
PREDICTIVE INTERFACES FOR LONG-DISTANCE TELE-OPERATIONS

Kevin R. Wheeler(1), Rodney Martin(1), Mark B. Allan(2), Vytas Sunspiral(2)(3)

(1)Intelligent Systems Division, NASA Ames Research Center, MS 269-1, Moffett Field, CA, USA 94035,
Email:kwheeler@mail.arc.nasa.gov

(2)QSS Group Inc., NASA Ames Research Center, MS 269-2, Moffett Field, CA, USA 94035
(3)Formerly published as Thomas Willeke

ABSTRACT

Humanoid robots have a practical advantage over other
robotic platforms for use in space-based construction
and maintenance because they can share tools and
work interactively with astronauts. A major
disadvantage is that they are difficult to control due to
the large number of degrees of freedom, which makes
it difficult to synthesize autonomous behavior using
conventional means. We address the development of
predictive tele-operator interfaces for humanoid robots
with respect to two basic challenges. We first address
automating the transition from fully tele-operated
systems towards degrees of autonomy. We then
develop compensation for the time-delay that exists
when sending telemetry data from a remote operation
point to robots located at low Earth orbit and beyond.
Our primary goal is to show that within an operator’s
movement, early prediction is possible while at the
same time eliminating false predictions/alarms and
minimizing missed detections.

1. INTRODUCTION

The operation of humanoid robotics across great
distances poses significant challenges both due to the
time-delays incurred as well as to the large number of
degrees of freedom. The time-lag across long distance
transmissions causes “bump and wait” behavior that is
far from optimal and can result in unmanageable risks.
Humanoid robots such as Robonaut have a large
number of degrees of freedom: two arms each with
shoulder, elbow, and wrist joints, and hands with four
fingers and thumb. Naturally, some of the degrees of
freedom can be limited through appropriate kinematic
constraints, but the number of degrees of freedom still
remains high.

We are working with the NASA Johnson Space
Center's Robonaut [6]: an anthropomorphic robot with
fully articulated hands, arms, and neck. We have
embedded trained hidden Markov models into a state
machine that makes use of the command data, sensory
streams, and other relevant data sources to predict a
tele-operator’s intent. This allows us to achieve sub-
goal level commanding without the use of predefined

command dictionaries. Our method works as a means
to incrementally transition from manual tele-operation
to semi-autonomous, supervised operation. The multi-
agent laboratory experiments conducted by
Bluethmann and Ambrose et. al. [6] has shown that it is
feasible to directly tele-operate multiple Robonauts
with humans to perform complex tasks such as truss
assembly. However, once a time-delay is introduced
into the system, the rate of tele-operation slows down
to mimic a bump-and-wait type of activity.

We would like to maintain the same interface to the
operator despite time-delays. To this end, we are
developing an interface that will allow us to predict the
intentions of the operator while interacting with a 3-D
virtual representation of the expected state of the robot.
The predictive interface anticipates the intention of the
operator, and then uses this prediction to initiate
appropriate sub-goal autonomy tasks.

The tele-operator’s command sequence acts as the
observation sequence of a hidden Markov model
(HMM), in which the states of the Markov chain
represent different phases of operator movement, or
sub-goals. As such, any significant relative change in
motion and hence intended action of the tele-operator
can be related to a change in state of the hidden
Markov model. We have used similar techniques in
the past for the development of gesture-based computer
interfaces [8].

There are several algorithms that can be used for the
purposes of prediction or designing an alarm system
based upon these hidden Markov models. In addition,
there are several different combinations of feature
vectors that may be implemented. These feature
vectors act as templates for the observation sequences
used to train and recall the models. These include
susbsets of the pose vector, which provides position
and orientation information, as well as Euclidean
distances to the objects of interest being reached for.

In an effort to make our work more generally
applicable to other manipulator based robotic systems,
another element of our approach is to automatically
decompose the physical tasks into sub-tasks in an
unsupervised manner. We perform this off-line

Proc. ‘ISAIRAS 2005 Conference’, Munich, Germany,
5-8 September 2005 (ESA SP-603, September 2005)

https://ntrs.nasa.gov/search.jsp?R=20060015673 2019-08-29T21:50:06+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/10517278?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

analysis by Gibbs sampling a Dirichlet mixture model
for isolating the key states. These states are associated
with the same hidden Markov models used to predict
state changes via an alarm system, corresponding to the
sub-goals being targeted. Upon recognition of a sub-
goal intention, a command is issued to initiate an
autonomous action associated with the predicted sub-
goal.

The current method of controlling Robonaut involves
the operator wearing two data gloves that are used to
measure finger joint positions, and two magnetic
trackers used to measure the x-y-z and roll-pitch-yaw
position of each hand (end effector). The position and
orientation information is then transmitted to the robot
as end effector position commands. The number of
degrees of freedom in the elbow and shoulder are
constrained to enable this position while maximizing
strength. For safety considerations, the rate of
movement of the arms is limited; thus the operators are
trained to match or move slower than this rate. Most of
the feedback to the operator comes from the stereo
cameras mounted in the head of Robonaut and
transmitted back to the tele-operator’s head mounted
display. Thus an operator will reach for an object so
that his view from the head mounted cameras is not
obscured by the hand. This can result in some simple
tasks taking a very long time to accomplish. For
example, in grasping a hand rail (as a rung) of a ladder,
the operator must make sure that the fingers can wrap
around the handle using the stereo visual cues. This
action typically takes several seconds for an
experienced operator.

One sequence of actions that we consider in this paper
is reaching out for a hand rail, picking it up, and then
placing it into a box. For a human to do this directly,
the whole task might take 2-3 seconds. The typical
time for an experienced Robonaut operator averages 15
seconds. This is the amount of time it takes when there
is no time delay. When the round trip time delay is 2
seconds, this tele-operation task typically takes twice
as long (due to bump-and-wait behavior).

Our approach to dealing with this time delay is to
develop a predictive interface for the operator that
predicts the intended action. Our goal was to keep the
interface the same between full manual operations and
semi-autonomous operations whereby autonomous
commands (e.g. grasping) are issued. It might have
been easier to create a system by which the
autonomous operations are commanded by making a
list of them, or by touching symbols on the screen. But
two issues arise: scalability and adjustable autonomy.

Scalability:
Since Robonaut is a humanoid robot, the potential
number of movements (or sub-goals) that it is able to
accomplish is very large for typical maintenance and
assembly tasks. This means that as the numbers of
tasks increases and as the complexity of the tasks
increases the number of commands increases
(potentially exponentially). This makes an abstract
symbolic interface potentially cumbersome.

Adjustable Autonomy:
In spite of the level of sophistication of the autonomy
onboard Robonaut, it will still be necessary to allow for
human intervention. One might imagine complex and
unexpected emergency maintenance tasks where only
some of the autonomous behaviors necessary to
complete the task are available. In an emergency we
cannot wait for these autonomous behaviors to be
developed. Rather it will become necessary to have
fully manual tele-operation to fill these critical gaps.
Thus we expect that there will always be the need to
have the ability to seamlessly transition from
autonomous operations to manual control.

The interface that we are developing sends the
prediction of the tele-operator’s intent over a time
delay to a Robonaut that has autonomous behaviors
such as grasping. Our current approach consists of
building a finite state machine at a high level of
abstraction containing embedded hidden Markov
models at a hierarchically lower level. To build these
autonomous models it is necessary to identify the
appropriate state/task decomposition. We automatically
decompose the task into states using mixtures of
Dirichlet distributions to model each behavior with the
HMMs embedded within the state machine. This
decomposition was used to validate the numbers of
states and mixtures selected heuristically by an
empirical analysis of the observed data

In the following sections of this paper we describe the
experiments conducted, the methodology followed,
and the results. The experiments section describes the
different experiments performed. The methodology
section describes the data available from Robonaut, the
Dirichlet based task decomposition, the hierarchical
models employed, the algorithms used for prediction
and alarm, and the testing and validation procedures.
The results section discusses performance issues as
well as alternative approaches.

2. EXPERIMENTS

We chose two basic tasks, retrieving a hand rail
mounted vertically and dropping it into a box, and
retrieving a hand rail mounted horizontally and
dropping it into a box. The hand rails are mounted

with Velcro on a cloth board, affixed to a stationary
wall. The target box is a flexible cloth box that is open
but is not within the same field of view as the hand
rails. These tasks were chosen as a first step towards
automating climbing on a space habitat.

The tasks consist of the following steps:

1. start in initial position/state
2. look down at hand (substitute for proprio-

receptive feedback) and then at hand rails
3. reach for specified hand rail (either vertical or

horizontal according to plan)
4. grasp hand rail
5. remove hand rail from wall (pull)
6. move hand rail over box
7. drop hand rail into box
8. return to initial position

The Robonaut can be operated via a simulated
environment, so that the operators can perform tasks
without regard for the time-delay normally associated
with long distance operations. For this experiment,
inexperienced operators tended to have greatly varying
behaviors, whereas the variance in the data was
negligible for the most experienced tele-operator.

Fig. 1 shows the simulated environment in which the
experiments discussed in this paper were conducted.
These experiments were conducted on six different
days spanning over three months. Comparisons are
made between different operators and the same
operator on different days. Initial conditions varied
noticeably from day to day.

3. METHODOLOGY

The data used in our study is the command data
coming from the operator. This data consists of the
desired position and orientation of the end effector
(right hand) as well as the joint angles of the fingers
and thumb of the right hand. Position and orientation
data is useful in forming observation sequences with
which to train hidden Markov models. In this article,
we only focus on one-handed tasks. Output information
is also available from the Robonaut, but we do not use
this information because we wish not to wait for data
as it crosses the time-delay.

The Robonaut also makes use of a Sensory Ego Sphere
(SES) [5] that stores object identification and position
information. The SES serves as a short-term memory
structure for the robot, and much of the information
stored in the SES is obtained from the machine vision
object recognition system. By monitoring updates to
the SES, we are able to detect when new objects enter
the robot’s field of view. The distances between an

end effector and the objects in the robot’s sphere of
influence can be used as an additional sensory stream.
This is also useful in constructing feature vectors with
which to train HMMs.

Fig. 1. Actual Simulation based experiment. The
operator view from the left and right cameras of the
simulated hand rails.

We have developed a state machine which models both
tasks of reaching for the horizontal or vertical hand
rails by embedding Hidden Markov models (HMMs) at
each state within the state machine, shown in Fig. 2.
Thus the movement corresponding to reaching for both
the vertical and the horizontal hand rails are each
modelled with a distinct HMM. The hidden states
within each HMM are determined automatically
through the use of Dirichlet process mixtures, off-line.
These states may not necessarily correspond to a
human semantic notion. The whole task can be
decomposed using this same methodology so that we
have multiple layers of hidden states. In the work
described here, the higher-level states are explicitly
described to correspond to the given tasks so that it can
be mapped to the planning system.

In this application, we have decided that it is more
desirable to have no false predictions (alarms) with the
possibility of having missed detections. This decision
was made because the tele-operator will remain in

manual operation mode through out the operation if no
prediction occurs. If a prediction occurs, then this
prediction will be used to trigger the autonomous
grasping behavior at the robot (upon operator
concurrence).

3.1 Movement modelling

A simplified version of the state-machine employed in
this work is shown in Fig. 2. This relates directly to the
8-step task decomposition described at the beginning
of the previous section. State M0 (Start) refers to Step
#1: the starting/initial state. The two “Reach” states,
where the state machine bifurcates, correspond to Step
#3: reach for specified hand rail (either vertical or
horizontal according to plan). State M3 (Grasp) refers
to Step #4, grasp hand rail, State M4 (Move to Box),
corresponds to Step #6, move hand rail over box, and
State M5 (Drop) refers to Step #7, drop hand rail into
box.

Fig. 2 State machine with embedded HMMs.

The HMMs are trained on segmented operator data
consisting of subsets of x-y-z and roll-pitch-yaw (pose
vector) information. The HMMs are parameterized
using left-to-right tied mixtures Baum-Welch training.
The recall is performed with Viterbi recall in order to
monitor the best state sequences, and to record the log
of the likelihood of the optimal sequence to serve as
both a condensed metric, and as a method for
arbitration between competing models. [1-3].
Alternatives to this recall method are also available and
will be discussed in a subsequent subsection. The
initialization of the HMMs and the state machine are
done using the posterior from a Dirichlet process [4].

3.2 Dirichlet processes for task decomposition

To automate the task decomposition into states, where
the continuous observation variables associated with
each state are modelled as mixtures of Gaussians, we
have used a Dirichlet mixture process [4]. This works
by assuming that each observation is modelled using a
normal distribution with unknown mean and variance:

(1)),(~ τµ ii Ny

The means are modelled as coming from normal
distribution conditioned upon an unknown class which
comes from a Dirichlet process:

(2)

iPi λµ =

(3)),0(~ ελ N

(4))(~ αDPi

We then use a Gibbs sampler to determine the proper
parameters for the given data. The resulting posterior

)|(yp µ is then used to determine the number and
locations of states for each task. Note that this says
nothing about the shapes of the distributions of the
means; this only provides an understanding of how
many states may be required. Ideally, this would be
incorporated inside of an iterative system whereby we
simultaneously and hierarchically model the shape as
well. One of the resulting posteriors is shown in Fig. 3
for the y commanded position.

Fig. 3. Gibbs sampled posterior for means of states. .

The number of peaks apparent in Fig. 3 represents the
desired number of states to decompose the task into for
a single dimension. In this figure, two states were
identified, and multiple dimensions were then
combined.

We used OpenBUGS [7] to parameterize the Dirichlet
process from the observation streams. Due to
difficulties with initialization of the Markov chains
within OpenBUGS for our multi-dimensional model,
we decided to model each stream independently. Thus
the independent estimates of the number of states for
each dimension had to be combined when training the
HMMs. In our system we used three states with six
mixtures for modelling the operator command data
stream.

3.3 Voting scheme

The HMMs were trained using data that was
segmented and aligned. In real-time operations, the
data is streaming into the system and is not segmented
or aligned. For task prediction, we implement a

Start

Reach
 V

Reach
 H

Grasp Move
to Drop

M0

M3 M4 M5

combination of a probability detection threshold with a
voting scheme. The detection threshold allows for
arbitration between competing recalled models.

 The voting scheme arbitrates between the two data
streams for an event to be detected by choosing the
model that has the highest likelihood several
consecutive times as well as a large confidence. This
is done primarily to prevent false detections. We define
confidence in terms of the difference in log
probabilities between the models (for more than two
models this is the difference between the two highest
likelihood models). This confidence value is then
transmitted to the Sensory Ego Sphere in order to
update the color encoding of the hand rails. Initially
the hand rails start off as green in appearance. As the
confidence of the predictor increases through out the
movement, the color of the predicted hand rail changes
from green to red.

3.4 Alarm systems

One type of alarm system is based upon the output of
an HMM in order to predict the action of a tele-
operator as early possible into an operator’s movement,
while at the same time eliminating false alarms and
minimizing missed detections. This alarm system
essentially consumes the information available by any
real-time processing that occurs as a result of using
HMMs. An example of such an alarm system is the
prediction method described in the previous sub-
section. In this case, the detection threshold, voting
scheme, and confidence thresholds all serve as alarm
system design parameters.

Ultimately, we would like to be able to implement an
optimal alarm system which can be designed apriori
that optimizes the metrics we’ve described. However,
as a first step, in this paper we will only compare
alarm-based statistics for prediction/alarm algorithms
that are designed or devised heuristically. These alarm
–based statistics include the aforementioned
probabilities of false alarm and missed detection, as
well as the time to prediction. By implementing
different algorithms which are fundamentally and
theoretically sub-optimal with respect to the defined
metrics, we should be able to determine the most
suitable alarm system from an implementation
standpoint by directly comparing the metrics and
requirements, given that both were trained on the same
data set.

Consequently, as an alternative to the voting method
described in the previous section, we may also use real-
time recall based upon the posterior probabilities of the
HMMs rather than the Viterbi recall method. This
method returns an alarm if the maximum probability of

the state that we occupy within the hidden Markov
model over the span of the data block under
consideration exceeds a certain confidence threshold.

A condition on the state we occupy also exists hinging
upon the fact that the HMMs are trained as left-right
models. We expect that the state sequence will proceed
from left to right, meaning that any change in state
should occur in only one direction. In this case, any
change from the initial state to a subsequent state of
one model while the other model is still in the initial
state indicates an operator reaching action with a
confidence level given by the posterior probability
described previously. This is the only other alarm-
based method that we’ll examine in this paper out of
many potential candidate alarm-based methods.

4. RESULTS

Two types of results are of interest to us in this work.
The first is the most common in the machine learning
literature and consists of prediction error results on
validation sets. The second type of result consists of
performance during operation both in terms of the
prediction time as well as false alarms/missed
detections analysis.

4.1 Batch file validation

4.1.1 Single operator models

We had a number of different features from which to
select for training the HMMs within the state machine.
We focused upon using only variables which directly
came as commands from the tele-operator. These
variables include the x-y-z position and roll-pitch-yaw
orientation of the end effector, and the joint angles of
each of the fingers. Finger joint angles are used to
determine hand open and hand closed states. To select
which variables to use for modelling we used the
following criteria:

1. low variability between operators

2. low variability with respect to initial
conditions

3. large Kullback-Leibler (KL) distances
between variables for different tasks (grasping
horizontal rail vs. grasping vertical rail)

Initially we had intended to use hand pre-shape as an
indicator of intention with respect to which object was
to be grasped. However, we decided not to pursue this
approach for the experiments described. The current
experimental setup calls for two identical handrails that
differ in position and orientation, but not in shape.
More importantly, we observed that the operators tend

to pre-flatten their hands while reaching for most
objects regardless of shape.

Given the considerations between minimizing operator
variance and maximizing the KL distance, we elected
to use yaw as the primary variable indicative of
orientation. The best positional variables were y
(which represents side to side motion) and z (which
represents up and down motion).

This feature vector may also be replaced with or
augmented with the Euclidean distance to both the
vertical and the horizontal hand rails as determined by
the machine vision system. The advantage of using this
feature is that it provides more discriminatory power
that is based more closely on the experimental setup
rather than the operator’s pose.

It is important to note that these feature vectors only
have bearing on the model, not on the method of
prediction (i.e. which type of alarm system is used). As
a result, it can be surmised that the alarm system itself,
including its design and implementation, is
independent of the parameters and training regimen of
the hidden Markov model. This need not necessarily be
the case, and in fact it may be possible with further
theoretical investigation to integrate the two.
However, for now these candidate feature vectors can
be used either in conjunction with the voting scheme
based upon the Viterbi recall method or the alternate
one based upon posterior probabilities described in the
previous section.

To test our training methods we have trained an HMM
on reaching for the horizontal hand rail and another
HMM on a vertical hand rail on 36 trials collected over
three months. These trained models were then tested
on 20 different trials, using the Viterbi recall method
and the y/yaw feature vector. All of these trials were
for a single operator. The HMMs were trained using
left-to-right transition matrices with tied Gaussian
mixture models consisting of three states and six
mixtures. The recall on the unseen validation set
resulted in 100% recognition with no errors. The
sampling rate of the data used in training was 15 Hz.

4.1.2 Multiple operator models

The development of an operator independent model
requires a considerable amount of data. Nonetheless,
we were able to analyze some differences between
operators as well as to train models across operators
and test them. Fig. 4 shows the path of the
commanded end effector for a single dimension for two
operators (operators # 1 and 3) collected on different
days. Fig. 5 shows the same path for operator #1 only,

across two different days. Fig. 6 shows the same path
for operator #1 over three months encompassing five
different data collections. Note that the vertical path
has bimodal behavior when spanning this many
different trials.

Fig. 4. Trajectory with error bars for y for reaching for
horizontal and vertical (red & green). An
inexperienced operator is shown top, experienced
operator on bottom with minimal variance across 6
trials.

Fig. 5 Trajectory of y variable for an experienced
operator for two different days. Red is reaching for
horizontal, green is reaching for vertical. Horizontal
axis is time in seconds, vertical is reach in cm.

One effect that we observed is that when an operator
has not had enough experience operating the actual
hardware, their performance changes within the
simulated environment in a manner not consistent with
operation of the hardware. Another effect is that the
operators tend to modify their behaviors over time as
they learn how to optimize their performance with
respect to time and force minimization. This
modification over time causes a non-stationarity to
occur that we currently do not model. To build the
models presented in this paper we used operators that
had an experience level that has fully converged onto
stationary patterns.

Fig. 6 The trajectory of variable y for the same operator
spanning 3 months incorporating 5 data collection
periods. Solid lines are for reaching for horizontal
hand rail, dotted lines are for reaching for vertical.
Horizontal axis is in samples, vertical axis is in
normalized (0, 1) units.

An alternative approach is to have a calibration period
at the beginning of each day of operation that will
allow for us to adapt to the non-stationarity by
modifying the models built previously with the current
day’s actions. The draw-back to this is that it requires
the operators to endure yet more preparation and does
not prevent the operators from behaving differently
during the actual operation.

4.2 Real-time performance

We study the real-time performance of our system by
measuring the length of prediction before the operator
grasps the object of interest. We determine the grasp
by looking at the average base pitch of the fingers of
the operator’s Cyberglove. Our goal was to be able to
predict at least two seconds before the grasp. For the
Viterbi recall method, our average prediction time was
five seconds before grasp with zero false alarms and
one missed detection out of the 30 trials in the
validation set. We could increase the prediction time

before the grasp by accepting more false alarms.
However, in a tele-operation environment it was
decided that it is far better to miss detections than to
falsely try to initiate an inappropriate autonomous
behaviour. The prediction time could be increase in a
variety of ways, including changing the alarm system
parameters (thresholds with Viterbi), the alarm
algorithm itself (using posterior rather than likelihood),
as well as the feature vector.

This can clearly be demonstrated by the real-time recall
results for the different methods and feature vectors.
Table 1 illustrates the metrics of interest for using
either the Viterbi or the posterior recall methods, with
feature vectors based on either y/yaw, or distances. In
this table, the “avg. time” column refers to the average
time before the grasp in seconds, for correct
predictions only. The training and test sets used were
the same as for the static recall results.

Recall
Method

Feature
Vector

False
Alarms

Missed
Detections

Avg.
Time

Posterior y/yaw 15 0 11.44
Viterbi y/yaw 0 1 6.4
Posterior Distance 7 7 7.5
Viterbi Distance 0 0 4.1

Table 1. Dynamic Recall Results based on a single
session. Average prediction time before grasp is in
seconds, larger number is better.

As seen in Table 1, there is a trade-off between the
alarm statistics (false alarms and missed detections),
and the average prediction time prior to the grasp. This
tradeoff is related to the recall algorithm used (i.e. the
posterior vs. the Viterbi recall method) and the
thresholds employed. In our operator interface we
have chosen to eliminate false alarms at the expense of
decreasing the length of prediction ahead of grasping.
Thus the thresholds used with the Viterbi method have
been established to minimize false alarms. It would
have also been possible to set the thresholds associated
with the Viterbi method so as to increase the prediction
window length but this has the affect of non-zero false
alarms.

The tele-operator working within the simulated
environment becomes aware of the intent prediction
via a change in color of the predicted hand rail in the
software interface. If this is the correct hand rail, the
operator merely needs to close his hand and the
autonomous grasping action will be enacted if the
predictors confidence is high enough. If the prediction
is wrong, the operator can ignore the color changes and
continue to perform in full manual operation.

The level of confidence in the prediction is transmitted
as a floating point value (between zero and one) to one
of the console officers monitoring the performance of
the system. If low values of confidence are accepted,
then it becomes possible to have very early predictions
at the cost of having false alarms. In this study, we
have elected to minimize false alarms and therefore our
average prediction time remains at approximately six
seconds prior to the grasp. However, to alleviate the
need to have an optimal threshold, we encode the
confidence information into the colors of the hand
rails. Thus the tele-operator can see the transition of
the prediction confidence as the gestural command
progresses through time.

5. CONCULSION

The development of a predictive interface for tele-
operators has been discussed. We have introduced the
concept of detecting the peaks in the posterior of
Dirichlet based model for automating task
decomposition. In addition, we have built and trained
HMMs embedded within a state machine as a means to
predict the intentions of tele-operators. Our average
prediction ahead of task completion of 6 seconds
allows for us to compensate for our target time of 2
seconds round trip time delay. We have demonstrated
the trade-off between low false alarms and missed
detections versus desirable prediction times. We have
also tested this system within a live tele-operation
environment at NASA JSC with successful runs of zero
false alarms and zero missed detections.

6. ACKNOWLEDGEMENTS
The authors wish to thank the tele-operators Mike (the
guru), Josh, Nick and Darby for their time and
patience. We would also like to thank Kim Hambuchen
for helping us with the SES and network code. We are
especially grateful for Bill Bluethmann’s consideration
and advice and Rob Ambrose’s vision in making this
project possible at NASA JSC.

7. REFERENCES

1. Rabiner L. R., “A Tutorial on Hidden Markov
Models and Selected Applications in speech
Recognition,” Proc. IEEE, vol. 77, no. 2, Feb., 1989,
pp.257-287.
2. Bellegarda J. R. and Nahamoo D., “Tied Mixture
Continuous Parameter Modeling for Speech
Recognition,” IEEE Trans. Acoustics, speech, and
Signal Processing, vol. 38, no. 12, Dec., 1990, pp.
2003-2045.
3. Forney Jr. G. D., “The Viterbi Algorithm,” Proc.
IEEE, vol. 61, no. 3, Mar. 1973, pp. 268-278.

4. Escobar M. D. and West M., “Computing
Nonparametric Hierarchical Models,” Practical
Nonparametric and Semiparametric Bayesian
Statistics, Eds. Dipak Dey, Peter Muller, Debajyoti
Sinha, Springer-Verlag, NY, pp.1-22, 1998.
5. Peters II R. A., Hambuchen K. E., Kawamura K.,
and Wilkes D. M., "The Sensory Ego-Sphere as a
short-Term Memory for Humanoids", Proc. IEEE-RAS
Int'l. Conf. on Humanoid Robots, Waseda University,
Tokyo, Japan, Nov. 22-24 Nov., pp. 451-459.
6. Bluethmann, W., Ambrose, R., Diftler, M., Askew,
S., Huber, E., Goza, M., Rehnmark, F., Lovchik, C.,
Magruder, D., "Robonaut: A Robot Designed to Work
with Humans in Space," Autonomous Robots, n. 2/3,
v.14, 2003, pp 179-198.
7. Spiegelhalter D., Thomas A., Best N. and Lunn D.,
WinBUGS User Manual Version 2.0, June 2004,
http://www.mrc-bsu.cam.ac.uk/bugs.
8. Wheeler K., Jorgensen C., “Gestures as Input:
Neuroelectric Joysticks and Keyboards”, IEEE
Pervasive Computing, Vol. 2, No. 2, April-June, 2003.

http://www.mrc-bsu.cam.ac.uk/bugs

