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Modeling Topic and Role Information in
Meetings using Hierarchical Dirichlet Process

Songfang Huang and Steve Renals

The Centre for Speech Technology Research
University of Edinburgh, Edinburgh, EH8 9LW, UK
{s.f.huang, s.renals}@ed.ac.uk

Abstract. In this paper, we address the modeling of topic and role in-
formation in multiparty meetings, via a nonparametric Bayesian model
called hierarchical Dirichlet process, which provides a powerful solution
to topic modeling and a flexible framework to incorporate other multi-
modal cues, i.e., the role information. We present our modeling frame-
work for topic and role on the AMI Meeting Corpus, and illustrate the
effectiveness of our approach in context of adapting a baseline language
model in a large-vocabulary automatic speech recognition system for
meeting, where it shows significant improvements in term of both per-
plexity and word error rate.

1 Introduction

A language model (LM) aims to provide a predictive probability distribution for
the next word based on a history of previously observed words. The dominant
LM for many state-of-the-art automatic speech recognition (ASR) systems nowa-
days is the conventional n-gram model, which approximates the history as the
immediately preceding n—1 words. Although the n-gram model has been demon-
strated to be simple but efficient approach to language modeling, the struggle
to improve its performance always continues. Broadly speaking, there are two
directions for those attempts. One tries to extend the n — 1 word history to a
richer context, while still remaining computationally feasible. Information used
to extend the history includes morphological information in factored LMs [1],
syntactic knowledge using structured LMs [2], and semantic knowledge such as
topic information using Bayesian models [3]. Other attempts focus on different
interpretations from the maximum likelihood estimated n-gram, such as neural
networks [4], latent variable models [5], and a Bayesian framework [6, 7].

In this paper, we look at an improved LM for ASR in meetings by the inclu-
sion of richer knowledge from multiparty meetings into a conventional n-gram
model. The meeting corpus we consider here is the AMI Meeting Corpus® [8],
which consists of 100 hours of multimodal meeting recordings with comprehen-
sive annotations at a number of different levels. About 70% of the corpus was

! http://corpus.amiproject.org



elicited using a design scenario, in which the participants play the roles of em-
ployees, i.e., project manager (PM), marketing expert (ME), user interface de-
signer (UI), and industrial designer (ID), in an electronics company that decides
to develop a new type of television remote control. Our work in this paper is
motivated by the fact that the AMI Meeting Corpus has a wealth of multimodal
information such as audio, video, lexical, and other high-level knowledge. From
the viewpoint of language modeling, the question for us is whether there are
some multimodal cues besides lexical information would be helpful for improv-
ing a n-gram LM. If so, then what are those cues, and how could we incorporate
them into a n-gram? To address this question, we have a focus on the modeling
of topic and role information using a hierarchical Dirichlet process [9].

We consider an augmented n-gram model for ASR, with its context enriched
by the inclusion of two multimodal cues from meeting: the topic and the speaker
role. Unlike the role, which could be seen as deterministic information available
in the corpus, the topic here refers to the semantic context, which is typically ex-
tracted by an unsupervised approach. One popular topic model is latent Dirichlet
allocation (LDA) [10], which has proven to be a successful approach to automati-
cally find the latent topics based on the co-occurrences of words in a ‘document’.
However, there are two difficulties posing with the application of LDA to lan-
guage modeling. First, it is important to define a suitable document for LDAs
to be used with LMs, because the data for language modeling tasks normally
consist of sequences of short sentences, which do not fall in well-defined docu-
ments. Second, it is not easy to decide the number of topics, which is required
to be set in advance for LDA.

More recently, a nonparametric generalization of LDA called the hierarchical
Dirichlet process (HDP) [9] has been proposed. The HDP extends the standard
LDA in two folds. First, the use of a Dirichlet process as a prior for the topic
distribution, rather than the Dirichlet distribution in LDA, enables the HDP to
determine the number of topics required. Second, the hierarchical (tree) structure
enables the HDP to share mixture components (topics) between groups of data.
In this paper we exploit the HDP as our modeling approach for automatic topic
learning. Moreover, we also find it easier for us to incorporate roles together
with topics by expressing them as an additional level of variables into the HDP
hierarchy.

Some previous work has been done in the area of combining n-gram models
and topic models such as LDA and probabilistic latent semantic analysis (pLSA)
for ASR on different data, for example, broadcast news [11,12], and lecture
recordings [13]. The new ideas we exploit in our work cover the following aspects.
Firstly, we use the nonparametric HDP for topic modeling to adapt n-gram LMs.
Secondly, we consider sequential topic modeling, and define documents for the
HDP by placing a moving window over the sequences of short sentences. Thirdly,
we incorporate the role information with topic models in a hierarchical Bayesian
framework. In the rest of this paper, we will review topic models, and introduce
our framework for modeling topic and role information using HDP, followed by
a set of perplexity and WER experiments.



2 Probabilistic Topic Model

Topic models, which recently received growing interest in the machine learning
community, have been proposed for document modeling to find a latent repre-
sentation (topic) connecting documents and words. In a topic model, words in
a document exchangeably co-occur with each other according to their semantics
meanings, following the “bag-of-words” assumption.

Suppose there are D documents in the corpus, and W words in the vocab-
ulary. Each document d = 1,...,D in the corpus is represented as a mixture
over latent topics (let 84 be the mixing proportions over topics), and each topic
k=1,...,K in turn is a multinomial distribution over words in the vocabulary
(let ¢, be the vector of probabilities for words in topic k).

In this section, we review two “bag-of-word” models, LDA and HDP, based
on [9,14,15].

2.1 Latent Dirichlet Allocation

Latent Dirichlet allocation [10] is a three-level hierarchical Bayesian model, which
pioneered the use of Dirichlet distribution for latent topics. That is, the topic
mixture weights 6, for the dth document are drawn from a prior Dirichlet dis-
tribution with parameters «, 7r:

rk am
P(9d|a7r) = Mg?ﬂ'l—ln.o?{ﬂx—l (1)
[Tz I'(oms)

where K is the predefined number of topics in LDA, I" is the Gamma function,
amw = {am,...,ank } represents the prior observation counts of the K latent
topics with am; > 0, 7w is the corpus-wide distribution over topics, and « is
called the concentration parameter controlling the amount of variability from 64
to their prior mean 7.

Similarly, Dirichlet priors are placed over the parameters ¢, with the param-
eters f7. We have,

0,4|m ~ Dir(am) ¢|T ~ Dir(67) (2)

Fig. 1.(A) depicts the graphical model representation for LDA. The genera-
tive process for words in each document are as follows: first draw a topic k with
probability 04, then draw a word w with probability ¢g,. Let w;q be the ith
word token in document d, and z;4 the corresponding drawn topic, then,

Zid|0d ~ Mult(@d) wid|zid, ¢Zid ~ Mlﬂt(d)zid) (3)
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Fig. 1. Graphical model depictions for (A) latent Dirichlet allocation (finite mixture
model), (B) Dirichlet process mixture model (infinite mixture model), (C) 2-level hi-
erarchical Dirichlet process model, and (D) the role-HDP where G}, denotes the DP
for one of the four roles (PM, ME, UI, and ID) in the AMI Meeting Corpus. Each
node in the graph represents a random variable, where shading denotes an observed
variable. Arrows denote dependencies among variables. Rectangles represent plates, or
repeated sub-structures in the model.

2.2 Hierarchical Dirichlet Process

LDA pioneered the use of Dirichlet distributed latent variables to represent
shades of memberships to different cluster or topics, while the HDP pioneered
the use of nonparametric models to sidestep the need for model selection [15].
Two extensions were made by the HDP: firstly Dirichlet distributions in LDA
are replaced by Dirichlet processes in the HDP as priors for topic proportions,
and secondly priors are arranged into hierarchical tree structure.

Dirichlet Process. The Dirichlet process (DP) is a stochastic process first for-
malised in [16] for general Bayesian modeling, which has become an important
prior used for nonparametric models. Nonparametric models have their number
of model parameters growing with the amount of data, which helps to alleviate
over- or under-fitting problems, and provide an alternative approach to para-
metric model selection or averaging.

A random distribution G over a space © is called a Dirichlet process dis-
tributed with base distribution H and concentration parameter c«, if

(G(Ay),...,G(A,)) ~ Dir(aH (A1), ..., aH(A,)) (4)



for every finite measurable partition Ai,..., A, of ©. We write this as G ~
DP(«, H). The parameter H, a measure over O, is intuitively the mean of the
DP. The parameter «, on the other hand, can be regarded as an inverse variance
of its mass around the mean H, with larger values of « for smaller variances.
More importantly in infinite mixture models, o controls the expected number of
mixture components in a direct manner, with larger o implying a larger number
of mixture components a priori.

Draws from a DP are composed as a weighted sum of point masses located
at the previous draws #4,...,60,. This leads to a constructive definition of the
DP called the stick-breaking construction [17]:

k—1

B ~Beta(l,a)  m=p [[(1-5) Opi~H G=> mdy: (5)
1=1 k=1
Then G ~ DP(«, H). 05 is the unique values among 61, . .., 8,,. The construction

of 7 can be understood as follows [14]. Starting with a stick of length 1, first break
it at (1, assign m; to be the length of stick just broken off. Then recursively break
the other portion to obtain mg, w3 and so forth. The stick-breaking distribution
over 7 is sometimes written as w ~ GEM(«)?, and satisfies Y, m, = 1 with
probability one. This definition is important for the inference for the DP.

Recall in Equation 2 for LDA, a finite-dimensional Dirichlet distribution
(i.e., of which 7 is a K-dimensional vector) is used as prior for distribution of
topic proportions. LDA, in this sense, is a finite mixture model. If we use a DP
instead as prior for mixing topic proportions, that is, 84 ~ DP(a, H) where
¢x|H ~ DP(B7T), then the stick-breaking construction for w ~ GEM(«) will
produce a countably infinite dimensional vector 7. In this way, the number of
topics in this DP-enhanced LDA model is potentially infinite, the number of
topics increasing with the available data.

This model, as shown in Fig. 1.(B), is called the Dirichlet process mixture
models (also known as infinite mixture model).

Hierarchical Framework. Besides the nonparametric extension of LDA from
Dirichlet distribution to Dirichlet process, [9] further extends the Dirichlet pro-
cess mixture model from a flat structure to a hierarchical structure, called a
hierarchical Dirichlet process mixture model. This extended model use the hi-
erarchical Dirichlet process as priors. Similar to the DP, the HDP is a prior for
nonparametric Bayesian modeling. The difference is that in HDP, it is assumed
that there are groups of data, and infinite mixture components are shared among
groups.

Considering a simple 2-level HDP as an example, as shown is Fig. 1.(C)., HDP
defines s set of random probability measure G, one for each group of data, and
a global random probability measure Gy. The global measure Gy is distributed
as a DP with concentration parameter v and base probability measure H, and

2 GEM stands for Griffiths, Engen, and McCloskey.



the random measure G, assuming conditionally independent given Gy, are in
turn distributed as a DP with concentration parameter o and base probability
measure Go:

Gol’y,HNDP(’y,H) Gj|a,G0 NDP(O[,GO) (6)

This results in a hierarchy of DPs, in which dependencies are specified among
s set of DPs by arranging them into a tree structure. Although this is a 2-level
example, the HDP can readily be extended to as many levels as required.

A HDP-enhanced LDA model, therefore, will have a potentially infinite num-
ber of topics, and these topics will be shared among groups of data. If a HDP
is used as prior for topic modeling, then the baseline distribution H provides
the prior distribution for words in the vocabulary, i.e., ¢,|H ~ DP(37). The
distribution Gg varies around the prior H with the amount of variability con-
trolled by #, i.e., Gog ~ DP(v,Dir(87). The actually distribution G4 for dth
group of data (words in dth document in topic models) deviates from Gy, with
the amount of variability controlled by «, i.e., G4 ~ DP(«, Gy). Together with
(3), this completes the definition of a HDP-enhanced LDA topic model.

3 Modeling Topic and Role using HDP

We emphasize in this section three key questions concerning with the modeling
of topic and role using HDP. First, how to define a document in a multiparty
meeting? Second, how to introduce role into the HDP framework? Third, how
to use the local estimates from HDP to adapt a baseline n-gram LM for a ASR
system?

Define a Document. The target application of the HDP in this paper is to
adapt LMs for ASR, which means for each sentence in the testing data, we
need to find a corresponding document for HDP, based on which topics are
extracted and then LMs are dynamically adapted according to the topic infor-
mation. Documents might have also been attached with corresponding roles. In
the AMI Meeting Corpus, meetings are manually annotated with word tran-
scription (in *.words.xml), whose time information were further obtained via
forced alignment. Also available in the corpus are the segment annotations (in
*.segments.xml). Role information for words can be easily determined from
the annotations in the corpus. We used the procedure shown in Fig. 2 to obtain
documents.

By collecting all documents for meetings belonging to the training and testing
data respectively, we can obtain the training data for HDP model and the testing
data for perplexity evaluation. The similar idea applies for dynamically finding
documents for ASR experiments. The difference is that we do not have the
segment annotations in this case. Instead speech segments, obtained by either
automatical or manual approaches, are used as units for finding documents as
well as for ASR. Notice in the ASR case we use an online unsupervised method,



foreach meeting m in the corpus

retrieve words with time and role info for m;
align all words in m to a common timeline;
foreach segment sinm

st = starttime(s); et = endtime(s)

if et-st < winlen L: st = et-L;

foreach w in words|[st:et]

if not stopword(w): doc(s) += w;

end

role(s) = role assigned to most words;
end

end

Fig. 2. The procedure used to define documents for the HDP /rHDP.

i.e., ASR hypotheses (with errors and time information) from previous segments
are used to define documents for HDP inference for current segment. In both
cases above, we simply ignore those segments without documents corresponding
to them.

Incorporate Role Information. As a preliminary attempt, we consider the
problem of introducing role into the HDP hierarchy for better topic modeling. In
the scenario meetings of the AMI Meeting Corpus, each of the four participants
in one meeting was assigned a different role (PM, ME, UI, or ID). Our intuitive
idea for this is that, since different participants have different roles to play, there
must be a different topic distribution, and in turn different dominant words,
specific to each role. However, we still expect topic models to work as a whole
on the corpus rather than four separate topic models. HDP is then the right
choice, because it has a flexible framework to express DP dependencies using a
tree structure.

To do this, documents were defined as described above for those scenario
meetings with role information, a one-to-one mapping. We grouped the docu-
ments for each of the four roles, and assigned a DP G,,,. for each role, which then
served as the parent DP in the HDP hierarchy (the base probability measure) for
all DPs corresponding to documents belonging to that role. To share the topics
among four roles, a global Gy was used as the common base probability mea-
sure for the four role DPs G,.,.. See the graphical model shown in Fig. 1.(D) for
detailed HDP hierarchy. Formally speaking, we used the following 3-level HDP,
rHDP, to model topic and role information in the AMI Meeting Corpus:

Golv,H ~DP(v,H), G, |0, Go ~ DP(ag, Go), Gjlar, Groe ~ DP (0, GroXT)
Combine with n-gram. A topic in a HDP is a multinomial distribution over

words in the vocabulary (denoted as ¢;,), which, in this sense, can be considered
as a unigram model. To be precise, we use P,q,(w|d) to denote the unigram



probabilities obtained by the HDP based on the jth document d. The HDP
probability P,,,(w|d) is approximated as a sum over all the latent topics ¢, for
that document, supposing there are totally K topics in the HDP at the current
time:

K
Poap(w]d) =Y " G - Oar (8)
k=1

where probability vector ¢, is estimated during training and remains fixed in
testing, while topic weights 04|G; ~ DP(«g, Go) are document-dependent and
thus are calculated dynamically for each document. For rHDP, the different is
that the topic weights are derived from role DPs, i.e., 84|G; ~ DP (a1, G.o)-

As in [18], we treat P,4,(w|d) as a dynamic marginal and use the following
equation to adapt the baseline n-gram model P, (w|h) to get an adapted n-
gram P,,,,.(w|h), where z(h) is a normalisation factor:

a(w)

Padapt(w|h) = Z(h)

9)

Po(wlh)  a(w) = (Phdp(w|d>>”

P (w)

4 Experiment and Result

We report some experimental results in this section. The HDP was implemented
as an extension to the SRILM toolkit®. All baseline LMs used here were trained
using SRILM, and the Nbest generation and rescoring were based on a modified
tool from SRILM.

Since we considered the role information, which is only available in scenario
AMI meetings, we used part of the AMI Meeting Corpus for our experiments.
There are 138 scenario meetings in total, of which 118 were used for training
and the other 20 for testing (about 11 hours). We used the algorithm introduced
in Section 3 to extract the corresponding document for each of those sentences
in both training and testing data. The average number of words in the resulting
documents for window lengths of 10 and 20 seconds was 10 and 14 respectively.
Data for n-gram LMs were obtained as usual for training and testing.

We initialized both HDP and rHDP models with 50 topics, and § = 0.5
for Equation 2. HDP/rHDP models were trained on documents of 10 seconds
window length from the scenario AMI meetings with a fixed size vocabulary of
7,910 words, by the Markov Chain Monte Carlo (MCMC) sampling method.
The concentration parameters were sampled using the auxiliary variable sample
scheme in [9]. We used 3000 iterations to burn-in HDP/rHDP models.

4.1 Perplexity Experiment for LMs

In order to see the effect of an adapted LMs on perplexity, we trained three
baseline LMs on three data respectively: the first one is AMI n-gram training
data, the second is the Fisher data (fisher-03-pl+p2), the third is the Hub-4

3 http://www.speech.sri.com/projects/srilm



Table 1. The perplexity results of HDP /rHDP-adapted LMs.

LMs [Baseline|HDP-adaptedrHDP-adapted|
AMI 107.1 100.7 100.7
Fisher 228.3 176.5 176.4
Hub-4 316.4 248.9 248.8
AMI+Fisher+Hub-4| 172.9 144.1 143.9

broadcast news data (hub4-Im96). A fourth LM was trained using all the above
three datasets. All the four LMs were trained with standard parameters using
SRILM: trigrams, cut-off value of 2 for trigram counts, modified Kneser-Ney
smoothing, interpolated model. A common vocabulary with 56,168 words was
used for the four LMs, which has 568 out-of-vocabulary (OOV) words for the
AMI n-gram test data.

The trained HDP and rHDP models were used to adapt the above four base-
line n-gram models respectively, using the formula in Equation 9 with y = 0.5.
We note the different vocabularies used by HDP /rHDP models and n-gram mod-
els here. Only those words occurring in both the HDP /rHDP vocabulary and the
n-gram vocabulary were scaled using Equation 9. Table 1 shows the perplexity re-
sults for adapted n-gram models. We can see both HDP- and rHDP-adapted LMs
produced significant reduction in perplexity. However, the performance makes
no difference regarding the dynamic marginals from whether HDP or rHDP.

4.2 ASR Experiment

Finally, we investigated the effectiveness of adapted LMs based on topic and
role information from meetings on a practical large vocabulary ASR system.
The AMIASR system [19] was used as the baseline system.

We began from the lattices for the whole AMI Meeting Corpus, generated by
the AMIASR system using a trigram LM trained on a large set of data coming
from Fisher, Hub4, Switchboard, webdata, and various meeting sources including
AMI. We then generated 500-best lists from the lattices for each utterance. The
reason why we used Nbest rescoring instead of lattice rescoring is because the
baseline lattices were generated using a trigram LM.

We adapted two LMs (Fisher, and AMI+Fisher+Hub4) trained in Section
4.1 according to the topic information extracted by HDP/rHDP models based
on the previous ASR outputs, using a moving document window with length
of 10 seconds. The adapted LM was destroyed after it was used to rescore the
current Nbest lists. Two adapted LMs together with the baseline LM were then
used to rescore the Nbest lists with a common language model weight of 14 (the
same as for lattice generation) and no word insertion penalty.

Table 2 shows the WER results. LMs adapted by HDP/rHDP both yield an
absolute reduction of about 0.7% in WER. This reduction is significant using a



Table 2. The %WER results of HDP /rHDP-adapted LMs.

| LMs [SUB|DEL[INS[WER]

Fisher 22.7|111.4 (5.8 | 39.9
AMI-1g-adapted | 22.4|11.3| 5.7 || 39.4
HDP-adapted 22.211.3|5.6 || 39.1
rHDP-adapted 22.3(111.3| 5.6 | 39.2

AMI+Fisher+Hub4|| 21.6 | 11.1 | 5.4 || 38.2
AMI-1g-adapted || 21.3|11.0| 5.4 | 37.8
HDP-adapted 21.2111.1| 53| 37.6
rHDP-adapted 21.2(11.1| 53| 375

matched-pair significant® test with p < 10~'%. However the HDP and the rHDP
have no significant difference in the WER performance.

To further investigate the power of HDP/rHDP-adapted LMs, we trained a
standard unigram, AMI-1g, on the AMI training data, which is the same data
used for HDP/rHDP training. This unigram was trained using the same vo-
cabulary of 7,910 words as that for HDP/rHDP training. We then used this
unigram as dynamic marginal to adapt the baseline LMs, also using the formula
in Equation 9. The “AMI-1g-adapted” lines in Table 2 shows the WER, results.
We see, although AMI-1g-adapted LMs have lower WERs than that of the base-
line LMs, HDP /rHDP-adapted LMs still have better WER performances (with
0.2-0.3% absolute reduction) than AMI-1g-adapted. Significant testing indicates
that both improvements for the HDP/rHDP are significant, with p < 1076.

5 Discussion and Future Work

In this paper, we successfully demonstrated the effectiveness of using the topic
(and partly role) information to adapt LMs for ASR in meetings. The topics
were automatically extracted by a nonparametric model called HDP, which is
an efficient and flexible Bayesian framework for topic modeling. By defining the
appropriate ‘documents’ for HDP models, we got significant reduction in both
perplexity, and WER in the task of rescoring Nbest lists for about 11 hours of
AMI meeting data.

To our understanding, the reasons for the significant improvements by adapted
LMs based on the topic and role information via the HDP come from the follow-
ing sources. First, the meeting corpus we worked on is a domain-specific corpus
with limited vocabulary, especially for those scenario meetings, with some words
quite dominant during the meeting. So if we could roughly estimate the ‘topic’,
and scale those dominant words correctly, then it is promising to improve the
performance for LMs. Second, HDP models can reasonably extract topics, par-
ticularly on this domain-specific AMI Meeting Corpus. One interesting result we

* http:/ /www.icsi.berkeley.edu/speech /faq/signiftest.html



found is that different HDP/rHDP models, though trained using various differ-
ent parameters, did not make significant difference in either perplexity or WER
evaluation. By closely looking at the resulting topics, we found that some topics
have very high probability for appearing in most of the HDP/rHDP models,
regardless of the different training parameters. One characteristic of those top-
ics is that the top words in them normally have very high frequency. Third,
the sentence-by-sentence style LM adaption further contributes to the improve-
ments, which has been demonstrated by the example of AMI-1g-adapted LMs in
Table 2. Language models are dynamically adapted according to the changes of
topics detected based on the previous recognized results. This can be intuitively
understood as a situation where there are K unigram LMs, and we dynamically
select one unigram to adapt the baseline LMs according to the context (topic).
In this paper, however, both the number of unigram models K and the unigram
selected for one certain time are automatically determined by HDP/rHDP. Al-
though this is unsupervised adaptation, it is still better than LM adaptation
using static LMs trained on reference data.

One the other hand, the rHDP did not prove to have better performances
than HDP in either perplexity or WER. Our interpretation for this is that we
did not explicitly use the role information for adapting LMs, instead, only use
it as an additional DP level for sharing topics among different roles. But as
mentioned above, based on the AMI Meeting Corpus, which has very limited
domain and consequently limited vocabulary words, this will not causes much
differences in the resulting topics, no matter whether HDP or rHDP is used for
topic modeling. Despite this, including the role information in the hierarchical
DP framework can give us some additional information, i.e., the topics propor-
tions specified to each role . This implies some space for our further investigation
into incorporating the role information into the hierarchical Bayesian framework
for language modeling, i.e., sampling the role randomly for each document, em-
pirically analysing the differences between HDP and rHDP, and explicitly using
the role for language modeling. Another possibility for further investigation is
about the prior parameter for Dirichlet distribution: does prior knowledge from
language help to set this parameter? Finally, more ASR experiments to verify
the consistence and significance of this framework on more meeting data, e.g., a
5-fold cross-validation on the AMI Meeting Corpus, would be informative.
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