86 research outputs found

    Modeling Topic and Role Information in Meetings using the Hierarchical Dirichlet Process

    Get PDF
    Abstract. In this paper, we address the modeling of topic and role information in multiparty meetings, via a nonparametric Bayesian model called the hierarchical Dirichlet process. This model provides a powerful solution to topic modeling and a flexible framework for the incorporation of other cues such as speaker role information. We present our modeling framework for topic and role on the AMI Meeting Corpus, and illustrate the effectiveness of the approach in the context of adapting a baseline language model in a large-vocabulary automatic speech recognition system for multiparty meetings. The adapted LM produces significant improvements in terms of both perplexity and word error rate.

    Correlated Bigram LSA for Unsupervised LM adaptation

    Get PDF

    Contextual Language Model Adaptation for Conversational Agents

    Full text link
    Statistical language models (LM) play a key role in Automatic Speech Recognition (ASR) systems used by conversational agents. These ASR systems should provide a high accuracy under a variety of speaking styles, domains, vocabulary and argots. In this paper, we present a DNN-based method to adapt the LM to each user-agent interaction based on generalized contextual information, by predicting an optimal, context-dependent set of LM interpolation weights. We show that this framework for contextual adaptation provides accuracy improvements under different possible mixture LM partitions that are relevant for both (1) Goal-oriented conversational agents where it's natural to partition the data by the requested application and for (2) Non-goal oriented conversational agents where the data can be partitioned using topic labels that come from predictions of a topic classifier. We obtain a relative WER improvement of 3% with a 1-pass decoding strategy and 6% in a 2-pass decoding framework, over an unadapted model. We also show up to a 15% relative improvement in recognizing named entities which is of significant value for conversational ASR systems.Comment: Interspeech 2018 (accepted

    Total Variability Space for LDA-based multi-viewtext categorization

    Get PDF
    Paru sous le titre Compact Multiview Representation of Documents Based on the Total Variability SpaceInternational audienceMapping text document into LDA-based topic-space is a classical way to extract high level representation of text documents. Unfortunatly , LDA is higly sensitive to hyper-parameters related to class number or word and topic distribution , and there is not any systematic way to prior estimate optimal configurations. Morover , various hyperparameter configurations offer complementary views on the document. In this paper , we propose a method based on a two-step process that , first , expands representation space by using a set of topic spaces and , second , compacts representation space by removing poorly relevant dimensions. These two steps are based respectivelly on multi-view LDA-based representation spaces and factor-analysis models. This model provides a view-independant representation of documents while extracting complementary information from a massive multi-view representation. Experiments are conducted on the DECODA conversation corpus and Reuters-21578 textual dataset. Results show the effectiveness of the proposed multi-view compact representation paradigm. The proposed categorization system reaches an accuracy of 86. 9% and 86. 5% respectively with manual and automatic transcriptions of conversations , and a macro-F1 of 80% during a classification task of the well-known studied Reuters-21578 corpus , with a significant gain compared to the baseline (best single topic space configuration) , as well as methods and document representations previously studied

    Language Modeling for limited-data domains

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2009.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Cataloged from student submitted PDF version of thesis.Includes bibliographical references (p. 99-109).With the increasing focus of speech recognition and natural language processing applications on domains with limited amount of in-domain training data, enhanced system performance often relies on approaches involving model adaptation and combination. In such domains, language models are often constructed by interpolating component models trained from partially matched corpora. Instead of simple linear interpolation, we introduce a generalized linear interpolation technique that computes context-dependent mixture weights from features that correlate with the component confidence and relevance for each n-gram context. Since the n-grams from partially matched corpora may not be of equal relevance to the target domain, we propose an n-gram weighting scheme to adjust the component n-gram probabilities based on features derived from readily available corpus segmentation and metadata to de-emphasize out-of-domain n-grams. In scenarios without any matched data for a development set, we examine unsupervised and active learning techniques for tuning the interpolation and weighting parameters. Results on a lecture transcription task using the proposed generalized linear interpolation and n-gram weighting techniques yield up to a 1.4% absolute word error rate reduction over a linearly interpolated baseline language model. As more sophisticated models are only as useful as they are practical, we developed the MIT Language Modeling (MITLM) toolkit, designed for efficient iterative parameter optimization, and released it to the research community.(cont.) With a compact vector-based n-gram data structure and optimized algorithm implementations, the toolkit not only improves the running time of common tasks by up to 40x, but also enables the efficient parameter tuning for language modeling techniques that were previously deemed impractical.by Bo-June (Paul) Hsu.Ph.D

    Word meaning in context : a probabilistic model and its application to question answering

    Get PDF
    The need for assessing similarity in meaning is central to most language technology applications. Distributional methods are robust, unsupervised methods which achieve high performance on this task. These methods measure similarity of word types solely based on patterns of word occurrences in large corpora, following the intuition that similar words occur in similar contexts. As most Natural Language Processing (NLP) applications deal with disambiguated words, words occurring in context, rather than word types, the question of adapting distributional methods to compute sense-specific or context-sensitive similarities has gained increasing attention in recent work. This thesis focuses on the development and applications of distributional methods for context-sensitive similarity. The contribution made is twofold: the main part of the thesis proposes and tests a new framework for computing similarity in context, while the second part investigates the application of distributional paraphrasing to the task of question answering.Die Notwendigkeit der Beurteilung von Bedeutungsähnlichkeit spielt für die meisten sprachtechnologische Anwendungen eine wesentliche Rolle. Distributionelle Verfahren sind solide, unbeaufsichtigte Verfahren, die für diese Aufgabe sehr effektiv sind. Diese Verfahren messen die Ähnlichkeit von Wortarten lediglich auf Basis von Mustern, nach denen die Wörter in großen Korpora vorkommen, indem sie der Erkenntnis folgen, dass ähnliche Wörter in ähnlichen Kontexten auftreten. Da die meisten Anwendungen im Natural Language Processing (NLP) mit eindeutigen Wörtern arbeiten, also eher Wörtern, die im Kontext vorkommen, als Wortarten, hat die Frage, ob distributionelle Verfahren angepasst werden sollten, um bedeutungsspezifische oder kontextabhängige Ähnlichkeiten zu berechnen, in neueren Arbeiten zunehmend an Bedeutung gewonnen. Diese Dissertation konzentriert sich auf die Entwicklung und Anwendungen von distributionellen Verfahren für kontextabhängige Ähnlichkeit und liefert einen doppelten Beitrag: Den Hauptteil der Arbeit bildet die Präsentation und Erprobung eines neuen framework für die Berechnung von Ähnlichkeit im Kontext. Im zweiten Teil der Arbeit wird die Anwendung des distributional paraphrasing auf die Aufgabe der Fragenbeantwortung untersucht

    On the dynamic adaptation of language models based on dialogue information

    Get PDF
    We present an approach to adapt dynamically the language models (LMs) used by a speech recognizer that is part of a spoken dialogue system. We have developed a grammar generation strategy that automatically adapts the LMs using the semantic information that the user provides (represented as dialogue concepts), together with the information regarding the intentions of the speaker (inferred by the dialogue manager, and represented as dialogue goals). We carry out the adaptation as a linear interpolation between a background LM, and one or more of the LMs associated to the dialogue elements (concepts or goals) addressed by the user. The interpolation weights between those models are automatically estimated on each dialogue turn, using measures such as the posterior probabilities of concepts and goals, estimated as part of the inference procedure to determine the actions to be carried out. We propose two approaches to handle the LMs related to concepts and goals. Whereas in the first one we estimate a LM for each one of them, in the second one we apply several clustering strategies to group together those elements that share some common properties, and estimate a LM for each cluster. Our evaluation shows how the system can estimate a dynamic model adapted to each dialogue turn, which helps to improve the performance of the speech recognition (up to a 14.82% of relative improvement), which leads to an improvement in both the language understanding and the dialogue management tasks

    Discovering a Domain Knowledge Representation for Image Grouping: Multimodal Data Modeling, Fusion, and Interactive Learning

    Get PDF
    In visually-oriented specialized medical domains such as dermatology and radiology, physicians explore interesting image cases from medical image repositories for comparative case studies to aid clinical diagnoses, educate medical trainees, and support medical research. However, general image classification and retrieval approaches fail in grouping medical images from the physicians\u27 viewpoint. This is because fully-automated learning techniques cannot yet bridge the gap between image features and domain-specific content for the absence of expert knowledge. Understanding how experts get information from medical images is therefore an important research topic. As a prior study, we conducted data elicitation experiments, where physicians were instructed to inspect each medical image towards a diagnosis while describing image content to a student seated nearby. Experts\u27 eye movements and their verbal descriptions of the image content were recorded to capture various aspects of expert image understanding. This dissertation aims at an intuitive approach to extracting expert knowledge, which is to find patterns in expert data elicited from image-based diagnoses. These patterns are useful to understand both the characteristics of the medical images and the experts\u27 cognitive reasoning processes. The transformation from the viewed raw image features to interpretation as domain-specific concepts requires experts\u27 domain knowledge and cognitive reasoning. This dissertation also approximates this transformation using a matrix factorization-based framework, which helps project multiple expert-derived data modalities to high-level abstractions. To combine additional expert interventions with computational processing capabilities, an interactive machine learning paradigm is developed to treat experts as an integral part of the learning process. Specifically, experts refine medical image groups presented by the learned model locally, to incrementally re-learn the model globally. This paradigm avoids the onerous expert annotations for model training, while aligning the learned model with experts\u27 sense-making

    Advances in deep learning with limited supervision and computational resources

    Full text link
    Les réseaux de neurones profonds sont la pierre angulaire des systèmes à la fine pointe de la technologie pour une vaste gamme de tâches, comme la reconnaissance d'objets, la modélisation du langage et la traduction automatique. Mis à part le progrès important établi dans les architectures et les procédures de formation des réseaux de neurones profonds, deux facteurs ont été la clé du succès remarquable de l'apprentissage profond : la disponibilité de grandes quantités de données étiquetées et la puissance de calcul massive. Cette thèse par articles apporte plusieurs contributions à l'avancement de l'apprentissage profond, en particulier dans les problèmes avec très peu ou pas de données étiquetées, ou avec des ressources informatiques limitées. Le premier article aborde la question de la rareté des données dans les systèmes de recommandation, en apprenant les représentations distribuées des produits à partir des commentaires d'évaluation de produits en langage naturel. Plus précisément, nous proposons un cadre d'apprentissage multitâches dans lequel nous utilisons des méthodes basées sur les réseaux de neurones pour apprendre les représentations de produits à partir de textes de critiques de produits et de données d'évaluation. Nous démontrons que la méthode proposée peut améliorer la généralisation dans les systèmes de recommandation et atteindre une performance de pointe sur l'ensemble de données Amazon Reviews. Le deuxième article s'attaque aux défis computationnels qui existent dans l'entraînement des réseaux de neurones profonds à grande échelle. Nous proposons une nouvelle architecture de réseaux de neurones conditionnels permettant d'attribuer la capacité du réseau de façon adaptative, et donc des calculs, dans les différentes régions des entrées. Nous démontrons l'efficacité de notre modèle sur les tâches de reconnaissance visuelle où les objets d'intérêt sont localisés à la couche d'entrée, tout en maintenant une surcharge de calcul beaucoup plus faible que les architectures standards des réseaux de neurones. Le troisième article contribue au domaine de l'apprentissage non supervisé, avec l'aide du paradigme des réseaux antagoniste génératifs. Nous introduisons un cadre fléxible pour l'entraînement des réseaux antagonistes génératifs, qui non seulement assure que le générateur estime la véritable distribution des données, mais permet également au discriminateur de conserver l'information sur la densité des données à l'optimum global. Nous validons notre cadre empiriquement en montrant que le discriminateur est capable de récupérer l'énergie de la distribution des données et d'obtenir une qualité d'échantillons à la fine pointe de la technologie. Enfin, dans le quatrième article, nous nous attaquons au problème de l'apprentissage non supervisé à travers différents domaines. Nous proposons un modèle qui permet d'apprendre des transformations plusieurs à plusieurs à travers deux domaines, et ce, à partir des données non appariées. Nous validons notre approche sur plusieurs ensembles de données se rapportant à l'imagerie, et nous montrons que notre méthode peut être appliquée efficacement dans des situations d'apprentissage semi-supervisé.Deep neural networks are the cornerstone of state-of-the-art systems for a wide range of tasks, including object recognition, language modelling and machine translation. In the last decade, research in the field of deep learning has led to numerous key advances in designing novel architectures and training algorithms for neural networks. However, most success stories in deep learning heavily relied on two main factors: the availability of large amounts of labelled data and massive computational resources. This thesis by articles makes several contributions to advancing deep learning, specifically in problems with limited or no labelled data, or with constrained computational resources. The first article addresses sparsity of labelled data that emerges in the application field of recommender systems. We propose a multi-task learning framework that leverages natural language reviews in improving recommendation. Specifically, we apply neural-network-based methods for learning representations of products from review text, while learning from rating data. We demonstrate that the proposed method can achieve state-of-the-art performance on the Amazon Reviews dataset. The second article tackles computational challenges in training large-scale deep neural networks. We propose a conditional computation network architecture which can adaptively assign its capacity, and hence computations, across different regions of the input. We demonstrate the effectiveness of our model on visual recognition tasks where objects are spatially localized within the input, while maintaining much lower computational overhead than standard network architectures. The third article contributes to the domain of unsupervised learning with the generative adversarial networks paradigm. We introduce a flexible adversarial training framework, in which not only the generator converges to the true data distribution, but also the discriminator recovers the relative density of the data at the optimum. We validate our framework empirically by showing that the discriminator is able to accurately estimate the true energy of data while obtaining state-of-the-art quality of samples. Finally, in the fourth article, we address the problem of unsupervised domain translation. We propose a model which can learn flexible, many-to-many mappings across domains from unpaired data. We validate our approach on several image datasets, and we show that it can be effectively applied in semi-supervised learning settings
    corecore