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Abstract  

While BOLD contrast reflects haemodynamic changes within capillaries 

serving neural tissue, it also has a venous component. Studies that have determined 

the relation of large blood vessels to the activation map indicate that veins are the 

source of the largest response, and the most delayed in time. It would be informative 

if the location of these large veins could be extracted from the properties of the 

functional responses, since vessels are not visible in BOLD contrast images. The 

present study describes a method for investigating whether measures taken from the 

functional response can reliably predict vein location, or at least be useful in down-

weighting the venous contribution to the activation response, and illustrates this 

method using data from one subject. We combined fMRI at 3 Tesla with high-

resolution anatomical imaging and MR venography to test whether the intrinsic 

properties of activation time courses corresponded to tissue type. Measures were 

taken from a gamma fit to the functional response. Mean magnitude showed a 

significant effect of tissue type (P<0.001) where CSF > veins ≈ grey matter > white 

matter. Mean delays displayed the same ranking across tissue types (P<0.001), except 

that veins > grey matter. However, measures for all tissue types were distributed 

across an overlapping range. A logistic regression model correctly discriminated 72% 

of the veins from grey matter in the absence of independent information of 

macroscopic vessels (ROC=0.72). Whilst tissue classification was not perfect for this 

subject, weighting the T contrast by the predicted probabilities materially reduced the 

venous component to the activation map. 

 

Keywords : BOLD contrast, magnitude, delay, venous contribution. 
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Introduction 

The functional MR signal is based on intrinsic BOLD (blood-oxygen-level-

dependent) contrast that reflects changes in blood flow, blood volume and the relative 

metabolic rate of oxygen within activated cerebral tissue. Approximately 75% of the 

cerebral blood volume is contained in venous vessels and only 5% in the capillary bed 

(1, 2). Intra-cortical veins (diameters of 50 to 100 μm) resemble inverted trees where 

the trunks connect at right angles to pial veins (diameters of 100 to 400 μm) that run 

along the cortical surface and drain into the venous sinuses (3). The MR signal from 

within vessels  is markedly affected by the paramagnetic properties of deoxygenated 

haemoglobin. Hence venous drainage, in intracortical and pial veins, is the dominant 

component of the BOLD signal, particularly at low field strength (e.g., 4). Although 

this venous effect becomes steeply diluted at several tens of mm distally from the 

neuronal activity by confluence effects (5), it may be sufficient to influence the shape 

and centre of mass of activation derived from statistical maps. Consequently, the true 

site of the cortical territory showing increased neuronal activity is likely to be 

contaminated by the downstream effects of these draining veins. Vascular artifacts are 

still present at field strengths up to 4 Tesla (6,7). This venous contribution to the MR 

activation signal is often overlooked in the interpretation of functional imaging data 

where peaks of activation (i.e. voxels that show the greatest signal change between 

activation and baseline states relative to their variance) are generally assumed to 

reflect points of highest neural activation. For accurate interpretation of fMRI data 

and improved localisation of function, it is desirable to separate genuine activity (that 

associated with the metabolic activity proximal to the capillary bed) from that of 
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venous drainage (that may be spatially distal to the activated tissue). However, since 

the neurovasulature is highly variable across subjects, the relationship between 

vessels and the functional activation pattern must be empirically determined for each 

subject.  

Numerous studies at 1.5 Tesla have compared functional activation with an 

MR angiogram for the same subject (e.g., 1, 8-13). All these studies have involved 

functional activation in either the central sulcus (motor activity) or calcarine cortex 

(visual activity), both of which have a large draining venous system. When these 

functional data were correlated with a sinusoidal fit to a square wave function, 

generally significant voxels of high signal change and long delay were anatomically 

associated with large draining vessels. For example, using high resolution fMRI, Lai 

et al. (11) found that activation induced by finger movements precisely matched the 

vein in the central sulcus, rather than the grey matter tissue of the precentral gyrus. 

Cross-correlational analysis has also been used to determine differences in the delay 

of the signal between activated venous and grey matter tissue. Where delay typically 

refers to the time from stimulus onset to the peak in the response. The delay of the 

response may reflect the transit time through the vasculature, with voxels overlying 

draining veins having longer delays. Lee et al. (1) reported that voxels overlying pial 

and larger veins, as seen in the MR angiogram, had longer temporal delays than 

voxels anatomically associated with grey matter. Robson et al. (14) also report a 

positive association between the response amplitude and time to half maximum 

amplitude, but the response was modelled using a gamma function with a constant 

delay. 

A significant difference between the temporal phase of the response in venous 

and grey matter tissue cannot always be established (e.g, 9,12). One explanation is 
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that the response amplitude and delay are not representative measures of the 

underlying activation. This case could be particularly true, where the delay is 

determined from the parameters of a fitted sinusoid (e.g., 9,12). The delay estimates 

will be unrepresentative if the activation signal does not itself strictly conform to a 

sinusoidal function. First, the rise and decay of the functional signal is rarely as 

symmetric as the sinusoid and so, in this case, the delay estimate would correspond to 

the peak in the curve fit rather than to the empirical peak. Second, for periods of 

sustained stimulation over many seconds, the magnitude of the response generally 

reaches a plateau or may even decrease due to neural adaptation and the nonlinearity 

of the haemodynamic response (e.g., 15,16). For example, for 32-s epochs, the signal 

approximates to a smoothed square wave rather than to a sinusoid (see Fig 3B, ref12). 

An appropriate curve-fitting procedure is required that generates a good fit to the 

stimulus response in each voxel, and thus provides satisfactory estimates of the 

magnitude and delay. 

 In the present study, we include two additional measures derived from the fit 

(spread and goodness-of-fit) which provide supplementary information to that of the 

magnitude and delay described by previous research. We used an event-related design 

to measure activation to a brief audio-visual stimulus. We derived voxel estimates of a 

series of measures from gamma density least squares fits to each average voxel 

timecourse. The gamma curve is asymmetric and so is appropriate for fitting positive 

responses that have unequal rise and decay slopes. We evaluate differences between 

large veins, grey matter, white matter and cerebro-spinal fluid (CSF), in terms of 

measures taken from the gamma fits and investigate the emergence of any general 

relationship between response shape and tissue type. We look beyond those activated 

brain areas that surround the major venous drainage systems within the central and 
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calcarine sulci, to include auditory activation in the temporal cortex. Our ultimate 

interest is in whether a combination of measures from the gamma density could 

provide a general basis for segregating voxels according to their neurophysiological 

relevance, and so permit more refined mapping. This approach is presented using a 

large single-subject dataset. 

 

Materials and Methods  

One healthy male subject, aged 29, was studied using a Varian 3 Tesla scanner 

equipped with a fast head gradient coil insert. Sets of 20 T2*-weighted EPI oblique 

axial brain images were acquired every 2.5 s, with a 64 by 64 image matrix, a field of 

view of 22.4 cm, a TE of 30 ms and a flip angle of 90°. The in-plane resolution was 

3.5 x 3.5 mm, and slice thickness was 6 mm. Three further sets of image data were 

acquired in the same imaging plane. A 50-slice, T1-weighted structural brain image, 

with a voxel resolution of 1 x 1 x 3 mm, was obtained. We also acquired a 60 slice 

3D,  time-of-flight venous-weighted image (17) using a TE of 28 ms, and a voxel 

resolution of 0.4 x 0.5 x 1.9 mm. This image was weighted for BOLD contrast and 

optimised to visualise small veins. The third image was a B0 field map to quantify the 

magnetic field distortions.  

Visual stimuli were projected onto a screen at the end of the scanner bed and 

the subject viewed the screen using prism goggles. The visual stimulus was a 6.7 Hz 

reversing blue and yellow checkerboard, presented for 900 ms. At the same time, 

pairs of spoken words were presented via high-fidelity headphones (18). The subject 

was requested to press a button when he heard any of three target words. 

An audio-visual event occurred at each 9th TR period and within that period, it 

could be jittered at 5 time points, of 250, 750, 1250, 1750 and 2250 ms SOA. Thus, 
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the timecourse of the response to the stimulation could be reconstructed with an 

effective temporal resolution 500 ms across a 22.5 s time window. The response to a 

brief stimulus event has been shown to return to baseline within this period (19). A 

total of 695 sets of images were acquired giving 14 data samples for each time point 

in this window. For an estimation of the baseline signal, 39 sets of images were 

acquired at the start of the functional imaging run and 16 sets of images at the end.  

 

Image Analysis 

The magnetic field distortion map was used to refine the venous-weighted 

image using the FUGUE phase-unwrapping tool (20). Further post-processing of the 

venous-weighted image used methods described by Reichenbach et al. (21) with tools 

from the fMRIB software library  (www.fmrib.ox.ac.uk/fsl), which masked the 

magnitude-contrast image by the corresponding phase-contrast image to increase 

visibility of small vessels, and also corrected for magnetic field nonuniformity using a 

homodyne demodulation reference (22).  

The fMRI data were analysed using SPM99 software (http://www.fil. 

ion.ucl.ac.uk/spm). Functional images were slice-time corrected to the 10th slice and 

corrected for 3-D head movement. T2*- and venous- weighted images were 

coregistered to the T1-weighted structural image using mutual information-based 

registration (23). All three sets of brain images were normalised into the MNI 

(Montreal Neurological Institute) brain space using the structural image as a 

reference. The normalisation algorithm applied 7 x 8 x 7 nonlinear basis functions to 

correct for the geometric distortions in the T2*-weighted images relative to the T1-

weighted image. Normalised images were then resampled to the same resolution (0.8 

x 1.0 x 1.9 mm) using bilinear interpolation. A voxel-to-voxel correspondence was 
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achieved between the three image sets and the accuracy of this correspondence was 

verified by point-to-point visual comparison of visible landmarks across the T2*-, T1- 

and venous-weighted images (e.g., alignment of cortical surface, alignment of  

ventricles, and intra-cortical veins running within the sulci, perpendicular to the 

cortical surface). At this resolution, the path of cortical veins can still be visibly 

traced. 

An event-related analysis was performed on the normalised image data, with 

no spatial or temporal smoothing. Low-frequency noise was removed using a 0.02 Hz 

high-pass filter. Variations in mean global signal intensity were not removed, because 

of the danger of producing spurious local changes in the direction opposite to any 

change in global signal. The response to each audio-visual event was modelled using 

a synthetic haemodynamic response function composed of two gamma functions with 

fixed parameters (to model the haemodynamic response with a slight undershoot) and 

their temporal derivatives (24). The inclusion of derivatives allows for some latitude 

in differential response latencies across voxels.  

The T contrast for the response and its temporal derivative was computed at a 

corrected threshold of T645 = 4.76 (P < 0.05). The statistical parametric map revealed 

290,834 activated voxels within numerous brain regions (21% of all brain voxels). 

This sample is too large for calculations based on all individual voxels. Thus, for the 

modelling, we included only voxels with z co-ordinates between –25 to +42 mm in 

the inferior-to-superior plane, reducing the voxel number to 193,740. This region of 

the brain incorporates visual and auditory regions in the occipital and temporal 

cortices, and excludes parts of the frontal and parietal cortices. To further reduce 

voxel numbers, we applied more stringent thresholding to yield a final total voxel 

count of 41,269. Clusters with a peak threshold of T645 > 10 and an extent > 500 
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identified principal activation sites. However, this statistical threshold captured many 

more voxels in visual cortex than in auditory cortex. Therefore, for more reliable 

statistical comparison with visual activation, the size of the bilateral auditory 

activation in the superior temporal gyrus was increased by including voxels with T645 

> 7 which surrounded the auditory activation clusters that were present at T645 > 10. 

This approach increased the number of auditory voxels from 1,473 to 4,408. The dual 

statistical threshold was controlled for all subsequent statistical analyses for 

estimating the other variable means.  

 

Classification of tissue type 

Using the venous-weighted and the structural scans, voxels of interest were 

classified into four tissue types (venous, grey matter, white matter and CSF). On the 

basis of their different intensity characteristics, each tissue can be defined by applying 

an intensity filter at different cut-offs using MRIcro software (25). In the venous-

weighted image, veins have a distinctively low signal due to spin dephasing and could 

be traced through the slice when signal intensities were filtered between -99 and -39. 

In the structural image, the grey matter could be segregated when signal intensities 

were filtered between 9603 and 14403 and the CSF between 24 and 9573. The white 

matter was defined by subtracting the veins, grey matter and CSF tissue from the 

defined regions of brain activation. An example of this classification is shown in 

Figure 1. 

** Figure 1 ** 

 

Control for tissue classification error  
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Functional, venous-weighted and structural images were acquired at different 

voxel resolutions. Each functional voxel (3.5 x 3.5 x 6 mm) contained 193 voxels in 

the venous weighted image (0.4 x 0.5 x 1.9 mm). Thus, even after resampling all 

images to a resolution of 0.8 x 1 x 1.9 mm, neighbouring voxels could have a similar 

functional response, but a different tissue classification. Since a tissue-specific signal 

does not need to be as large as the voxel to materially influence its signal (due to 

partial volume effects), errors could be introduced in the classification of the tissue 

origin of each functional voxel. We logically surmise that the greater the number of 

adjacent voxels that share the same tissue type, the more closely is the functional 

voxel likely to reflect the response within that particular tissue. Tissue heterogeneity 

across the venous-weighted image was estimated using a measure of voxel 

neighbourhood.  Any voxel up to 1.6, 2.0 and 3.8 mm distant on the x, y and z axes 

respectively was considered to be a neighbour. The more neighbours of the same 

tissue type that a voxel has, the more homogenous the tissue and hence the more it 

contributes to the estimation of the parameters of the logistic model.  The number of 

neighbours having the same tissue classification was used as a control variable for 

each voxel response in all the subsequent modelling. 

 

Gamma curve fitting to the voxel responses  

For each of the 41,269 voxels, we extracted the entire signal timecourse. 

Weighted-mean baseline measures at the beginning and end of the time series were 

used to derive and subtract a linear estimate of the remaining baseline signal from 

each individual timecourse. Individual voxel responses to the stimulus were then 

reconstructed using the baseline corrected signal for a window 22.5 s following 

stimulus onset. For each time point in the window we have 14 data values, a mean 
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value was calculated on 10 data points after discarding the upper and lower two 

values (Figure 2). Thus, for each voxel, the mean time course is not contaminated by 

outliers. 

** Figure 2 ** 

To estimate the measures of the response, a positive gamma curve was fitted 

to each representative time course. All activated voxels have a significant positive 

response, as the T analysis in SPM99 is directional. The gamma curve took the form 

of the gamma density function multiplied by a constant, 

)1(1 , ,1 ,0),exp(
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)( 1 −=−
Γ

= − Txbxx
a

bcxf a
a

K  

where c is a scaling constant, x represents the data points and, a and b are the 

natural parameters of the gamma curve and Γ(.) is the gamma function.  Gamma 

curves always start at the zero point (x = 0) and so may provide a poor fit for positive 

responses with a non-zero lag (i.e. voxels with a late onset response). Thus, to account 

for the systematic asynchrony between stimulus and response onsets, we fitted a 

family of gamma curves for each voxel with a range of integer post-stimulus onsets 

(lag = 0, 1, 2, … 9 s), and determined the best-fitting curve by its residual sum of 

squares (see Figure 2). This approach to modelling variable onset time has been used 

previously (26,27). The fitting procedure provided convergent gamma fits for all 

41,269 voxels. Transforms of the parameters for these gamma curves were taken to 

yield measures of delay and spread which conceptually have greater functional 

relevance than the natural gamma parameters (a and b). We define delay as the time, 

after stimulus onset, to the mean of the fitted response and it was estimated by adding 

the lag and the mean of the gamma function, a/b. The spread represents the temporal 

width of the gamma function, a/b2. This measure is estimated ignoring the lag. 

Measures of magnitude, maximum and goodness of fit (GoF) were also calculated 
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from the gamma curve. Magnitude is the area under the positive portion of the fitted 

curve (absolute magnitude > 0) and was estimated by the scaling constant c of the 

gamma curve, since the area of the gamma distribution (shaded area in Figure 2)  is 1 

by definition. The curve maximum represents the amplitude of the gamma fit when 

the curve reaches its peak. The maximum and magnitude measures describe similar 

characteristics of the gamma curve, their correlation being r=0.95.  

A standardised GoF index Eq(2) was also obtained to enable across-voxel 

comparisons of how well the gamma curve summarised the functional response. In 

Eq(2), yi is the mean value of the time course at time i, and is the gamma-estimated 

value at time i. The GoF function was weighted in a step-wise manner to give three 

times more importance to the goodness of fit within the initial 12.5 s (first 25 time 

points) of the time course, where we expect the positive response to predominantly 

occur, than the remainder. A low GoF index indicates a good gamma curve fit. 
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To determine whether the measures significantly differed across the tissue 

types and between the brain regions, ANOVAs were carried out on the dependent 

variables; magnitude, delay, spread and GoF. To provide a more robust test of the 

different measures, the ANOVAs controlled for the dual statistical threshold (either 

7<T<10 or T>10) and voxel neighbourhood.  The tests of magnitude, delay and 

spread were further controlled for GoF, since GoF indicates the reliability of these 

measures taken from the gamma fits. 
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Modelling of the gamma measures 

One of the key questions is whether we can reliably discriminate between 

signals from underlying venous and grey matter tissue. To determine this issue, the 

gamma measures from just those voxels categorised as vein and grey matter tissue 

were included in subsequent modelling of the data. We used logistic regression 

(Eq[3]) which is appropriate for data with binary outcomes, 
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where pi is the probability that the ith voxel is overlying a vein (or (1-pi) is the 

probability of being grey matter), bi is the coefficient and x1i to xki represent the 

different covariates.  The covariates in the logistic regression model included the 

magnitude, spread and delay, GoF, voxel neighbourhood, dual statistical threshold 

and sensory region (visual, auditory and ‘other’), plus all two-way interactions 

between the covariates. Again, the inclusion of GoF controlled for the low reliability 

of magnitude, maximum and delay estimates when the gamma curve fit was poor and 

voxel neighbourhood helped to control for tissue misclassification.  

To discriminate between veins and grey matter tissue for the above logistic 

regression model, we used the receiver operating characteristic (ROC) analysis.  The 

ROC curve is a plot of sensitivity (or true-positive rate) against 1-specificity (or false 

positive rate). The area underneath the ROC curve serves as a well-established index 

of the accuracy of the logistic model and can range from 0.5 (no discrimination) to 1.0 

(perfect discrimination) (28).   
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If the logistic regression model attains a positive discrimination (ROC > 0.5) 

between the different tissues, we can use the predicted grey matter probabilities from 

the model to weight the original T values from the SPM T contrast, in order to 

sharpen up the activation map by filtering out voxels that are less likely to be grey 

matter. This correction can be achieved simply by multiplying the grey matter 

probability of voxel, i, (1-pi) by its corresponding T value.  Since the  predicted 

probabilities vary between zero and one, all the original T values will be reduced, but 

the more likely that voxel, i, is classified as grey matter, the smaller will be the 

reduction on the T value, since (1-pi) will be closer to one. If this method is 

successful, then when the probability-weighted T contrast is thresholded, the ratio 

between the number of venous and grey matter voxels will be reduced.  

 

Results 

The event-related analysis in SPM99 (P<0.05, corrected) revealed widespread 

activation in occipital and temporal lobes, reflecting sensory activation evoked by the 

audio-visual stimuli. Additional activation occurred in frontal cortex (BA4, BA6), 

parietal cortex (BA7, BA40) and thalamus and these areas may reflect strategy or 

task-related motor activity. Table 1 reports the peak locations of activation.  

** Table 1 ** 

The defined brain region used for extracting voxel time courses excluded 

activated clusters in BA6, BA7 and BA40 as their z location co-ordinates exceeded 

+42 mm (see Image analysis section). The defined region included occipital cortex, 

temporal cortex and ‘other’ brain regions (predominantly the thalamus). Occipital 

cortex includes activation in primary visual and higher visual areas, whilst temporal 
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cortex includes activation in higher auditory areas. A breakdown of the numbers of 

voxels, split by brain region and tissue type, is given in Table 2.  

** Table 2 **  

Several of the activation clusters can be attributed to a large draining vein 

observed in the corresponding venous-weighted image. An example of this is 

illustrated in Figure 1. However, when the data are taken overall, magnitude and delay 

estimates for all tissue types were distributed across the same broad range (Figure 3). 

For the magnitude estimates, 90% lay between 559.8 and 3091.0, whilst for delay 

90% lay between 4.1 and 6.2 s. 

** Figures 3 & 4 ** 

 

ANOVA on the measures taken from the gamma curve 

The mean values and confidence intervals for the four measures of interest 

(magnitude, delay, spread and GoF) are illustrated in Figure 4 for each tissue 

classification and brain region. Magnitude and spread were high in visual regions. 

Thus, the typical visual response could be characterised by a high peak and a broad 

spread across time. In contrast, auditory responses had a low magnitude, small spread 

and shorter delay.  

For direct comparison with the literature, we first discuss magnitude and delay 

differences across veins and grey matter. Within visual and auditory regions, response 

magnitude was significantly greater in veins than in grey matter (P < 0.05, Bonferroni 

corrected). In ‘other’ regions, this difference was in the opposite direction, with grey 

matter having a significantly greater magnitude than veins (P < 0.01, Bonferroni 

corrected). In visual and auditory regions, delay was again longer in veins than in grey 

matter (P < 0.01, Bonferroni corrected), but there was no difference in the ‘other’ 
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regions. Our findings in the visual and auditory cortices support the expectation that 

the functional response has a higher magnitude and longer delay for veins than for 

grey matter. The inconsistent vein/grey matter differences in ‘other’ brain regions 

may be influenced by the relatively poor GoF, which will make the magnitude, delay 

and spread measures somewhat less robust. Comparing magnitude and delay across 

the four tissue types, white matter had the lowest magnitude and delay, while CSF had 

the greatest magnitude and delay (all P < 0.01, Bonferroni corrected).   

The most noteworthy pattern in the spread estimates was the greater spread in 

both visual and ‘other’ brain regions than in auditory regions (P < 0.001, bonferroni 

corrected). This pattern was also reflected in the magnitude data.  The spread 

(temporal width of the gamma fit) and the magnitude (area under the gamma 

function) can be conceived as partly reflecting similar aspects of the data. Generally 

the GoF measures indicated acceptable curve fits, but the fits were somewhat more 

robust for visual and auditory regions than for ‘other’ regions (P < 0.01). Given that 

the ‘other’ regions predominantly encompass thalamic activation, one might speculate 

as to whether the thalamic regions are less strongly driven by the paradigm or whether 

the data are more noisy. 

Finally, we consider differences in the measures across veins and CSF. CSF is 

not a source of the activation signal, but veins and CSF are often located in proximity 

one another, particularly where those activated regions include pial veins running 

along the cortical surface. Where a voxel crosses these tissue borders, signal from 

both veins and CSF could contribute to the response within that voxel. According to 

our classification, CSF contributes a smaller proportion of the voxels than veins (7.7% 

and 31.6% respectively). Consequently, we might expect the response measures for 

voxels in CSF to reflect spatial spread from their neighbours, such as adjacent veins. 
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This pattern may still be true even after accounting for the effects of resampling the 

images using the voxel neighbourhood measure of tissue homogeneity. CSF and veins 

were directly compared to investigate whether measures from the two tissues were 

similar or different. The results show a rather complex and inconsistent pattern. When 

the data were collapsed across brain region, magnitude and delay were higher for CSF 

than for veins (P < 0.001, Bonferroni corrected), whereas spread was equivalent 

across CSF and veins (P > 0.5, Bonferroni corrected). Thus, some gamma measures 

differed significantly between veins and CSF. These tissue differences indicate that 

the response from CSF does not completely reflect the venous response. Indeed, we 

were surprised to find that the effects in CSF are unlikely to be due simply to partial 

voluming, because CSF has a significantly longer magnitude and delay than any other 

tissue (P < 0.001). We return to this issue in the Discussion. 

 

Discriminating veins from grey matter using logistic regression 

To test whether the gamma measures could provide a robust segregation 

between venous tissue and grey matter, we further modelled the data using a binary 

logistic regression model. In summary, the covariates used in the model were the 

measures of magnitude, delay, spread and GoF taken from the gamma fits, the number 

of neighbours, plus all second-order interactions and two categorical variables (brain 

region and dual statistical threshold). All possible 2-way interactions were included 

because of plausible second-order effects among the measures. The logistic regression 

model converged after six iterations and a summary of the results is presented in 

Table 3.  All the main measures of interest were significant (P < 0.05). Fourteen of the 

possible 21 interactions were also significant (P < 0.05). The model’s discriminating 

power was 0.72  (ROC=0.72).  Thus, the response measurements taken from the 
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gamma curve provided a partial, but potentially useful, discrimination between veins 

and grey matter. 

** Tables 3 & 4** 

The vein/grey matter probabilities derived from the logistic regression model 

were multiplied with the SPM T contrast. For comparison with the original T contrast, 

the resulting probability-weighted T contrast was thresholded at T > 7 for auditory 

regions and T > 10 elsewhere. The probability-weighted T value of many voxels fell 

below this threshold (83% in fact), although fewer voxels could be eliminated by 

simply applying a less stringent criterion. Table 4 reports the relative numbers of 

venous and grey matter voxels in the thresholded statistical contrasts. For the original 

T contrast, the ratio between the number of venous and grey matter voxels was 0.46 

for the auditory cortex and 1.00 for regions elsewhere. The vein/grey matter ratios 

were reduced to 0.06 and 0.38 respectively after tissue probability-weighting was 

applied. In both cases, this change reflects a material sharpening up of the grey matter 

component of the activation map.  

 

Discussion  

In this study, we derived measures of the positive functional response from 

gamma curve fits to the voxels’ mean time course. Using a simple grey scale 

approach to tissue segregation, we then allocated each voxel to one of four tissue 

types (vein, grey matter, white matter and CSF). The range of measures taken from 

the gamma fits overlapped across all tissues. On average, veins had a higher 

magnitude and longer delay than grey matter in activated visual and auditory regions. 

On the basis of the measures of the functional signal, the logistic regression model did 

not provide an absolutely precise segregation of grey matter from venous tissue. 
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Nevertheless, the voxel probability values from the regression analysis provided a 

useful filter which reduced the proportion of venous compared with grey matter 

voxels in the reconstructed activation map. We report data for only a single subject, 

but the gains we have demonstrated by the probability-weighted T contrast would be 

achieved for any subject for whom a logistic regression model provides better than 

chance discrimination of tissue chance (ROC > 0.5).  Evidently, the discriminatory 

power will vary across subjects and across different stimulation paradigms.  

 

Gamma fits 

We have argued for the appropriateness of gamma curve fit for voxels 

activated by brief stimulus events. The gamma provides suitable constraints (e.g., 

single response peak) that would more robustly fit a noisy signal. The flexibility of 

the family of three-parameter gamma curves permitted the fitting of haemodynamic 

responses that varied in shape  across voxels. We acknowledge that the gamma curve 

fits only the positive part of the haemodynamic response function, whilst ignoring the 

undershoot.  However, given that the shape of the undershoot is highly correlated with 

that of the positive part (unpublished observation), it is more parsimonious and less 

computationally intensive to fit a unipolar function such as a gamma curve, than a 

bipolar function such as two gamma curves (for the positive and negative parts 

respectively). In general, the gamma densities are probably better than other model 

functions such as sinusiodal, orthogonal basis functions or splines.  The sinusoid is 

symmetrical and would be inappropriate for this event-related study where the 

positive response has a short duration relative to the return to baseline. Orthogonal 

basis functions require the estimation of a greater number of parameters, and hence 

would be more computationally demanding. Splines do not have a suitable set of 
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constraints (i.e. they do not have to pass through zero or they do not have to rise and 

then fall). Furthermore, the parameters of these alternative model functions do not 

readily transform into physiologically meaningful variables such as maximum or 

delay.  Nevertheless, certain caveats limit the range of experimental paradigms and 

research questions for which gamma curve modelling is appropriate. First, gamma 

fitting implicitly assumes that the response is monophasic, i.e. that there is only one 

positive peak per stimulus event.  While the response to some long duration stimuli 

can be biphasic (29), this is not true for most short duration stimuli. In the present 

data, we did not observe any strongly biphasic responses. Second, the procedure used 

here for the gamma fit principally identified voxels that had a positive correlation 

with the stimulus since the range of the applied lags was not exhaustive. We did not 

seek to identify negatively correlated voxels that are highly out of phase with the 

stimulus. Such voxels may occur, particularly in alternating epoch study designs (12).  

 

Overlap in response measures across tissues  

Besides regional differences in the neurovascular architecture, other 

physiological variables (such as heart rate, blood pressure and slope of the perfusion 

changes) might influence the shape of the functional response, and hence the 

measures taken from the model fit. In particular, pressure increases at the systolic 

phase of the cardiac cycle cause a dynamic interaction between the competing space 

requirements of the blood volume, CSF and brain tissue. Large vessels exhibit 

pulsatile flow, but the CSF also displays pulsatility which causes an increased MR 

signal variance (30). A variance map for this subject showed the areas of greatest 

signal variance to be the movement within the eyeballs, and CSF flow within the 

lateral ventricles, around the cerebrum and in the fissure between the lingual gyri. 
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Even though low frequency components due to aliased pulsatile effects are partly 

removed by high pass filtering, residual variance effects may account for the 

difference in the response measures between CSF and other tissues.  It has been 

argued that most of the variability in response delay occurs across spatial locations, 

rather than within voxels across time (12). Hence, curves were fit to estimates of a 

representational response delay for each voxel, thus making the assumption that each 

voxel response to the stimulus event was invariant over time. In this study, we 

focused on investigating the nature of the response variability across space rather than 

across time.  

In the literature, the spatial variability is often attributed to large veins that 

drain activated areas. The contention is that delays are generally longer in veins than 

in other tissues, and that magnitudes are greater. For example, with respect to the 

delay measure, Lee et al. (1) reported that for an 18 s period of stimulation, voxels 

within visible vessels and sulci produced fMRI responses with 8-14 s delays, while 

delays in grey matter ranged from 4-8 s. These delay ranges are non-overlapping and 

would suggest that reasonable segregation is possible on the basis of functional 

measures alone. However, it is more generally found that, despite mean differences, 

responses from the different tissues broadly overlap (12, 31). For example, Kruggel 

and von Cramon (31) report a shift in the mean delay in response to single sentences 

across regions, but for overlapping ranges of delay. The confidence range for the 

delays was 5.7 to 8.3 s in left primary auditory cortex, 7.2 to 11.3 s in left superior 

temporal gyrus and 7.9 to 12.6 s in a midline vein complex. For comparison with the 

present study, in the superior temporal gyrus to presented word pairs, the response 

delay between veins and other tissues was significantly different, but the inter-quartile 

ranges overlapped (4.3 to 5.2 s in veins and 4.2 to 4.7 s in other tissues). Our delay 
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values are generally short because delay is directly influenced by presentation length 

of the stimulus. Nevertheless, our data are in close agreement with Kruggel and von 

Cramon’s (31) evidence that not all voxels with the relatively longer delays can be 

mapped to large draining vessels.  

 

Regional differences 

The visual cortex appears to be much more responsive to stimulation than the 

auditory cortex, but greater activation could also result from a relatively high cerebral 

blood volume (32). Certainly from the event-related model in SPM, the maximum 

visual response was more than twice that in the auditory cortex (11.6% at x = -12, y = 

-99, z = -15 mm, and 5.3% at x = 53, y = -36, z = 8 mm respectively). There are no 

clear explanations as to why this should be so. The intense acoustic scanner noise 

could partly mask the auditory word pairs and would reduce the dynamic range 

available for stimulus-evoked activation. It may also be that spoken words are not the 

auditory equivalent of a reversing checkerboard in terms of stimulus saliency. A final 

contributing factor could be the non-uniformity of the blood supply throughout the 

brain. Although the distribution of the functional measures taken from the gamma are 

overlapping, all measures showed appreciable differences between visual and auditory 

areas that were larger than the tissue differences within each brain region. The 

inclusion of auditory voxels with T values between 7 and 10 increased the number of 

auditory voxels for modelling, but in consequence would also enhance the magnitude 

differences across regions because voxels with lower T scores tend to also have lower 

amplitude responses. However, the dual statistical cut off used was a control variable 

in the ANOVAs and the logistic regression.  Therefore it is unlikely that the dual 

thresholds across regions plays an important role for the lack of tissue discrimination. 
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Logistic regression model 

Maximum discriminability between veins and grey matter tissue was achieved 

by including as covariates, the set of measurements taken from the gamma fits, as 

well as information about each voxel’s neighbourhood, dual statistical threshold and 

sensory region. To evaluate whether the discriminatory power could be improved by 

more stringent voxel selection, we recomputed the model using specific subsets of the 

voxels. Three criteria were investigated; the 10% of those voxels with the greatest 

response magnitude, the 10% of those voxels with the lowest (best) GoF, and voxels 

located only within the visual cortex. The area under the ROC curve was 0.72, 0.75 

and 0.67 respectively. Thus, only selection by GoF improved matters, and this not 

materially. The high number of terms in the model contributes to the stability of its 

discriminatory power. 

The area under the ROC showed that the model’s performance was 

significantly greater than chance. Despite imperfect categorisation, the logistic 

regression model provided a useful degree of discrimination between veins and grey 

matter. When the predicted probabilities were used to weight the SPM T contrast, the 

overall number of voxels surviving the stringent T threshold reduced, but this 

eliminated many more voxels in venous tissue than in grey matter tissue. Thus, the 

probability-weighting provided more refined mapping of the non-venous activation.  

 

The binary logistic regression model excludes the remaining CSF and white 

matter tissue since, by definition, there can be only two outcomes. An alternative 

binary logistic regression analysis could include all tissue data but categorise every 

voxel as grey matter or not grey matter. On the other hand, by extending the logistic 
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regression to the multinomial case, we can model all four tissue types explicitly and 

compute the probability of every voxel being grey matter. The models are otherwise 

similar in that the multinomial logistic regression analysis specifies the same 

covariates, interactions and categorical variables as the logistic regression model. For 

the subject reported here, the probability-weighted T contrast again showed a 

proportionately greater reduction of veins, CSF and white matter than the grey matter. 

The ratio between the number of voxels in the other three tissues (veins, CSF and 

white matter) and the grey matter was reduced from 1.11 to 0.29 for the auditory area, 

and from 2.06 to 0.56 in the visual and 'other' areas. These model results indicate that 

logistic regression provides a useful degree of tissue discrimination and also yields 

practical gains by enhancing the relative grey matter contribution to the activation 

map, but at a cost of also reducing the number of activated grey matter voxels. 

 

Conclusion 

Our data support the expectation that veins have a higher magnitude and a 

longer delay in activated sensory cortex. The statistical parameterisation of the 

functional time course cannot provide an absolute classification for large draining 

veins, but, for this subject, weighting the SPM T contrast by the probability of each 

tissue classification materially reduced the non-parenchymal component of the 

activation.  
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Table and Figure Legends 

 

Table 1 includes all those activated clusters with a peak voxel T > 10 and an extent > 

500. Activation is reported in descending value of the peak voxel statistic. Clusters 

above the dashed line are those included in the gamma fitting and modelling where 

we compare measures of the gamma curve between tissue types. Clusters below the 

dashed line were excluded from further analyses. 

 

Table 2. Cross tabulation of the number of voxels in each region of the brain by tissue 

type.  The corresponding average number of voxel neighbours is displayed in 

brackets. A neighbour is any voxel that is up to 1.6, 2.0 and 3.8 mm distant on the x, y 

and z axes respectively. The marginal values represent the column and row totals. 

 

Table 3. Logistic regression output between venous and grey matter tissue showing all 

the significant main effects and interactions. The overall discriminating power of  the 

model is 0.72. The column of β values reports each beta coefficient for the regression, 

where P is the corresponding p-value.  The categorical variables, dual statistical 

threshold (T) and brain region (R), represent nominal descriptions rather than cardinal 

values and so a β value within each category must be set to zero to provide a 

‘reference’ category. The reference categories selected were the threshold T > 10 and 

the auditory region.  

 

Table 4. The table reports the number of voxels in the veins and grey matter tissue for 

the original and the probability-weighted T contrasts. Both T contrasts are thresholded 

using the same criteria, but since the threshold was region-specific the results for the 
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dual thresholds are shown separately. The ratio represents the quotient of the number 

of veins and grey matter.  

 

Figure 1. An example of the tissue separation within an activated region of the 

occipital cortex. Activated voxels are shown in Panel A. Panel B denotes the activated 

venous tissue within this region identified from the underlying normalised venous-

weighted image. Panels C, D and E show activated grey matter, white matter and 

cerebrospinal fluid classifications respectively and are overlaid onto the 

corresponding normalised structural scan. Slices are shown for the Z plane at -17 mm. 

The T map displayed in (A) and the venous vessel that can be traced in (B) suggest 

that the left-sided oblique activation cluster is associated with a large intra-cortical 

vein located in the calcarine and lingual sulci that drains into the sagittal sinus.  

 

Figure 2. Schematic example of a typical functional response and its gamma fit. The 

response shown is  for a voxel located within venous tissue at x = 6, y = -100, z = 28 

mm. The solid line represents the mean calculated by discarding the upper and lower 

20% of the values from the drift-corrected data.  The dotted line represents the best 

gamma fit to the data. Also illustrated are the measures of delay, magnitude and lag 

taken from the gamma fit.  The delay is represented by the time that the gamma fit 

takes to reach its maximum. The magnitude corresponds to the shaded area under the 

curve.  The lag represents the number of seconds that elapses before the gamma curve 

fits the data.   

 

Figure 3. Plots of the magnitude as a function of delay for the four different tissue 

types. The panels illustrate the striking similarity in the distribution of both the 
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magnitude and delay across tissues. The category for CSF contains the smallest 

sample of voxels, reflected by the sparser scatter plot. 

 

Figure 4. Mean values of the magnitude, delay, spread and GoF measures displayed as 

a function of tissue type and brain region. The 95% confidence intervals have been 

corrected for multiple comparisons using a bonferroni correction procedure. 
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Brain region 
(Brodmann area) 

Co-ordinates (mm) T value 
 

X        Y        Z 
 

L lingual gyrus (18) -12     -99     -15 23.7 
R cuneus (18/19)  16     -95      34 23.6  
L lingual gyrus (18)  -6    -102       2 23.4 

 

 

 

 

 

 

 

 

 

L/R precuneus (7)    2     -70      68 20.8 

R superior temporal gyrus (22)  53     -36        8 16.0 
R fusiform gyrus (18) 
L middle occipital gyrus (19) 

 21     -87     -23 
-28     -98      15 

17.8 
20.6 

L superior temporal gyrus (22) 
L/R thalamus  

-60     -57      17 
  -3       -7        6 

14.0 
14.3 

L middle frontal gyrus ( -51       -4      59  18.56) 

R middle frontal gyrus (6) 
L postcentral gyrus (7) 
L/R medial frontal gyrus (6) 

R superior occipital gyrus (19) 
L precentral gyrus (4) 

R inferior parietal lobe (40) 
 49       -1       61 
-30     -41      82 
  -3      14      55 

 22      -81      53 
-32     -16      82 

 36     -45      48 
14.8 
14.1 
14.0 

11.2 
11.7 

14.9 

Table 1 
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Veins
Grey

Matter
White
Matter

CSF Total

Auditory 961 (13.5) 2091 (27.1) 1144 (25.0) 212 (14.3) 4408 (23.0)
Visual 11329 (22.8) 11860 (24.5) 8980 (24.8) 2832 (18.0) 35001 (23.5)
Other 727 (16.0) 210 (10.7) 803 (16.9) 120 (11.0) 1860 (15.5)
Total 13017 (21.7) 14161 (24.6) 10928 (24.3) 3179 (17.4) 41269 (23.1)

Table 2 
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Main Effects β P 
R  Audito  ry 0
R  V ual is

R ‘ 
-0.959 < 0.001 

< 0.001Other ‘ 3.363  
< 0.001Magn udeit

Delay 
1.208  

< 0.001.206 1 
0.053 Goodness of fit -0.164

Variance 0.118 < 0.001 
< 0.001 Neighb urso

> 10 
-2.759

T  T 

T  
0

7 < T <  10

Interactions 
R  Auditory  * Magnitud  e
R  V uais

R 
l  * agnitude  M

ther ‘ O
R 

‘  Magn de * 

dito

itu

  * Dela   Au

R  ry

V ua

y

l  * elay is
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 D

ther ‘ O
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‘  Delay * 

dito Au

R  ry

V ua

  * Goodness of  fit

l  * Goodness of fit is

R ‘ O
R 

ther ‘  Goodness of it * 

dito

 f

  * Neighbou   Au

R  ry

V ua

rs

l  * eighbours is

R 
 N

the‘ O
T  r ‘ * 

> 10

 Neighbours 
  *  eighbours T 

T  
N

7 < T < 10  *  Neighb rs ou
Magnitude * Delay 
Magnitude * Var nce ia
Delay * Variance 
Magnitude * Goodness of fit
Neighbours * Variance 
Neighbours * Goodness of fit
Delay * Neig hbour
Delay * Goodness of fit 

-0.890 < 0.001 
0

< 0.001 
< 0.001 
< 0.001 
< 0.001 
< 0.001 
0.069 

< 0.001 
< 0.001 

-1.178
-2.902

0
-0.655
-1.273

0
0.310
-0.285

0
2.423
4.726

0

0.005 
< 0.001 
< 0.001 
< 0.001 
< 0.001 
< 0.001 
< 0.001 
< 0.001 
0.029 

0.605
-0.175
-0.148
0.080
-0.189
0.105
0.231
0.579
0.038

Table 3 
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Original T  12056 12070 24126
Probability- 
weighted T  795 2106 2901

R  Visual & ‘Other’ (T > 10) 

Vein
Grey

Matter
Total

Original T  961 2091 3052
Probability- 
weighted T  91 1499 1590

R  Auditor (T > 7) 

Ratio

1.00

0.38

0.46

0.06

Table 4 



 

(A) (B)

(C) (D) (E)

   38



(A) (B)

(C) (D) (E)

Figure 1



Delay

Time (in seconds)

200

150

100

50

0

-50

-100

0 5 10 15 20

lag

B
as

el
in

e 
co

rr
ec

te
d 

va
lu

es

Figure 2



CSF

5000

4000

3000

2000

1000

0

5000

4000

3000

2000

1000

0

white matter

veins grey matter

M
ag

ni
tu

de

Delay (s)

3.5 4.5 5.5 6.5 3.5 4.5 5.5 6.5

3 4 5 6 73.5 4.5 5.5 6.5

Figure 3



Tissue Type

Veins Grey Matter White Matter CSF

M
ag

ni
tu

de

600
800

1000
1200
1400
1600
1800
2000
2200
2400
2600

Tissue Type

Veins Grey Matter White Matter CSF

D
el

ay

4.0
4.2
4.4
4.6
4.8
5.0
5.2
5.4
5.6
5.8
6.0

Tissue Type

Veins Grey Matter White Matter CSF

V
ar

ia
nc

e

9

10

11

12

13

14

Tissue Type

Veins Grey Matter White Matter CSF

G
oo

dn
es

s o
f f

it

1.4

1.5

1.6

1.7

1.8

1.9

2.0

Magnitude Delay

Spread Goodness of fit

Auditory
Visual
'Other'

Figure 4

Sp
re

ad


	POST-PRINT
	Fax:  (+44) 115 951 8503
	Abstract 
	Introduction
	Materials and Methods 
	Image Analysis
	Classification of tissue type

	Gamma curve fitting to the voxel responses 

	Results
	Discussion 
	Overlap in response measures across tissues 


	fig1
	Slide Number 1

	fig2
	Slide Number 1

	fig3
	Slide Number 1

	fig4
	Slide Number 1


