23 research outputs found

    Visible Light Communication (VLC)

    Get PDF
    Visible light communication (VLC) using light-emitting diodes (LEDs) or laser diodes (LDs) has been envisioned as one of the key enabling technologies for 6G and Internet of Things (IoT) systems, owing to its appealing advantages, including abundant and unregulated spectrum resources, no electromagnetic interference (EMI) radiation and high security. However, despite its many advantages, VLC faces several technical challenges, such as the limited bandwidth and severe nonlinearity of opto-electronic devices, link blockage and user mobility. Therefore, significant efforts are needed from the global VLC community to develop VLC technology further. This Special Issue, “Visible Light Communication (VLC)”, provides an opportunity for global researchers to share their new ideas and cutting-edge techniques to address the above-mentioned challenges. The 16 papers published in this Special Issue represent the fascinating progress of VLC in various contexts, including general indoor and underwater scenarios, and the emerging application of machine learning/artificial intelligence (ML/AI) techniques in VLC

    Proceedings of the 2021 Symposium on Information Theory and Signal Processing in the Benelux, May 20-21, TU Eindhoven

    Get PDF

    Identification through Finger Bone Structure Biometrics

    Get PDF

    Finger Vein Verification with a Convolutional Auto-encoder

    Get PDF

    Indoor Visible Light Communication:A Tutorial and Survey

    Get PDF
    Abstract With the advancement of solid-state devices for lighting, illumination is on the verge of being completely restructured. This revolution comes with numerous advantages and viable opportunities that can transform the world of wireless communications for the better. Solid-state LEDs are rapidly replacing the contemporary incandescent and fluorescent lamps. In addition to their high energy efficiency, LEDs are desirable for their low heat generation, long lifespan, and their capability to switch on and off at an extremely high rate. The ability of switching between different levels of luminous intensity at such a rate has enabled the inception of a new communication technology referred to as visible light communication (VLC). With this technology, the LED lamps are additionally being used for data transmission. This paper provides a tutorial and a survey of VLC in terms of the design, development, and evaluation techniques as well as current challenges and their envisioned solutions. The focus of this paper is mainly directed towards an indoor setup. An overview of VLC, theory of illumination, system receivers, system architecture, and ongoing developments are provided. We further provide some baseline simulation results to give a technical background on the performance of VLC systems. Moreover, we provide the potential of incorporating VLC techniques in the current and upcoming technologies such as fifth-generation (5G), beyond fifth-generation (B5G) wireless communication trends including sixth-generation (6G), and intelligent reflective surfaces (IRSs) among others

    Intelligent Circuits and Systems

    Get PDF
    ICICS-2020 is the third conference initiated by the School of Electronics and Electrical Engineering at Lovely Professional University that explored recent innovations of researchers working for the development of smart and green technologies in the fields of Energy, Electronics, Communications, Computers, and Control. ICICS provides innovators to identify new opportunities for the social and economic benefits of society.  This conference bridges the gap between academics and R&D institutions, social visionaries, and experts from all strata of society to present their ongoing research activities and foster research relations between them. It provides opportunities for the exchange of new ideas, applications, and experiences in the field of smart technologies and finding global partners for future collaboration. The ICICS-2020 was conducted in two broad categories, Intelligent Circuits & Intelligent Systems and Emerging Technologies in Electrical Engineering

    Semi-automatic liquid filling system using NodeMCU as an integrated Iot Learning tool

    Get PDF
    Computer programming and IoT are the key skills required in Industrial Revolution 4.0 (IR4.0). The industry demand is very high and therefore related students in this field should grasp adequate knowledge and skill in college or university prior to employment. However, learning technology related subject without applying it to an actual hardware can pose difficulty to relate the theoretical knowledge to problems in real application. It is proven that learning through hands-on activities is more effective and promotes deeper understanding of the subject matter (He et al. in Integrating Internet of Things (IoT) into STEM undergraduate education: Case study of a modern technology infused courseware for embedded system course. Erie, PA, USA, pp 1–9 (2016)). Thus, to fulfill the learning requirement, an integrated learning tool that combines learning of computer programming and IoT control for an industrial liquid filling system model is developed and tested. The integrated learning tool uses NodeMCU, Blynk app and smartphone to enable the IoT application. The system set-up is pre-designed for semi-automation liquid filling process to enhance hands-on learning experience but can be easily programmed for full automation. Overall, it is a user and cost friendly learning tool that can be developed by academic staff to aid learning of IoT and computer programming in related education levels and field

    Design, monitoring and performance evaluation of high capacity optical networks

    Get PDF
    Premi Extraordinari de Doctorat, promoció 2018-2019. Àmbit de les TICInternet traffic is expected to keep increasing exponentially due to the emergence of a vast number of innovative online services and applications. Optical networks, which are the cornerstone of the underlying Internet infrastructure, have been continuously evolving to carry the ever-increasing traffic in a more flexible, cost-effective, and intelligent way. Having these three targets in mind, this PhD thesis focuses on two general areas for the performance improvement and the evolution of optical networks: i) introducing further cognition to the optical layer, and ii) introducing new networking solutions revolutionizing the optical transport infrastructure. In the first part, we present novel failure detection and identification solutions in the optical layer utilizing the optical spectrum traces captured by cost-effective coarse-granular Optical Spectrum Analyzers (OSA). We demonstrate the effectiveness of the developed solutions for detecting and identifying filter-related failures in the context of Spectrum-Switched Optical Networks (SSON), as well as transmitter-related laser failures in Filter-less Optical Networks (FON). In addition, at the subsystem level we propose an Autonomic Transmission Agent (ATA), which triggers local or remote transceiver reconfiguration by predicting Bit-Error-Rate (BER) degradation by monitoring State-of-Polarization (SOP) data obtained by coherent receivers. I have developed solutions to push further the performance of the currently deployed optical networks through reducing the margins and introducing intelligence to better manage their resources. However, it is expected that the spectral efficiency of the current standard Single-Mode Fiber (SMF) based optical network approaches the Shannon capacity limits in the near future, and therefore, a new paradigm is required to keep with the pace of the current huge traffic increase. In this regard, Space Division Multiplexing (SDM) is proposed as the ultimate solution to address the looming capacity crunch with a reduced cost-per-bit delivered to the end-users. I devote the second part of this thesis to investigate different flavors of SDM based optical networks with the aim of finding the best compromise for the realization of a spectrally and spatially flexible optical network. SDM-based optical networks can be deployed over various types of transmission media. Additionally, due to the extra dimension (i.e., space) introduced in SDM networks, optical switching nodes can support wavelength granularity, space granularity, or a combination of both. In this thesis, we evaluate the impact of various spectral and spatial switching granularities on the performance of SDM-based optical networks serving different profiles of traffic with the aim of understanding the impact of switching constraints on the overall network performance. In this regard, we consider two different generations of wavelength selective switches (WSS) to reflect the technology limitations on the performance of SDM networks. In addition, we present different designs of colorless direction-less, and Colorless Directionless Contention-less (CDC) Reconfigurable Optical Add/Drop Multiplexers (ROADM) realizing SDM switching schemes and compare their performance in terms of complexity and implementation cost. Furthermore, with the aim of revealing the benefits and drawbacks of SDM networks over different types of transmission media, we preset a QoT-aware network planning toolbox and perform comparative performance analysis among SDM network based on various types of transmission media. We also analyze the power consumption of Multiple-Input Multiple-Output (MIMO) Digital Signal Processing (DSP) units of transceivers operating over three different types of transmission media. The results obtained in the second part of the thesis provide a comprehensive outlook to different realizations of SDM-based optical networks and showcases the benefits and drawbacks of different SDM realizations.Se espera que el tráfico de Internet siga aumentando exponencialmente debido a la continua aparición de gran cantidad de aplicaciones innovadoras. Las redes ópticas, que son la piedra angular de la infraestructura de Internet, han evolucionado continuamente para transportar el tráfico cada vez mayor de una manera más flexible, rentable e inteligente. Teniendo en cuenta estos tres objetivos, esta tesis doctoral se centra en dos áreas cruciales para la mejora del rendimiento y la evolución de las redes ópticas: i) introducción de funcionalidades cognitivas en la capa óptica, y ii) introducción de nuevas estructuras de red que revolucionarán el transporte óptico. En la primera parte, se presentan soluciones novedosas de detección e identificación de fallos en la capa óptica que utilizan trazas de espectro óptico obtenidas mediante analizadores de espectros ópticos (OSA) de baja resolución (y por tanto de coste reducido). Se demuestra la efectividad de las soluciones desarrolladas para detectar e identificar fallos derivados del filtrado imperfecto en las redes ópticas de conmutación de espectro (SSON), así como fallos relacionados con el láser transmisor en redes ópticas sin filtro (FON). Además, a nivel de subsistema, se propone un Agente de Transmisión Autónomo (ATA), que activa la reconfiguración del transceptor local o remoto al predecir la degradación de la Tasa de Error por Bits (BER), monitorizando el Estado de Polarización (SOP) de la señal recibida en un receptor coherente. Se han desarrollado soluciones para incrementar el rendimiento de las redes ópticas mediante la reducción de los márgenes y la introducción de inteligencia en la administración de los recursos de la red. Sin embargo, se espera que la eficiencia espectral de las redes ópticas basadas en fibras monomodo (SMF) se acerque al límite de capacidad de Shannon en un futuro próximo, y por tanto, se requiere un nuevo paradigma que permita mantener el crecimiento necesario para soportar el futuro aumento del tráfico. En este sentido, se propone el Multiplexado por División Espacial (SDM) como la solución que permita la continua reducción del coste por bit transmitido ante ése esperado crecimiento del tráfico. En la segunda parte de esta tesis se investigan diferentes tipos de redes ópticas basadas en SDM con el objetivo de encontrar soluciones para la realización de redes ópticas espectral y espacialmente flexibles. Las redes ópticas basadas en SDM se pueden implementar utilizando diversos tipos de medios de transmisión. Además, debido a la dimensión adicional (el espacio) introducida en las redes SDM, los nodos de conmutación óptica pueden conmutar longitudes de onda, fibras o una combinación de ambas. Se evalúa el impacto de la conmutación espectral y espacial en el rendimiento de las redes SDM bajo diferentes perfiles de tráfico ofrecido, con el objetivo de comprender el impacto de las restricciones de conmutación en el rendimiento de la red. En este sentido, se consideran dos generaciones diferentes de conmutadores selectivos de longitud de onda (WSS) para reflejar las limitaciones de la tecnología en el rendimiento de las redes SDM. Además, se presentan diferentes diseños de ROADM, independientes de la longitud de onda, de la dirección, y sin contención (CDC) utilizados para la conmutación SDM, y se compara su rendimiento en términos de complejidad y coste. Además, con el objetivo de cuantificar los beneficios e inconvenientes de las redes SDM, se ha generado una herramienta de planificación de red que prevé la QoT usando diferentes tipos de fibras. También se analiza el consumo de energía de las unidades DSP de los transceptores MIMO operando en redes SDM con tres tipos diferentes de medios de transmisión. Los resultados obtenidos en esta segunda parte de la tesis proporcionan una perspectiva integral de las redes SDM y muestran los beneficios e inconvenientes de sus diferentes implementacionesAward-winningPostprint (published version
    corecore