecher et al.4 introduce a four-dimensional (4D)
Laplacian method, and its performance is confirmed on
both simulated flow and a volunteer dataset of the aorta
via visual qualitative assessment from experts. The method
presented in Bhalerao et al.5 use 4D MRI data from a
phantom and a single volunteer, with various Vencs and
(simulated) noise levels. The method based on temporal
continuity shown by Xiang9 was tested on a single acquisi-
tion of two-dimensional (2D) slices of the aorta of a healthy
volunteer and evaluated qualitatively. An improved tem-
poral approach was shown in Untenberger et al.,7 and
the evaluation used computational fluid dynamics (CFD)
data as well as MRI acquisitions of a phantom and 10
healthy volunteers with 2 Vencs. A different approach is
used in another paper by Loecher et al.,10 where the prob-
ability of a voxel being wrapped is computed using the
gradients with neighboring voxels. This is shown to be
effective on 4D acquisitions of the aorta with several Vencs
evaluated visually. For magnetic resonance elastography,
Barnhill et al.11 compare three different algorithms as well
as two commercial algorithms on volunteer acquisitions of
various organs but not with regards to blood flow.

All these methods have been shown to be effective,
but there is often only a visual or qualitative evaluation of
their effectiveness rather than a quantitative one. Gener-
ally only a single spatial and temporal resolution is used,
which makes it difficult to establish the limitations of the
algorithms. In the same manner, the sensitivity to noise is
rarely investigated.

So far, there has been no thorough comparison of these
different algorithms. Franco et al.12 provide a comparison

of dual-venc algorithms, but do not include single-venc
approaches. For the vast majority of the algorithms, the
code is also not publicly available and hence methods
cannot be compared with the same datasets. Moreover,
ground truth data in subjects or experimental work would
involve for instance multi-venc acquisitions—in order
to get high velocity-to-noise ratio perfectly unwrapped
images—which require advanced scan protocols not yet
available in clinical practice.

Therefore, the aim of this article is to compare
four different phase-unwrapping methods using syn-
thetic data generated using CFD simulations where
a ground truth is available. We establish the advan-
tages and drawbacks of the various methods and the
cases where they are appropriate. Additionally, the code
we used for each of the algorithms will be made
publicly available under https://git.web.rug.nl/p305235/
Phase_Unwrapping_Comparison. Moreover, we confirm
some of the findings on 2D PC-MRI datasets published
previously.

The remainder of the paper is structured as follows.
First, the phase wrapping problem is introduced and
we present the different unwrapping methods. Then we
describe the details of the different datasets and algo-
rithms. The results of the unwrapping algorithms for the
different datasets are then compared and discussed.

2 THEORY

2.1 Problem statement

In PC-MRI, the velocity information is encoded into the
phase of the transverse component of the magnetization
such that the measured phase is

𝜙
G = 𝜙0 + uM(G)𝛾, (1)

for a selected encoding gradient M(G), where 𝜙0 is the
background phase and 𝛾 is the gyromagnetic ratio. By tak-
ing two-phase measurements 𝜙1, 𝜙2 with different encod-
ing gradients, the velocity can be retrieved as

u = 𝜙1 − 𝜙2

M1(G)𝛾 −M2(G)𝛾
= 𝜙1 − 𝜙2

𝜋
Venc, (2)

where the velocity encoding gradient Venc is defined
as 𝜋

M1(G)𝛾−M2(G)𝛾
. This parameter is manually set for the

PC-MRI acquisition.
Since the phase is limited to the interval [−𝜋, 𝜋), the

measured velocity is limited to the interval [−Venc,Venc).
The phase, being the angle of a vector, is a cyclical entity
and will “wrap around” to the negative part of the interval

 15222594, 2023, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

rm
.29767 by U

niversiteitsbibliotheek, W
iley O

nline L
ibrary on [18/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://git.web.rug.nl/p305235/Phase_Unwrapping_Comparison
https://git.web.rug.nl/p305235/Phase_Unwrapping_Comparison


2104 LÖCKE et al.

if it exceeds the upper limit, and vice versa. As a result,
if the true velocity is higher than the Venc, the measured
velocity will be

umeas = utrue + 2kVenc, (3)

where k ∈ Z is determined by how far the true veloc-
ity utrue exceeds Venc, and is unknown if only the mea-
sured velocity is known. Analogously, the estimated phase
will be 𝜙w = 𝜙true − 2k ⋅ 𝜋 where the true phase may now
exceed the interval [−𝜋, 𝜋). This artifact is known as veloc-
ity aliasing or phase wrapping and occurs in other MRI
procedures and different fields as well. Resolving these
wraps to reconstruct the true phase or velocity is called
unwrapping.

Out of the available methods, we review three algo-
rithms solving the 4D phase unwrapping problem: one
relying on temporal smoothness, one relying on spatial
smoothness for solving a Laplacian equation over the
entire domain, and one using both temporal and spatial
smoothness to iteratively unwrap the picture pixel-by-pixel
by assigning each pixel a probability of being wrapped. To
avoid confusion, we will use “3D+T” (three spatial dimen-
sions plus time) for the 4D problem, and analogously “2D
+ T,” “3D,” and “2D.”

2.2 Phase unwrapping methods

2.2.1 Temporal unwrapping

Temporal phase unwrapping has first been introduced in
Reference 8. This method is based on the assumption
that at each voxel the phase only varies slowly in time or
that the temporal resolution is high enough. Inter-voxel
dependency is neglected.

Given a time series of N phase maps 𝜙w(x, t𝑗), 𝑗 =
1, … ,N, the differential phase maps are computed as:

D𝑗(x) = 𝜙w(x, t𝑗) − 𝜙w(x, t𝑗−1), 𝑗 = 2, ...,N. (4)

According to the aforementioned assumption, these dif-
ferential maps cannot contain any phase wraps of their
own. Therefore any value |D𝑗(x)| greater than 𝜋 has to be
the result of a phase wrap occurring in one of the phase
maps. To regain the “correct” differential value, it is suf-
ficient to wrap the differential phase maps into the range
[−𝜋, 𝜋). Once the wrapping-free differential phase maps
have been computed, the unwrapped phase maps can be
calculated by integrating over the differential maps, start-
ing at a reference time frame. This requires the existence of
a timeframe that does not have any wrapped pixels, which
will have to be manually selected. When trying to measure

blood velocities, the cardiac cycle contains times with very
low velocities, for example, in diastole, so such a reference
timeframe should exist when the temporal resolution is
high enough.9 The unwrapped phase 𝜙u with a reference
timeframe 𝜙w(x, tref ) at time tref can then be described as

𝜙u(x, t𝑗) =
⎧
⎪
⎨
⎪
⎩

𝜙w(x, tref) +
∑𝑗

i=ref+1 Di(x) for t𝑗 > tref

𝜙w(x, tref) −
∑ref

i=𝑗+1 Di(x) for t𝑗 < tref

𝜙w(x, tref) for t𝑗 = tref

.

(5)
This algorithm is simple to implement and efficient in

terms of computational effort. However, it requires a suf-
ficiently high temporal resolution as well as a wrap-free
reference frame, which has to be manually selected. The
method can unwrap multiple wraps (which occur if the
Venc is less than 50% of the maximal velocity), as long as
they occur in separate timesteps, that is, a wrapped pixel in
one timeframe being wrapped again in a later timeframe.
This method is sensitive to noise and may falsely unwrap
pixels due to noise. Movement of the vessel of interest also
negatively impacts the results for this method as it breaks
the continuity of the pixels between the timeframes.

2.2.2 3D + T gradient-based unwrapping

In gradient-based unwrapping methods10 each pixel is
assigned a probability that it is wrapped based on the
gradients with the neighboring pixels, and all pixels
with a probability higher than a certain threshold are
unwrapped. This method evaluates the data pixel-by-pixel
and often requires several consecutive iterations. The
method assumes smoothness in both space and time. The
probability that a pixel is wrapped is estimated by the gra-
dients of the neighboring pixels to the evaluated pixel via

P(x, t𝑗) =
1

2𝜋 ⋅ (#N(x)ws + #N(t𝑗)wt)

⋅

(
∑

i∈N(x)
ws(𝜙w(i, t𝑗) − 𝜙w(x, t𝑗)

)

+
∑

ti∈N(t
𝑗
)
wt(𝜙w(x, ti) − 𝜙w(x, t𝑗)), (6)

where N(x) is the set of the spatial neighbors of the pixel x
and N(t𝑗) is the set of the temporal neighbours of the time
position t𝑗 . The constants ws, wt are weighting factors. It
is recommended to set ws to 1 for the spatial dimension
and wt to 2.5 for the temporal dimension.10 Each step is
detailed in Algorithm 1.

The algorithm uses a dual threshold approach, where
the algorithm first completes a number of iterations with
a low threshold in order to break up larger regions of
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LÖCKE et al. 2105

Algorithm 1. 3D+T gradient-based unwrapping
algorithm

Given a wrapped phase image𝜙w, a set of thresholds rlow
and rhigh, and iteration numbers nlow, nhigh:

Set 𝜙 = 𝜙w

Repeat nlow times:

for each (x, 𝑗) ∈ Ω × {1, · · · ,N} do
compute P(x, t𝑗)

if then P(x, t𝑗) > rlow
𝜙(x, t𝑗) = 𝜙(x, t𝑗) + 2𝜋

end if
if then P(x, t𝑗) < −rlow

𝜙(x, t𝑗) = 𝜙(x, t𝑗) − 2𝜋
end if

end for
Repeat again nhigh times with rhigh instead of rlow
Return 𝜙

wrapped pixels, and then uses a higher threshold for fur-
ther iterations to accurately unwrap the remaining pixels.
The suggestion for the optimal thresholds are rlow = 0.32
and rhigh = 0.75, for 50 iterations each.10 This algorithm is
very simple to implement and requires little computational
effort per iteration. However, depending on the number
of iterations, the time required may increase above that
of other methods. This method can also only unwrap sin-
gle wraps and therefore requires that Venc > 50% of the
maximal velocity to unwrap successfully.

2.2.3 Laplacian unwrapping

Laplacian unwrapping is a popular single-step technique
that can be used with 2D, three-dimensional (3D), 2D+T,
and 3D+T MRI data. Starting from the relationship

𝜙(x, t) = 𝜙w(x, t) + 2𝜋n(x, t), (7)

the method assumes the continuity and differentiability of
𝜙 and 𝜙w and aims to first find the Laplacian of the true
phase. Specifically, by first showing the relation

Δei𝜙(x,t) = −ei𝜙(x,t)||∇𝜙(x, t)||22 + iei𝜙(x,t)Δ𝜙(x, t),

withΔ and∇ the spatio(-temporal) Laplacian and gradient
operators, respectively, and combining it with Equation
(7), the following equation is obtained:

Δ𝜙(x, t) = Im(e−i𝜙w(x,t)Δei𝜙w(x,t)). (8)

Simplifying the right-hand side leads to

Δ𝜙(x, t) = cos𝜙w(x, t)Δ sin𝜙w(x, t)
− sin𝜙w(x, t)Δ cos𝜙w(x, t). (9)

Therefore, the unwrapped phase is computed by solving
the problem:

𝜙u(x, t) = Δ̃
−1(cos𝜙w(x, t)Δ sin𝜙w(x, t)

− sin𝜙w(x, t)Δ cos𝜙w(x, t)), (10)

where Δ̃ denotes the Laplacian operator but applying some
set of boundary conditions. In the case of a spatiotem-
poral Laplacian operator for 2D+T or 3D+T datasets, it
is necessary to introduce a scaling constant for the tem-
poral dimension. In practice, this scaling is quite robust
and was simply set to 1 s2∕cm2, as it was in Reference 4.
Note that, in discrete data, the Laplacian operation on the
right-hand-side’s terms is approximated by the sum of the
second derivatives along each dimension.

The results differ depending on the chosen bound-
ary conditions—Periodic, Dirichlet, or Neumann. In this
work, periodic boundary conditions were used on all
boundaries, as in the implementation provided by Refer-
ence 4.

The Laplacian method can be computationally expen-
sive, depending on the method used to apply the inverse
Laplacian and the size of the input data, but it can unwrap
nested wraps and it is reported to handle noise well since
it provides a simultaneously smoothing field.

2.2.4 Optimal multiple motion encoding

Optimal multiple motion encoding (OMME)13 is an
unwrapping technique utilizing data acquired with multi-
ple Vencs. For N measurements u1, … ,uN with different
Vencs v1, · · · , vN , the unwrapped velocity is identified by
finding

k∗ = arg min
k∈Z

JN(uN + 2vN k),

where

JN(u) =
N∑

𝑗=1

(

1 − cos
(
𝜋

v𝑗
(u𝑗 − u

))

,

subject to −veff < uN + 2vN k < veff where the effective
range veff is the least common multiple of v1, … , vN . The
results of this method are most robust to noise for Venc val-
ues with a proportion of 1

2
, that is, vi = 1

2
vi+1 for v𝑗 sorted

from smallest to largest.
This method relies on having multiple acquisitions

with different Venc values and is not directly comparable
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2106 LÖCKE et al.

to single-Venc methods which only require one acquisi-
tion. However, it is currently the best-performing method
that the authors are aware of, and its results are there-
fore included as a “gold-standard” reference for achievable
unwrapping results.

3 METHODS

3.1 Synthetic data

A computational fluid dynamics simulation in physiolog-
ical regimes was generated as detailed in the supporting
information. Let utrue be the velocity field generated by this
simulation. Then the MRI magnetization measurements
were modeled in the following way:

Mu
meas = C exp(i(𝜙0 + 𝜋utrue∕Venc)) + 𝜖u

, (11)

where 𝜙0 is the background phase, C corresponds to the
magnitude, and 𝜖 is a complex Gaussian measurement
noise with a mean of zero. PC-MRI requires an additional
measurement to recover an estimate of utrue since the back-
ground phase is unknown. This can by done by turning off
the motion encoding, resulting in the magnetization

M0
meas = C exp(i(𝜙0)) + 𝜖u

. (12)

Now the velocity can be estimated from the two magneti-
zations via the equation

umeas =
∠ exp(i(∠Mu

meas − ∠M0
meas))

𝜋
Venc. (13)

These synthetic measurements are interpolated into a
tetrahedral box mesh placed around the aorta geometry.

We consider two different resolutions for the box mesh:
1.5 × 1.5 × 1.5 mm3 and 2.5 × 2.5 × 2.5 mm3. The refer-
ence solution is undersampled in time to a resolution of
𝜏1 = 0.03 s or 𝜏2 = 0.06 s, leading to a total of 28, respec-
tively, 14 time steps. Two different noise levels of 15 dB or
12 dB in the complex magnetization was applied, and three
Vencs were set to 120%, 60%, and 30% of the maximum
velocity, resulting in 192, 96, and 48 cm/s, respectively.
Only the velocity in the foot-head direction was acquired.

Next to the 3D+T measurements, we also generated
synthetic 2D+T “slice” measurements by selecting a single
2D slice perpendicular to the foot-head direction and inter-
polating the velocity into a rectangular hexahedral mesh
with a spatial resolution of 2.5 × 2.5 mm2 (Figure 1). The
subsampling in time as well as the noise levels remained
the same. The chosen Vencs were 155, 77, and 38 cm/s,
corresponding to 120%, 60%, and 30% of the maximum
velocity, respectively.

Fifty independent realizations of each noise level per
Venc and spatial resolution were made. Also, 50 realizations
of two additional noise levels (signal-to-noise ratio [SNR] 9
and SNR 6) were acquired on the 3D geometry for a spatial
resolution of 2.5 × 2.5 mm2 and a Venc of 60% of the max-
imal velocity. The results in Section 4 show the averages
and SDs over these 50 realizations.

3.2 In vivo data

We used a database of 2D+T PC-MRI of 26 subjects
originally reported in Reference 13. Measurements were
acquired in a 1.5T Achieva scanner with a five-element car-
diac coil. The following scan parameters were used: flip

F I G U R E 1 Reference solution of the blood flow from the CFD simulation and meshes used for simulating measurements.
(A) CFD velocity solution at t = 0.24 s; (B) 3D aorta and slice mesh used for the measurements.
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LÖCKE et al. 2107

angle = 15◦, repetition time = 5.5 ms, echo time = 3.7 ms,
matrix size = (320, 232). The acquired data are slices per-
pendicular to the ascending aorta just above the valsalva
sinus, in 2D plus time. The spatial resolution was 1 mm ×
1 mm and the temporal resolution ranged from 35 to 48 ms
depending on the patient’s heart rate. Three different Vencs
were used: 150, 75, and 50 cm/s.

The MRI images were segmented using MATLAB so
that nonzero entries are only present in the ascending and
descending aorta.

To investigate the noise sensitivity, the experiments
were repeated with a Gaussian noise with a zero mean
and a SD of 0.15𝜋 added to the phase of the segmented
measurements.

3.3 Implementation

All algorithms were implemented in both Python and Mat-
lab. The codes are included as Data S1, including the input
CFD data and scripts generating the results.

For the temporal method, the reference timeframe was
selected at diastole, where the flow velocity is low enough
to ensure that the frame is aliasing-free. For the synthetic
data, this frame was the first time frame. For the volunteer
data, the last timeframe was used instead. The selection of
the reference timeframe does not change the results if it is
aliasing-free.

For the 3D+T gradient method, we used the thresh-
old values suggested in Reference 10, that is, tlow = 0.32
and thigh = 0.75. Their work suggests using 50 iterations of
either threshold, but we adjusted this value empirically to
10 iterations of either threshold.

The implementation of the Laplacian method is a
translation of the code provided in Reference 4 from MAT-
LAB to Python. This provides both an implementation in
spatial as well as spatiotemporal dimensions.

3.4 Error assessment

We compare the unwrapping methods on the error norm

e =
||uunwrapped − uref||

||uref||
, (14)

where uref is the reference solution.
To assess the statistical significance of the difference

between the unwrapping results, a Friedman test with a
post-hoc Wilcoxon Signed-Rank test was used, with p <

0.05 being considered statistically significant after a Bon-
ferroni correction to account for multiple comparisons.
The statistical analysis was performed in Python.

4 RESULTS

4.1 Computing times

The processing times of the studied algorithms, running
on a notebook with 16 GB RAM and an Intel Core i5
processor, are shown in Table 1.

4.2 Synthetic data

4.2.1 3D+T data

Figures 2 and 5 show the errors and SD for each unwrap-
ping method for all considered spatial and temporal reso-
lutions for the Aorta mesh, using a Venc of 60% of the max-
imal velocity. Also included are the errors for the wrapped
data and unwrapped with OMME14 using Venc1 = 120%
and Venc2 = 60% or 30% of Vmax.

In Figure 2A, it can be seen that all unwrapping meth-
ods lead to an improvement in the error over the original
data. The Temporal method is very close to the base-
line OMME solution, whereas the other methods perform
worse. The 3D+T gradient method has a significantly
higher error with a larger SD than the other methods. The
pattern persists with the increase in noise for SNR 12.

Using the finer grid in Figure 2B, all methods except
3D+T gradient perform significantly better, with the spa-
tiotemporal Laplacian now achieving similar errors to the
temporal method for both noise levels. Additionally, the
SD of the errors has decreased.

T A B L E 1 Processing times of the algorithms for one realization on each dataset.

Average time

Algorithm Aorta (h = 2.5 mm) (s) Aorta (h = 1.5 mm) (s) 2D slice (s) PC-MRI (s)

Temporal 0.131 0.247 0.019 0.011

Spatial Laplacian 0.605 1.344 0.076 0.123

Spatiotemporal Laplacian 0.933 1.966 0.074 0.247

3D+T Gradient 81.915 163.001 8.081 0.307

Note: For the CFD simulation of the aorta, both spatial resolutions h = 1.5 and 2.5 mm are given.
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2108 LÖCKE et al.

F I G U R E 2 Average error and SD by each method on the aorta mesh, with Venc = 96 cm/s (60% of the maximum velocity) above the
line and Venc = 48 cm/s (30% of the maximum velocity) below the line. On the top row each time, the finer temporal resolution of 30 ms is
used, on the bottom row, 60 ms. On the left a coarse spatial resolution of h = 2.5 mm is used, on the right a fine mesh with h = 1.5 mm
resolution. (A) Venc = 60%, h = 2.5 mm; 𝛿t = 30 ms; (B) Venc = 60%, h = 1.5 mm; 𝛿t = 30 ms; (C) Venc = 60%, h = 2.5 mm; 𝛿t = 60 ms; (D)
Venc = 60%, h = 1.5 mm; 𝛿t = 60 ms; (E) Venc = 30%, h = 2.5 mm; 𝛿t = 30 ms; (F) Venc = 30%, h = 1.5 mm; 𝛿t = 30 ms; (G) Venc = 30%,
h = 2.5 mm; 𝛿t = 60 ms; (H) Venc = 30%, h = 1.5 mm; 𝛿t = 60 ms.
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LÖCKE et al. 2109

F I G U R E 3 Examples of the unwrapped velocity on the Aorta mesh (CFD simulation), sliced at z = 5.7 cm, with signal-to-noise ratio
12, 𝛿t = 60 ms, at t = 0.18, on the coarse mesh with spatial resolution h = 2.5 mm. (A) Wrapped; (B) optimal multiple motion encoding; (C)
temporal; (D) spatial Laplacian; (E) spatiotemporal Laplacian; (F) 3D+T gradient.

For SNR 12, the differences between the temporal
results and the OMME results were not statistically signifi-
cant (p= 0.5 for h = 2.5 mm, and p= 0.11 for h = 1.5 mm),
indicating that the temporal method performs at the same
level as OMME with regards to both means and variance in
these cases. All other methods were pairwise statistically
significantly different (p < 0.05).

For the lower temporal resolution of 𝛿t = 60 ms in
Figure 2C, the temporal method has a significantly higher
error and larger SD as compared to 𝛿t = 30 ms. Also, the
method’s sensitivity to noise appears to have increased.
The other methods are not impacted significantly by the
change in temporal resolution. As a result, the spatiotem-
poral Laplacian now has similar errors to the temporal
method and lower ones for SNR 12.

This pattern persists in Figure 2D with the higher
spatial resolution. This improves the error values for all
methods except the temporal method, leading to the spa-
tiotemporal Laplacian having a significantly lower error
and standard deviation compared to the temporal method.
For SNR 12, the spatial Laplacian outperforms the tempo-
ral method as well.

For the lower temporal resolution, the differences in
the performance of the methods were in each case found
to be statistically significant for each pairwise combination
of methods.

The results for Venc = 30% of the maximal velocity
are depicted in the lower part of Figure 2. It can be
seen that the performance of all single-Venc methods
worsens as compared to the higher Venc, while OMME
still performs well. For the lower timestep (𝛿t = 30 ms)

in Figure 2E,F, the Temporal method outperforms the
Laplacian and 3D+T Gradient methods, but remains sig-
nificantly worse than OMME. For the higher timestep
(𝛿t = 60 ms, Figure 2G,H), the Temporal method and
the Spatiotemporal method perform worse, and all the
single-Venc methods lead to only a small decrease in
the error. All differences were found to be statistically
significant.

Figure 3 shows the results of the unwrapping methods
on the aorta mesh on an example 2D slice including the

F I G U R E 4 Mean error of each method by signal-to-noise
ratio on the 3D+T aorta data (CFD simulation) with Venc = 96 m/s,
a spatial resolution of h = 2.5 mm, and a temporal resolution of
𝛿t = 30 ms.
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2110 LÖCKE et al.

F I G U R E 5 Average error and standard deviation by each method for different 𝛿t on a hexagonal element slice mesh (CFD simulation)
taken at z = 5.7cm with Venc = 77 cm/s (60% of the maximal velocity) in (A) and (B) and Venc = 38 cm/s (30% of the maximal velocity) in (C)
and (D). (A) and (C) show the results with a temporal resolution of 30 ms, while (B) and (D) depicts the results using 60 ms. (A) Venc = 60%,
𝛿t = 30 ms; (B) Venc = 60%, 𝛿t = 60 ms; (C) Venc = 30%, 𝛿t = 30 ms; (D) Venc = 30%, 𝛿t = 60 ms.

ascending and descending aorta. It can be seen that the
Temporal method and both Laplacian methods unwrap
perfectly or nearly perfect, whereas the 3D+T Gradient
only leads to a very partial unwrap.

In Figure 4, the mean errors of the different unwrap-
ping methods are depicted for varying noise levels, for the
case of the CFD simulation of the 3D aorta geometry, with
a Venc of 60% of the maximal velocity, a spatial resolution
of h = 2.5 mm and a temporal resolution of 30 ms. It can be
seen that the Temporal method, while performing better
than other methods at low noise levels, responds signifi-
cantly worse to an increase in noise. The other methods
all react similarly. It can also be seen that we can expect
a reduction in the error from the wrapped data from the
Laplacian methods and OMME even with a SNR of 6, given
this temporal and spatial resolution.

4.2.2 2D+T data

The results on the 2D+T slices with hexagonal elements
and a Venc of 60% are depicted Figure 5A,B. Here, all
methods except for the 3D+T gradient method perfom very
similarly for 𝛿t = 30 ms. The spatiotemporal Laplacian has
a much lower SD than the other methods, especially for
SNR 12. For the coarser temporal resolution, the tempo-
ral method does significantly worse than the Laplacian
methods, with an error twice as large as that of the spa-
tiotemporal Laplacian and a much larger SD. The 3D+T
gradient method does not lead to a significant reduction
in the error. The only methods without statistically signifi-
cant differences were OMME and temporal for 𝛿t = 30 ms
(p = 1 and p = 0.17, respectively) as well as OMME and
spatiotemporal Laplacian for SNR15, 𝛿t = 30 ms (p= 0.28),
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LÖCKE et al. 2111

F I G U R E 6 Examples of the unwrapped velocity on a slice taken at z = 5.7 cm, with signal-to-noise ratio 12, 𝛿t = 30 ms, at t = 0.18. (A)
Wrapped; (B) optimal multiple motion encoding; (C) temporal; (D) spatial Laplacian; (E) spatiotemporal Laplacian; (F) 3D+T gradient.

temporal and spatiotemporal Laplacian also for SNR15,
𝛿t = 30 ms (p = 1), and temporal and spatial Laplacian for
SNR 15, 𝛿t = 60 ms (p = 0.13).

The results with a lower Venc of 30%, hence exhibiting
double wraps, are shown in Figure 5C,D. All single-Venc
methods perform significantly worse compared to the
higher Venc, and both Laplacian methods no longer lead
to a substantial decrease in the error. All methods had
statistically significantly different results from each other
with the exception of the spatiotemporal Laplacian and the
3D+T Gradient in the case of 𝛿t = 60 ms as well as the
3D+T Gradient and the wrapped data in the case of SNR
12, 𝛿t = 30 ms.

Examples for the unwrapping results on the 2D+T data
can be seen in Figure 6, with a temporal resolution of 𝛿t =
30 ms and a noise level of SNR 12. It can again be observed
that the temporal method unwraps most wrapped voxels,
but also generates a falsely wrapped voxel with a very high
velocity. The spatial Laplacian leads to a good unwrap with
only a few wrapped pixels remaining, while the spatiotem-
poral Laplacian unwraps perfectly. However, the 3D+T
gradient method only leads to a partial unwrap, with many
aliased voxels remaining.

4.3 In vivo data

The errors of the unwrapping methods on each of the vol-
unteer MRI acquisitions for Venc = 75 cm/s are depicted in
Figure 7.

It can be seen that the reduction in error is lesser
than for the synthetic data. Still the error is reduced by
more than 50% on average after unwrapping. The temporal
method and spatial Laplacian method perform similarly
on this dataset, while the spatiotemporal Laplacian has
the lowest error and SD of all methods. The 3D+T gradi-
ent method, as with the synthetic data, only marginally
reduces the error.

For the errors on the noised data in Figure 7 show
that the errors for all methods increased slightly, but the
comparative performance of the methods remained the
same. In both cases, none of the methods reach the same
performance as OMME.

For this type of data, the differences between temporal
and spatial Laplacian were not statistically significant for
both the original and noised data (p = 0.79 and p = 0.35,
respectively). Additionally, for the noised data, there were
no statistically significant differences between the input
data and the results of the 3D+T Gradient method (p =
0.88), confirming that no effective unwrapping was done.
All other methods were statistically significantly different
from both the input data and each other.

For the lower Venc = 50 cm/s (results in Figure 7C,D),
the spatiotemporal Laplacian achieves the best results.
Nonetheless, the results are considerably worse than for
the higher Venc, with a higher error and SD. Especially
for the noised data, only a small reduction in error
is achieved, and the range of the SD shows that the
error may even increase over the original data in some
realizations.
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2112 LÖCKE et al.

F I G U R E 7 Average error and standard deviation by each method on the 2D+T PC-MRI data from 26 different subjects with Venc = 75
cm/s on the top row, Venc = 50cm∕s below. (a) and (c) shows the results with the original data, while (b) and (d) shows the results with a
Gaussian noise with standard deviation of 0.15𝜋 added to the phase first. (A) Venc = 75 cm/s, original; (B) Venc = 75 cm/s, noised; (C)
Venc = 50 cm/s, original; (D) Venc = 50 cm/s, noised

F I G U R E 8 Examples of the unwrapped velocity on MRI data acquisition from volunteer 7 at t = 4. (A) Wrapped; (B) optimal multiple
motion encoding; (C) temporal; (D) spatial Laplacian; (E) spatiotemporal Laplacian; (F) 3D+T gradient.

 15222594, 2023, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

rm
.29767 by U

niversiteitsbibliotheek, W
iley O

nline L
ibrary on [18/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



LÖCKE et al. 2113

F I G U R E 9 Examples of the unwrapped velocity on MRI data acquisition with added noise from volunteer 7 at t = 4. (A) Wrapped; (B)
optimal multiple motion encoding; (C) temporal; (D) spatial Laplacian; (E) spatiotemporal Laplacian; (F) 3D+T gradient.

It was found that the Temporal and the Spatiotem-
poral Laplacian method did not have statistically signifi-
cant differences for both noise levels (p = 0.73 and p =
0.71, respectively). All other differences were statistically
significant.

Figure 8 shows example pictures of the unwrapping
results from volunteer 7. The Temporal method unwraps
very well except for several voxels on the edges of the
ascending and descending aorta, where the movement of
the aorta disrupts the temporal continuity of the voxels
between one timestep and the next. The spatial Lapla-
cian method fails to unwrap a small area on the edge
of the ascending aorta, but unwraps everything else suc-
cessfully. The spatiotemporal Laplacian methods removes
all aliased voxels. In contrast, the 3D+T gradient method
removes only a subset of aliased voxels, leading to a partial,
fractured unwrapping.

The results of the data with additional noise are shown
in Figure 9. It can be seen that all the methods except
3D+T Gradient deliver similar results to the original data
except for a few additional falsely wrapped voxels, while
the unwrapping results of 3D+T Gradient are significantly
worse, with no effective unwrapping done.

5 DISCUSSION

The results on the different datasets are consistent with
each other in regards to the relative performance of

the different unwrapping methods. This shows that the
performance of the unwrapping algorithms on the syn-
thetic data used here is likely a good indicator of their
performance on in-vivo data.

On each of the datasets, the temporal method and the
spatiotemporal method generally outperform the spatial
Laplacian and the 3D+T gradient method. The 3D+T gra-
dient method fails to perform adequately, as the result-
ing images are still heavily aliased, and is additionally
more computationally expensive than the other meth-
ods due to the number of iterations. The spatial Lapla-
cian offers no advantage over the spatiotemporal Lapla-
cian and performs worse than the temporal method
in almost all cases as well, with the exception of the
PC-MRI acquisitions, where there is no statistically sig-
nificant difference between the spatial Laplacian and the
temporal method. It is only slightly less computation-
ally expensive than using the higher-dimensional Lapla-
cian and significantly more expensive than the temporal
method.

With a small timestep, the temporal method achieves
equal or better results than the spatiotemporal Lapla-
cian method, especially on a coarser mesh. It is also
significantly cheaper to compute than the spatiotempo-
ral Laplacian. However, it is more sensitive to noise, and
has a much larger SD, especially on the 2D+T datasets.
As a result, the spatiotemporal Laplacian outperforms
the temporal method on datasets with a finer grid, a
larger timestep, or more noise. It is overall the most
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2114 LÖCKE et al.

reliable method and often generates completely unaliased
images.

An interesting aspect is that the spatiotemporal Lapla-
cian method does not drastically outperform the temporal
method on the full 3D+T Aorta datasets, despite having
the advantage of using an additional spatial dimension as
compared to the PC-MRI slice datasets.

It is notable that all the methods seem to be limited by
the Venc. With a Venc of less than 50% of the maximal veloc-
ity, the performance of the unwrapping methods (except
for OMME) decreases severely, likely due to the presence
of double wraps. It is therefore not recommendable to
use a very low Venc to take advantage of the low noise,
as the error will still be higher than with a successfully
unwrapped higher-Venc acquisition.

A limitation of this study is that the algorithms were
not tested on full 3D+T in-vivo MRI acquisitions, nev-
ertheless the synthetic data presented here is realistic in
terms of spatiotemporal resolution and noise.

6 CONCLUSION

In this work we compared four different algorithms to
correct the aliased data and retrieve correct velocity val-
ues. Using two different synthetic datasets and in-vivo
data, we have shown the advantages and disadvantages of
the algorithms and have come to the conclusion that the
spatiotemporal Laplacian described in Reference 4 outper-
forms the others in terms of performance and reliability
with acceptable computational cost. The temporal method
is computationally cheaper, but more sensitive to noise
and low temporal resolution, and is therefore only prefer-
able if the temporal resolution is high compared to the
spatial resolution or computational capacities are highly
limited. The other two algorithms (spatial Laplacian and
3D+T gradient) offer no advantages compared to these
two. The presented single-Venc methods however do not
reach the reliable performance of OMME, and are not
effective for a Venc of lower than 50% of the maximal
velocity.
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