723 research outputs found

    Hybrid Dy-NFIS & RLS equalization for ZCC code in optical-CDMA over multi-mode optical fiber

    Get PDF
    For long haul coherent optical fiber communication systems, it is significant to precisely monitor the quality of transmission links and optical signals. The channel capacity beyond Shannon limit of Single-mode optical fiber (SMOF) is achieved with the help of Multi-mode optical fiber (MMOF), where the signal is multiplexed in different spatial modes. To increase single-mode transmission capacity and to avoid a foreseen “capacity crunch”, researchers have been motivated to employ MMOF as an alternative. Furthermore, different multiplexing techniques could be applied in MMOF to improve the communication system. One of these techniques is the Optical Code Division Multiple Access (Optical-CDMA), which simplifies and decentralizes network controls to improve spectral efficiency and information security increasing flexibility in bandwidth granularity. This technique also allows synchronous and simultaneous transmission medium to be shared by many users. However, during the propagation of the data over the MMOF based on Optical-CDMA, an inevitable encountered issue is pulse dispersion, nonlinearity and MAI due to mode coupling. Moreover, pulse dispersion, nonlinearity and MAI are significant aspects for the evaluation of the performance of high-speed MMOF communication systems based on Optical-CDMA. This work suggests a hybrid algorithm based on nonlinear algorithm (Dynamic evolving neural fuzzy inference (Dy-NFIS)) and linear algorithm (Recursive least squares (RLS)) equalization for ZCC code in Optical-CDMA over MMOF. Root mean squared error (RMSE), mean squared error (MSE) and Structural Similarity index (SSIM) are used to measure performance results

    Bacterial Foraging Based Channel Equalizers

    Get PDF
    A channel equalizer is one of the most important subsystems in any digital communication receiver. It is also the subsystem that consumes maximum computation time in the receiver. Traditionally maximum-likelihood sequence estimation (MLSE) was the most popular form of equalizer. Owing to non-stationary characteristics of the communication channel MLSE receivers perform poorly. Under these circumstances ‘Maximum A-posteriori Probability (MAP)’ receivers also called Bayesian receivers perform better. Natural selection tends to eliminate animals with poor “foraging strategies” and favor the propagation of genes of those animals that have successful foraging strategies since they are more likely to enjoy reproductive success. After many generations, poor foraging strategies are either eliminated or shaped into good ones (redesigned). Logically, such evolutionary principles have led scientists in the field of “foraging theory” to hypothesize that it is appropriate to model the activity of foraging as an optimization process. This thesis presents an investigation on design of bacterial foraging based channel equalizer for digital communication. Extensive simulation studies shows that the performance of the proposed receiver is close to optimal receiver for variety of channel conditions. The proposed receiver also provides near optimal performance when channel suffers from nonlinearities

    Development Of Novel Neuro-Fuzzy Techniques For Adaptive Systems

    Get PDF
    Novel approaches for designing adaptive schemes based on neuro-fuzzy platform have been developed. Two kinds of adaptive schemes namely, adaptive equalization and system identification are implemented using the developed proposed techniques. The Radial basis function (RBF) equalizer is chosen as a case study for adaptive equalization of the digital communication channels. An efficient method for reducing the centers of a RBF equalizer based on eigenvalue analysis is presented. The efficiency of the method is further verified for RBF equalizers with decision feedback for tackling channels with overlapping channel states. A comparative study between the proposed center reduction technique and other center reduction techniques for the RBF equalizer is discussed. In another breakthrough a parallel interpretation of the ANFIS (adaptive network based fuzzy inference systems) architecture is proposed. This approach helps to investigate the role of the fuzzy inference part and the s..

    Detection and Recognition of Traffic Sign using FCM with SVM

    Get PDF
    This paper mainly focuses on Traffic Sign and board Detection systems that have been placed on roads and highway. This system aims to deal with real-time traffic sign and traffic board recognition, i.e. localizing what type of traffic sign and traffic board are appears in which area of an input image at a fast processing time. Our detection module is based on proposed extraction and classification of traffic signs built upon a color probability model using HAAR feature Extraction and color Histogram of Orientated Gradients (HOG).HOG technique is used to convert original image into gray color then applies RGB for foreground. Then the Support Vector Machine (SVM) fetches the object from the above result and compares with database. At the same time Fuzzy Cmeans cluster (FCM) technique get the same output from above result and then  to compare with the database images. By using this method, accuracy of identifying the signs could be improved. Also the dynamic updating of new signals can be done. The goal of this work is to provide optimized prediction on the given sign

    Development of Fuzzy System Based Channel Equalisers

    Get PDF
    Channel equalisers are used in digital communication receivers to mitigate the effects of inter symbol interference (ISI) and inter user interference in the form of co-channel interference (CCI) and adjacent channel interference (ACI) in the presence of additive white Gaussian noise (AWGN). An equaliser uses a large part of the computations involved in the receiver. Linear equalisers based on adaptive filtering techniques have long been used for this application. Recently, use of nonlinear signal processing techniques like artificial neural networks (ANN) and radial basis functions (RBF) have shown encouraging results in this application. This thesis presents the development of a nonlinear fuzzy system based equaliser for digital communication receivers. The fuzzy equaliser proposed in this thesis provides a parametric implementation of symbolby-symbol maximum a-posteriori probability (MAP) equaliser based on Bayes’s theory. This MAP equaliser is also called Bayesian equaliser. Its decision function uses an estimate of the noise free received vectors, also called channel states or channel centres. The fuzzy equaliser developed here can be implemented with lower computational complexity than the RBF implementation of the MAP equaliser by using scalar channel states instead of channel states. It also provides schemes for performance tradeoff with complexity and schemes for subset centre selection. Simulation studies presented in this thesis suggests that the fuzzy equaliser by using only 10%-20% of the Bayesian equaliser channel states can provide near optimal performance. Subsequently, this fuzzy equaliser is modified for CCI suppression and is termed fuzzy–CCI equaliser. The fuzzy–CCI equaliser provides a performance comparable to the MAP equaliser designed for channels corrupted with CCI. However the structure of this equaliser is similar to the MAP equaliser that treats CCI as AWGN. A decision feedback form of this equaliser which uses a subset of channel states based on the feedback state is derived. Simulation studies presented in this thesis demonstrate that the fuzzy–CCI equaliser can effectively remove CCI without much increase in computational complexity. This equaliser is also successful in removing interference from more than one CCI sources, where as the MAP equalisers treating CCI as AWGN fail. This fuzzy–CCI equaliser can be treated as a fuzzy equaliser with a preprocessor for CCI suppression, and the preprocessor can be removed under high signal to interference ratio condition

    Artificial neural networks for location estimation and co-cannel interference suppression in cellular networks

    Get PDF
    This thesis reports on the application of artificial neural networks to two important problems encountered in cellular communications, namely, location estimation and co-channel interference suppression. The prediction of a mobile location using propagation path loss (signal strength) is a very difficult and complex task. Several techniques have been proposed recently mostly based on linearized, geometrical and maximum likelihood methods. An alternative approach based on artificial neural networks is proposed in this thesis which offers the advantages of increased flexibility to adapt to different environments and high speed parallel processing. Location estimation provides users of cellular telephones with information about their location. Some of the existing location estimation techniques such as those used in GPS satellite navigation systems require non-standard features, either from the cellular phone or the cellular network. However, it is possible to use the existing GSM technology for location estimation by taking advantage of the signals transmitted between the phone and the network. This thesis proposes the application of neural networks to predict the location coordinates from signal strength data. New multi-layered perceptron and radial basis function based neural networks are employed for the prediction of mobile locations using signal strength measurements in a simulated COST-231 metropolitan environment. In addition, initial preliminary results using limited available real signal-strength measurements in a metropolitan environment are also reported comparing the performance of the neural predictors with a conventional linear technique. The results indicate that the neural predictors can be trained to provide a near perfect mapping using signal strength measurements from two or more base stations. The second application of neural networks addressed in this thesis, is concerned with adaptive equalization, which is known to be an important technique for combating distortion and Inter-Symbol Interference (ISI) in digital communication channels. However, many communication systems are also impaired by what is known as co-channel interference (CCI). Many digital communications systems such as digital cellular radio (DCR) and dual polarized micro-wave radio, for example, employ frequency re-usage and often exhibit performance limitation due to co-channel interference. The degradation in performance due to CCI is more severe than due to ISI. Therefore, simple and effective interference suppression techniques are required to mitigate the interference for a high-quality signal reception. The current work briefly reviews the application of neural network based non-linear adaptive equalizers to the problem of combating co-channel interference, without a priori knowledge of the channel or co-channel orders. A realistic co-channel system is used as a case study to demonstrate the superior equalization capability of the functional-link neural network based Decision Feedback Equalizer (DFE) compared to other conventional linear and neural network based non-linear adaptive equalizers.This project was funded by Solectron (Scotland) Ltd

    Time series prediction and channel equalizer using artificial neural networks with VLSI implementation

    Get PDF
    The architecture and training procedure of a novel recurrent neural network (RNN), referred to as the multifeedbacklayer neural network (MFLNN), is described in this paper. The main difference of the proposed network compared to the available RNNs is that the temporal relations are provided by means of neurons arranged in three feedback layers, not by simple feedback elements, in order to enrich the representation capabilities of the recurrent networks. The feedback layers provide local and global recurrences via nonlinear processing elements. In these feedback layers, weighted sums of the delayed outputs of the hidden and of the output layers are passed through certain activation functions and applied to the feedforward neurons via adjustable weights. Both online and offline training procedures based on the backpropagation through time (BPTT) algorithm are developed. The adjoint model of the MFLNN is built to compute the derivatives with respect to the MFLNN weights which are then used in the training procedures. The Levenberg–Marquardt (LM) method with a trust region approach is used to update the MFLNN weights. The performance of the MFLNN is demonstrated by applying to several illustrative temporal problems including chaotic time series prediction and nonlinear dynamic system identification, and it performed better than several networks available in the literature

    Cancer diagnosis using deep learning: A bibliographic review

    Get PDF
    In this paper, we first describe the basics of the field of cancer diagnosis, which includes steps of cancer diagnosis followed by the typical classification methods used by doctors, providing a historical idea of cancer classification techniques to the readers. These methods include Asymmetry, Border, Color and Diameter (ABCD) method, seven-point detection method, Menzies method, and pattern analysis. They are used regularly by doctors for cancer diagnosis, although they are not considered very efficient for obtaining better performance. Moreover, considering all types of audience, the basic evaluation criteria are also discussed. The criteria include the receiver operating characteristic curve (ROC curve), Area under the ROC curve (AUC), F1 score, accuracy, specificity, sensitivity, precision, dice-coefficient, average accuracy, and Jaccard index. Previously used methods are considered inefficient, asking for better and smarter methods for cancer diagnosis. Artificial intelligence and cancer diagnosis are gaining attention as a way to define better diagnostic tools. In particular, deep neural networks can be successfully used for intelligent image analysis. The basic framework of how this machine learning works on medical imaging is provided in this study, i.e., pre-processing, image segmentation and post-processing. The second part of this manuscript describes the different deep learning techniques, such as convolutional neural networks (CNNs), generative adversarial models (GANs), deep autoencoders (DANs), restricted Boltzmann’s machine (RBM), stacked autoencoders (SAE), convolutional autoencoders (CAE), recurrent neural networks (RNNs), long short-term memory (LTSM), multi-scale convolutional neural network (M-CNN), multi-instance learning convolutional neural network (MIL-CNN). For each technique, we provide Python codes, to allow interested readers to experiment with the cited algorithms on their own diagnostic problems. The third part of this manuscript compiles the successfully applied deep learning models for different types of cancers. Considering the length of the manuscript, we restrict ourselves to the discussion of breast cancer, lung cancer, brain cancer, and skin cancer. The purpose of this bibliographic review is to provide researchers opting to work in implementing deep learning and artificial neural networks for cancer diagnosis a knowledge from scratch of the state-of-the-art achievements
    corecore