1,052 research outputs found

    Focus Is All You Need: Loss Functions For Event-based Vision

    Full text link
    Event cameras are novel vision sensors that output pixel-level brightness changes ("events") instead of traditional video frames. These asynchronous sensors offer several advantages over traditional cameras, such as, high temporal resolution, very high dynamic range, and no motion blur. To unlock the potential of such sensors, motion compensation methods have been recently proposed. We present a collection and taxonomy of twenty two objective functions to analyze event alignment in motion compensation approaches (Fig. 1). We call them Focus Loss Functions since they have strong connections with functions used in traditional shape-from-focus applications. The proposed loss functions allow bringing mature computer vision tools to the realm of event cameras. We compare the accuracy and runtime performance of all loss functions on a publicly available dataset, and conclude that the variance, the gradient and the Laplacian magnitudes are among the best loss functions. The applicability of the loss functions is shown on multiple tasks: rotational motion, depth and optical flow estimation. The proposed focus loss functions allow to unlock the outstanding properties of event cameras.Comment: 29 pages, 19 figures, 4 table

    Statistical models for noise-robust speech recognition

    Get PDF
    A standard way of improving the robustness of speech recognition systems to noise is model compensation. This replaces a speech recogniser's distributions over clean speech by ones over noise-corrupted speech. For each clean speech component, model compensation techniques usually approximate the corrupted speech distribution with a diagonal-covariance Gaussian distribution. This thesis looks into improving on this approximation in two ways: firstly, by estimating full-covariance Gaussian distributions; secondly, by approximating corrupted-speech likelihoods without any parameterised distribution. The first part of this work is about compensating for within-component feature correlations under noise. For this, the covariance matrices of the computed Gaussians should be full instead of diagonal. The estimation of off-diagonal covariance elements turns out to be sensitive to approximations. A popular approximation is the one that state-of-the-art compensation schemes, like VTS compensation, use for dynamic coefficients: the continuous-time approximation. Standard speech recognisers contain both per-time slice, static, coefficients, and dynamic coefficients, which represent signal changes over time, and are normally computed from a window of static coefficients. To remove the need for the continuous-time approximation, this thesis introduces a new technique. It first compensates a distribution over the window of statics, and then applies the same linear projection that extracts dynamic coefficients. It introduces a number of methods that address the correlation changes that occur in noise within this framework. The next problem is decoding speed with full covariances. This thesis re-analyses the previously-introduced predictive linear transformations, and shows how they can model feature correlations at low and tunable computational cost. The second part of this work removes the Gaussian assumption completely. It introduces a sampling method that, given speech and noise distributions and a mismatch function, in the limit calculates the corrupted speech likelihood exactly. For this, it transforms the integral in the likelihood expression, and then applies sequential importance resampling. Though it is too slow to use for recognition, it enables a more fine-grained assessment of compensation techniques, based on the KL divergence to the ideal compensation for one component. The KL divergence proves to predict the word error rate well. This technique also makes it possible to evaluate the impact of approximations that standard compensation schemes make.This work was supported by Toshiba Research Europe Ltd., Cambridge Research Laboratory

    Automated interpretation of benthic stereo imagery

    Get PDF
    Autonomous benthic imaging, reduces human risk and increases the amount of collected data. However, manually interpreting these high volumes of data is onerous, time consuming and in many cases, infeasible. The objective of this thesis is to improve the scientific utility of the large image datasets. Fine-scale terrain complexity is typically quantified by rugosity and measured by divers using chains and tape measures. This thesis proposes a new technique for measuring terrain complexity from 3D stereo image reconstructions, which is non-contact and can be calculated at multiple scales over large spatial extents. Using robots, terrain complexity can be measured without endangering humans, beyond scuba depths. Results show that this approach is more robust, flexible and easily repeatable than traditional methods. These proposed terrain complexity features are combined with visual colour and texture descriptors and applied to classifying imagery. New multi-dataset feature selection methods are proposed for performing feature selection across multiple datasets, and are shown to improve the overall classification performance. The results show that the most informative predictors of benthic habitat types are the new terrain complexity measurements. This thesis presents a method that aims to reduce human labelling effort, while maximising classification performance by combining pre-clustering with active learning. The results support that utilising the structure of the unlabelled data in conjunction with uncertainty sampling can significantly reduce the number of labels required for a given level of accuracy. Typically 0.00001–0.00007% of image data is annotated and processed for science purposes (20–50 points in 1–2% of the images). This thesis proposes a framework that uses existing human-annotated point labels to train a superpixel-based automated classification system, which can extrapolate the classified results to every pixel across all the images of an entire survey

    Automated interpretation of benthic stereo imagery

    Get PDF
    Autonomous benthic imaging, reduces human risk and increases the amount of collected data. However, manually interpreting these high volumes of data is onerous, time consuming and in many cases, infeasible. The objective of this thesis is to improve the scientific utility of the large image datasets. Fine-scale terrain complexity is typically quantified by rugosity and measured by divers using chains and tape measures. This thesis proposes a new technique for measuring terrain complexity from 3D stereo image reconstructions, which is non-contact and can be calculated at multiple scales over large spatial extents. Using robots, terrain complexity can be measured without endangering humans, beyond scuba depths. Results show that this approach is more robust, flexible and easily repeatable than traditional methods. These proposed terrain complexity features are combined with visual colour and texture descriptors and applied to classifying imagery. New multi-dataset feature selection methods are proposed for performing feature selection across multiple datasets, and are shown to improve the overall classification performance. The results show that the most informative predictors of benthic habitat types are the new terrain complexity measurements. This thesis presents a method that aims to reduce human labelling effort, while maximising classification performance by combining pre-clustering with active learning. The results support that utilising the structure of the unlabelled data in conjunction with uncertainty sampling can significantly reduce the number of labels required for a given level of accuracy. Typically 0.00001–0.00007% of image data is annotated and processed for science purposes (20–50 points in 1–2% of the images). This thesis proposes a framework that uses existing human-annotated point labels to train a superpixel-based automated classification system, which can extrapolate the classified results to every pixel across all the images of an entire survey

    Predictive Interfaces for Long-Distance Tele-Operations

    Get PDF
    We address the development of predictive tele-operator interfaces for humanoid robots with respect to two basic challenges. Firstly, we address automating the transition from fully tele-operated systems towards degrees of autonomy. Secondly, we develop compensation for the time-delay that exists when sending telemetry data from a remote operation point to robots located at low earth orbit and beyond. Humanoid robots have a great advantage over other robotic platforms for use in space-based construction and maintenance because they can use the same tools as astronauts do. The major disadvantage is that they are difficult to control due to the large number of degrees of freedom, which makes it difficult to synthesize autonomous behaviors using conventional means. We are working with the NASA Johnson Space Center's Robonaut which is an anthropomorphic robot with fully articulated hands, arms, and neck. We have trained hidden Markov models that make use of the command data, sensory streams, and other relevant data sources to predict a tele-operator's intent. This allows us to achieve subgoal level commanding without the use of predefined command dictionaries, and to create sub-goal autonomy via sequence generation from generative models. Our method works as a means to incrementally transition from manual tele-operation to semi-autonomous, supervised operation. The multi-agent laboratory experiments conducted by Ambrose et. al. have shown that it is feasible to directly tele-operate multiple Robonauts with humans to perform complex tasks such as truss assembly. However, once a time-delay is introduced into the system, the rate of tele\ioperation slows down to mimic a bump and wait type of activity. We would like to maintain the same interface to the operator despite time-delays. To this end, we are developing an interface which will allow for us to predict the intentions of the operator while interacting with a 3D virtual representation of the expected state of the robot. The predictive interface anticipates the intention of the operator, and then uses this prediction to initiate appropriate sub-goal autonomy tasks

    Event-Based Algorithms For Geometric Computer Vision

    Get PDF
    Event cameras are novel bio-inspired sensors which mimic the function of the human retina. Rather than directly capturing intensities to form synchronous images as in traditional cameras, event cameras asynchronously detect changes in log image intensity. When such a change is detected at a given pixel, the change is immediately sent to the host computer, where each event consists of the x,y pixel position of the change, a timestamp, accurate to tens of microseconds, and a polarity, indicating whether the pixel got brighter or darker. These cameras provide a number of useful benefits over traditional cameras, including the ability to track extremely fast motions, high dynamic range, and low power consumption. However, with a new sensing modality comes the need to develop novel algorithms. As these cameras do not capture photometric intensities, novel loss functions must be developed to replace the photoconsistency assumption which serves as the backbone of many classical computer vision algorithms. In addition, the relative novelty of these sensors means that there does not exist the wealth of data available for traditional images with which we can train learning based methods such as deep neural networks. In this work, we address both of these issues with two foundational principles. First, we show that the motion blur induced when the events are projected into the 2D image plane can be used as a suitable substitute for the classical photometric loss function. Second, we develop self-supervised learning methods which allow us to train convolutional neural networks to estimate motion without any labeled training data. We apply these principles to solve classical perception problems such as feature tracking, visual inertial odometry, optical flow and stereo depth estimation, as well as recognition tasks such as object detection and human pose estimation. We show that these solutions are able to utilize the benefits of event cameras, allowing us to operate in fast moving scenes with challenging lighting which would be incredibly difficult for traditional cameras

    Intelligent flight control systems

    Get PDF
    The capabilities of flight control systems can be enhanced by designing them to emulate functions of natural intelligence. Intelligent control functions fall in three categories. Declarative actions involve decision-making, providing models for system monitoring, goal planning, and system/scenario identification. Procedural actions concern skilled behavior and have parallels in guidance, navigation, and adaptation. Reflexive actions are spontaneous, inner-loop responses for control and estimation. Intelligent flight control systems learn knowledge of the aircraft and its mission and adapt to changes in the flight environment. Cognitive models form an efficient basis for integrating 'outer-loop/inner-loop' control functions and for developing robust parallel-processing algorithms

    Speech Recognition

    Get PDF
    Chapters in the first part of the book cover all the essential speech processing techniques for building robust, automatic speech recognition systems: the representation for speech signals and the methods for speech-features extraction, acoustic and language modeling, efficient algorithms for searching the hypothesis space, and multimodal approaches to speech recognition. The last part of the book is devoted to other speech processing applications that can use the information from automatic speech recognition for speaker identification and tracking, for prosody modeling in emotion-detection systems and in other speech processing applications that are able to operate in real-world environments, like mobile communication services and smart homes

    Image Simulation in Remote Sensing

    Get PDF
    Remote sensing is being actively researched in the fields of environment, military and urban planning through technologies such as monitoring of natural climate phenomena on the earth, land cover classification, and object detection. Recently, satellites equipped with observation cameras of various resolutions were launched, and remote sensing images are acquired by various observation methods including cluster satellites. However, the atmospheric and environmental conditions present in the observed scene degrade the quality of images or interrupt the capture of the Earth's surface information. One method to overcome this is by generating synthetic images through image simulation. Synthetic images can be generated by using statistical or knowledge-based models or by using spectral and optic-based models to create a simulated image in place of the unobtained image at a required time. Various proposed methodologies will provide economical utility in the generation of image learning materials and time series data through image simulation. The 6 published articles cover various topics and applications central to Remote sensing image simulation. Although submission to this Special Issue is now closed, the need for further in-depth research and development related to image simulation of High-spatial and spectral resolution, sensor fusion and colorization remains.I would like to take this opportunity to express my most profound appreciation to the MDPI Book staff, the editorial team of Applied Sciences journal, especially Ms. Nimo Lang, the assistant editor of this Special Issue, talented authors, and professional reviewers
    • …
    corecore