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ABSTRACT 
 
Humanoid robots have a practical advantage over other 
robotic platforms for use in space-based construction 
and maintenance because they can share tools and 
work interactively with astronauts.  A major 
disadvantage is that they are difficult to control due to 
the large number of degrees of freedom, which makes 
it difficult to synthesize autonomous behavior using 
conventional means. We address the development of 
predictive tele-operator interfaces for humanoid robots 
with respect to two basic challenges. We first address 
automating the transition from fully tele-operated 
systems towards degrees of autonomy.  We then 
develop compensation for the time-delay that exists 
when sending telemetry data from a remote operation 
point to robots located at low Earth orbit and beyond. 
Our primary goal is to show that within an operator’s 
movement, early prediction is possible while at the 
same time eliminating false predictions/alarms and 
minimizing missed detections.  
 

1. INTRODUCTION 
 
The operation of humanoid robotics across great 
distances poses significant challenges both due to the 
time-delays incurred as well as to the large number of 
degrees of freedom.  The time-lag across long distance 
transmissions causes “bump and wait” behavior that is 
far from optimal and can result in unmanageable risks.  
Humanoid robots such as Robonaut have a large 
number of degrees of freedom: two arms each with 
shoulder, elbow, and wrist joints, and hands with four 
fingers and thumb.  Naturally, some of the degrees of 
freedom can be limited through appropriate kinematic 
constraints, but the number of degrees of freedom still 
remains high. 
 
We are working with the NASA Johnson Space 
Center's Robonaut [6]: an anthropomorphic robot with 
fully articulated hands, arms, and neck. We have 
embedded trained hidden Markov models into a state 
machine that makes use of the command data, sensory 
streams, and other relevant data sources to predict a 
tele-operator’s intent. This allows us to achieve sub-
goal level commanding without the use of predefined 

command dictionaries. Our method works as a means 
to incrementally transition from manual tele-operation 
to semi-autonomous, supervised operation. The multi-
agent laboratory experiments conducted by 
Bluethmann and Ambrose et. al. [6] has shown that it is 
feasible to directly tele-operate multiple Robonauts 
with humans to perform complex tasks such as truss 
assembly.  However, once a time-delay is introduced 
into the system, the rate of tele-operation slows down 
to mimic a bump-and-wait type of activity.  
 
We would like to maintain the same interface to the 
operator despite time-delays. To this end, we are 
developing an interface that will allow us to predict the 
intentions of the operator while interacting with a 3-D 
virtual representation of the expected state of the robot. 
The predictive interface anticipates the intention of the 
operator, and then uses this prediction to initiate 
appropriate sub-goal autonomy tasks.   
 
The tele-operator’s command sequence acts as the 
observation sequence of a hidden Markov model 
(HMM), in which the states of the Markov chain 
represent different phases of operator movement, or 
sub-goals. As such, any significant relative change in 
motion and hence intended action of the tele-operator 
can be related to a change in state of the hidden 
Markov model.  We have used similar techniques in 
the past for the development of gesture-based computer 
interfaces [8]. 
 
There are several algorithms that can be used for the 
purposes of prediction or designing an alarm system 
based upon these hidden Markov models. In addition, 
there are several different combinations of feature 
vectors that may be implemented. These feature 
vectors act as templates for the observation sequences 
used to train and recall the models. These include 
susbsets of the pose vector, which provides position 
and orientation information, as well as Euclidean 
distances to the objects of interest being reached for.  
 
In an effort to make our work more generally 
applicable to other manipulator based robotic systems, 
another element of our approach is to automatically 
decompose the physical tasks into sub-tasks in an 
unsupervised manner. We perform this off-line 
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analysis by Gibbs sampling a Dirichlet mixture model 
for isolating the key states.  These states are associated 
with the same hidden Markov models used to predict 
state changes via an alarm system, corresponding to the 
sub-goals being targeted. Upon recognition of a sub-
goal intention, a command is issued to initiate an 
autonomous action associated with the predicted sub-
goal. 
 
The current method of controlling Robonaut involves 
the operator wearing two data gloves that are used to 
measure finger joint positions, and two magnetic 
trackers used to measure the x-y-z and roll-pitch-yaw 
position of each hand (end effector).  The position and 
orientation information is then transmitted to the robot 
as end effector position commands.   The number of 
degrees of freedom in the elbow and shoulder are 
constrained to enable this position while maximizing 
strength.  For safety considerations, the rate of 
movement of the arms is limited; thus the operators are 
trained to match or move slower than this rate.  Most of 
the feedback to the operator comes from the stereo 
cameras mounted in the head of Robonaut and 
transmitted back to the tele-operator’s head mounted 
display.  Thus an operator will reach for an object so 
that his view from the head mounted cameras is not 
obscured by the hand.  This can result in some simple 
tasks taking a very long time to accomplish.  For 
example, in grasping a hand rail (as a rung) of a ladder, 
the operator must make sure that the fingers can wrap 
around the handle using the stereo visual cues.  This 
action typically takes several seconds for an 
experienced operator.   
 
One sequence of actions that we consider in this paper 
is reaching out for a hand rail, picking it up, and then 
placing it into a box.  For a human to do this directly, 
the whole task might take 2-3 seconds.  The typical 
time for an experienced Robonaut operator averages 15 
seconds.  This is the amount of time it takes when there 
is no time delay.  When the round trip time delay is 2 
seconds, this tele-operation task typically takes twice 
as long (due to bump-and-wait behavior). 
 
Our approach to dealing with this time delay is to 
develop a predictive interface for the operator that 
predicts the intended action.  Our goal was to keep the 
interface the same between full manual operations and 
semi-autonomous operations whereby autonomous 
commands (e.g. grasping) are issued.  It might have 
been easier to create a system by which the 
autonomous operations are commanded by making a 
list of them, or by touching symbols on the screen.  But 
two issues arise: scalability and adjustable autonomy. 
 
 
 

Scalability: 
Since Robonaut is a humanoid robot, the potential 
number of movements (or sub-goals) that it is able to 
accomplish is very large for typical maintenance and 
assembly tasks.  This means that as the numbers of 
tasks increases and as the complexity of the tasks 
increases the number of commands increases 
(potentially exponentially).  This makes an abstract 
symbolic interface potentially cumbersome. 
 
Adjustable Autonomy: 
In spite of the level of sophistication of the autonomy 
onboard Robonaut, it will still be necessary to allow for 
human intervention.  One might imagine complex and 
unexpected emergency maintenance tasks where only 
some of the autonomous behaviors necessary to 
complete the task are available.  In an emergency we 
cannot wait for these autonomous behaviors to be 
developed.  Rather it will become necessary to have 
fully manual tele-operation to fill these critical gaps.  
Thus we expect that there will always be the need to 
have the ability to seamlessly transition from 
autonomous operations to manual control. 
 
The interface that we are developing sends the 
prediction of the tele-operator’s intent over a time 
delay to a Robonaut that has autonomous behaviors 
such as grasping.  Our current approach consists of 
building a finite state machine at a high level of 
abstraction containing embedded hidden Markov 
models at a hierarchically lower level.  To build these 
autonomous models it is necessary to identify the 
appropriate state/task decomposition. We automatically 
decompose the task into states using mixtures of 
Dirichlet distributions to model each behavior with the 
HMMs embedded within the state machine. This 
decomposition was used to validate the numbers of 
states and mixtures selected heuristically by an 
empirical analysis of the observed data  
 
In the following sections of this paper we describe the 
experiments conducted, the methodology followed,  
and the results. The experiments section describes the 
different experiments performed. The methodology 
section describes the data available from Robonaut, the 
Dirichlet based task decomposition, the hierarchical 
models employed, the algorithms used for prediction 
and alarm, and the testing and validation procedures. 
The results section discusses performance issues as 
well as alternative approaches. 
 

2. EXPERIMENTS 
 
We chose two basic tasks, retrieving a hand rail 
mounted vertically and dropping it into a box, and 
retrieving a hand rail mounted horizontally and 
dropping it into a box.  The hand rails are mounted 



with Velcro on a cloth board, affixed to a stationary 
wall.  The target box is a flexible cloth box that is open 
but is not within the same field of view as the hand 
rails.  These tasks were chosen as a first step towards 
automating climbing on a space habitat. 
 
The tasks consist of the following steps: 

1. start in initial position/state 
2. look down at hand (substitute for proprio-

receptive feedback) and then at hand rails 
3. reach for specified hand rail (either vertical or 

horizontal according to plan) 
4. grasp hand rail 
5. remove hand rail from wall (pull) 
6. move hand rail over box 
7. drop hand rail into box 
8. return to initial position 

    
 
The Robonaut can be operated via a simulated 
environment, so that the operators can perform tasks 
without regard for the time-delay normally associated 
with long distance operations. For this experiment, 
inexperienced operators tended to have greatly varying 
behaviors, whereas the variance in the data was 
negligible for the most experienced tele-operator. 
 
Fig. 1 shows the simulated environment in which the 
experiments discussed in this paper were conducted. 
These experiments were conducted on six different 
days spanning over three months.  Comparisons are 
made between different operators and the same 
operator on different days.  Initial conditions varied 
noticeably from day to day. 
 

3. METHODOLOGY 
 
The data used in our study is the command data 
coming from the operator.  This data consists of the 
desired position and orientation of the end effector 
(right hand) as well as the joint angles of the fingers 
and thumb of the right hand. Position and orientation 
data is useful in forming observation sequences with 
which to train hidden Markov models.  In this article, 
we only focus on one-handed tasks. Output information 
is also available from the Robonaut, but we do not use 
this information because we wish not to wait for data 
as it crosses the time-delay. 
   
The Robonaut also makes use of a Sensory Ego Sphere 
(SES) [5] that stores object identification and position 
information.  The SES serves as a short-term memory 
structure for the robot, and much of the information 
stored in the SES is obtained from the machine vision 
object recognition system.  By monitoring updates to 
the SES, we are able to detect when new objects enter 
the robot’s field of view.  The distances between an 

end effector and the objects in the robot’s sphere of 
influence can be used as an additional sensory stream.  
This is also useful in constructing feature vectors with 
which to train HMMs. 
 

 

 
Fig. 1. Actual Simulation based experiment. The 
operator view from the left and right cameras of the 
simulated hand rails. 

 
We have developed a state machine which models both 
tasks of reaching for the horizontal or vertical hand 
rails by embedding Hidden Markov models (HMMs) at 
each state within the state machine, shown in Fig. 2. 
Thus the movement corresponding to reaching for both 
the vertical and the horizontal hand rails are each 
modelled with a distinct HMM.  The hidden states 
within each HMM are determined automatically 
through the use of Dirichlet process mixtures, off-line.  
These states may not necessarily correspond to a 
human semantic notion.  The whole task can be 
decomposed using this same methodology so that we 
have multiple layers of hidden states.  In the work 
described here, the higher-level states are explicitly 
described to correspond to the given tasks so that it can 
be mapped to the planning system. 
 
In this application, we have decided that it is more 
desirable to have no false predictions (alarms) with the 
possibility of having missed detections.   This decision 
was made because the tele-operator will remain in 



manual operation mode through out the operation if no 
prediction occurs.  If a prediction occurs, then this 
prediction will be used to trigger the autonomous 
grasping behavior at the robot (upon operator 
concurrence). 
 
 
3.1 Movement modelling  
 
A simplified version of the state-machine employed in 
this work is shown in Fig. 2. This relates directly to the 
8-step task decomposition described at the beginning 
of the previous section. State M0 (Start) refers to Step 
#1: the starting/initial state. The two “Reach” states, 
where the state machine bifurcates, correspond to Step 
#3: reach for specified hand rail (either vertical or 
horizontal according to plan). State M3 (Grasp) refers 
to Step #4, grasp hand rail, State M4 (Move to Box), 
corresponds to Step #6, move hand rail over box, and 
State M5 (Drop) refers to Step #7, drop hand rail into 
box. 
 
 

 
Fig. 2 State machine with embedded HMMs. 
 
The HMMs are trained on segmented operator data 
consisting of subsets of x-y-z and roll-pitch-yaw (pose 
vector) information.  The HMMs are parameterized 
using left-to-right tied mixtures Baum-Welch training. 
The recall is performed with Viterbi recall in order to 
monitor the best state sequences, and to record the log 
of the likelihood of the optimal sequence to serve as 
both a condensed metric, and as a method for 
arbitration between competing models. [1-3]. 
Alternatives to this recall method are also available and 
will be discussed in a subsequent subsection. The 
initialization of the HMMs and the state machine are 
done using the posterior from a Dirichlet process [4].   
 
3.2 Dirichlet processes for task decomposition 
 
To automate the task decomposition into states, where 
the continuous observation variables associated with 
each state are modelled as mixtures of Gaussians, we 
have used a Dirichlet mixture process [4].  This works 
by assuming that each observation is modelled using a 
normal distribution with unknown mean and variance:  
 
(1)   ),(~ τµ ii Ny  

 
The means are modelled as coming from normal 
distribution conditioned upon an unknown class which 
comes from a Dirichlet process: 
 
(2)  

iPi λµ =  

(3)   ),0(~ ελ N  

(4)   )(~ αDPi  
 
We then use a Gibbs sampler to determine the proper 
parameters for the given data.  The resulting posterior  

)|( yp µ  is then used to determine the number and 
locations of states for each task.  Note that this says 
nothing about the shapes of the distributions of the 
means; this only provides an understanding of how 
many states may be required.  Ideally, this would be 
incorporated inside of an iterative system whereby we 
simultaneously and hierarchically model the shape as 
well.  One of the resulting posteriors is shown in Fig. 3 
for the y commanded position. 
 

 
Fig. 3. Gibbs sampled posterior for means of states.  . 
 
The number of peaks apparent in Fig. 3 represents the 
desired number of states to decompose the task into for 
a single dimension. In this figure, two states were 
identified, and multiple dimensions were then 
combined.  
 
We used OpenBUGS [7] to parameterize the Dirichlet 
process from the observation streams.  Due to 
difficulties with initialization of the Markov chains 
within OpenBUGS for our multi-dimensional model, 
we decided to model each stream independently.  Thus 
the independent estimates of the number of states for 
each dimension had to be combined when training the 
HMMs.  In our system we used three states with six 
mixtures for modelling the operator command data 
stream. 
 
 
3.3 Voting scheme 
 
The HMMs were trained using data that was 
segmented and aligned.  In real-time operations, the 
data is streaming into the system and is not segmented 
or aligned.  For task prediction, we implement a 
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combination of a probability detection threshold with a 
voting scheme.  The detection threshold allows for 
arbitration between competing recalled models. 
 
 The voting scheme arbitrates between the two data 
streams for an event to be detected by choosing the 
model that has the highest likelihood several 
consecutive times as well as a large confidence.  This 
is done primarily to prevent false detections. We define 
confidence in terms of the difference in log 
probabilities between the models (for more than two 
models this is the difference between the two highest 
likelihood models).  This confidence value is then 
transmitted to the Sensory Ego Sphere in order to 
update the color encoding of the hand rails.  Initially 
the hand rails start off as green in appearance.  As the 
confidence of the predictor increases through out the 
movement, the color of the predicted hand rail changes 
from green to red. 
 
3.4   Alarm systems 
 
One type of alarm system is based upon the output of 
an HMM in order to predict the action of a tele-
operator as early possible into an operator’s movement, 
while at the same time eliminating false alarms and 
minimizing missed detections. This alarm system 
essentially consumes the information available by any 
real-time processing that occurs as a result of using 
HMMs. An example of such an alarm system is the 
prediction method described in the previous sub-
section. In this case, the detection threshold, voting 
scheme, and confidence thresholds all serve as alarm 
system design parameters.  
 
Ultimately, we would like to be able to implement an 
optimal alarm system which can be designed apriori 
that optimizes the metrics we’ve described. However, 
as a first step, in this paper we will only compare 
alarm-based statistics for prediction/alarm algorithms 
that are designed or devised heuristically. These alarm 
–based statistics include the aforementioned 
probabilities of false alarm and missed detection, as 
well as the time to prediction. By implementing 
different algorithms which are fundamentally and 
theoretically sub-optimal with respect to the defined 
metrics, we should be able to determine the most 
suitable alarm system from an implementation 
standpoint by directly comparing the metrics and 
requirements, given that both were trained on the same 
data set.  
 
Consequently, as an alternative to the voting method 
described in the previous section, we may also use real-
time recall based upon the posterior probabilities of the 
HMMs rather than the Viterbi recall method. This 
method returns an alarm if the maximum probability of 

the state that we occupy within the hidden Markov 
model over the span of the data block under 
consideration exceeds a certain confidence threshold.  
 
A condition on the state we occupy also exists hinging 
upon the fact that the HMMs are trained as left-right 
models. We expect that the state sequence will proceed 
from left to right, meaning that any change in state 
should occur in only one direction. In this case, any 
change from the initial state to a subsequent state of 
one model while the other model is still in the initial 
state indicates an operator reaching action with a 
confidence level given by the posterior probability 
described previously. This is the only other alarm-
based method that we’ll examine in this paper out of 
many potential candidate alarm-based methods.  
 

4. RESULTS 

Two types of results are of interest to us in this work.  
The first is the most common in the machine learning 
literature and consists of prediction error results on 
validation sets.  The second type of result consists of 
performance during operation both in terms of the 
prediction time as well as false alarms/missed 
detections analysis. 
 
4.1 Batch file validation 
 
4.1.1 Single operator models 

We had a number of different features from which to 
select for training the HMMs within the state machine.  
We focused upon using only variables which directly 
came as commands from the tele-operator.  These 
variables include the x-y-z position and roll-pitch-yaw 
orientation of the end effector, and the joint angles of 
each of the fingers. Finger joint angles are used to 
determine hand open and hand closed states.  To select 
which variables to use for modelling we used the 
following criteria: 

1. low variability between operators 

2. low variability with respect to initial 
conditions 

3. large Kullback-Leibler (KL) distances 
between variables for different tasks (grasping 
horizontal rail vs. grasping vertical rail) 

 

Initially we had intended to use hand pre-shape as an 
indicator of intention with respect to which object was 
to be grasped.  However, we decided not to pursue this 
approach for the experiments described.  The current 
experimental setup calls for two identical handrails that 
differ in position and orientation, but not in shape.   
More importantly, we observed that the operators tend 



to pre-flatten their hands while reaching for most 
objects regardless of shape.  

Given the considerations between minimizing  operator 
variance and maximizing the KL distance, we elected 
to use yaw as the primary variable indicative of 
orientation.  The best positional variables were y 
(which represents side to side motion) and z (which 
represents up and down motion).  
 
This feature vector may also be replaced with or 
augmented with the Euclidean distance to both the 
vertical and the horizontal hand rails as determined by 
the machine vision system. The advantage of using this 
feature is that it provides more discriminatory power 
that is based more closely on the experimental setup 
rather than the operator’s pose. 
 

It is important to note that these feature vectors only 
have bearing on the model, not on the method of 
prediction (i.e. which type of alarm system is used). As 
a result, it can be surmised that the alarm system itself, 
including its design and implementation, is 
independent of the parameters and training regimen of 
the hidden Markov model. This need not necessarily be 
the case, and in fact it may be possible with further 
theoretical investigation to integrate the two.  
However, for now these candidate feature vectors can 
be used either in conjunction with the voting scheme 
based upon the Viterbi recall method or the alternate 
one based upon posterior probabilities described in the 
previous section. 

 

To test our training methods we have trained an HMM 
on reaching for the horizontal hand rail and another 
HMM on a vertical hand rail on 36 trials collected over 
three months.  These trained models were then tested 
on 20 different trials, using the Viterbi recall method 
and the y/yaw feature vector.  All of these trials were 
for a single operator. The HMMs were trained using 
left-to-right transition matrices with tied Gaussian 
mixture models consisting of three states and six 
mixtures. The recall on the unseen validation set 
resulted in 100% recognition with no errors.  The 
sampling rate of the data used in training was 15 Hz. 

 

4.1.2 Multiple operator models 

The development of an operator independent model 
requires a considerable amount of data.  Nonetheless, 
we were able to analyze some differences between 
operators as well as to train models across operators 
and test them.  Fig. 4 shows the path of the 
commanded end effector for a single dimension for two 
operators (operators # 1 and 3) collected on different 
days.  Fig. 5 shows the same path for operator #1 only, 

across two different days.  Fig. 6 shows the same path 
for operator #1 over three months encompassing five 
different data collections.  Note that the vertical path 
has bimodal behavior when spanning this many 
different trials.   

 

 
Fig. 4. Trajectory with error bars for y for reaching for 
horizontal and vertical (red & green).  An 
inexperienced operator is shown top, experienced 
operator on bottom with minimal variance across 6 
trials. 

 

 
Fig. 5 Trajectory of  y variable for an experienced 
operator for two different days.  Red is reaching for 
horizontal, green is reaching for vertical.  Horizontal 
axis is time in seconds, vertical is reach in cm. 
 



One effect that we observed is that when an operator 
has not had enough experience operating the actual 
hardware, their performance changes within the 
simulated environment in a manner not consistent with 
operation of the hardware.  Another effect is that the 
operators tend to modify their behaviors over time as 
they learn how to optimize their performance with 
respect to time and force minimization.  This 
modification over time causes a non-stationarity to 
occur that we currently do not model.  To build the 
models presented in this paper we used operators that 
had an experience level that has fully converged onto 
stationary patterns. 

 
Fig. 6 The trajectory of variable y for the same operator 
spanning 3 months incorporating 5 data collection 
periods.  Solid lines are for reaching for horizontal 
hand rail, dotted lines are for reaching for vertical.  
Horizontal axis is in samples, vertical axis is in 
normalized (0, 1) units. 

 

An alternative approach is to have a calibration period 
at the beginning of each day of operation that will 
allow for us to adapt to the non-stationarity by 
modifying the models built previously with the current 
day’s actions.  The draw-back to this is that it requires 
the operators to endure yet more preparation and does 
not prevent the operators from behaving differently 
during the actual operation. 
 
 
4.2 Real-time performance 
 
We study the real-time performance of our system by 
measuring the length of prediction before the operator 
grasps the object of interest.  We determine the grasp 
by looking at the average base pitch of the fingers of 
the operator’s Cyberglove.  Our goal was to be able to 
predict at least two seconds before the grasp.  For the 
Viterbi recall method, our average prediction time was 
five seconds before grasp with zero false alarms and 
one missed detection out of the 30 trials in the 
validation set. We could increase the prediction time 

before the grasp by accepting more false alarms.  
However, in a tele-operation environment it was 
decided that it is far better to miss detections than to 
falsely try to initiate an inappropriate autonomous 
behaviour.  The prediction time could be increase in a 
variety of ways, including changing the alarm system 
parameters (thresholds with Viterbi), the alarm 
algorithm itself (using posterior rather than likelihood), 
as well as the feature vector.  
 
This can clearly be demonstrated by the real-time recall 
results for the different methods and feature vectors. 
Table 1 illustrates the metrics of interest for using 
either the Viterbi or the posterior recall methods, with 
feature vectors based on either y/yaw, or distances. In 
this table, the “avg. time” column refers to the average 
time before the grasp in seconds, for correct 
predictions only.  The training and test sets used were 
the same as for the static recall results. 
 
 
Recall 
Method 

Feature 
Vector 

False 
Alarms 

Missed 
Detections 

Avg. 
Time 

Posterior y/yaw 15 0 11.44 
Viterbi y/yaw 0 1 6.4 
Posterior Distance 7 7 7.5 
Viterbi Distance 0 0 4.1 
 
Table 1. Dynamic Recall Results based on a single 
session.  Average prediction time before grasp is in 
seconds, larger number is better. 
 
As seen in Table 1, there is a trade-off between the 
alarm statistics (false alarms and missed detections), 
and the average prediction time prior to the grasp. This 
tradeoff is related to the recall algorithm used (i.e. the 
posterior vs. the Viterbi recall method) and the 
thresholds employed.  In our operator interface we 
have chosen to eliminate false alarms at the expense of 
decreasing the length of prediction ahead of grasping.  
Thus the thresholds used with the Viterbi method have 
been established to minimize false alarms.  It would 
have also been possible to set the thresholds associated 
with the Viterbi method so as to increase the prediction 
window length but this has the affect of non-zero false 
alarms. 
 
The tele-operator working within the simulated 
environment becomes aware of the intent prediction 
via a change in color of the predicted hand rail in the 
software interface.  If this is the correct hand rail, the 
operator merely needs to close his hand and the 
autonomous grasping action will be enacted if the 
predictors confidence is high enough.  If the prediction 
is wrong, the operator can ignore the color changes and 
continue to perform in full manual operation.   
 



The level of confidence in the prediction is transmitted 
as a floating point value (between zero and one) to one 
of the console officers monitoring the performance of 
the system.  If low values of confidence are accepted, 
then it becomes possible to have very early predictions 
at the cost of having false alarms.  In this study, we 
have elected to minimize false alarms and therefore our 
average prediction time remains at approximately six 
seconds prior to the grasp.  However, to alleviate the 
need to have an optimal threshold, we encode the 
confidence information into the colors of the hand 
rails.  Thus the tele-operator can see the transition of 
the prediction confidence as the gestural command 
progresses through time. 
  
5. CONCULSION 
 
The development of a predictive interface for tele-
operators has been discussed.   We have introduced the 
concept of detecting the peaks in the posterior of 
Dirichlet based model for automating task 
decomposition.  In addition, we have built and trained 
HMMs embedded within a state machine as a means to 
predict the intentions of tele-operators.  Our average 
prediction ahead of task completion of 6 seconds 
allows for us to compensate for our target time of 2 
seconds round trip time delay.  We have demonstrated 
the trade-off between low false alarms and missed 
detections versus desirable prediction times.   We have 
also tested this system within a live tele-operation 
environment at NASA JSC with successful runs of zero 
false alarms and zero missed detections. 
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