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A B S T R A C T 

We present an approach to adapt dynamically the language models (LMs) used by a speech recognizer 
that is part of a spoken dialogue system. We have developed a grammar generation strategy that auto
matically adapts the LMs using the semantic information that the user provides (represented as dialogue 
concepts), together with the information regarding the intentions of the speaker (inferred by the dialogue 
manager, and represented as dialogue goals). We carry out the adaptation as a linear interpolation 
between a background LM, and one or more of the LMs associated to the dialogue elements (concepts 
or goals) addressed by the user. The interpolation weights between those models are automatically esti
mated on each dialogue turn, using measures such as the posterior probabilities of concepts and goals, 
estimated as part of the inference procedure to determine the actions to be carried out. We propose 
two approaches to handle the LMs related to concepts and goals. Whereas in the first one we estimate 
a LM for each one of them, in the second one we apply several clustering strategies to group together 
those elements that share some common properties, and estimate a LM for each cluster. Our evaluation 
shows how the system can estimate a dynamic model adapted to each dialogue turn, which helps to sig
nificantly improve the performance of the speech recognition, which leads to an improvement in both the 
language understanding and the dialogue management tasks. 

1. Introduction 

Statistical language model adaptation has become an area of 
current interest within the scope of Speech Technology research. 
Its main goal consists of updating the language model (LM) which 
an automatic speech recognition system (ASR) makes use of, in or
der to achieve better recognition rates. The sources of information 
that could be used to modify the LM can be of any nature. For in
stance, one might use information available online, which is closely 
related to the topic that is currently being addressed in the conver
sation to better match the user utterances. We could also think 
about adapting the behaviour of the recognition module to the 
current user, given that different users speak in a different way, 
not only from the acoustic point of view, but also at a lexical or 
discourse level. 

1.1. Previous work 

During the last 20 years there has been a lot of effort in intro
ducing new and up-to-date linguistic information into speech 
recognizers (see, for instance, Bellegarda, 2001, 2004). We could 

broadly classify the different approaches into several criteria. For 
instance, the nature of the data that are considered for the adap
tation (they could be obtained from external databases through an 
Information Retrieval process, such as in Martins, Teixeira, & Neto 
(2010), or the user could provide them, for instance in previous 
interactions, such as in Kuhn & de Mori (1990)); the goal of the 
adaptation (we could adapt to the topic that is currently being ad
dressed, as shown in Shi et al. (2008), or to the different speakers 
that use the system, such as in Tur & Stolcke (2007)); or the degree 
of knowledge that the system has on those data (whether the data 
are previously labelled, or not, respectively carrying out a super
vised, (Kneser & Steinbiss, 1993) or an unsupervised approach, 
(Bacchiani & Roark, 2003)). 

Perhaps more interesting classifications of LM adaptation strat
egies can be defined by trying to solve three questions: (a) how is 
the information used to adapt the models obtained; (b) where 
could the adapted models be applied, and (c) which adaptation 
strategy is adopted, i.e. how the adaptation data can be used 
(either switching to the most appropriate model, or generating a 
new one using the available information). 

As regards the information sources that could be used, they 
usually depend on the application domain in which the LM adap
tation paradigm is included. One of the most common sources of 
data for adaptation purposes is the Internet. It is usually queried 
when trying to adapt the LMs to a specific topic (Lecorvé, Gravier, 
& Sébillot, 2009; Shi et al., 2008), or to the most recent content, 



such as in the case of a Broadcast News transcription domain, as 
proposed in Federico and Bertoldi (2004), Martins et al. (2010), 
Saykham, Chotimongkol, and Wutiwiwatchai (2010). 

The main advantage in using documents available online to 
build the dynamic LMs relies on the broad scope of the information 
on the Internet, in terms of topic coverage (we could find docu
ments regarding almost any topic or domain). However, the variety 
of topics is also the main weakness of using online information. In
deed, the sparseness of the available data is so high that the LMs 
tend to be poorly estimated. In an effort to solve this problem, sev
eral clustering algorithms have been proposed (Chen, Gauvain, 
Lamel, Adda, & Adda, 2001; Iyer & Ostendorf, 1999; Iyer, Ostendorf, 
& Rohlicek, 1994) to group together those elements that share 
some properties. An interesting idea to fuse the clustering ap
proach with the exploitation of higher level information (not only 
the information directly provided by the speech recognizer, such 
as acoustic scores, or the most likely word sequence) is the 
application of an analysis to extract the semantic relationships 
between terms, or documents. In this sense, the work presented 
in Bellegarda (2000) and Bellegarda, Butzberger, Chow, Coceara, 
and Naik (1996) proposes the use of Latent Semantic Analysis 
(LSA, Landauer, Foltz, & Laham, 1998), a tool used in the field of 
Information Retrieval that can discover semantic relationships 
between the terms that appear in different documents. A closely 
related approach consists of the application of Latent Dirichlet 
Allocation (LDA, Tarn & Schultz, 2006), that establishes a probabi
listic distribution over the different adaptation models. 

It is also useful to consider the information provided by the 
speech recognizer itself, either to guide the query of the most rel
evant documents, or to cluster the documents into different groups 
that will eventually be considered as part of further adaptations. 
For instance, (Chen et al., 2001) uses the keywords identified by 
the recognizer to determine the documents to be used for the LM 
adaptation. 

It has also been proven that certain word sequences can predict 
other sequences, even at a certain distance from the current one. 
The first sequences are then called triggers, since its presence 'trig
gers up' the likelihood of the so-called triggered sequences. That is, 
it is more likely that the triggered sequence appears after its trig
ger. (Lau, Rosenfeld, & Roukos, 1993; Rosenfeld, 1994; Rosenfeld 
& Huang, 1992) have implemented this trigger pair based ap
proach, leading to an improvement in the performance on Large 
Vocabulary Continuous Speech Recognition systems adapted to 
different topics. 

In Spoken Language Dialogue Systems (SLDS), in which there are 
several interconnected modules, each one performing a different 
task (speech recognition, language understanding, dialogue 
management, and so on), the number of information sources that 
could potentially be used to adapt the LMs increases. Indeed, we 
could take into consideration lexical and acoustic information 
(managed by the speech recognizer), but we could also use either 
semantic information (the content of the utterance that has 
been recognized, such as in Gruenstein, Wang, & Seneff (2005), 
Solsona, Fosler-Lussier, Kuo, Potamianos, & Zitouni (2002), and 
Visweswariah & Printz (2001)), or discourse or pragmatic informa
tion (which is related to the intentions of the user). From a more 
general point of view, the current research usually defines these 
dialogue-based approaches as context-dependent adaptation (such 
as in Fügen, Holzapfel, & Waibel (2004) and López-Cózar & Griol 
(2010)), or state-dependent adaptation (Popovici & Baggia, 1997; 
Riccardi & Gorin, 2000; Riccardi, Potamianos, & Narayanan, 1998). 
We could even unify all of these information sources, as (Raux, 
Mehta, Ramachandran, & Gupta, 2010) proposes, by using a 
statistical framework based on Bayesian Networks (BNs). We will 
see how our approach also tries to unify the knowledge of the 
speech recognizer (in terms of lexical features), the language 

understanding module (semantic features), and the dialogue 
manager (discourse or user-intention features), but in a rather 
simple and intuitive way. 

As regards the ASR subprocedure or the stage where the 
adapted models could be used, they could be integrated at the 
decoding stage, as Justo and Torres (2007) proposes, or they could 
be used in a rescoring stage for improving the initial recognition 
hypotheses, as in López-Cózar and Callejas (2006), which rescores 
the word lattice generated during the first pass of the recognizer. 
Another possibility proposed in López-Cózar and Callejas (2008) 
and López-Cózar and Griol (2010) relies on using the adapted mod
els for correcting recognition errors after each recognition step, in
stead of initiating a second recognition step. An accurate error 
recovery strategy might lead to an improvement in the dialogue 
efficiency, reducing the number of turns required to complete 
the actions. 

Finally, there are different adaptation strategies, each of 
which suits the nature of each LM best (either n-grams, Con
text-Free Grammars (CFGs), and so on). Bellegarda (2004) identi
fies two main ways of adapting LMs: model interpolation, and 
constraint specification. We briefly present each of these strate
gies below. 

1.1.1. Model interpolation 
Model interpolation is the most known and widespread strat

egy of adapting LMs. Its basic idea, together with the definitions 
that we will use throughout this paper, is presented in Fig. 1. 

Language model interpolation simply consists of generating a 
context dependent LM using the content-specific LMs generated 
with the adaptation data. This content-specific model could be re
lated to any domain, application or situation to which we want to 
adapt the system. The context dependent component is then 
merged with a background LM at each point of the interaction 
when an adaptation is required, generating the dynamic LM that 
the speech recognizer will use. This way, the background, more 
general model, that is usually trained with more data (but less spe
cific), keeps the likelihood of a certain amount of word sequences 
relatively unmodified, while the context dependent component, 
usually trained with few data, but more specific, and related to 
the situation (a topic, a speaker, etc.) which we want to adapt to, 
gives more relevance to those word sequences that better match 
that situation. 

Whereas the background LM is always static (in the sense that it 
is trained once and remains unmodified during the interaction), 
the content-specific and the context dependent components of 
the model could be either static or dynamic, depending on whether 
the information used for estimating them remains the same, or is 
periodically updated. In our case, we will keep the content-specific 
LMs static, but we will estimate the context dependent LM on a 
turn basis. In that sense, this LM will also be dynamic. 

The interpolation between LMs is simple to understand and to 
implement, and it perfectly suits n-grams, the most widespread 
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Fig. 1. Interpolation of language models. 



approach to build LMs. This simplicity has made interpolation a 
common adaptation strategy nowadays, providing an important 
research background. 

Looking at the level at which the interpolation is implemented, 
we could distinguish several approaches to adapt LMs via interpo
lation, among which the most widely used ones are the merging of 
LMs, the use of word and sentence caches, and the merging of the 
counts of the different word sequences. 

In the model merging approach, the goal is to estimate the prob
ability of observing each word sequence as a mixture between a 
background, static LM, and one or more content-specific models. 
As the amount of data to train those content-specific LMs is usually 
limited, the resulting LMs tend to be poorly estimated. Therefore, 
the system should obtain the most reliable interpolation weights, 
giving different relevances to the background LM and each specific 
component, depending on the conditions under which the adapta
tion takes place (what the system is adapting to, when the adapta
tion takes place, and so on). 

The most common model merging approach carries out a linear 
interpolation between two or more LMs. Let us consider probabilis
tic language modelling, and let P(w|h) be the probability to have 
word w given the previous sequence of words h (usually referred 
to as the word history). Then the probability P¡ according to a linear 
interpolation between two models, a background LM PB, and the 
context dependent component PD (which in our case will include 
part of the dynamic behaviour), will be 

P,(w\h) = (1 - X)PB(w\h) + XPD(w\h) (1) 

X being the interpolation weight between both models, which has 
to fulfill the condition 0 sc X sc 1. 

In the previous equation, there are two possibilities to include a 
dynamic behaviour in the LM. In the first one, the interpolation 
weight X can be modified in accordance with the variable condi
tions of the interaction. In the second one, the component PD itself 
can also be dynamic to better adapt to the current situation (for in
stance, switching between several domain-specific LMs). As we 
said before, in our case, we will consider that both the interpola
tion weight and the context dependent LM PD are dynamic. 

Depending on how the content-specific LMs, together with their 
interpolation weights, are estimated, we could find several ap
proaches in the literature. The content-specific LMs can be esti
mated offline, training them with a certain amount of data. This 
data could be, for instance, the sentences allowed for each adapta
tion domain. However, if the number of sentences available to train 
the specific LMs is reduced, it is usually preferred instead to use the 
classes that each word belongs to (Gruenstein et al., 2005; López-
Cózar & Callejas, 2006; Raux et al., 2010). These word classes can 
be related to the lexical or the morpho-syntactic class of each 
word, or they could be automatically defined, by means of a clus
tering algorithm that groups those words that share any relevant 
feature into the same class. 

In order to make the approach more dependent on the current 
situation of the interaction (the topic, the speaker, the current dia
logue turn, etc.), it has been proposed to build even the content-
specific LMs using the information gathered up to the current 
interaction, in the terms of all the previous sequence of words. This 
approach, referred to as dynamic cache modelling (Iyer & Ostendorf, 
1999; Jelinek, Merialdo, Roukos, & Strauss, 1991; Kuhn & de Mori, 
1990), relies on the fact that, within a specific domain, if a certain 
word or word sequence has appeared, it is more likely to appear 
again in a short term. Instead of estimating a LM for the whole con
tent of the cache, it has been proven (Lobacheva, 2000; Rosenfeld, 
1994) that using only the content words related to the current to
pic yields better results, since function words (such as preposi
tions, articles, and so on) are expected to be common across all 
the topics. 

As regards the interpolation weight, it is usually obtained dur
ing a cross-validation step, using data not seen in training (see, 
for instance, Klakow, 1998; Riccardi & Gorin, 2000; Riccardi 
et al., 1998; Tur & Stolcke, 2007; Wessel & Baader, 1999), or esti
mated via some optimization algorithm, such as Expectation Max
imization (EM, (Martins et al., 2010)). These approaches keep the 
interpolation weight constant throughout all the interaction, and 
they offer good performance, since the weight is optimized to a 
certain context (either the current topic, the speaker, or the inter
action conditions). However, any mismatch between the data used 
for estimating X and the test data gives rise to a reduction in the 
performance figures. Therefore, it would be interesting to modify 
the interpolation weight according to the ongoing dialogue by try
ing to keep the model permanently updated with the most recent 
information gathered by the system. In this sense, we could use the 
history of each word (i.e. its previous sequence of words) to esti
mate that weight. This approach has been used, for instance, in 
Federico (1996), Kneser and Steinbiss (1993), Liu, Gales, and 
Woodland (2008), and Lobacheva (2000). A more complex scheme 
can be studied in Yamamoto, Hanazawa, Miki, and Shinoda (2010), 
in which the interpolation weights between LMs are estimated as a 
function of the identification of the most relevant words for each 
topic, those topics being obtained using Conditional Random Fields 
(CRFs). 

Instead of interpolating the models themselves, another possi
bility relies on merging the frequencies of each word sequence. 
This approach is known as count merging (Federico & Bertoldi, 
2004; Ljolje, Hindle, Riley, & Sproat, 2000; Lobacheva, 2000), and 
it is usually related to well-known adaptation approaches, such 
as Maximum a Posteriori (MAP) or Maximum Likelihood Linear 
Regression (MLLR). MAP has been successfully applied to LM adap
tation (see, for instance, (Chen et al., 2001; Liu et al., 2008)), 
although it has been proven in Bacchiani, Riley, Roark, and Sproat 
(2006), Bacchiani and Roark (2003), and Hsu (2007) that the per
formance of a MAP-based adaptation system is similar to that 
achieved with linear interpolation, but requiring a greater compu
tational effort. 

1.1.2. Constraint specification 
From a different point of view, constraint specification does not 

consider the dynamic information as different models to be 
merged somehow with the background, static LM. Instead, it pro
poses to model both the static and the adaptation LMs as a set of 
constraints that the dynamic LM needs to satisfy. Constraint spec
ification methods are related to the Maximum Entropy (ME) prin
ciple, that has been successfully applied to LM adaptation in Lau 
et al. (1993) and Rosenfeld (1994). According to this principle, each 
information source (for instance, the LM specific of a certain do
main) can be expressed as a set of constraints. These constraints 
(usually expressed as marginal distributions over the training data) 
are related to any relevant feature of the information source. They 
could be, for instance, the expectation of a certain word sequence 
(h,w). The resulting set of K linearly independent constraints de
fines a subspace of functions that are consistent with all the differ
ent information sources. This relationship can be expressed as 

Y, fk(h,w)P(h,w) = a(hkwk) (2) 
{(h,w)} 

P{h,w) being a function related to the sequence of words {h,w) in the 
adapted model (for instance, an n-gram probability P(w|h));/k(h,w), 
the set of constraint functions, and a{hkwk), the corresponding value 
of that function estimated from the data. The idea underlying the 
ME principle is that, once the constraint set is included, we do not 
need to assume any additional evidence about the data. Then the 
best solution is to choose the function that maximizes the entropy. 



This function is usually estimated by solving the mentioned set of 
equations by means of Lagrange multipliers, giving a product of 
exponential models as a result: 

p(h,w)=n/4<h'w) (3) 

The parameters ¡it of this model are then estimated using the Gen
eralized Iterative Scaling algorithm (GIS, Darroch & Ratcliff, 1972; 
Rosenfeld, 1994), that converges to the ME solution provided that 
the constraints expressed by the set of functions f¡ are consistent. 

Constraint specification approaches are also related to the Min
imum Discrimination Information (MDI) criterion, in the sense that 
MDI-based strategies exploit exponential models. MDI approaches 
have been effectively used for LVCSR applications, as can be seen in 
Lecorvé et al. (2009) and Rao, Monkowski, and Roukos (1995). 

Despite the apparent mismatch between both adaptation ap
proaches (linear interpolation and constraint specification), there 
have been several efforts to unify them. An interesting idea relies 
on carrying out a log-linear interpolation of LMs, as proposed in 
Klakow (1998). It consists of optimizing the interpolation weights 
among the background LM, and one or more content-specific 
LMs, but at a logarithmic level instead of at a linear one, thus keep
ing the exponential model formalism from constraint specification. 

1.2. Applications ofLM adaptation 

Language model adaptation has been successfully applied to 
several tasks, such as Large Vocabulary Continuous Speech Recog
nition (LVCSR), Broadcast News (BN) transcription, and Spoken 
Dialogue Systems (SDS). They have also been used as a scoring tool 
for retrieving information from large databases. For instance, 
Straková and Pecina (2010) uses LM adaptation to build several 
LMs, each of which is related to a different domain or topic. With 
these LMs they estimate the perplexity of a query, in order to 
retrieve the documents related to the topic that gets the best score. 

In the field of LVCSR, as well as in BN transcription, researchers 
have applied the different approaches we mentioned above. The 
most common information sources are documents related to the 
topic that is addressed in the current interaction (Lecorvé et al., 
2009; Shi et al., 2008). The topics can be known beforehand or they 
could be obtained in an unsupervised way by clustering the differ
ent words or sequences. The cluster criterion is usually the optimi
zation of an appropriate distance between clusters (Bellegarda, 
2000; Chen et al., 2001; Iyer & Ostendorf, 1999). A different con
text-dependent analysis arises when using the most recent informa
tion provided by the user of the system (that is, the recognition 
hypotheses of the previous interactions). The more broadly used 
adaptation methods are a cache of the last Af words (usually only 
content words are considered), as proposed in Jelinek et al. (1991) 
and Kuhn and de Mori (1990), or by using trigger pairs (Lau et al., 
1993; Rosenfeld, 1994). 

As regards spoken dialogue systems, the greatest effort has been 
made in adapting the recognition to each dialogue turn, taking into 
account the information the user provides to the system, and the 
state of the dialogue (Popovici & Baggia, 1997; Riccardi & Gorin, 
2000; Visweswariah & Printz, 2001). Traditionally, these adapted 
systems are defined by a set of states. The dialogue manager moves 
through the different states according to the information conveyed 
in the current user utterance, and the previous state of the system. 
Depending on that information, the system will carry out the most 
appropriate action on each state. In our case, we will refer to the 
system status as the set of variables and values of our application 
domain, that define the actions currently being addressed. We 
use this definition since we do not have explicit states in our dia
logue management strategy. 

In any case, the purpose of adapting LMs in dialogue systems 
is either to improve the recognition of the current sentence by 
adapting the LM to the most likely word sequence that the user 
can say at each dialogue turn (as in Popovici & Baggia (1997), 
Wessel & Baader (1999)), or to correct the recognition errors that 
may arise during a turn, by using higher-level knowledge (for in
stance, semantic knowledge, or information related to the appli
cation domain, such as in López-Cózar & Griol (2010)). The 
most common adaptation approach is a linear interpolation of 
LMs, estimating the interpolation weights using a validation set. 
Other approaches, such as rule-based adaptation (Fügen et al., 
2004), or a fusion between interpolation and ME strategies 
(Visweswariah & Printz, 2001), have been successfully applied 
for controlling a household robot and for a travel information do
main, respectively. 

Í.3. This work 

We propose to adapt the LM used in a speech recognition mod
ule that is part of a spoken dialogue system. The underlying adap
tation approach is a linear interpolation between a background LM 
and several content-specific LMs. All of these models are esti
mated offline (and therefore they are static in accordance to our 
previous definitions), but the selection of the most suitable models 
to estimate the context dependent LM takes place at each dialogue 
turn. Therefore, our context dependent LM is also dynamic. The 
interpolation weights between the different components of the 
context dependent LM are also obtained dynamically on a turn ba
sis, using the context of the ongoing dialogue, either the semantics 
of the utterance (which we will refer to as the dialogue concepts 
that the understanding module extracts from the recognition 
hypothesis), or the discourse or intention content (which we will 
refer to as the dialogue goals, or actions that the user wants to 
carry out). We will refer to both concepts and goals as dialogue 
elements. 

One of our major claims is that the system itself can feedback 
the grammar generation engine enough information to obtain 
accurate interpolation weights that depend on the current recogni
tion result, as well as on the system's contextual information (its 
knowledge about the dialogue up to the current interaction). This 
way, the interpolation weights will depend on certain values ob
tained by the system, such as confidence measures, probabilities, 
and so on. 

We propose several approaches to obtain the LMs to be interpo
lated: they could be related to each single piece of information 
(either semantic or discourse based), or they could be related to 
a group of them. In this regard we will assess several grouping 
strategies, both supervised (by using expert knowledge) and unsu
pervised (by carrying out a semi-automatic semantic analysis). Fi
nally, in our evaluation we will measure the improvement 
achieved not only at the recognition level, but also at the under
standing and dialogue management level, and even at the level 
of the user's experience when interacting with the system. That 
is, we will determine to what extent an improvement in the LMs 
leads to an improvement in several modules of the dialogue 
system. 

The rest of the paper is organized as follows. Our baseline 
Spoken Dialogue System and the main features of its modules 
are detailed in Section 2. We then explain in Section 3 our different 
approaches to dynamically modify the LMs of the speech recog
nizer using the information provided by the language understand
ing module or the dialogue manager. The results of the evaluation 
we have carried out are presented in Section 4. Finally, in Section 5 
we discuss our approaches, and in Section 6 we present our guide
lines for future work. 



2. Spoken Dialogue System 

We use a user-independent spoken dialogue system (SDS) pre
viously developed in our lab, to control different household de
vices, such as a TV, a Hi-Fi equipment, a vacuum cleaner, and so 
on. We have evaluated the performance of the prototype when 
including the new dynamic LMs, for the task of controlling a Hi-
Fi device using speech. 

Fig. 2 shows a block diagram of our conversational interface. 
The system consists of an automatic speech recognition module 
(ASR), which translates the audio signal into a text hypothesis of 
what the user has said; a natural language understanding module 
(NLU), that extracts the semantics of the user's utterance; the dia
logue manager (DM), which makes use of the semantic informa
tion, together with the information gathered during previous 
dialogues, to determine the actions that the user wants to carry 
out, and to provide the user with feedback regarding the ongoing 
dialogue turn; the context manager (CM), which contains the infor
mation of the previous interactions; an execution module, which 
translates the actions to be carried out into IR commands to be sent 
to the Hi-Fi equipment; the natural response generator module 
(NRG), which makes use of the semantic information provided by 
the dialogue manager to generate a text output, and a text-to-
speech module (TTS), that synthesizes the message back to the 
user. 

To improve the behaviour of the system when interacting with 
different users, we have also developed an automatic adaptation 
approach based on the definition and updating of user profiles. 
These structures contain information related to the speakers, such 
as their identity, degree of expertise, and their preferences as 
regards their interactions with the system. To include this user-
related information, we have included a speaker identification 
module, and a profile manager. We group both modules into a User 
Information Manager (UIM, Lucas-Cuesta, Fernández, Salazar, 
Ferreiros, & San-Segundo, 2009; Lucas-Cuesta, Fernández-Martmez, 
Dragos, Lutfi, & Ferreiros, 2011). 

Our modification, presented in Section 3, establishes a new 
module as a feedback loop between the DM, the NLU, and the 
ASR modules. This new element, the Dynamic LM Generator, or 
Dynamic Grammar Generator (DGG), will take into account the 
information provided by the users in their previous utterances to 
modify dynamically the LMs that the ASR makes use of. We will 
use this dynamic LM to recognize the current utterance by exploit
ing the 'contextuality' of human dialogues (that is, the fact that 
speakers usually tend to make implicit references to ideas they 
had previously mentioned). In other words, we will use the contex
tual information held by the system in an effort to improve the 
recognition of the current utterance. 
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Fig. 2. Block diagram of the spoken dialogue system. 

We have designed a multi-goal, mixed-initiative spoken dia
logue system based on the use of Bayesian Networks (BN) as the 
basis of our Dialogue Manager. This approach can exploit the cau
sal relationships between the semantics of an utterance (the dia
logue concepts) and the intention of the speaker (the dialogue 
goals). 

We have defined a set of 58 different concepts, divided into 
parameters (16) that can be set up (e.g. the volume of the Hi-Fi de
vice), values (20) that the different parameters can take, and actions 
(22) to be carried out (e.g. to increase the volume). We have also 
defined 15 different goals according to the available functionality 
of the Hi-Fi device. For instance, a modification in the volume set
ting. Both dialogue elements have been defined as binary variables 
(i.e. a concept or a goal is present only if it has been observed in the 
sentence, or positively inferred by the BN). 

The BN performs the dialogue management by means of two 
Bayesian inference algorithms, which can infer the actions that 
the user wants to perform (i.e. the dialogue goals), and the seman
tic information, or dialogue concepts, that are needed to achieve 
those actions, whether available or not (Fernández et al., 2005). 
The forward inference makes use of the concepts referred by the 
user, and those retrieved from the Context Manager, for inferring 
the dialogue goals (the actions that the user wants to fulfill). This 
algorithm estimates the posterior probability of each goal g, given 
its available evidence egj, that is, the presence or absence of each 
concept, modulated by their confidence score. By comparing the 
resulting probabilities with several thresholds 0¡ (that are set to 
0.5, given that the dialogue elements are binary variables), the 
DM decides whether a goal is present or absent, according to the 
intention of the user. 

After the forward inference process, the DM assumes the in
ferred goals as a new evidence. Then, and by using the parsed con
cepts and the already inferred goals, it applies a backward inference 
to estimate the posterior probabilities of the different dialogue 
concepts c, given their evidence ec.. The DM will decide whether 
a concept is needed or not by comparing the posterior probability 
of that concept against a predefined threshold. A further analysis of 
the results of this inference, and the available information (which 
concepts the user has referred to during this turn, and those ones 
previously addressed), allows the system to classify each concept 
as needed, optional, or unnecessary in order to define the most 
suitable dialogue strategy (Fernández et al., 2005). Once the sys
tem has determined which concepts are necessary to carry out 
an inferred goal, it has to check whether all of these concepts are 
already available. In this case, the system will send the correspond
ing IR commands to the Hi-Fi equipment. Otherwise, the system 
tries to recover the missing concepts required to complete the dia
logue, using the Context Manager. 

The mission of the CM consists of solving any lack of informa
tion that may arise during the dialogue, using different contextual 
information handling strategies. It consists of five structures, 
which can be classified according to the recentness of their 
contents. The system status (the short-term one) stores the current 
values of the Hi-Fi functionalities (CD track, cassette, volume, and 
so on). The task model is a semantic frame that contains all the 
information needed to meet a specific dialogue goal. The applica
tion domain model is made up of that information specific to the 
application (in our case, the features of the Hi-Fi system, such as 
the number of CDs, or the number of tracks of a particular CD) 
The dialogue history (a mid-term memory) contains the concepts 
referred to by the user since the beginning of the current dialogue. 
An update and attenuation mechanism is applied in such a way 
that the relevance of this information is permanently re-estimated, 
coherently to the current state of the dialogue. This mechanism 
lowers the relevance of those concepts that are no longer referred 
to by the user, and strengthen those ones more frequently 



addressed. If the information stored becomes out of date (that is, if 
its relevance falls below a certain value), it is disregarded. The last 
structure of the CM, the user profile (the long-term one), stores 
information of each user since his or her first dialogue. 

The CM works as follows. When the DM has to recover a miss
ing concept, it first checks the system status. If it contains such a 
concept, the system recovers it and carries out the appropriate ac
tion, thus finishing the current dialogue. Otherwise, the DM checks 
the dialogue history. If the system is unable to retrieve the required 
concepts, the DM finally checks the user profile, that may suggest 
one or several concepts, depending on its knowledge of the prefer
ences and the privileges of the identified user. If the system is still 
unable to retrieve a concept using any of the above strategies, it 
will request the user to provide the missing concepts, initiating a 
new dialogue turn. 

Summarizing, the combined use of the different information re
sources allows the DM to improve its performance by conducting 
more efficient dialogues, reducing their number of turns, and try
ing to reuse any useful information the users may provide during 
both their ongoing and previous interactions. In the next section 
we will see how the system can effectively exploit this information 
to adapt the LMs at each dialogue turn, trying to better recognize 
what the user has said in the ongoing turn. 

3. Dynamic language model generation 

In this section we will present the motivation of our work, as 
well as the different approaches we have developed for the 
dynamic adaptation of language models based on dialogue-
dependent information. 

3.1. Motivation 

The generation and use of a dynamic LM requires the definition 
of the temporal aspects on which the LM should depend. These as
pects will be closely related to both the application domain in 
which they will be applied, and the specific characteristics of each 
user of the system. Therefore, the dynamic generation of LMs is re
lated to the interactions allowed between the user and the system, 
the phraseology allowed by the system, and the preferences of the 
users when interacting with the system. 

From the point of view of the characteristics of the system 
(which interactions and phraseology are allowed), the context 
dependent LM will be determined in turn by the recognition 
hypothesis, by the semantics of that hypothesis, and by the avail
able actions that could be triggered by these semantics. In other 
words, the information we will take into account in order to mod
ify dynamically the LM will consist of three knowledge layers: a 
lexical layer (the vocabulary of the system), a semantic layer (the 
dialogue concepts that we define) and an intention or action layer, 
represented by the dialogue goals. 

We will thus adapt the LM for the recognition of the current 
user turn by considering all the information provided by the user 
up to the preceding one, which has been stored in the Context 
Manager. 

By using these dialogue elements, our approach is able to cover 
the requirements that any information source must fulfill in order 
to become part of the knowledge of a Language Model (Ueberla, 
1994). Firstly, the recognition system keeps the vocabulary con
strained. Secondly, the dialogue elements can be used frequently, 
since the information they convey is stored and updated on a turn 
basis, giving us the chance to exploit that information to adapt the 
LMs at each dialogue turn. Additionally, the computational effort is 
kept under control, provided that our LM adaptation approach will 
imply a linear interpolation among a reduced set of models, as is 

shown later in this section. Moreover, the interpolation weights 
will be dependent on different metrics estimated by the system 
at dialogue time, thus avoiding additional requests, either to the 
user or to more complex sources of information (for instance, a 
Web request to an information retrieval system). Finally, our ap
proach relies on contextual information automatically collected 
by the system throughout the user-system interaction, thus avoid
ing additional system requests. 

To sum up, the use of dialogue elements as sources of informa
tion for adapting LMs is perfectly feasible. In the rest of this section 
we will detail the main issues we should tackle to exploit this 
information effectively. 

3.2. Considerations 

To estimate an LM we need enough data to model accurately 
the grammar allowed by our system. If we want to model sepa
rately the contribution of each source of information available 
(words, concepts and goals) we have to solve three problems: (a) 
how many content-specific components should we define to cover 
all the characteristics of our system; (b) how much data should we 
use to train each of these components; and (c) how should we se
lect the different components at each dialogue turn, in order to 
better adapt to the current context of the dialogue (the current 
speaker, his or her previous interactions, etc.). 

To answer the first question, we propose the management of an 
LM dependent on each of the aforementioned knowledge layers: a 
component dependent on dialogue concepts, and another one 
dependent on goals. More specifically, we will keep a background 
LM, trained by using a database with more sentences. We will 
combine this background model with the concept-dependent 
and/or the goal-dependent models, trained on more specific data, 
to estimate the dynamic LM at each dialogue turn. 

Either we estimate the context dependent LM using concepts, 
goals, or both, we will split the dialogue element space into differ
ent subsets. Each of these subsets will have an associated LM. This 
way, depending on the information provided by the user during his 
or her previous interactions, the system can select those LMs more 
closely related to that information, thus adapting to the current 
state of the dialogue. 

One problem that arises when studying the distribution of dia
logue elements in the training sentences is that users tend to refer 
to several concepts and/or goals in a single utterance. The main 
statistical parameters of the distribution of dialogue elements per 
utterance are shown in Table 1. 

As we could expect, the sentences in our training corpus refer to 
several dialogue elements. Keep in mind that our system allows 
multi-goal interactions, such as in the sentence Switch the Hi-Fi 
on, play CD 3, and raise the volume, in which the user makes refer
ence to three different goals. For this reason, we finally use each 
sentence to estimate the LMs associated to those dialogue ele
ments (either concepts or goals) that sentence makes reference 
to. This approach will also imply that the number of sentences to 
estimate the LM related to a given dialogue element is higher than 
the number of sentences that makes reference only to that dia
logue element. Therefore, the LMs will be estimated with a larger 
amount of data. 

Table 1 
Statistical parameters of dialogue element distribution in the training sentences. 

¡i a 

Number of concepts 4.30 2.02 
Number of goals 2.25 1.21 



Independently of the number of models to be considered, we 
will combine them by using a linear interpolation approach. First, 
we will generate offline the LMs associated to the different dia
logue elements. Then, at each dialogue, the system will estimate 
the interpolation weight for each model, as well as the contribu
tion of the background LM, to generate the model that the ASR 
module will use. In other words, the interpolation weights will de
pend on the current dialogue. Therefore, if we rewrite the equation 
for interpolating LMs (1) including the time dependency of the 
interpolation weights, we could estimate the probability of obtain
ing a word w given its history h at a time step t as 

p,(w\h) = (1 - AD(t))pB(w|h) + Mt)pD(w|h) (4) 

lD{t) being the dynamic interpolation weight between the back
ground LM pB and the context dependent component, pD, dynami
cally built on each dialogue turn using the LMs related to the 
dialogue elements addressed by the user. 

We present in the next sections our different approaches to ob
tain the context dependent LM pD, as well as the dialogue-depen
dent dynamic interpolation weight lD. 

3.3. LM based on isolated elements 

In our first approach (Lucas-Cuesta, Fernández, & Ferreiros, 
2009), we will build a language model for each dialogue element 
(either concepts, goals, or both). To do so, we first estimate each 
LM by using all the sentences in which a certain element appears, 
as was explained before. This estimation takes place off-line, before 
the user-system interaction. 

Once the models for the different dialogue elements have been 
estimated, we load them into the SDS. Then the dynamic LM esti
mation is carried out online at each dialogue turn. Once a sentence 
has been recognized, and the DM has performed both inference 
mechanisms (that is, once the DM has inferred the user goals using 
the available concepts), the content-dependent LMs are selected by 
analyzing the posterior probabilities of the corresponding ele
ments, which were estimated by the BN that carries out the dia
logue management (see Section 2). Instead of using the LMs 
related to all of the elements referred to by the user, the system 
will select those LM associated to elements that are more relevant 
for the current turn. That is, those whose posterior probabilities are 
above several relevance thresholds, namely <PC for concepts, and <PG 

for goals. These thresholds will be estimated using a validation 
database. 

It is important to emphasize that these thresholds do not have 
to be the same as those that the DM considers to decide whether a 
goal is active (during the forward inference) or whether a concept 
should be present (during the backward inference). During the 
estimation of these thresholds we found that <PC tends to take val
ues below the dialogue thresholds 0„ whereas the optimum value 
of <PG is more similar or slightly greater than the dialogue 
thresholds. 

Once the system has selected the LMs to generate the context 
dependent LM pD (i.e. those corresponding to elements whose pos
terior probabilities rise above the appropriate relevance threshold), 
it has to obtain the interpolation weights between all the models. 
These weights are estimated online as a function of the posterior 
probabilities of the different dialogue elements. 

The last step consists of interpolating the context dependent LM 
with the background one, ps, to generate the dynamic LM that the 
ASR will finally use. That is, we have to obtain the interpolation 
weight lD between both LMs. We obtain this weight at a validation 
stage. 

We have considered three different situations: using only 
intention dependent information (goals), using only semantic 
information (concepts) or merging both sources of information 

into a single context dependent LM. We detail each of these ap
proaches below. 

3.3.1. Concept-based LM interpolation 
First of all we have interpolated only concept-based models 

with the background LM. This way, we can consider up to 58 differ
ent LMs, one for each dialogue concept, to build the context depen
dent LM. We will denote this by making pD(w\h) =p¿yv\h). The 
relevance threshold <PC introduced before will be used to select on
line (at each dialogue turn) which models will be used. 

To obtain the model pc, the system will apply a linear interpo
lation between the LMs associated to those concepts whose poster
ior probability (according to the backward inference procedure) 
rises above the relevance threshold <PC. If we denote the set of 58 
dialogue concepts by C; by pc.(w|h), the LM related to concept c¡; 
by p6(Cj|eCj), the posterior probability of the concept c, given its 
evidence ec. according to the backward inference, and by 
C = {c¡ e C;p6(c,|eCj) > <PC}, the subset of concepts whose posterior 
probability is above the relevance threshold at a given dialogue 
turn, then the context dependent LM will be estimated as 

pc{w\h) = £we .pe ,(w|h) (5) 
Vc,eC 

The interpolation weights wc. associated to each LM considered, 
are also obtained automatically at each dialogue turn, as a function 
of the posterior probabilities obtained by the DM. This way, the 
higher probability the system obtains for a given concept, the high
er the interpolation weight of that model will be. To ensure that we 
are working with true probabilities we constrain the interpolation 
weights to sum 1. Therefore we include the summation of the pos
terior probabilities of all the concepts considered as a normaliza
tion constant. Eq. (5) then becomes 

Pc(w|h) = = — ^ j — ]T Mct^Pt.Mh)] (6) 

3.3.2. Goal-based LM interpolation 
In a similar way, we use only the information related to the dis

course or intention level. That is, we interpolate the LMs associated 
to the different dialogue goals. We consider up to 15 different goal-
based LMs. In this approach, the context dependent LM in Eq. (4) 
becomes pD(w\h) =pG(w|h), the G standing for the goal-dependent 
models. 

We have used the posterior probabilities of the dialogue goals, 
obtained during the forward inference, to decide which models 
should be interpolated, together with the interpolation weights be
tween these LMs. The decision was made by comparing the prob
abilities of each goal against the relevance threshold <PG, and 
considering only the LM related to those goals which posterior 
probability took a value above that threshold. 

Let Q be the set of 15 dialogue goals; pg.(yv\h) be the LM related 
to goal g¡; P/(gj|egj) be the posterior probability that the goal g¡ is 
present in the utterance under analysis, given its evidence egj, 
according to the forward inference. We now denote the subset of 
dialogue goals whose posterior probabilities are above <PG as 
Q = {g, e G;Pf(gi\egt) > <Pc}- Using these definitions, and taking also 
into account the constraint of the interpolation weights (to fall be
tween 0 and 1, and to sum 1), the context dependent LM based on 
goals is obtained as: 

Pc(w|h) = ^ * , £ [P/d.|eft)pfe(w|h)] (7) 

Again, by estimating the interpolation weights as a function of the 
posterior probabilities we give more relevance to the goals best 



scored by the Dialogue Manager, making the LM related to those 
goals to have more importance in the context dependent LM. 

3.3.3. Concept and goal combination 
Finally, we also considered combining the isolated language 

models related to both dialogue elements (concepts and goals). 
In this approach, the context dependent LM will also be an interpo
lation between a concept-specific LM, and a goal-dependent one, as 
depicted in Fig. 3. 

In order to include the dependency on both dialogue elements, 
we define an additional interpolation step, in which we obtain pD 

as a linear interpolation of a concept-dependent model, pc, and a 
goal-dependent one, pG, as previously defined. The estimation of 
the context dependent LM will thus become 

PD(W\h) : 
1 

wc +WG 

(wcpc(w|h)+wGpG(w|h)) (8) 

where p c and pG are the interpolated LMs presented in Eqs. (6) and 
(7) respectively, and wc, wG are the weights assigned to each of 
these models. 

Instead of estimating both interpolation weights by means of an 
estimation approach (such as Expectation Maximization) or during 
a validation step, we obtain them as a function of the number of 
dialogue elements considered, their posterior probabilities, and 
the relevance thresholds defined in the previous sections. We will 
explain the expression of both interpolation weights with the help 
of Fig. 4. For the sake of simplicity we will only consider dialogue 
concepts; the expressions for goals can be obtained similarly. 

Let us suppose a certain dialogue turn in which 5 concepts have 
been extracted, with posterior probabilities pb(c¡\ec¡), obtained by 
the backward inference. In the example, the relevance threshold 
<PC has been set to 0.5. Consequently, we can see that the LMs asso
ciated to the concepts c2 and c3 will not be considered for the adap
tation of the LM, since their posterior probabilities are not above 
<PC. Therefore, the set of concepts to be used is C = {ci,c4,c5}. Let 
us define that number of concepts (i.e. the cardinality of C) as 
JVC = \C\. 

Now let us define the Amount of Presence of a concept c, as the 
difference between its posterior probability, and the relevance 
threshold: 

AP{Ci)=pb{Ci\ee¡)-<Pc (9) 

The values of AP(c¡) will always fall between 0 (when the posterior 
probability of c, is equal to <PC), and (1 - <PC) (when pb(c,|ee.) = 1). 

Instead of considering the amount of presence of each concept 
(which is an absolute difference between their posterior probabil
ities and the threshold), we want to obtain the interpolation 
weights as a function of a relative comparison between the amount 
of presence of the different dialogue elements. Therefore we will 
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Fig. 4. Example of the obtention of the interpolation weight wc. 

consider the accumulated amount of presence for all the consid
ered concepts, defined as the sum of the individual amounts of 
presence: 

AP(Q = j2Am (10) 

The boundaries of the accumulated amount of presence are 0 (when 
the posterior probabilities of all the concepts in C are equal to <PC), 
and (1 - <l>c)Ñc (when all of these probabilities are equal to 1). 

Taking the previous fact into account, we could obtain the inter
polation weight wc as the quotient between the accumulated 
amount of presence for the concepts extracted in the current turn, 
and the maximum value allowed for that accumulated amount of 
presence: wc = AP{C)/ maxAP{C). 

If we substitute the expressions of the accumulated amount of 
presence, we obtain the expressions of the interpolation weight 
wc (and the corresponding one for dialogue goals wG, that can be 
easily derived): 

wc -
1 

(l-á>c)NCve(e¿ 

1 
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Fig. 3. Language model dependencies for building the dynamic LM. 

As we stated previously, <PC and <PG are the respective thresholds for 
considering the concept or goal LM to be interpolated; JVC, JVG are 
the number of concepts and goals (extracted or inferred from the in
put utterance) whose posterior probabilities are above the corre
sponding threshold (they are the cardinality of the subsets C and 
Q, defined previously), and p¡,(c¡|ec¡),pf(g¡|egj), are the posterior 
probabilities resulting from both inference processes of each con
cept c, and each goal g¡ of the utterance given their respective evi
dences, ec. and egi. 

Using these expressions, we give more relevance to those dia
logue elements with higher posterior probabilities, also assuring 
that wc and wG take always a value between 0 and 1, whatever 
the posterior probabilities are. 

3.4. LM based on the clustering of dialogue elements 

Despite its soundness and benefits, having a single LM for each 
dialogue element has two main weaknesses. On the one hand, the 
system has to consider a large number of LM into consideration at 
each interpolation step (that is, at each dialogue turn). On the other 
hand, the division of our database into different subsets may cause 
the training sentences to be sparsed over all the LMs, which 
implies that several of these models could be estimated with a 



drastically reduced number of sentences. This may lead to a poor 
estimation of the corresponding models. 

In an effort to solve both limitations, we propose to apply a clus
tering strategy over the dialogue elements (either concepts, goals 
or both), building several groups of elements. After grouping the 
elements, a model is estimated for each group. At each dialogue 
turn the system will decide which group-based LMs have to be 
used, and it will calculate the interpolation weights between them. 

The idea underlying the grouping of dialogue elements is to 
reach a tradeoff between having a higher number of more specific 
models (specificity), but trained with a more reduced number of 
sentences, and having LMs trained with more data (robustness), 
but also more generalistic. 

This clustering of elements can solve the weaknesses of the pre
vious approach. A group-based approach could reduce the number 
of models to be considered during the interpolation, and may lead 
to a more robust estimation of the LMs, provided that each model 
will be estimated using more data. The minimum number of sen
tences to train the LM related to a cluster will be, in the worst case, 
equal to the greatest number of sentences related to the elements 
that belong to that cluster. 

We have proposed and evaluated three different approaches to 
cluster dialogue elements. The simplest one consists of using ex
pert knowledge to generate the groups. It will be presented in Sec
tion 3.4.1. We have also applied two strategies of semantic 
clustering, detailed in Section 3.4.2. The strategy to estimate the 
interpolation weights will be explained in Section 3.4.4. 

3.4.1. Expert clustering 
Our first approach consisted of a classification of the dialogue 

elements in accordance with the application domain (in our case, 
the control of a Hi-Fi device using speech). This expert-based (or 
domain-based) clustering takes into account the available func
tionality of the Hi-Fi, namely, controlling the 3 CD player, the 2 cas
sette player (one of which includes the recording function), the 
radio tuner, and the amplifier (made up of the volume and the 
equalization functions). We also define another Rest group, in 
which we classify the remaining elements, which do not fall into 
function-specific groups, or elements that could be shared by 
two or more groups. 

We apply an additional restriction to build the groups. The clus
ters to be generated must form a partition of the dialogue element 
space (either of concepts or goals). That is, every dialogue element 
will be considered and classified in a cluster, and no dialogue ele
ments could be classified into more than one group. The number of 
dialogue elements in each of the expert groups is presented in 
Table 2. 

As a second evaluation of this clustering strategy, we did not 
consider the Rest group, since too many and rather heterogeneous 
dialogue elements were classified into it, so the use of that group 
may lead to an interpolation between two generalistic LMs (the 
background one and that related to the Rest cluster). 

We only considered this approach as an initial assessment of a 
group-dependent dynamic LM generation. Despite this method is 
easy to implement, it lacks a formal criterion to classify the differ
ent dialogue elements. It also makes the classification decision 

Table 2 
Number of dialogue elements of each expert cluster. 

Group No. of concepts No. of goals 

CD 10 3 
Cassette 6 2 
Radio 9 2 
Amplifier 9 2 
Rest 24 6 

dependent on the application domain. To overcome both limita
tions we propose the application of an automatic clustering based 
on semantic criteria to build the clusters of dialogue elements. 

3.4.2. Semi-automatic semantic hierarchical clustering 
To overcome the limitations of the previous clustering strategy, 

we propose a clustering algorithm based on the application of a 
tool that could emphasize the relationships between the dialogue 
elements. We will use an adaptation of the Latent Semantic Anal
ysis paradigm (LSA, Landauer et al., 1998) to carry out the cluster
ing of dialogue elements. 

In classic LSA, the first step consists of building a co-occurrence 
matrix W, its rows being a set of documents under analysis, and its 
columns, the words among which the semantic relationships are to 
be discovered (Bellegarda, 2000; Bellegarda et al., 1996). As we 
want the semantic patterns between dialogue elements to arise, 
we propose to build the matrix using the frequency that each con
cept and/or goal appears on each labelled sentence in our database. 
This way, the rows of our co-occurrence matrix will be the differ
ent sentences, whereas each column will reflect the occurrence of 
each dialogue element in that sentence. 

The next step of the algorithm consists of applying a Singular 
Value Decomposition (SVD) over this matrix. This transformation 
allows us to represent the co-occurrence matrix as the product of 
three matrices: W= USVT, where Li and Vare column-orthonormal 
matrices, and S is a diagonal matrix of singular values. The goal of 
SVD is to discover a projected space in which the semantic rela
tionships arise. This projected space usually keeps only the highest 
k singular values of S, that are sorted in a decreasing order, making 
the rest of values equal to 0. This way we could obtain an approx
imation of the co-occurrence matrix W using only these k singular 
values. 

This projection on a space of reduced dimension allows the rela
tionships between the dialogue elements to be better inferred, in 
terms of some distance metric. We propose to use the Pearson r 
correlation coefficient as this distance, since that correlation gives 
us a good hint of the relationships between the elements. That is, 
two or more elements highly correlated between themselves imply 
that they tend to appear together in a sentence, which indicates 
that they could potentially belong to the same cluster. 

This semi-automatic approach based on LSA, together with the 
Pearson correlation distance, tends to cluster those concepts or 
goals with a strong semantic relationship between them. For in
stance, a cluster could include the three dialogue concepts related 
to the volume: the volume parameter itself (VOLUME_PARAME-
TER), its value (VOLUME_VALUE), and the action to be carried 
out (VOLUME_ACTION) all together. 

The different values k for the dimension of the projected space 
(that is, the number of the highest eigenvalues chosen to 
re-estimate the co-occurrence matrix) can obtain different estima
tions for the correlation between dialogue elements. When this 
number is high, the estimation is more accurate, but the relation
ships among dialogue elements are more strict. In this sense, the 
result of the clustering is a large number of clusters, each of which 
has few dialogue elements. As k decreases, the estimation of the 
correlation becomes less precise, but more relationships among 
dialogue elements arise. Therefore, by varying the dimension of 
the projected space, we can establish a tree-like structure of 
clusters. We thus define a hierarchical structure by means of a 
bottom-up strategy, from the isolated dialogue elements, up to a 
top leaf, that could be made up of a single cluster with all the 
dialogue elements. An example of a hypothetical tree of clusters 
that could generate our LSA-based approach can be seen in Fig. 5. 

Our LSA-based approach yields a total number of clusters of 100 
(when using dialogue concepts), 25 (when considering only dia
logue goals), and 116 (when clustering both elements together). 



Fig. 5. Example of a cluster tree for dialogue concepts. 

However, we do not consider the cluster that contains all of the 
dialogue elements, because the LM related to that cluster is trained 
with all of the sentences of the database, giving a too general LM as 
a result, close to the background one. 

We could consider keeping the full hierarchy of clusters, allow
ing a given dialogue element (and, therefore, all the sentences that 
make reference to that element) the possibility of contributing to 
more than one LM. This approach has one main drawback. If we 
consider a full hierarchy, we may estimate more LMs than the 
number of dialogue elements. In our case, for instance, we should 
consider 25 LMs for the goal-based approach, whereas the number 
of dialogue goals is 15. Therefore, some criteria to select the most 
feasible clusters are needed. The underlying idea, as presented be
fore, is to reach a reasonable tradeoff between the specificity of the 
resulting LMs (the lower the number of elements that belong to 
each cluster, the more specific the associated LM will be), and their 
robustness (the greater the number of elements in each cluster, the 
greater the number of sentences to train the associated LM). 

In these conditions, a method to prune the cluster tree is 
needed. This pruning strategy is carried out by taking into account 
the data we use to estimate the LM associated to each cluster. Our 
pruning strategy discards the clusters made up of the dialogue ele
ments that appear in a number of sentences too reduced to train 
the related LM accurately. On a first approach to prune the cluster 
tree, we establish that the number of sentences that trains the 
model related to a cluster should be, at least, a given percentage 
of the number of sentences that train the model of the parent clus
ter in the hierarchy tree. We will determine the optimum percent
age during a cross-validation step. 

As the number of clusters after this first pruning was still rela
tively large, we decided to include another, more restrictive condi
tion: the system will not consider any cluster whose model should 
be trained with a number of sentences below a certain percentage 
of the total number of sentences in our database. As with the pre
vious pruning, the final percentage was estimated during a cross-
validation step. 

Finally, we decided to study two different strategies, related to 
the number of layers in the cluster hierarchy that we keep. On the 
first one, which we will refer to as single-level approach, we force 
each dialogue element to belong to one and only one cluster. How
ever, the reduction in the number of clusters with this strategy was 
hard. Consequently, the LMs related to the resulting clusters could 
be too generalistic. In an effort to keep the number of clusters con
strained, but also keeping the specificity of the LMs, we apply a less 
restrictive strategy, which we call the multi-level approach. In this 
approach, we keep several levels of the cluster tree, allowing a 
dialogue element to be part of several clusters. Fig. 6 shows an 
example of the cluster selection following both strategies, applied 
to the cluster tree presented in Fig. 5. 

As we said, the single-level approach implies that every dialogue 
element is taken into account, and each one of them will only be 
considered as belonging to a single cluster. By applying this restric
tion, we assure that the number of clusters is low, which implies 
that the LM associated to each cluster are trained with a larger 
number of sentences than in the isolated approach (3.3), thus mak
ing them more robust. In the example shown in Fig. 6(a), we can 
see that every concept belongs to one and only one cluster. Follow
ing this strategy, the system will consider 10 different clusters, 
when using only concepts, and 4 clusters for the goal-based 
clustering. 

In the multi-level approach, we allow the dialogue elements to 
belong to more than one cluster (and, therefore, to be considered 
to estimate more than one LM). As the example of Fig. 6(b) shows, 
the concept c4 belongs to three different clusters (a cluster made 
up only of c4 itself, a cluster with c4 and c5, and a third one which 
contains 4 concepts). 

In any case, we have also considered the full hierarchy of 
clusters for our initial experiments. Table 3 shows the number of 
clusters (and, therefore, the number of LMs estimated) for our 
semi-automatic semantic hierarchical clustering, either we use 
the single-level approach or the multi-level one. In the latter case, 
we also distinguish whether we apply a pruning strategy or not, 
and which pruning strategy (the initial or the more restrictive one). 

As we can see, the conditions of the cluster selection strategy 
hardly affect the number of LMs to be estimated when considering 
only dialogue goals (14 or 9 vs. 15, when estimating a model for 
each goal). However, we can achieve a significant reduction in 
the number of LMs in the case of considering only concepts (we 
estimate less than half the number of concepts, for the initial prun
ing, and only a quarter of the total number of models of the hierar
chy, for the restrictive one), and when estimating LMs related to 
clusters that group both dialogue elements together. In any case, 
the most important reduction in terms of LMs to be estimated is 
achieved when using the single-level approach to select clusters 
(we consider about one third of LMs for goal-based LM, and about 
one sixth of LMs for concept-based modelling). 

3.4.3. Perplexity-based automatic hierarchical clustering 
We have proposed two different algorithms based on the esti

mation of the perplexity of LMs. The first algorithm performs a 
method that exploits local information to decide which elements 
should be grouped (that is, the metric is obtained by using only 
those models directly related to the cluster that is potentially eligi
ble). The second one estimates a global measure obtained as a con
tribution of all the models that are present at each step of the 
algorithm, and chooses the model that optimizes that measure. 

Let us suppose a set of labelled sentences with which we will 
train two different language models, A and B, each of which is re
lated to a certain dialogue-specific content (for instance, a dialogue 
concept or a dialogue goal). We could assume that both LMs have a 
common subset of training sentences (i.e. they share some knowl
edge, either lexical, semantic, or intention). Let us further assume 
that we have obtained the perplexities of both models against an 
additional database. 

As we know, the perplexity is related to the average number of 
words between which a model has to decide the most suitable one. 
We can estimate the perplexity of a model as ppA = 2H{-A\ being H 
(A) the entropy of that model. In other words, the entropy of the 
LM A can be obtained as H(A) = log2ppA. 

We know from the field of Information Theory that the mutual 
information shared between two random variables can be expressed 
as / (A;B) = H(A) + H(B) - H{Afi). Instead of considering the Mutual 
Information between two LMs, we use the Normalized Mutual 
Information (NMI), that can be expressed as NMl{A;B) = B | f f . 
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Fig. 6. Clusters chosen with the two selection strategies. 

Table 3 
Number of clusters considered for each LSA-based grouping strategy. 

Clustered elements 

Concepts 
Goals 
Concepts and goals 

Single-level 

10 
4 

Multi-level 

No pruning 

100 
25 

116 

Initial pruning 

25 
14 
38 

Restrictive pruning 

16 
9 

21 

According to this criterion, we will cluster the elements that maxi
mize the NMI of their related LMs. 

This criterion tends to group elements that share common 
information (i.e. dialogue elements, or sentences that make refer
ence to those elements). It also allows us to reach a tradeoff be
tween low values of perplexity (that tends to lead to better LMs) 
and the complexity of the models (in terms of information used 
to estimate them). We use this criterion since we have several ele
ments for which the number of training sentences is so reduced 
that their LMs give reduced perplexities, but only due to the lack 
of training data. 

We could consider the NMI criterion as a local one, since the 
decision of which is the optimum group at each step of the algo
rithm is taken by considering only the mutual information be
tween those elements that are to be merged, and the resulting 
cluster. We have also implemented a clustering strategy based 
on a global criterion, that is, in which the decision on which ele
ments to cluster depends on a metric obtained from all the clusters 
considered at each step of the algorithm. This criterion is based on 
a linear interpolation between the LMs related to the clusters that 
are considered at each step of the algorithm. Then the system esti
mates the perplexity of the resulting LM. The cluster selected is the 
one that minimizes the perplexity of the global model. 

We assign the same interpolation weight to each LM. That is, if 
at a certain step of the algorithm there are Ns clusters, the LM re
lated to each model will have an interpolation weight of 1/NS. 

The global perplexity minimization criterion is similar to the 
NMI-based one in the sense that both criteria allows us to obtain 
groups of elements that share common information. With the 
NMI metric the systems groups those elements that share a high 
amount of common sentences (i.e. strongly related from the point 
of view of vocabulary and semantics). In the global perplexity one, 
the result is similar, but from the model robustness' perspective. 
That is, the elements that are clustered together are those ones that 
lead to a better estimated LM. The main difference between both 
criteria is related to the computing time. The global perplexity 
minimization one has a higher computational complexity since it 
has to estimate a higher number of models at each iteration not 
only the LM related to the cluster that is included to the hierarchy, 
but also the specific models and the global one for each potential 
cluster. 

Both the NMI and the global perplexity criteria have a main 
drawback. The cluster hierarchies that are obtained are unbal
anced, in the sense that after the first grouping, a cluster with a 

high number of sentences is obtained. The rest of elements tend 
to join that cluster instead of building more specific groups. In or
der to reach a tradeoff between the perplexity of each LM and their 
complexity (in terms of the number of sentences that will train the 
corresponding LM, and the number of elements into each cluster), 
we propose to obtain a complexity correction function that will 
take a positive value. 

We will make the correction function dependent on the main 
features of each cluster, namely the number of dialogue elements 
that form each cluster, and the number of sentences with which 
the LM associated to the cluster will be estimated. 

The number of elements joined in a given cluster S„ which we 
denote as JVSj, will model the complexity of the clusters. It is used 
to allow those clusters with few elements to be joined among 
them, avoiding thus the tendency to join a cluster with more ele
ments, which in turn leads to less specific LMs, especially in the 
initial steps of the clustering algorithm. 

The correction criterion will also take into account the number 
of sentences nA and nB that have been used to train the LMs related 
to the clusters to be joined, as well as the number of sentences of 
the resulting cluster, nAB. We use the number of sentences as a 
value that can measure both the complexity of the model and also 
its robustness (the larger the number of sentences to train a LM, 
the better it will be estimated). 

The correction function will consider the number of sentences 
in the sense of favoring the union of those elements that share a 
large number of common sentences and a reduced number of dif
ferent sentences. 

Taking the previous conditions into account, the expression of 
the clustering correction function CF for joining two clusters A 
and B into a single cluster AB is 

CF = Ns¡ In 
V{nAB-nB)(nAB-nA) 

nA + nB- nM 
- k-o (12) 

where /Co is a constant that assures that the logarithm always takes 
a positive value. This constant is needed since the first factor of the 
logarithm can take a value below 1. 

We finally prune the resulting hierarchy following the same 
stragegy mentioned for the NMI-based approach. The number of 
LMs to be considered are 10 (when using goal-based information), 
23 (when considering concepts), and 25 (when grouping both dia
logue elements). 
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3.4.4. Obtaining the interpolation weights of each cluster 
Once the system has determined which LMs to interpolate at 

each dialogue turn, it has to estimate the relevance of each model 
in the context dependent model, pD, to be interpolated with a back
ground LM, pB. 

In Section 3.3 we proposed that the system could obtain feasible 
interpolation weights using its own estimations of the dialogue 
management procedure (in our case, the posterior probabilities 
for dialogue elements, given by the BNs). When considering the 
interpolation of LMs related to clusters of dialogue elements, we 
should include an additional restriction: the number of models to 
interpolate does not have to be equal to the number of dialogue 
elements, since each of them could be part of different clusters 
(when considering several layers of the hierarchy of clusters), 
and several elements could belong to the same cluster, thus gener
ating a single LM for all of them. 

To include this constraint, we slightly modify the criterion for 
the estimation of the interpolation weights. The system still uses 
the posterior probabilities of the dialogue elements, but it will also 
take into account the number of elements addressed by the user 
that belong to the different clusters. This way, the relevance of 
the LM associated to a given cluster will depend not only on the 
reliability of the elements of that cluster, but also on the represen-
tativity of each cluster in comparison with the rest. That is, the sys
tem should modify the relevance of a cluster depending on the 
number of positively inferred elements belonging to that cluster. 

Previously we have proposed several strategies to obtain the 
interpolation weights (Lucas-Cuesta, Fernández, López, Ferreiros, 
& San-Segundo, 2010). We have decided to use the summation of 
the posterior probabilities of the elements belonging to each clus
ter. For the sake of simplicity, we will present the expressions of 
the interpolation weights of the approach including both concepts 
and goals. The corresponding expressions for concept-based or 
goal-based clustering could be easily derived. 

Let us suppose that, at a certain point in the interaction, the sys
tem has already obtained the posterior probabilities of the differ
ent dialogue elements (p6(c,|eCj) for concept c¡, and p¡{g¡\eg¡) for 
goal g¡, given their respective evidences, eCj, and egj). 

We will only consider those dialogue elements whose posterior 
probabilities rise above the corresponding thresholds <PC and <PG. 
We will denote by NCj and NGj the number of concepts and goals 
of cluster S, with posterior probabilities above the relevance 
thresholds. Let us also suppose that those dialogue elements be
long to Ns different clusters. 

If we want to give the LM related to each cluster a relevance 
dependent on both the number of elements belonging to that clus
ter, and their posterior probabilities, we could consider to sum the 
contributions of the elements of the cluster (i.e. their posterior 
probabilities). Therefore, the interpolation weight wSj of the cluster 
S, will be equal to 

w s < = ! 

'Nc, N c , 

Yj)b{Ci\ec¡)+Yj)¡{gj\eg¡) (13) 

To assure that the sum of the interpolation weights is equal to one, 
we have to include a normalization constant k, which will be equal 
to the summation of the contribution of all the considered clusters: 

* = E 
' N C | N c , 

Yj)b{Cj\ec¡)+ Yj>SiSj\eg¡) 

Using the summation of posterior probabilities allows us to achieve 
a tradeoff between the contribution of the number of elements 
belonging to each cluster, and their posterior probabilities, giving 
more relevance to those clusters to which more dialogue elements 

belong to, or to those ones with the dialogue elements with greater 
posterior probabilities. 

4. Evaluation 

In this section we present the evaluation that we have carried 
out when using the different approaches to include dialogue-based 
information for modifying the LMs dynamically. We have evalu
ated several parameters in order to assess the performance of the 
system with the different grammar generation strategies. First of 
all, we have measured the improvement in the recognition perfor
mance, in terms of Word Accuracy. Additionally, we will show how 
our approaches improve the extraction of the semantics from the 
input utterance (in terms of Concept Accuracy), as well as the 
inference of the goals of the user (we assess this performance by 
estimating the Goal Accuracy). 

We have used three databases to assess the performance of our 
dynamic LM adaptation approaches. The three databases have 
been labelled at the three knowledge layers: lexical (words), 
semantic (concepts), and intention (goals). 

The first text database comprises 747 sentences. We use them 
to train the background component of the LM. Keeping in mind 
that reduced amount of data, our baseline LM is a bigram that 
has been built using a smoothing of the n-gram counts, plus a 
linear interpolation between the bigram and the unigram compo
nents (Manning & Schütze, 2002). All of the LMs that we estimate 
and interpolate at the adaptation step follow the same modelling 
approach. 

We have another text database, comprising 516 fully labelled 
sentences. We use these sentences to train the LMs related to each 
of our approaches, the isolated and the clustered strategies. 

The recorded database we have used to evaluate our strategies 
is called HIFI-MM1. It consists of 1300 sentences spoken by 13 dif
ferent speakers (7 male, 6 female) addressing the Hi-Fi equipment. 
Each of them spoke 100 different sentences. We use this database 
to estimate the improvement in the recognition rates, as well as 
the understanding and dialogue metrics, when adapting the LMs 
dynamically. 

The evaluation that we have carried out consists of using the 
information conveyed by an utterance (the extracted dialogue con
cepts and the inferred dialogue goals) to modify the LM and recog
nize the same sentence again. This way we can estimate an upper 
limit to the performance of the LM-adaptive system. 

To increase the reliability of the results, we have performed a k-
fold approach. We have randomly divided the database into 10 
folds, each of them comprising 130 sentences. We use nine of the 
folds to adjust the different degrees of freedom of the system (rel
evance thresholds, and the interpolation weights 1D), whereas the 
tenth fold is kept for the evaluation itself, using the values of the 
parameters obtained during the validation step. 

The initial performance of our baseline system (i.e. without the 
adaptation of LMs) was of 94.67% for Word Accuracy (WAcc), 
86.63% for Concept Accuracy (CAcc), and 73.80% for Goal Accuracy 
(GAcc). All of these measures were obtained using the HIFI-MM1 
database and the fe-fold approach. We will use them to discuss 
the improvements in the different approaches that we have 
applied. 

(14) 4.1. Using an LM for each dialogue element 

As we presented in the previous Section, our first strategy con
sisted of estimating an LM for each dialogue element (either con
cepts, goals or both). During a validation step, we estimated the 
values of the degrees of freedom of our strategy (the relevance 
threshold for concepts <PC, for goals <PG, or both, as well as the 



interpolation weight XD between the background and the context 
dependent LMs). During the test step we kept these values and 
estimated the performance of the system. The values of our de
grees of freedom, as well as the results of this evaluation in terms 
of the three performance figures aforementioned, can be seen in 
Table 4. 

All the relevance thresholds take values of about 0.5. This 
means that even those dialogue elements that could not be consid
ered as active or needed by the DM (i.e. those ones whose posterior 
probability falls below the decision threshold 0¡ of the DM, see Sec
tion 2) conveys enough information to help building reliable LMs. 

The interpolation weight lD takes values of between 0.1 and 
0.13 for all the approaches. That is, it is enough to slightly modify 
the background LM (keeping at least 87% of its relevance in the dy
namic model) to achieve better results in the three modules 
evaluated. 

The Word Accuracy yields a maximum of 14.82% of relative er
ror reduction over the baseline, when considering the combination 
of concepts and goals to adapt the LMs. This fact could be explained 
by taking into account the characteristics of our experimental set
up. We are using the information conveyed in a single utterance (in 
terms of dialogue concepts and/or goals) to estimate a model that 
will be used to recognize the same utterance again. Therefore, the 
dynamic component of this adapted LM will only depend on those 
dialogue elements that appear in the same sentence, without any 
other concept or goal, that may influence the models when consid
ering the different grouping strategies. That is, the isolated strategy 
is the one that achieves the highest specificity (in terms that each 
LM is related to a single piece of information, as opposed to the 
cluster-dependent LMs). 

As regards the understanding and dialogue management met
rics, our approach outperforms the baseline setup, with a maxi
mum relative improvement of 5.46% (for Concept Accuracy) 
when using goal-dependent information, and 2.14% (for Goal 
Accuracy) using both dialogue elements. That is, the dynamic 
adaptation of the LMs of the speech recognizer also helps to bet
ter extract the semantic information (the task of the understand
ing module), which also gives rise to a better result when 
inferring the actions that the user wants to carry out (the task 
of the DM). 

We can also see that considering concepts and goals together 
tends to yield better results than using each type of dialogue ele
ment separately. However, we could expect that better results 
were reached when considering only the goal-based adaptation, gi
ven the number of dialogue elements (58 concepts and 15 goals), 
and the number of labelled sentences (516) that we use to estimate 
the models related to each dialogue element. As the number of 
concepts is greater than the number of goals, the LMs associated 
to the concepts are usually trained with fewer sentences than 
the goal-based ones. In fact, the average number of sentences for 
each concept is 40.38, whereas the average number of sentences 
that make reference to each goal is 77.47. That is, the concept-
based models are more poorly estimated than the goal-dependent 
LMs, which implies a slightly worse performance when using the 

Table 4 
Parameters and performance of the dynamic LM estimation (one LM for each dialogue 
element). 

Strategy 

Baseline 
Concept-based 
Goal-based 
Concept and goal merging 

i»c 

0.53 

-
0.57 

i»c 

-
0.43 
0.46 

XD 

0.13 
0.10 
0.10 

WAcc 

94.67 
95.22 
95.27 
95.46 

CAcc 

86.63 
87.32 
87.36 
87.29 

GAcc 

73.80 
74.15 
74.19 
74.36 

concept-based approach. In any case, the differences in perfor
mance are not statistically significant. 

4.2. Using expert clustering 

Our next experiment evaluated the performance of the dialogue 
system when using a grouping criterion dependent on the final 
application (see Section 3.4.1). We have assessed the same metrics 
as when considering a single LM for each dialogue element. Table 5 
shows the values of the relevance thresholds <PC and <PG, the inter
polation weight XD, and the results of the evaluation, for the two 
grouping approaches that we propose. 

When using expert clustering, the interpolation weight lD takes 
values slightly higher than in when using isolated LMs. Its value 
rises up to about 0.20, which means that even by keeping 80% of 
the background LM, it is enough to yield a slight improvement in 
the performance of the dialogue system. As regards the relevance 
thresholds, the most remarkable difference is seen when not con
sidering the Rest cluster. In this case, the system needs to keep 
more dialogue concepts than those considered as needed by the 
DM (that is, those ones whose posterior probabilities are above 
the decision threshold 0„ see Section 2). This behaviour could be 
explained by looking at the distribution of sentences in each LM 
considered, together with the number of concepts (58) and goals 
(15) defined in our domain. As we established in the previous 
experiment, the concept-based LMs are trained with a reduced 
number of sentences, thus resulting in more poorly estimated 
LMs when compared to the goal-based ones. In this situation, the 
system tends to consider even the models related to those concepts 
with reduced posterior probabilities (according to the backward 
inference of the DM) in order to obtain a dynamic LM as robust 
as possible. 

Despite the slight improvement in the three metrics we have 
considered (which yields their maximum values for the full group
ing taking into account goal-based information only; the relative 
improvement is 8.63% for Word Accuracy, 5.01% for Concept Accu
racy and 2.02% for Goal Accuracy), none of them outperforms the 
results of the previous experiment. This behaviour could be ex
plained by taking into account that, when grouping several ele
ments into the same cluster, it is possible that a single utterance 
contains elements that belong to different clusters. For instance, 
the sentence Play track 5 of CD 2 and raise the volume makes refer
ence to two different expert clusters: the CD one and the VOLUME 
one. In more complex utterances, the number of clusters to be con
sidered may be even higher (remember the average number of dia
logue concepts and goals referred to in each utterance, see Section 
3.2). Under these circumstances, the system could consider clus
ters which contains several dialogue elements that were not re
ferred in the utterance. Therefore, the Dynamic Grammar 
Estimator may interpolate the background LM with a too general-
istic context-dependent LM, that is, the result of the adaptation 
could be an LM with insufficient discriminative strength. 

4.3. Using hierarchical single-level ISA clustering 

We then assessed the performance of the dynamic estimation of 
the LMs considering the first strategy of LSA-based clustering (that 
is, selecting a single level in the cluster tree, see Section 3.4.2). We 
estimate the interpolation weights between the different LMs to be 
obtained as the sum of the posterior probabilities of the dialogue 
elements that belong to each cluster (see Section 3.4.4). The values 
of the relevance thresholds and XD, as well as our performance fig
ures, can be seen in Table 6. 

It is interesting to note that, when considering the LSA-based 
clustering, the system gives more relevance to the context-dependent 
LM when using intention-based information (i.e. dialogue 



Table 5 
Parameters and performance of the dynamic LM estimation (expert grouping of dialogue elements). 

Grouping 

Strategy 

Baseline 
Concept-based 
Goal-based 

All groups 

i>c i>c 

0.44 
0.44 

Áp 

0.20 
0.21 

WAcc 

94.67 
94.98 
95.13 

CAcc 

86.63 
87.20 
87.30 

GAcc 

73.80 
74.22 
74.33 

Without Rest group 

i>c i>c 

0.33 
0.52 

Áp 

0.20 
0.18 

WAcc 

94.67 
95.07 
94.98 

CAcc 

86.63 
87.21 
87.00 

GAcc 

73.80 
74.28 
74.12 

Table 6 
Parameters and performance of the dynamic LM estimation (LSA-based single-level 
clustering of dialogue elements). 

Strategy 

Baseline 
Concept-based 
Goal-based 

i>c 

0.47 

-

i>c 

-
0.46 

ÁD 

0.15 
0.24 

WAcc 

94.67 
95.10 
95.30 

CAcc 

86.63 
87.13 
87.41 

GAcc 

73.80 
74.08 
74.47 

goals). That is, the interpolation weight lD is higher within this 
strategy. The main reason for this behaviour lies in both the more 
reduced number of dialogue goals (and thus the more robust the 
goal-dependent LMs are), and in the character of the dialogue 
goals. Indeed, as our application only considers 15 dialogue goals, 
but 58 concepts, each goal can be associated to several concepts 
(for instance, the goal MODIFY_VOLUME with the concepts 
VOLUME_PARAMETER, VOLUME_VALUE and VOLUME_ACTION). In 
other words, the inference procedure could be seen as an integration 
of information, from a sparse source (the concepts) to a more 
concentrated one (the goals). Then, the more integrated the informa
tion is, the more reliable the context dependent LM will be, and thus 
the more relevance the system will give to that component (and the 
lower the value of lD). 

Despite the Word Accuracy of this approach is above that corre
sponding to the expert partitioning approach, it cannot outperform 
the isolated approach. The best result (11.82% of relative error 
reduction) is achieved when using goal-based information (which 
implies considering up to 4 different clusters of goals). The Concept 
Accuracy achieves similar results to the isolated approach: the rel
ative error reduction takes a maximum value of 5.83% when using 
goal-based information. More interestingly, the Goal Accuracy 
takes its maximum value over all the dynamic LM estimation ap
proaches, with a relative error reduction of 2.56% when consider
ing also goal-based clustering. 

4.4. Using hierarchical multi-level LSA clustering 

We finally measured the performance when keeping several 
levels of the cluster hierarchies of dialogue elements (either 
concepts, goals, or both). As we said before, we estimate the 
interpolation weights between the cluster-dependent LMs as the 

summation of the posterior probabilities of the elements belonging 
to each cluster. 

Table 7 shows the values of the relevance thresholds for con
cepts <PC and goals <PG, the interpolation weight lD between the 
background LM and the context-dependent one, and the results 
of the evaluation carried out, when considering each of the pro
posed strategies (keeping the full tree of clusters, that is, from 
the isolated elements up to a model that contains all the dialogue 
elements, and the two pruning strategies proposed in Section 3.4). 

As in the previous experiments, the values of both relevance 
thresholds fall within the intermediate region of confidence, which 
means that even those concepts and goals with posterior probabil
ities that, according to the inference procedure, should not be con
sidered as needed or active (see Section 2) may help to better 
recognize the current sentence. In a similar way, the interpolation 
weights lD for all the pruning strategies take values between of 0.1 
and 0.2: the dynamic modification of the LMs can improve the per
formance of the speech recognizer even considering only a 10% of 
the context-dependent LM. 

The performance of the multi-level approach is similar to that 
obtained with the single-level clustering (Section 4.3). This makes 
sense, provided that the generation of clusters remains the same, 
and the only difference lies in which clusters were selected to gen
erate an associated LM. In any case, we considered the develop
ment of the multi-level strategy as a way of establishing a 
tradeoff between the robustness of the models, and the number 
of LMs (and thus their specificity). 

The maximum values of each metric are reached when using 
goal-based information, and applying one of the pruning strategies 
(the initial one for Word Accuracy, with a relative error reduction 
of 13.51%; the restrictive one for Concept and Goal Accuracy, with 
error reductions of 5.31% and 2.02%, respectively). This is also con
sistent with the proposed approach, and the databases we have 
used. When using the full hierarchy, we consider more clusters 
than dialogue elements (see Section 3.4). This can give rise to an 
overtraining of the context-dependent LM, provided that the sys
tem makes use of the same sentences to train different LMs. This 
situation is partially avoided with the initial pruning strategy. 
However, a too restrictive pruning may lead to the opposite situa
tion: the number of clusters becomes too reduced, so the context-
dependent LM that is generated at each dialogue turn tends to be 
too general, thus decreasing the performance. 

Table 7 
Parameters and performance of the dynamic LM estimation (LSA-based multi-level clustering of dialogue elements). 

Hierarchy 

Baseline 
Full 

Initial pruning 

Restrictive pruning 

Strategy 

Concept-based 
Goal-based 
Concept-based 
Goal-based 
Concept & goal 
Concept-based 
Goal-based 
Concept & goal 

merging 

merging 

i>c 

0.52 

-
0.49 

-
0.54 
0.48 

-
0.53 

i>c 

-
0.51 

-
0.46 
0.61 

-
0.47 
0.53 

ÁD 

0.10 
0.10 
0.10 
0.10 
0.19 
0.14 
0.19 
0.11 

WAcc 

94.67 
95.28 
95.30 
95.21 
95.39 
95.21 
95.07 
95.27 
95.13 

CAcc 

86.63 
87.32 
87.23 
87.27 
87.25 
87.34 
87.05 
87.34 
87.27 

GAcc 

73.80 
74.26 
74.15 
74.22 
74.12 
74.29 
74.22 
74.33 
74.26 



4.5. Using automatic perplexity-based hierarchical clustering Table 9 
Performance of the Minimum Perplexity-based language modelling. 

In our first experiment we consider the clustering strategy 
based on maximum normalized mutual information (NMI). Table 8 
shows the results of the evaluation in terms of WER, CER and GER, 
when considering only concept-dependent information, only goal-
dependent information, or when merging both dialogue elements 
for the clustering. We also include the performance of the baseline 
system. 

The interpolation weight lD takes values of about 0.15. That is, it 
is enough to slightly modify the LM (keeping a 85% of the back
ground LM) to achieve improvements in the three metrics consid
ered. The improvements reach a maximum relative value (in terms 
of error reduction) of 11.80% WER and 5.34% CER (both when con
sidering the clustering of both dialogue elements together). On the 
other hand, the maximum relative error reduction in Goal Error 
Rate (2.56%) is reached when considering only dialogue goals. 
The main reason for this behaviour is that using only goal-based 
information (that is, the more integrated source of information 
that the system considers) implies a reduction of the insertions 
of goals into the hypothesis, which are the most important source 
of errors. In any case, the size of our database makes that the 
improvements in GER are not statistically significant. 

We next evaluate the performance of the adapted system when 
using the Minimum Global Perplexity criterion. Table 9 shows the 
results of the evaluation of this strategy. 

The interpolation weight lD between the background LM and 
the context-dependent one (i.e. the generated using the LMs asso
ciated to the clusters considered) takes a value of about 0.21. Using 
this clustering strategy, the relevance of the context-dependent 
component is higher than with the NMI-based clustering approach. 
This fact implies that the LMs obtained with the Maximum Global 
Perplexity criterion tend to be better estimated. This leads to a 
slightly better performance of the system (with maximum relative 
error reduction of 15.17% for Word Error Rate, and 6.28% for Con
cept Error Rate, both when considering concept-based clustering). 
The improvement of the WER is marginally significant with confi
dence intervals of 90%. 

Merging both dialogue elements into the clustering cannot out
perform the strategies of using the elements separately. This could 
happen due to the fact that the goals are inferred using the con
cepts. Therefore, using both sources of information may cause 
the estimation of LMs with redundant information. This redun
dancy could cause the reduction of the performance observed. In 
any case, the differences between the performance of the cluster
ing strategies are not significant. 

4.6. Results with HIFI-PM2 

Clustering approach WER (%) CER (%) GER (%) 

Baseline 
Concepts 
Goals 
Both 

5.33 
4.52 
4.60 
4.58 

13.37 
12.54 
12.59 
12.66 

26.20 
25.60 
25.64 
25.64 

Table 10 
Performance of the recognition system for HIFI-PM2 database. 

System configuration <PC 

Baseline 
Isolated model, goals 0.52 
Perplexity-based clustering, goals 0.48 

XD 

0 
0.22 
0.19 

Word Accuracy (%) 

72.20 
74.50 
73.99 

recognition performance of 72.20 ±0.51% with the baseline setup 
of the system. 

We have assessed the recognition performance only with these 
approaches that yielded the best results when using HIFI-MM1 
database. That is, the adaptation based on using a specific LM for 
each dialogue goal (i.e. 15 content-specific models), and when con
sidering the automatic clustering strategy of dialogue goals based 
on the minimization of a global perplexity (keeping thus 10 LMs). 

The degrees of freedom of the experiments were the relevance 
threshold for dialogue goals <PG and the interpolation weight lD be
tween the static, background model pB and the context dependent 
model pD. The results of this offline evaluation are presented in 
Table 10. 

The value of <PG shows that it is enough to use only those dia
logue goals with middle and high posterior probabilities to the 
estimation. In other words, the system does not need to be too 
strict in selecting the goals to be interpolated (which happens with 
higher values of the threshold). It also does not have to be too per
missive, allowing goals with reduced posterior probability (and 
thus the goals that are not inferred by the Bayesian networks from 
the user's utterance) to be included in the dynamic LM. 

On the other hand, the contribution of the context-dependent 
model pD is reduced enough so as to allow the speech recognizer 
to still take into account expressions not directly related to the cur
rent one. That is, it is enough to keep about a 75% of the contribu
tion of the background, static LM pB to obtain a dynamically 
adapted LM that can better recognize a given sentence. 

However, the most important achievement is that the system it
self is able to obtain an accurate estimation of the interpolation 
weights between the different content-specific components of 
the context-dependent LM. In other words, the system can effec
tively merge the LMs related to the pieces of information that it 
considers without training any interpolation weight. 

The results obtained with the previous database are promising 
(since the recognition performance tends to improve), but none 
of the results is statistically significant with confidence intervals 
of 95%. This behaviour moved us to assess the performance of 
our dynamic LM adaptation approaches with another database, 
more realistic from a dialogue point of view. This database, re
ferred to as HIFI-PM2, comprises dialogues of 40 speakers, 20 male 
and 20 female, that developed different interaction scenarios with 
our system. The database comprises 9162 sentences that yielded a 

Table S 
Performance of the NMI-based language modelling. 

Clustering approach WER (%) CER (%) GER (%) 

Baseline 
Concepts 
Goals 
Both 

5.33 
4.82 
4.84 
4.70 

13.37 
12.73 
12.68 
12.66 

26.20 
25.67 
25.53 
25.71 

• Baseline • Isolated • Clustering 

Fig. 7. Speech recognition performance for HIFI-PM2 database. 



Finally, we can see that all the strategies proposed clearly out
perform the baseline (with relative reduction of Word Error Rate 
of 8.27% and 6.44% for each approach). This improvement is statis
tically significant when comparing any of the strategies against the 
baseline. However, the differences between the different strategies 
for dynamically estimating the LM are not significant. We present 
the results of this evaluation, together with the corresponding con
fidence intervals, in Fig. 7. 

5. Conclusions 

We have presented an approach to make use of semantic and 
intention-dependent information as knowledge sources to dynam
ically modify the LMs that a speech recognizer (being part of a spo
ken dialogue system) makes use of. The adaptation of the LM is 
performed by means of a linear interpolation between a back
ground LM and one or several models related to the different dia
logue elements, either semantic (concepts) or intention-dependent 
(goals). 

Instead of training the most accurate interpolation weights, one 
of our main claims is that the system can estimate accurate inter
polation weights dynamically using the different confidence scores 
and posterior probabilities obtained by the understanding module 
and the Dialogue Manager. This way, the more confident the sys
tem is when inferring a given concept or goal, the more relevant 
the LM associated to that dialogue element will be in the dynamic 
LM estimated at that turn. 

As regards how to build the LMs that are used at the interpola
tion step, we propose two ways to proceed. In the first one, each 
LM is associated to a single dialogue element. Once the system 
has inferred the elements that the speaker has addressed in the 
current utterance, the corresponding LMs are interpolated. The 
second approach follows a clustering strategy before training 
the LMs, in such a way that different dialogue elements may be 
part of the same cluster, and thus be associated to the same LM. 
We have proposed an expert strategy for grouping dialogue ele
ments together, as well as a hierarchical semi-automatic semantic 
clustering approach, based on an adaptation of the Latent Semantic 
Analysis (LSA) framework. 

The results of our evaluation show how the system can estimate 
sensible dynamic models at each dialogue turn, and more impor
tantly, how the improvement of these LMs (used by the speech rec
ognizer) can increase the performance of other modules of the 
system (the speech understanding and the dialogue manager). 

We have obtained significant improvements when considering 
a database of actual dialogues, thus demonstrating that our dy
namic approach to estimate LMs is able to obtain reliable LMs at 
dialogue time, without any offline estimation of the interpolation 
weights. That is, our system can obtain accurate enough LMs by 
taking under consideration the elements of information inferred 
by the dialogue manager (i.e. the dialogue goals that the user 
wants to carry out). 

We have seen how our clustering approaches tend to outper
form the results of Goal Accuracy when compared to the isolated 
element-based LM. A remarkable conclusion is that the highest 
improvements in terms of Goal Accuracy are not always reached 
with the configuration that reaches the best recognition perfor
mance (see, for instance, the two clustering strategies), though 
the differences are not significant. This behaviour could be 
explained by the nature of the errors in the different subsystems. 
We have studied the number of insertions, substitutions, and dele
tions for the different approaches, and we have checked the vary
ing performance aforementioned. For instance, when considering 
the single-level semantic clustering, the number of insertions of 
the optimum strategy from the dialogue point of view (using 

goal-based information) is 24.14% greater than the number of 
insertions of the recognition-optimum approach. In the case of 
the multi-level clustering, the relative difference between number 
of insertions for the Word Accuracy optimum and the Goal Accu
racy optimum, reaches 12.5%. When the number of insertions in 
the recognition hypothesis becomes higher, the word error rate 
increases (i.e. the performance worsens). However, the under
standing module and the DM can take advantage of this overinfor-
mation to extract the proper dialogue concepts and to infer the 
goals addressed by the user. 

6. Future work 

We will now present some of the current research guidelines 
that we are currently developing with regard to the dynamic adap
tation of LMs. 

We are aware that the databases that we have used are some
what limited. We are now acquiring and preparing new data to 
train the LMs related to the different dialogue elements. This 
way we have to label this data at the three levels of information 
(lexical, semantic, and user intention). 

The semantic clustering we have proposed is based on the dis
tance between clusters dependent on the Pearson correlation coef
ficient between dialogue elements. We are now using other 
distances, more closely related to the Information Retrieval field, 
such as a cosine distance among the feature vectors of the LSA 
matrix. 

We are also defining a strategy to adjust dynamically the inter
polation weight lD between the background LM and the context 
dependent one, instead of obtaining it at a validation stage. We 
are defining a variation range in the environment of an initial inter
polation value, giving more relevance to the context dependent LM 
when the posterior probabilities of the dialogue elements increase, 
and vice versa. 

For the evaluation presented in this paper, we have used the 
information conveyed in each utterance to modify the LM, per
forming an additional recognition (followed by the extraction of 
the semantics and the inference of the dialogue goals). Another 
application of our approaches will consist of modifying the LMs 
dynamically at each dialogue turn using the information provided 
during the previous turns, in order to better recognize the next 
utterance that the speaker might say to the system. We could also 
use the information retrieved to the user via the language gener
ation, trying to adapt the LMs to what the system asks to the 
users. 

We are also setting up an evaluation of the adaptive system 
with real users, in an effort to measure the performance figures 
presented here, as well as other metrics regarding the dialogue 
efficiency, such as task completion, number of turns needed to ful
fill a task, and so on. 

Finally, we may also think about applying the adaptation of LMs 
using other sources of information. For instance, the knowledge 
that the system has on the users. Provided that each user might ex
press his or her ideas in different ways (not only in terms of pro-
sodic patterns, but also from the lexical and rhetorical point of 
view), and even with disparate emotional content, the system 
could take advantage of this information once it has identified 
the speaker, to adapt the LMs (indirectly improving the perfor
mance of the full dialogue system) to the current user. 
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