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Abstract  iv 

Abstract 

This thesis reports on the application of artificial neural networks to two important 

problems encountered in cellular communications, namely, location estimation and co-

channel interference suppression. The prediction of a mobile location using propagation 

path loss (signal strength) is a very difficult and complex task. Several techniques have 

been proposed recently mostly based on linearized, geometrical and maximum 

likelihood methods. An alternative approach based on artificial neural networks is 

proposed in this thesis which offers the advantages of increased flexibility to adapt to 

different environments and high speed parallel processing. Location estimation provides 

users of cellular telephones with information about their location. Some of the existing 

location estimation techniques such as those used in GPS satellite navigation systems 

require non-standard features, either from the cellular phone or the cellular network. 

However, it is possible to use the existing GSM technology for location estimation by 

taking advantage of the signals transmitted between the phone and the network. This 

thesis proposes the application of neural networks to predict the location coordinates 

from signal strength data. New multi-layered perceptron and radial basis function based 

neural networks are employed for the prediction of mobile locations using signal 

strength measurements in a simulated COST-231 metropolitan environment. In 

addition, initial preliminary results using limited available real signal-strength 

measurements in a metropolitan environment are also reported comparing the 

performance of the neural predictors with a conventional linear technique. The results 
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indicate that the neural predictors can be trained to provide a near perfect mapping 

using signal strength measurements from two or more base stations.  

 

The second application of neural networks addressed in this thesis, is concerned with 

adaptive equalization, which is known to be an important technique for combating 

distortion and Inter-Symbol Interference (ISI) in digital communication channels. 

However, many communication systems are also impaired by what is known as co-

channel interference (CCI). Many digital communications systems such as digital 

cellular radio (DCR) and dual polarized micro-wave radio, for example, employ 

frequency re-usage and often exhibit performance limitation due to co-channel 

interference. The degradation in performance due to CCI is more severe than due to ISI. 

Therefore, simple and effective interference suppression techniques are required to 

mitigate the interference for a high-quality signal reception. The current work briefly 

reviews the application of neural network based non-linear adaptive equalizers to the 

problem of combating co-channel interference, without a priori knowledge of the 

channel or co-channel orders. A realistic co-channel system is used as a case study to 

demonstrate the superior equalization capability of the functional-link neural network 

based Decision Feedback Equalizer (DFE) compared to other conventional linear and 

neural network based non-linear adaptive equalizers. 
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Chapter 1  

1 Introduction 

This thesis presents neural network based approaches for tackling two important 

problems encountered in cellular networks, namely prediction of mobile locations and 

co-channel interference suppression.   

 

The prediction of a mobile location using propagation path loss (signal strength) is a 

very difficult and complex task. The accuracy depends on the environment (Multipath, 

NLOS, shadowing), path loss model used, number of base stations used and techniques 

such as Enhanced Observed Time Difference (E-OTD), Global Positioning System 

(GPS), A-GPS (Assisted-GPS), Cell ID, Timing Advance (TA), Time of Arrival (TOA), 

Angle of Arrival (AOA), Time Difference of Arrival (TDOA) and signal strength based 

techniques for estimating the cellular phone position are used. 

 

Several techniques have been proposed recently mostly based on linearized, geometrical 

and maximum likelihood methods. An alternative approach based on artificial neural 

networks is proposed in this thesis which offers the advantages of increased flexibility 

to adapt to different environments and high speed parallel processing. The research 

presented in this thesis gives an overview of conventional location estimation 

techniques and the various propagation models reported to-date, and a new signal-

strength based neural network technique is then described. A simulated mobile 

architecture based on the realistic COST-231 Non-line of Sight (NLOS) Walfisch-
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Ikegami implementation of a metropolitan environment is first used to assess the 

generalization performance of an Artificial Neural Network (ANN) based mobile 

location predictor. Limited real data is then used to further evaluate the performance of 

the ANN mobile location predictor with promising initial results. The performance of 

two ANNs, namely the Multi-Layered Perceptron (MLP) and a Radial Basis Function 

(RBF) based network, is compared with a conventional linear adaptive filtering 

approach for both simulated and real environment data. 

 

Secondly, this thesis presents a brief overview and comparative performance evaluation 

of selected neural network based equalizers for the problem of co-channel interference 

suppression in cellular networks. The problem of adaptive equalization of digital 

communication channels in the presence of Inter-Symbol Interference (ISI), additive 

white gaussian noise (AWGN) and co-channel interference is first reviewed and a 

realistic co-channel system is then used as a case study to show that neural network 

based Decision Feedback equalizers exhibit superior Bit Error Rate (BER) performance 

characteristics compared to the conventional Linear Transversal Equalizer (LTE) and 

the conventional linear DFE. The sample results in this study have considered single co-

channel systems, but they can be extended to the multi-co-channel case. 

1.1 Background and Context 

1.1.1 Location Estimation in Cellular Networks 

Location Estimation is the process of localizing an object on the basis of some 

parameter. This parameter can be proximity to a detector, or some other parameter like 

radiated energy. The latter parameter is the one of interest in our case. In the particular 
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context of cellular systems, this translates to the localization of the transmitter or the 

receiver.  

 

Proper location estimation is very important in making many crucial decisions in 

cellular networks. Handoff management is one such example. When a mobile station 

enters from the region of service of one BS to another, a handoff is to be made. The 

initiation of the handoff process depends on the location of the mobile. A delay in the 

initiation of handoff will result in very low signal strength or in the adverse case, a call 

drop. Applications like handoff management don’t require very accurate location 

estimates; all that is required is to determine which cell the mobile is in. But there are 

applications that ask for a very accurate estimate [1]. 

 

1.1.2 Co-channel interference Suppression in Cellular Networks 

Many digital communications systems employ frequency reusage and often exhibit 

performance limitation due to co-channel interference [49]. Frequency reuse is referred 

to the employment of radio channels on the same carrier frequency to cover different 

areas or cells situated sufficiently apart from one another, and allow cellular radio 

systems to handle far more simultaneous calls than the total number of allocated 

channel frequencies. Signals from co-channel cells (i.e. cells of the same channels 

frequency) will however interfere with each other. The degradation in quality due to co-

channel interference is often more severe than that caused by additive noise or Inter-

symbol interference (ISI) [50]. 
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1.2 Motivation 

Localising handset users within a mobile network has always been seen as an important 

capability, since its successful incorporation would allow crucial services to be 

delivered to customers. These services include effective handling of emergency calls, 

location sensitive billing and intelligent transportation. The problem of estimating 

mobile location is now receiving significant attention ever since the U.S. Federal 

Communication Commission (FCC) made it mandatory for network operators to be able 

to locate users with demanding requirements on the location accuracy. At present 

conventional location determination technologies (LDTs) fall into two main classes 

[51], namely handset-based and network bases LDT’s. Currently, GPS based location 

information services are in commercial use - when accurate signal strength 

measurements from at least three Base Stations are available, geometrical 

(triangulation) methods are used to determine the two-dimensional (2-D) location co-

ordinates of the mobile user. However, in a city or building where there is often no 

direct Line of Sight (LoS) between GPS satellite and the terminal, this causes a severe 

degradation of accuracy. In such cases, location estimation using cellular network 

systems can offer advantages, and estimating a location using the signal from BS’s 

becomes a highly non-linear problem. Few linearized and geometrical methods have 

been proposed for calculating the mobile position based on measured signal strengths 

[52]. Although signal strength based location estimation algorithms may not be the 

preferred approach at present (commercially) for providing location services, signal 

strength is the only common attribute available between various kinds of mobile 

networks and deserves more attention than received to-date. One principal reason for 
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this is the ability of signal strength measurements to provide network-based mobile 

location solutions without the need to modify the handsets. The motivation behind the 

proposed application of neural networks to solve the location estimation problem is that 

the neural network technique is adept to the use of intelligence in the cellular system. 

Also, the inherent nature of the location estimation problem makes neural nets selection 

a wise choice for tackling this problem. Modelling the propagation of radio waves by 

mathematical models is quite complex involving numerous interacting variables. In 

addition, multipath, diffraction and non line of sight (NLOS) cause problems. Also 

weather conditions affect the radio wave propagation. In this research, the application of 

neural networks is considered as a function approximation problem [2, 3] consisting of 

a non-linear mapping of signal strength input (received at several Base Stations) onto a 

dual output variable representing the mobile location co-ordinates.    

 

On the other hand, the choice of neural networks for co-channel interference 

suppression is motivated by the growing need to exploit the use of new neural network 

structures as non-linear adaptive filters in the telecommunications industry. With the 

present great demand for data communication services, bit rates and symbol rates are 

being pushed towards their theoretical limits. Consequently, communication channel 

impairments that previously went unnoticed can be particularly problematic [59]. – for 

example, when transmitting the data over PSTN (Public Switched Telephone Network) 

at moderate bit rates, the channel can be considered to be linear; however, at high bit 

rates, the non-linearities introduced by the network elements such as the coupling 

transformers, codecs and amplifiers cannot be ignored, and must be compensated for by 
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the use of appropriate non-linear signal processing techniques [43], [44]. Conventional 

neural network based adaptive non-linear equalizers have excessive computational 

requirements and require relatively large training periods in order to realise the optimal 

equalization performance [43, 45-47]. Hence, new faster and computationally efficient 

neural network equalizers need to be developed which can better compensate for not 

only the linear and non-linear communication channel distortion, but additionally also 

be able to suppress other significant interference factors such as co-channel interference 

effects, encountered in many digital communications systems, for example, digital 

cellular radio (DCR) [48]. As stated earlier, the degradation in quality due to co-channel 

interference is often more severe than that caused by the additive noise or ISI [50]. In 

land mobile radio systems for instance, geographical frequency reuse is used to provide 

a system with a high traffic carrying capacity, using a limited amount of radio spectrum. 

The extent to which frequencies can be reused is limited by the tolerance of the receiver 

to co-channel interference. The traffic capacity of the system is directly linked to the 

extent of frequency reuse, and consequently to a receiver’s ability to combat co-channel 

interference. The optimal solution to the problem assumes perfect knowledge of the 

mobile environment. As the mobile environment is unknown and can change, adaptive 

equalizers are therefore required in these communications systems in order to achieve 

an acceptable error-rate performance [48].  
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1.3 Original Contributions 

The main thesis contributions are: 

• Novel application of two specific neural network models, namely the 

feedforward Multi-Layered Perceptron (MLP), and the Radial Basis Function 

(RBF) based generalized regression neural network (GRNN) in order to predict 

the location of a mobile user using the signal strength data obtained from both a 

simulated COST-231 and a real urban environment. For the case of the 

simulated data, generated using the COST-231 model (which is often used by 

the deigners of public mobile radio systems) the MLP based mobile location 

predictor was found to perform better than both the GRNN and a linear predictor 

in terms of the mean distance error (MDE) performance measure but at the cost 

of an increased computational requirement. A reduction in the training data 

achieved by reducing the number of simulated base stations (BS) from three to 

two was found to have minimal detrimental effect on the MDE performance 

measure of both the neural location predictors. The MDE performance of the 

neural predictors was also evaluated using very limited real data provided by a 

UK telecommunications company (for a small UK town), and both the neural 

predictors were found to produce highly accurate location predictions for the 

case of data from three BSs compared to the linear predictor. Finally, simulation 

results were used to demonstrate that both the neural predictors are capable of 

providing reasonably accurate location estimates even in the case of more 

limited real data from just two BSs. 
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• Secondly, this thesis had presented a new comparative performance evaluation 

of selected neural network based adaptive equalizers, namely the RBF, wavenet 

and Functional-link neural networks, in overcoming co-channel interference in 

cellular networks. A realistic co-channel system is used as a case study to 

demonstrate the equalization capability of the neural network based equalizers. 

The results demonstrate superior Bit Error Rate (BER) performance 

characteristics for the functional-link neural network based decision feedback 

equalizer (DFE), compared to other conventional linear and neural network 

based adaptive equalizers. The results in this study have considered single co-

channel systems, but they can be extended to the multi-co-channel case. 
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1.4 Publications 

The following papers have resulted from this research: 

1. J. Muhammad, A. Hussain & W. Ahmad, "Location Estimation in Cellular 

Networks using Neural Networks", Proceedings 1st IEEE-IEE-ESF International 

Workshop on Signal Processing for Wireless Communication (SPWC'2003), 

pages 243-247, King's College, London, 19-20 May, 2003  

 

2. J. Muhammad, A. Hussain & W.Ahmed, "New Neural Network based Mobile 

Location Estimation in Urban Propagation Models", Proceedings 7th IEEE 

International Multi-Topic Conference (INMIC'2003), Islamabad, 8-9 Dec, 2003.  

 

3. J. Muhammad, A. Hussain, Alexander Neskovic & Evan Magill, "New Neural 

Network Based Mobile Location Estimation in a Metropolitan Area", Book 

Chapter, in Lecture Notes in Computer Science (LNCS), Springer Berlin / 

Heidelberg, ISSN: 0302-9743, Volume 3697/2005, pages 935-941, Artificial 

Neural Networks: Formal Models and Their Applications - ICANN 2005 , 

ISBN: 978-3-540-28755-1 

The following paper is in preparation. 

4. J. Muhammad, A. Hussain, “Comparative Evaluation of Neural Network based 

Adaptive Non-linear Equalizers for Overcoming Co-channel Interference” 
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1.5 Thesis Organisation 

The thesis is divided into 6 chapters.  

• Chapter 2 presents an overview of radio wave principles and various 

propagation models reported to-date.  

 

• Chapter 3 discusses and critically evaluates the predominant location estimation 

techniques in use.  

 

• Chapter 4 gives an overview of a few selected conventional neural network 

paradigms, including the most widely used feedforward Multi Layer Perceptron 

(MLP), and the Radial Basis Function (RBF) based Generalized Regression 

Neural Network (GRNN), and then describes their novel use for location 

estimation in cellular networks. Simulation results are presented assessing the 

generalization performance of neural network based location predictors and 

compared with a linear adaptive filtering based approach. Preliminary findings 

using real data are also presented and discussed. 

 

• Chapter 5 gives an overview of the co-channel interference problem in cellular 

networks, including the conventional approaches that have been developed to-

date. Following this, a discrete time model for a Digital Cellular Radio (DCR) 

system is presented and simulation results are used to demonstrate the 

application of selected neural network based equalizers to a realistic co-channel 

system and their BER performance characteristics compared. 
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• Finally, chapter 6 presents some concluding remarks and future work proposals. 
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Chapter 2 

2 Review of Mobile Radio Systems’ Propagation Models 

The mobile radio channel places fundamental limitations on the performance of wireless 

communication systems. The transmission path between the transmitter and the receiver 

can vary from simple line-of-sight to one that is severely obstructed by buildings, 

mountains, and foliage. Unlike wired channels that are stationary and predictable, radio 

channels are extremely random and do not offer easy analysis. Even the speed of motion 

impacts how rapidly the signal level fades as a mobile terminal moves in space.  

 

Radio wave propagation has historically been the most difficult problem to analyze and 

design for, since unlike a wired communication system which has a constant, stationary 

transmission channel (i.e., a wired path), radio channels are random and undergo 

shadowing and multipath fading, particularly when one of the terminals is in motion. 

 

This chapter gives an overview of radio wave propagation, principles, factors affecting 

the propagation and a brief review of the most commonly used outdoor and indoor 

propagation models. 

2.1 Radio Wave Propagation  

With location estimation systems based on radio signals, it is important to know the 

propagation properties of electromagnetic radiation. Phenomena, such as signal 

attenuation, reflection, scattering and diffraction have important roles in location 
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estimation. Their importance is emphasized in non-satellite systems which have to 

operate in complex propagation environments, such as urban or mountainous areas. This 

chapter addresses the most important theoretical aspects of radio wave propagation and 

reviews some propagation models based on them. 

2.2 Principles 

The basic concept in the theory of electromagnetic radiation is an electric field, which is 

always related to electric current [4]. An electric field E is defined by its direction and 

magnitude at each point. The magnitude, denoted by E , is measured in units of volts 

per meter ( )mV / . Periodic fluctuations of an electric field are called radio waves. Radio 

waves can be decomposed in orthogonal components, typically the horizontal and the 

vertical component. The ratio of the magnitudes of the two components - or equally: the 

direction of the electric field - defines the polarization of the wave [5]. For instance, if 

the magnitude of the vertical component is always zero, i.e. the direction vector is 

always parallel to the horizontal axis, the wave is said to be horizontally polarized. 

 

An electric field corresponds to a power density flow F, measured in watts per square 

meter )/( 2mW , which is proportional to the square of the magnitude of the electric 

field. Given the power density flow, the gain of a receiving antenna, rG , which depends 

on the physical size of the antenna and frequency, the wave length λ , and the system 

hardware loss, L, the received power is given by, 

 



Chapter – 2: Review of Mobile Radio Systems’ Propagation Models 14

   

 

)1.2(
4

2

L

FG
P r

R π
λ

=  

Even though the wave length λ  appears in Equation (2.1), it does not follow that the 

received power would increase proportionally to the square of the wave length, because 

the wave length also affects the gain of the receiving antenna rG . In fact, if the physical 

size of the antenna and the power density flow are constant, the wave length terms 

cancel each other out, and thus the received power is independent of the frequency. 

However, the frequency can indeed affect the power density flow due to interactions 

with the propagation medium. This issue will be discussed in the following sections. 

 

Because the values of received power vary over a wide range, it is convenient to use 

logarithmic scale. A ratio of two quantities can be presented in decibels (dB) which 

indicates the logarithm of the ratio multiplied by ten. The unit of decibel watt (dBW) is 

the ratio of power referenced to one watt. Conversions between watts and decibel watts 

are made with the following two equations: 

[ ] [ ]( ) )2.2(log10 10 WPdBWP =  

[ ]
[ ]

)3.2(10 10

dBWP

WP =  

For instance, 0 dBW is equal to one watt, 10 dBW is equal to 10 watts, 20 dBW is equal 

to 100 watts, etc. The unit of decibel milliwatt (dBm) is defined similarly as the ratio of 

power referenced to one milliwatt. Conversions between two decibel units, for instance, 

decibel watts and decibel milliwatts, can always be performed simply by adding a 
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constant to the original value. The following two equations are used for converting 

decibel watts to decibel milliwatts and vice versa: 

 

[ ] [ ] )4.2(30+= dBWPdBmP  

[ ] [ ] )5.2(30−= dBmPdBWP  

 

2.2.1 Free-space Attenuation 

Because a wave front proceeds in three dimensions, the maximum received power at 

distance d must decrease in the inverse of the area of a sphere with radius d. If the 

absorption loss of the propagation medium is ignored, the power density flow, F, is 

given by 

)6.2(
4

2
d

GP
F TT

π
=  

 

where TP is the transmitted power, TG  is a factor depending on the transmitting 

antenna, and d is the distance [6,7]. Combining Equations (2.1) and (2.6) gives the 

received power, which is usually given in decibels: 

 

[ ] [ ] ( ) ( ) ( ) ( ) )7.2(0.22log20log20log10log10 −−+++= dGGdBPdBP RTTR λ  

 

Equations (2.6) and (2.7) are valid only in free-space environment. If the line-of-sight 

between the transmitter and the receiver is obstructed, the received signal power is 
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significantly lower than the free-space equations suggest and they do not necessarily 

give a good approximation. 

Wave propagation depends on several phenomena such as absorption, reflection, 

diffraction and scattering.  

 

2.2.2 Absorption (or penetration) 

In any real-world communication system, the signals propagate in some medium. In 

wireless terrestrial systems the medium is mainly the atmosphere and, in lesser degree, 

materials such as glass, concrete, wood, etc. Due to interactions with the medium, the 

signal loses a certain proportion of its remaining energy on every unit of distance it 

propagates. Thus, absorption causes the power density flow to decrease proportionally 

to d−γ , where d is the distance, and γ  is a constant depending on the properties of the 

medium and signal frequency. This means that in decibel scale, the loss is linear with 

respect to the distance. 

 

Absorption loss is particularly great in the upper microwave region, where the 

frequencies are above 10 GHz. With these frequencies the absorption due to atmosphere 

becomes comparable to the free-space attenuation, especially in heavy rain conditions 

and with long transmitter-receive distances [8]. With frequencies used in most wireless 

communication systems, below 10 GHz, the atmospheric absorption is insignificant 

with distances up to 10 km. 
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Absorption caused by other media than air is generally very strong. Moreover, in 

addition to absorption, obstructions cause the wave to be reflected, which further 

decreases the amount of energy passing through. Taking into account both reflection 

and absorption, the total attenuation per obstruction is typically 1-20 dB below 10 GHz, 

and 1-60 dB above 10 GHz [6]. 

 

2.2.3 Reflection 

Reflection occurs when a wave meets an obstacle with size much bigger than the wave 

length. The part of the wave that is not reflected back loses some of its energy by 

absorbing to the material and the remaining part passes through the reflecting object. In 

terrestrial communication systems the waves usually reflect from ground, producing a 

two-ray path between the transmitter and the receiver, shown in figure 2.1. The plane of 

incidence is defined as the plane containing both the incident ray and the reflected ray, 

and the angle of incidence is the angle between the reflecting surface and the incident 

ray. 

 

Figure 2.1: Two-ray ground reflection model 

 

The received signal consists of the direct line-of-sight ray and the reflected ray. The two 

rays arriving to a receiver can have different phase and in the worst case they cancel 
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each other out. The magnitude of the reflected signal depends on the Fresnel reflection 

coefficient, which depends on the properties of the reflecting ground, the frequency of 

the wave, and the angle of incidence. Roughness of the reflecting surface causes the 

propagating waves to scatter in all directions, and therefore, the reflection coefficient of 

a rough surface is smaller than the one of an otherwise identical but flat surface. In 

general, the reflection coefficient is different for the vertical and the horizontal 

component of the wave. In such cases, reflection can change wave polarization. 

 

Figure 2.2 presents the attenuation curve of the two-ray model with certain parameters. 

The exact equation corresponding to the two-ray model is given in [6]. It can be seen 

from the figure that with long distances the two-ray model coincides with the fourth-

power approximation, which is given by 

 

[ ] [ ] ( ) ( ) ( ) )8.2(0.22log40log10log10 −−++= dGGdBPdBP RTTR  

 

where the received power is proportional to the inverse of the fourth power of the 

distance rather than the square of the distance which appears in the free-space model. 
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Figure 2.2: The received power referenced to the transmitted power 

The received power referenced to the transmitted power as a function of the transmitter-

receiver distance according to the free-space model (Equation (2.7)), the two-ray model 

[6], and the fourth-power approximation of the two-ray model (Equation (2.8)). The 

parameters are: transmitter elevation = 50 m, receiver elevation = 2 m, frequency = 900 

MHz, relative permittivity of the ground = 15, antenna gains and system loss = 1.0 (no 

loss). 

 

2.2.4 Diffraction 

According to Huygen's principle, all points on a wavefront are point sources of 

secondary waves propagating to all directions. Therefore, each time a radio wave passes 

an edge such as a corner of a building the wave “bends” around the edge and continues 

to propagate into the area shadowed by the edge. This effect is called diffraction [72]. In 

Figure 2.3 the transmitter is situated near an obstacle. The arrows describing the 

direction of propagation indicate how the signal reaches the areas around the corner due 

to a source of secondary waves situated at the corner of the obstacle. Note that the 
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single source of secondary waves shown in Figure 2.3 is only one of the infinite 

numbers of such sources on the wavefront. 

 

The more the waves have to bend around a corner, the more they lose their energy. 

Therefore the areas to which the rays have to bend more, gain relatively less additional 

field strength than the areas to which the rays can proceed almost linearly. The field 

strength of the secondary waves is much smaller than the one of the primary waves. In 

practice the diffracted waves can be neglected if there is a line-of-sight between the 

transmitter and the receiver. 

 

Figure 2.3: Diffraction 

2.2.5 Scattering 

Scattering phenomena occurs when the medium through which the wave travels is 

composed of objects with small dimensions, when compared to the wavelength, and 

where the number of obstacles is large. Scattered waves are produced when waves 

impinge on rough surfaces, foliage and small objects in general [9]. 
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2.3 Propagation Models  

A propagation model is a set of mathematical expressions, diagrams, and algorithms 

used to represent the radio characteristics of a given environment. Generally, the 

prediction models can be either empirical (also called statistical) or theoretical (also 

called deterministic), or a combination of these two. While the empirical models are 

based on measurements, the theoretical models deal with the fundamental principles of 

radio wave propagation phenomena. 

 

In the empirical models, all environmental influences are implicitly taken into account 

regardless of whether they can be separately recognized. This is the main advantage of 

these models. On the other hand, the accuracy of these models depends not only on the 

accuracy of the measurements, but also on the similarities between the environment to 

be analyzed and the environment where the measurements are carried out. The 

computational efficiency of these models is usually satisfying. 

 

The deterministic models are based on the principles of physics and, due to that; they 

can be applied to different environments without affecting the accuracy. In practice, 

their implementation usually requires a huge database of environmental characteristics, 

which is sometimes either impractical or impossible to obtain. The algorithms used by 

deterministic models are usually very complex and lack computational efficiency. For 

that reason, the implementation of the deterministic models is commonly restricted to 

smaller areas of microcell or indoor environments. Nevertheless, if the deterministic 
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models are implemented correctly, greater accuracy of the prediction can be expected 

than in the case of the empirical models. 

 

On the basis of the radio environment, the prediction models can be classified into two 

main categories, outdoor and indoor propagation models. Further, in respect of the size 

of the coverage area, the outdoor propagation models can be subdivided into two 

additional classes, macrocell and microcell prediction models as shown in Figure 2.4 

[10, 72].  

 

Figure 2.4: Classification of Propagation Models developed to-date 
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2.4 Macrocell Propagation 

Macrocell design philosophy is based on the assumptions of high radiation centrelines, 

usually placed above the surroundings; transmitter powers on the order of several tens 

of Watts; and large cells whose dimensions are on the order of several tens of 

kilometers. Under these assumptions, LoS conditions are usually not satisfied and the 

signal from the transmitter to the receiver propagates by means of the diffraction and 

the reflection. Also, for large cells the effects of refraction are very important. All of 

these factors make the problem of field strength prediction very difficult. For years, a 

large number of researchers have been struggling with this problem. As a result a large 

number of models have been proposed [75]. Few of these models are mentioned in 

figure 2.4.  

2.5 Microcell Propagation 

A microcell is a relatively small outdoor area such as a street with the base station 

antenna below the rooftops of the surrounding buildings. The coverage area is smaller 

compared to macrocells and it is shaped by surrounding buildings. A microcell enables 

an efficient use of the limited frequency spectrum and it provides a cheaper 

infrastructure. The main assumptions are relatively short radio paths (on the order of 

200m to 1000m), low base station antennas (on the order of 3m to 10m), and low 

transmitting powers (on the order of 10mW to 1W). Today, microcells are very often 

used in IS-95, PCS, DCS, GSM, DECT, etc.  
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There are many prediction models for a microcell situation such as Two-Ray model, 

Models based on UTD and multiple image theory, Lee microcell mode etc. [10]. 

2.6 Indoor Propagation 

The indoor radio channel differs from the traditional mobile radio channel in two 

aspects – the distances covered are much smaller, and the variability of the environment 

is much greater for a much smaller range of T-R separation distances. It has been 

observed that propagation within buildings is strongly influenced by specific features 

such as the layout of the building, the construction materials, and the building type.  

 

Indoor radio propagation is dominated by the same mechanisms as outdoor:  reflection, 

diffraction, and scattering. However, conditions are much more variable. For example, 

signal levels vary greatly depending on whether interior doors are open or closed inside 

a building. Where antennas are mounted also impacts large-scale propagation. Antennas 

mounted at desk level in a partitioned office receive vastly different signals than those 

mounted on the ceiling. Also, the smaller propagation distances make it more difficult 

to insure far-field radiation for all receiver locations and types of antennas [6, 72]. Few 

examples of indoor models are; Ray-Tracing models, Finite-Difference Time-Domain 

(FDTD) Models, ETF-Artificial Neural Network (ANN) model etc. 

 

Only a few very popular outdoor (macrocell and microcell) and indoor  models like 

Okumura model, ITU (CCIR) model, Hata Model, Walfisch Ikegami model, Walfisch 

Bertoni model, Ray-Tracing (indoor propagation model) and Two-Ray Models 
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(Microcell model) are discussed here. The details of the other models could be found in 

[11-20]. 

2.6.1 Okumura Model 

The Okumura et al. method [21] is based on empirical data collected in detailed 

propagation tests over various situations of an irregular terrain and environmental 

clutter. The results are analyzed statistically and compiled into diagrams. The basic 

prediction of the median field strength is obtained for the quasi-smooth terrain in the 

urban area. The correction factor for either an open area or a suburban area should be 

taken into account. The additional correction factors, such as for a rolling hilly terrain, 

the isolated mountain, mixed land-sea paths, street direction, general slope of the terrain 

etc., make the final prediction closer to the actual field strength values. In the present 

engineering practice, the Okumura et al. method is widely used. This is a method 

originally intended for VHF and UHF land-mobile radio systems and involves neither 

complex computations nor an elaborate theory. Much of its experimental data have been 

incorporated in the ITU (CCIR) reference curves as well as in other popular models. 

 

However, many authors [13, 22, and 23], show certain reserve toward the application of 

the Okumura model. They note that extensive data regarding its performance must be 

obtained before its use may be advocated. In addition, more careful interpretation of the 

definitions of various parameters needs to be made. When assessing the values of the 

model’s parameters, the influence of the subjective factors is not easy to avoid, thus 

yielding different results for the same problem.  
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In order to make the Okumura technique suitable for computer implementation, Hata 

has developed the analytic expressions for the medium path loss for urban, suburban, 

and open areas [24, 25]. Although these expressions are only approximations and 

therefore have some limitations, they are almost always used in practice instead of the 

basic Okumura curves.   

 

2.6.2 ITU (CCIR) Model 

An empirical formula for the combined effects of free-space path loss and terrain-

induced path loss was published by the CCIR (Comité Consultatif International des 

Radio-Communication, now ITU-R) and is given by [26] 
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where 1h  and 2h  are base station and mobile antenna heights in meters, respectively, 

kmd  is the link distance in kilometres, MHzf  is the centre frequency in megahertz, and  
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This formula is the Hata model for medium-small city propagation conditions, 

supplemented with a correction factor, B. The term B is such that the correction B = 0 is 
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applied for an urban area, one that is about 15% covered by buildings; for example, if 

20% of the area is covered by buildings, then dBB 5.220log2530 10 −=−=  

 

2.6.3 Hata Model 

The Hata model is an empirical formulation of the graphical path loss data provided by 

Okumura, and is valid from 150 MHz to 1500 MHz. Hata presented the urban area 

propagation loss as a standard formula and supplied correction equations for application 

to other situations. The standard formula for median path loss in urban areas is given by  
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where cf is the frequency (in MHz) from 150 MHz to 1500 MHz, teh  is the effective 

transmitter (base station) antenna height (in meters) ranging from 30 m to 200 m, reh  is 

the effective receiver (mobile) antenna height (in meters) ranging from 1 m to 10 m, d is 

the T-R separation distance in km, and )( reha  is the correction factor for effective 

mobile antenna height which is a function of the size of the coverage area. For a small 

to medium sized city, the mobile antenna correction factor is given by 

)12.2()8.0log56.1()7.0log1.1()( dBfhfha crecre −−−=  

and for a large city, it is given by 
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To obtain the path loss in suburban area the standard Hata formula in equation (2.11) is 

modified as 

)14.2(4.5)]28/[log(2)()( 2

5050 −−= cfUrbanLdBL  

For path loss in open rural areas, the formula is modified as 

)15.2(98.40log33.18)(log78.4)()( 2

5050 −−−= cc ffurbanLdBL  

 

Although Hata’s model does not have any of the path-specific corrections which are 

available in Okumura’s model, the above expressions have significant logical value. 

The prediction of the Hata model compare very closely with the Okumura model, as 

long as d exceeds 1 km. this model is well suited for large cell mobile systems, but not 

personal communication systems (PCS) [6].  

 

2.6.4 COST 231 –Walfisch Ikegami Model 

In Europe, research under the Cooperation in the field of Scientific and Technical 

Research (COST) program has developed improved empirical and semi deterministic 

models for mobile radio propagation [27]. In particular, Project 231 (COST 231), 

entitled “Evolution of Land Mobile Radio Communications”, resulted in the adoption of 

propagation modelling recommendations for cellular and PCS applications by the 

International Telecommunications Union (ITU), including a semi-deterministic model 

for medium-to-large cells in built-up areas that is called the Walfisch-Ikegami model 

[28]. This model (WIM) has been shown to be a good fit to measured propagation data 

for frequencies in the range of 800 to 2,000 MHz and path distances in the range of 0.02 

to 5 km. The COST 231-Walfisch-Ikegami model (COST 231-WI) [29] has been used 
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extensively in typical suburban and urban environments where the building heights are 

quasi-uniform. The designers of the public mobile radio systems (e.g., GSM, PCS, 

DECT, DCS, etc.) often use this model [10]. 

 

The WIM distinguishes between LOS and non-line-of-sight (NLOS) propagation 

situations. In a LOS situation, there is no obstruction in the direct path between the 

transmitter and the receiver, and the WIM models the propagation loss in dB by the 

equation 

)16.2(02.0,log20log2664.42 1010 ≥++= kmMHzkmLOS dfdL  

 

Note that the propagation law (power of distance) for the LOS situation is modelled as 

being 26/10 = 2.6, so that 6.2dLLOS ∝ . This model assumes that the base station antenna 

height (≥ 30m) ensures that the path has a high degree of fresnel zone clearance. The 

propagation loss in free space is given by 
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where md  is the distance in meters. 
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For NLOS path situations, the WIM gives an expression for the path loss that uses the 

parameters illustrated in figure 2.5. 

 

bh  = Base antenna height over street level, in meters (4 to50 m)  

mh = Mobile station antenna height in meters (1 to 3 m) 

Bh  = Nominal height of building roofs in meters 

Bbb hhh −=∆  = Height of base antenna above rooftops in meters 

mBm hhh −=∆  = Height of mobile antenna below rooftops in meters 

   b  = Building separation in meters (20 to 50m, if no data) 

  w  = Width of street (b/2 recommended if no data) 

    φ = Angle of incident wave with respect to street (use 90° if no data),  

  d  = Distance between transmitter and receiver (20...5000 m) 

Bbb hhh −=∆

mBm hhh −=∆bh Bh

mh

 

Figure 2.5: WIM NLOS parameters 
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In the absence of data, building height in meters may be estimated by three times the 

number of floors, plus 3m if the roof is pitched instead of flat. The model works best for 

base antennas well above the roof height. 

 

Using the parameters listed above, for NLOS propagation paths the WIM gives the 

following expression for the path loss in dB: 
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where 

=fsL  Free-space loss = MHzkm fd 1010 log20log2045.32 ++  (2.20) 

rtsL  = Roof-to-street diffraction and scatter loss  (2.21) 

msdL = Multiscreen diffraction loss    (2.22) 

The loss terms rtsL  and msdL are functions of the NLOS parameters. 

The formula given for rtsL  involves an orientation loss, oriL ; 
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The formula given for the multi-screen diffraction loss term msdL is 

)25.2(log9loglog 101010 bfkdkkLL MHzfkmdabshmsd −+++=  
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In this expression, bshL is shadowing gain (negative loss) that occurs when the base 

station antenna is higher than the rooftops: 
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msdL  decreases for wider building separation (b). The quantities
ak ,

dk , and 

fk determine the dependence of the loss on the distance (
kmd ) and the frequency 

( MHzf ). The term ak in the formula for the multiscreen diffraction loss is given by 
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this relation results in a 54-dB loss term if the base station antenna is above the rooftops 

( 0>∆ bh ), but more than 54 dB if it is below the rooftops. The increase from 54 dB is 

less if the link distance is rather small (less than 500m). 

 

The distance factor dk in the formula for msdL  is given by 
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msdL  Increases with distance at 18dB/decade if the base antenna is above the rooftops 

( 0>∆ bh ). But if the antenna is below the rooftops, the increase is higher (e.g., 30dB per 

decade when it is only 20% as high as the buildings ( 8.0/ =∆ Bb hh  ). 
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The frequency factor fk in the formula for the multiscreen diffraction loss is given by 
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fsL  and rtsL  together give an increase of 30dB per decade of frequency. The expression 

for fk indicates that this should be adjusted downwards for f < 6.21 GHz for medium 

city and suburban environments or f < 2.29 GHz for a metropolitan area [26, 73]. 

 

2.6.5 Walfisch and Bertoni model 

A model developed by Walfisch and Bertoni considers the impact of rooftops and 

building heights by using diffraction to predict average signal strength at street level. It 

is a semi-deterministic model. The model considers the path loss, S, to be the product of 

three factors: 
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where P0 is the free space path loss between isotropic antennas given by  
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The factor 2Q  reflects the signal power reduction due to buildings that block the 

receiver at street level. The 1P  term is based on diffraction and determines the signal 
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loss from the rooftop to the street. The model has been adopted for the IMT-2000 

standard [6]. 

 

2.6.6 Two-Ray Model (Microcell model)  

Numerous propagation models for microcells are based on a ray-optic theory. In 

comparison with the case of macrocells, the prediction of microcell coverage based on 

the ray-model is more accurate. One of the elementary models is the two-ray model. 

The two-ray model [30] is used for modelling of the LoS radio channel and is described 

in Fig. 2.6 below, 

 

 

Figure 2.6: Two-Ray Model; the ray paths 
 

The transmitting antenna of height h1 and the receiving antenna of height h2 are placed 

at distance d from each other. The received signal Pr for isotropic antennas, obtained by 

summing the contribution from each ray, can be expressed as: 
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where Pt is the transmitter power, r1 is the direct distance from the transmitter to the 

receiver, r2 is the distance through reflection on the ground, and Γ(α) is the reflection 

coefficient depending on the angle of incidence α and the polarization. 
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The reflection coefficient is given by:  
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where θ = 90°-α and a = 1/ε or 1 for vertical or horizontal polarization, respectively. εr 

is a relative dielectric constant of the ground.  

 

Figure 2.7: The receiving power, Pt= 1W, f=900MHz, h1=8.7m and h2=1.6m [30]. 

 

In Fig.2.7 above, the received power given by Eq. (2.32) is shown as a function of the 

distance for the cases of horizontal and vertical polarizations as well as for the case 

assuming Γ(θ) = -1. For large distances α is small, and Γ(θ) is approximately equal to    

- 1. For short distances, the value of Γ(θ) decreases and it can even be zero for vertical 

polarization.  

 

Also, there are more complex models based on the ray-optic theory. The four-ray model 

consists of a direct ray, ground-reflected ray, and two rays reflected by buildings. The 
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six-ray model, besides the direct and the ground-reflected ray, takes four rays reflected 

by the building walls along the street. If a model considers a larger number of rays, the 

prediction tends to be more accurate, but the computational time is significantly 

increased. The problem deserving special attention is that of the corner diffraction. Two 

popular models considering this effect are the GTD (Geometrical Theory of Diffraction) 

model [31], and the UTD (Uniform Theory of Diffraction) model [32]. 

 

2.6.7 Ray-Tracing Model 

The ray-tracing algorithm [20,31 and 32] calculates all possible signal paths from the 

transmitter to the receiver. In basic ray-tracing models, the prediction is based on the 

calculations of free-space transmissions and reflections from the walls. More complex 

ray-tracing algorithms include the mechanism of diffraction, diffuse wall scattering, and 

transmission through various materials. In the end, the signal level at any specific 

location is obtained as a sum of the components of all paths between the transmitter and 

the receiver. In addition to the propagation losses, the time dispersion of the signal can 

be successfully predicted by the ray-tracing models.  

 

Today, the ray-tracing models belong to a group of the most accurate field strength 

prediction models. However, they require a very detailed layout of the area to be 

analyzed. The accuracy of the model depends on the accuracy and complexity of the 

area layout database. On the other hand, the implementation of these models requires 

extensive computational resources.  
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Ray-tracing algorithms can also be used for signal level prediction in outdoor 

environments, but for relatively smaller areas [10].  

2.7 Conclusions 

This chapter has presented an overview of radio wave principles and various 

propagation models reported to-date. The Walfisch-Ikegami model reviewed in this 

chapter is used for comparing the performance of our proposed neural network based 

location predictors in chapter 4.  

 

The next chapter 3 discusses and critically evaluates the predominant location 

estimation techniques in use.  
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Chapter 3 

 

3 Review of Location Estimation Methods  

The location of mobile radios first appeared in military systems developed during the 

Second World War. The idea was simple: to find people in distress, or to detect and 

eliminate people causing distress. Location estimation is a process to identify the 

location of the caller by using various position determination technologies also known 

by terms such as radio location, radio navigation, position location, positioning, and so 

forth. The location can be expressed in different ways using different reference frames 

such as absolute spatial location, descriptive location, or relative location. The different 

ways of expressing location will pinpoint the location to certain point, area or region 

somewhere on or close to the earth. Another factor that affects the accuracy of the 

location is the use of location determination technology. A vast majority of applications 

of location estimation use the GPS satellite navigation system which provides location 

estimates with an accuracy of a couple of meters. However, in a city or building where 

there is often no direct Line of Sight (LoS) between GPS satellite and the terminal, this 

causes a severe degradation of accuracy. In such cases, location estimation using 

cellular network systems can offer advantages. The different techniques currently in use 

are discussed in this chapter.  
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3.1 Location Determination Technologies 

Location Technologies mostly used by wireless carriers are handset-based and network-

based [34]. These involve different levels of positional accuracy, hardware and software 

investment levels, and implications for the mobile operators. Few handset and network 

based technologies are described in the following sections. 

 

3.1.1 Handset-based Location Technologies 

In handset based location, the mobile station (MS) receives signals from the base 

stations (BS) and computes its own location. Few handset based location technologies 

are discussed below. 

 

3.1.1.1 Cell-ID 

Cell-ID operates in GSM, GPRS and WCDMA networks. It requires the network to 

identify the base station (BS) to which the cell phone is communicating and the location 

of that BS. The Cell-ID Location service identifies the mobile station (MS) location as 

the location of the Base Station and passes this information on to the location services 

application. Cell-ID was used earlier when high levels of location accuracy were neither 

mandatory nor necessary. If a handset is being used to make a call, then the information 

about the cell site that it is in will be updated to the network in real-time. However, if 

the handset is idle (i.e., switched on but not transmitting), then the last known 

transmission location will be stored by the network in the Home Location Register 

(HLR). In order to update the network’s information on the location of a handset, the 
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network will page the device, prompting it to monitor the signal strength of the 

surrounding BS, thereby informing the network of its Cell ID. 

 

The accuracy of this method depends on the cell size, and can be very poor in many 

cases, since typical GSM Cell is anywhere between 2km to 20km in diameter. With 

Pico cells, accuracy of 150 meters can be achieved. Using either one or both of the 

following techniques – Timing Advance (TA) and Signal Strength (RX 

Measurement/NMR), can increase the level of accuracy. 

 

3.1.1.2 Cell-ID + Timing Advance (TA) 

The time at which a terminal sends its transmission burst is critical to the efficient 

functioning of a GSM/GPRS network. Every mobile station within a given cell will be 

at a varying distance from the serving base station, yet the burst from each device must 

reach the base station at the exact moment that their receptive timeslots become 

available. Consequently, it is necessary for the mobile station to co-ordinate with the 

base station at the right time. Even though the burst arrive either before or after the 

availability of the allocated timeslot, the mobile station is instructed to “advance” the 

transmission of its burst accordingly. As the duration of the timing advance for each 

mobile station is dependent upon its distance from the base station, it is possible to use 

this information to determine how far away the caller is. TA information is only of any 

use in increasing the level of positioning accuracy within cells with a radius greater than 

550 meters. This is because the adjustments made to the timing of the mobile station’s 
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transmissions are calculated depending on how many multiples of 500-550 meters the 

mobile station is distant from the base station. 

 

3.1.1.3 Cell-ID + Signal Strength (RX Measurements) 

The Mobile Station continuously measures the signal strength from each of the base 

station report this information back to the serving base station. This is so that the 

Mobile Station is able to transmit to – and receive from – the base station that has 

optimum signal strength, thereby improving the quality of call for the end user and 

making most efficient usage of network infrastructure. With this signal strength 

information, it is theoretically possible to calculate the position of the caller, by taking 

into consideration the rate at which the strength of an RX signal degrades as the 

distance between the transmitter and receiver increases. There are however number of 

factors that limit the effectiveness of this method, distance is not the only factor to 

affect RF waveform propagation. The characteristic of terrain between the transmitter 

and receiver, as well as the issue of indoor attenuation both has significant impact upon 

these measurements. The denser the material that a building is made from, as well as the 

higher the floor that a person is calling from, both have an increasingly negative affect 

on the strength of the signal received. 

 

Signal Strength/RX measurements are sometimes referred to as Network Measurement 

Results (NMR) [35]. 
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3.1.2 Network-Based Location Technologies 

In network based techniques, base stations (BS’s) receive signals from the mobile 

station (MS) and send the information to a control centre (CS) where the mobile stations 

location is computed.  

 

3.1.2.1 Network based triangulation technologies 

A number of different network-based measurement technologies can be used to locate a 

mobile user. Some of the major ones are described in the following section. 

 

3.1.2.1.1 Enhanced Observed Time Difference (EOTD) 

E-OTD operates only on GSM and GPRS networks. In GSM, the MS monitors 

transmission burst from multiple neighbouring BTSs and measures the time shifts 

between the arrivals of the GSM frames from the BTSs to which it is communicating. 

These observed time differences are the underlying measurement of the E-OTD 

radiolocation method and are used to trilaterate the position of the mobile devices. The 

accuracy of the E-OTD method is a function of the resolution of the time difference 

measurements, the geometry of Neighbouring Base station and the signal environment. 

The Mobile handset must measure time difference from at least three base stations to 

support two-dimension position determination (no altitude measurement is provided). 

E-OTD requires precise time information [35]. 
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Figure 3.1: E-OTD Operations 

 

Location Measurement Units (LMUs) is required in the GSM and GPRS network for 

precise time information. Most important requirement for this technology is that BTS in 

the network is observed by at least one LMU. Further, special software is required in 

MS to support E-OTD. The need for LMUs introduces significant infrastructure 

changes, as it requires the installation of thousands of LMUs in GSM/GPRS networks. 

This needs significant network planning, an assessment of the RF impact to the 

network, adherence to local ordinances where new sites are involved, and the expense to 

plan, install, test and maintain the network of LMUs. This level of intricacy complicates 

the operator’s ability to provide roaming support for an E_OTD based location service 

and extends the time required to deploy network-wide location services.  
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E-OTD offers improved performance relative to Cell-ID, but requires the use of LMUs. 

This increases the cost and complexity of implementation, as described above. E-OTD 

also requires that a large number of data messages be exchanged to provide location 

information. And this information is updated constantly. This message traffic is much 

greater than used for A-GPS or Cell-ID, and E-OTD uses more network bandwidth than 

these technologies. The accuracy is affected by multi-path and signal reflections as it 

utilizes at least three base stations. The system is quite inaccurate in rural areas as there 

is lesser number of BTS [35]. 

 

3.1.2.1.2 Time of Arrival (TOA) and Time-Difference of Arrival (TDOA) 

TOA works by the handset bouncing a signal back to the base station, or vice-versa. 

Since radio waves travel at the speed of light (c), the distance (d) between the handset 

and the base station can be estimated from the transmission delay. (i.e. half the time 

delay between transmitting and receiving the signal). This, however, only places the 

handset as being on a circle with a radius d, with the base station at the centre of the 

circle. But if the estimate were instead made from three base stations, there would be 

three circles that would intersect at the exact location of the handset, as shown in Fig 

3.2. 

TDOA is a quite similar time-based technique. It works by measuring the relative 

arrival time at the handset of signals transmitted from three base stations at the same 

time, or vice versa (by measuring the relative arrival time at three base stations 

transmitted by the handset). The difference of arrival time defines a hyperbola, with the 
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loci at the two base stations. As three base stations are used, there are three sets of time 

differences, which create three hyperbolic equations that define a single solution.  

 

TDOA is sometime referred to TOA because – in most implementations – it requires 

less data to be exchanged over the wire connection. Precise synchronisation of the base 

stations is also essential for this technique to work. Should additional accuracy be 

required, as serving base station instructs the handset to hand-off, which causes the 

phone to transmit a new registration message. This message gives the base station a new 

set of data to make a second estimate [36]. 

 

Figure 3.2: TOA Technique 

 

3.1.2.1.3 Angle of Arrival (AOA) 

AOA is based on a classic radio-direction finding technique where a highly directional 

antenna determines a line of bearing between a handset and a BTS. The relative angles 
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can then be calculated using the phase differences across the array, or by measuring the 

power density across the array. 

 

Once the measurement has been made – normally from at least three base stations – the 

location can be calculated by simple triangulation. Unfortunately, this technique 

requires a line-of-sight connection between the handset and the base station, as reflected 

signals will provide a false line of bearing. Because GSM networks don’t operate 

exclusively under the line-of-sight conditions, this method is often used in conjunction 

with another location technique [36]. 

  

3.1.2.2 Assisted Global Positioning System (A-GPS) 

Like E-OTD, A-GPS is also a time–based technique in which the handset measures the 

arrival time of three or more signals, but in this case these are transmitted from GPS 

satellites as shown in Fig.3.3 below.  

 

Figure 3.3: A-GPS method 
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In general, the information decoded by the GPS receiver is then transmitted to the 

handset through the radio network. This bring improvements on both the ‘time to first 

fix’ (the time it takes to obtain the first location measurement) and battery life – as the 

handset no longer needs to search for and decode the signals from each available 

satellite.  

 

Removing the need to decode the satellite signals also enables detection and TOA 

estimation, which have the capability to locate a handset even under foliage, within 

cars, in most outside environments and many indoor environments. A-GPS also 

provides good vertical accuracy and velocity estimates. Signals of GPS assistance data 

to the handset may take 10 second, but – once received by the handset – assistance data 

is useful for up to four hours [36]. 

 

Currently, GPS based location information services are in commercial use - when 

accurate signal strength measurements from at least three Base Stations are available, 

geometrical (triangulation) methods are used to determine the two-dimensional (2-D) 

location co-ordinates of the mobile user. However, in a city or building where there is 

often no direct Line of Sight (LoS) between GPS satellite and the mobile terminal, this 

causes a severe degradation of accuracy. In such cases, location estimation using 

cellular network systems can offer advantages, and estimating a location using the 

signal from BS’s becomes a highly non-linear problem [37]. 
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3.2 Conclusions 

This chapter has reviewed and critically evaluated the predominant location estimation 

techniques in use. The next chapter presents a new neural network based approach for 

location estimation in both simulated and real urban environments. 
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Chapter 4 

 

4 New Neural Network Based Location Estimation 

Approach 

This chapter presents a new neural network based approach to the prediction of mobile 

locations using signal strength measurements in simulated and real urban (metropolitan) 

areas. The prediction of a mobile location using propagation path loss (signal strength) 

is a very difficult and complex task. Several techniques have been proposed recently 

mostly based on linearized, geometrical and maximum likelihood methods. An 

alternative approach based on artificial neural networks is proposed in this chapter 

which offers the advantages of increased flexibility to adapt to different environments 

and high speed parallel processing.  

 

4.1 Overview of Neural Networks Employed 

Many authors have shown that neural networks provide a good way of approximating 

non-linear functions [2, 3]. The application of neural networks discussed in this chapter 

is considered as a function approximation problem consisting of a non-linear mapping 

of signal strength input (received at several Base Stations) onto a dual output variable 

representing the mobile location co-ordinates. The signal strength data is generated 

using COST-231 Walfisch Ikegami Non-line of Sight (NLOS) models which was 

reviewed in chapter 2, on account of its extensive use in practice in typical suburban 

and urban environments where the building heights are quasi-uniform. The designers of 
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the public mobile radio systems (e.g., GSM, PCS, DECT, DCS, etc.) also often use this 

model [10]. 

 

Next we present a brief overview of the neural network models used in this work, 

namely the Multi-Layered Perceptron and Generalized Regression Neural Networks.  

 

4.1.1 Multi-layered Perceptron (MLP) 

The general structure of a multi-layered perceptron (MLP), also sometimes known as 

the back propagation network is illustrated in Figure 4.1, with inputs xi and outputs yi 

respectively, and the network can comprise one or more hidden layers. 

 

Figure 4.1: General architecture of MLP 
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In the MLP structure illustrated in Figure 4.1 above, the output yi  of each neuron of the 

n-th layer is defined by a derivable nonlinear function F [59]: 









= ∑

j

jjii ywFy    (4.1) 

Where F is the nonlinear activation function, jiw  are the weights of the connection 

between the neuron jN and iN , jy  is the output of the neuron of the ( )thn 1− layer. In our 

application, the neural networks are trained with the Levenberg-Marquardt algorithm, 

which converge faster than the back propagation algorithm with adaptive learning rates 

and momentum. The Levenberg-Marquardt rule for updating parameters (weights and 

biases) is given by [38]: 

( ) eJIJJW
TT 1−

+=∆ µ     (4.2) 

where e  is an error vector, µ  is a scalar parameter, W  is a matrix of networks weights 

and J is the Jacobian matrix of the partial derivatives of the error components with 

respect to the weights. 
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4.1.2 Generalized Regression Neural Network (GRNN) 

The generalized regression neural network (GRNN) [40, 41] is a feed-forward neural 

network based on non-linear regression theory consisting of four layers: the input layer, 

the pattern layer, the summation layer, and the output layer (see Figure 4.2).  

 

While the neurons in the first three layers are fully connected, each output neurons is 

connected only to some processing units in the summation layer. The individual pattern 

units compute their activation using a radial basis function, which is typically the 

Gaussian kernel function. The radial basis function has a maximum of 1 when its input 

is 0. As the distance between the input vector and the weight vector decreases, the 

output increases. Thus the radial basis neuron acts as a detector which produces 1 

whenever the input is identical to its weight vector. 

 

The summation layer has two different types of processing: the summation units and a 

single division unit. The number of the summation units is always the same as the 

number of the GRNN output units. The division units only sum the weighted activation 

of the pattern units without using any activation function.  

 

The training of the GRNN is quite different from the training used for the BPNN. It is 

completed after presentation of each input-output vector pair from the training set to the 

GRNN input layer only once; that is, both the centers of the radial basis functions of the 

pattern units and the weights in connections of the pattern units and the processing units 

in the summation layer are assigned simultaneously. The training of the pattern units is 

unsupervised, but employs a special clustering algorithm, which makes it unnecessary 



Chapter – 4: New Neural Network Based Location Estimation 53

   

 

to define the number of pattern units in advance. Instead, it is the radius of the clusters 

that needs to be specified before the training starts. The GRNN computes the predicted 

values “on the fly” from the training values, using the basis functions defined below 

[42]: 
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In the RBFN, the computation of the predicted values is similar: 
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However, the weights are computed from the training data using the following linear equations: 
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Figure 4.2: General Regression Neural Network (GRNN) [42] 
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4.2 Network Architecture Simulation 

The mobile architecture used for the simulations (all carried out in MATLAB) is 

discussed here. For the sake of simplicity, a square cell of dimensions 3km X 4km is 

assumed, as shown in Figure 4.3.  

 

 

 

 

Figure 4.3: The square cell used for the simulation of neural network assisted location 

estimation 

Three fixed BS’s are used for measuring signal strengths. The coverage area is divided 

into grids of different dimensions (determined by the grid size, which was varied from 

0.1km to 0.9km) for training purposes. The idea is to place the mobile in each of these 

grid intersections and transmit the signal. All the three BS’s measure the received 

signal strengths from each position of the mobile [1]. The neural net is trained on the 

generated data using the corresponding mobile location co-ordinates as its target 

outputs. The origin of coordinates is taken at the left bottom corner and all 

measurements are taken relative to it. The trained neural network’s generalization 

capability is assessed by testing on data generated with a different grid size (varying 

from 0.1km to 0.3km) to that used for training. 
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4.3 Performance Evaluation Metric 

Following [52], we use the mean distance error metric to evaluate the accuracies of our 

location algorithms. Mean distance error represents average Euclidean distance between 

the estimate (x
^
, y

^
) and the true location (x, y), i.e. 
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4.4 Simulation Results & Discussion 

We now investigate the effect of the grid size and the number of base stations on the 

location accuracy with the various location predictors. 

 

4.4.1 Simulation Results using Simulated Data 

The COST231 model represented by equations 2.16 to 2.29 was implemented to 

generate the required training and test data. The number of base stations was set to 2 

and 3 and the training grid size was fixed to 0.3km (i.e. the coverage area was divided 

into grid of dimensions 0.3km x 0.3km). The grid size for generating the test data was 

set to 0.1km.  

 

Three base stations were used to generate the training data, and the configurations of the 

various location techniques to be compared (namely, the MLP, GRNN and Linear 

Adaptive filters) were determined experimentally as described below and their 

performance evaluated using the MDE metric. 
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4.4.1.1 MLP based location estimation 

For the situation described in Figure 4.3, the training set consisted of 154 samples of 

signal strength measurements received at the three fixed BSs and the corresponding 

mobile location co-ordinates. A two-hidden layered (3-4-8-2) MLP comprising 3 inputs, 

2 hidden layers of 4 and 8 nodes, and 2 outputs, was trained using the Levenberg-

Marquardt back propagation algorithm [4], and the mean distance error (MDE) was 

calculated to equal 0.0517km after 145 epochs, with the result that the net maps any 

measurement of the training set perfectly to the location of MS for that set. For testing 

the trained neural network’s generalised capability, points other than the training set 

were generated within the same (3km x 4km) coverage area by dividing the coverage 

area into smaller grids of dimensions 0.1km X 0.1km (rather than the 0.3km x 0.3km 

grids used to generate the training data). Note that use of different grid sizes is a simple 

way of generating the simulated training and test sets, and other more conventional 

ways could also be explored and compared, such as, by using parts of the same data 

(generated at a fixed grid size) for training and test purposes. An approach similar to 

this has been adopted for the case of real signal strength data used in section 4.4.2. 

Comparison of the various approaches reported in literature [38] for selection of 

training and test sets is proposed for future work in Chapter 6. 

 

Sample test results for the MLP location predictor (for the x and y co-ordinates) are 

shown in Figures 4.4 & 4.5 respectively, for which the mobile was assumed to be at 

1271 different points on the test grid. These points on the grid were obtained by varying 

the y position of the mobile on the grid for each fixed x position. Each increment of the 

x and y location coordinate was set equal to the grid size (0.1km for the case of test data 
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generation) and the maximum value of the x and y co-ordinates were set to the 

associated coverage area dimensions, namely 4km for the x co-ordinates and 3km for 

the y co-ordinates respectively. As a result, the x and y co-ordinate values can be seen 

to have different characteristics, namely the x co-ordinates take an ‘incrementing step’ 

shaped form (as shown in Figure 4.4) whereas the y co-ordinates take a ‘ramp-like’ 

form (as shown in Figure 4.5). 

 Test Data 

BS1 BS2 BS3 
X 

Coordinates 

Y 

Coordinates 

133.09 141.47 136.57 0 0.8 

133.13 141.37 136.18 0 0.9 

133.21 141.29 135.81 0 1 

133.33 141.22 135.44 0 1.1 

133.49 141.17 135.09 0 1.2 

133.69 141.13 134.76 0 1.3 

133.91 141.11 134.46 0 1.4 

134.17 141.1 134.17 0 1.5 

134.46 141.11 133.91 0 1.6 

134.76 141.13 133.69 0 1.7 

135.09 141.17 133.49 0 1.8 

135.44 141.22 133.33 0 1.9 

135.81 141.29 133.21 0 2 

136.18 141.37 133.13 0 2.1 

136.57 141.47 133.09 0 2.2 

136.97 141.58 133.09 0 2.3 

137.37 141.71 133.13 0 2.4 

137.78 141.84 133.21 0 2.5 

138.19 141.99 133.33 0 2.6 

138.6 142.15 133.49 0 2.7 

139.01 142.32 133.69 0 2.8 

139.42 142.5 133.91 0 2.9 

139.83 142.69 134.17 0 3 

133.43 142.27 139.47 0.1 0 

133.15 142.07 139.04 0.1 0.1 

132.9 141.88 138.61 0.1 0.2 

Table: 4.1: Sample simulated test data 
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Figures 4.6 and 4.7 show a selected part of the target (test) versus MLP predicted X and 

Y location coordinates. Finally, the estimation (prediction) errors for the X and Y co-

ordinates are shown in figures 4.8 and 4.9 from which it can be seen that the maximum 

prediction error in the X and Y location co-ordinates are around 0.005km and 0.007km 

respectively. Note that the MLP predictions on the test data can, of course, be further 

improved by training the net on a larger set of readings (using a smaller grid than 0.3km 

x 0.3km). 

 
Figure 4.4: X-location co-ordinates for MLP with 3 BS’s using simulated data -  

predicted vs target test data) 
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Figure 4.5: Y-location co-ordinates for MLP with 3 BS’s using simulated data -  

predicted vs target test data) 

 
Figure 4.6: Part sample X-location co-ordinates for MLP network with 3 BS’s using 

simulated data - predicted vs target test data 
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Figure 4.7: Part sample Y-location co-ordinates for MLP network with 3 BS’s using 
simulated data - predicted vs target test data 

 

 

 

Figure 4.8: Estimation error in X co-ordinates for MLP Predictor using simulated data 
and 3 Base stations (Note Y-axis scale: ±0.05km) 
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Figure 4.9: Estimation error in Y co-ordinates for MLP predictor using simulated data 
and three base stations (Note Y-axis scale: ±0.05km) 

 

 

 

4.4.1.2 GRNN based location estimation 

Another neural network namely the Generalised Regression Neural Network (GRNN) 

was used for the situation described in Figure 4.3 above for performance comparison. 

As mentioned earlier, GRNNs are a kind of radial basis networks that are often used for 

function approximation [41]. 

 

As per the case for the MLP above, the training set for the GRNN consisted of 154 

samples of signal strength measurements received at the three fixed BSs (generated with 

a grid size of 0.3km x 0.3km) and the corresponding mobile location co-ordinates.   

 

For testing the trained neural network’s generalised capability, points were again 

generated within the same (3km x 4km) coverage area by dividing the coverage area 

into grids of dimensions 0.1km X 0.1km. The GRNN location estimation (prediction) 
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errors for the X and Y co-ordinates are shown in Figures 4.10 and 4.11, from which it 

can be seen that the maximum prediction error in X- and Y-location co-ordinates are 

around 0.4km and 0.266km respectively. 

 

Figure 4.10: Estimation error in X co-ordinates for GRNN predictor using simulated 
data and three base stations (Y-axis range: ±1km) 

 

 

Figure 4.11: Estimation error in Y co-ordinates for GRNN predictor using simulated 
data and three base stations (Y-axis scale: ±1km) 
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4.4.1.3 Linear Adaptive Filter based location estimation 

For comparison purposes, a linear adaptive filter, employing a Finite Impulse Response 

(FIR) structure and least squares based adaptation [38] with four inputs (including one 

bias input), was also trained and tested on the same data sets as the MLP and GRNNs.  

  

The location estimation (prediction) errors for the X and Y co-ordinates (for the linear 

predictor) are shown in Figures 4.12 & 4.13 respectively, from which it can be seen that 

the maximum prediction error in X- and Y-location co-ordinates are around 2km and 

1.6km respectively, which are both clearly very high for the 4km x 3km grid area.. It is 

interesting to note the periodic pattern in the estimation errors for both the X and Y co-

ordinates which are similar to the shape of the original X and Y co-ordinates (shown in 

Figure 4.4 and 4.5 respectively). This finding shows the inability of the linear predictor 

to learn the non-linear mapping from the of signal strength input onto the dual location 

co-ordinates.  

 

Figure 4.12: Estimation error in X co-ordinates for Linear adaptive filter predictor 

 using simulated data and three base stations (Note Y-axis scale: ±2km) 
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Figure 4.13: Estimation error in Y co-ordinates for Linear adaptive filter predictor 

using simulated data and three base stations (Note Y-axis scale: ±2km) 

 

Finally, Table 4.2 summarizes and compares the performance of the MLP, GRNN and a 

conventional linear adaptive filter in terms of the Mean Distance Error (MDE). As can 

be seen from Table 4.2, the MLP based location predictor gives the best MDE 

performance on the test set followed by the GRNN and the adaptive linear predictor, 

which as expected is found to exhibit the worst MDE performance on account of its 

inherent inability to approximate the non-linear mapping of signal strength input 

(received at the three Base Stations) onto the dual output variable representing the 

mobile location co-ordinates. 
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Location 
Predictor 
Used 

Training 
Set size (grid 
size=0.3km

2
) 

Test  
Set Size 
(grid 
size=0.1km

2
) 

Mean 
Distance 
Error (km) 

Maximum 
Error X (km) 

Maximum 
Error Y 
(km) 

No. 
of 
BS 

MLP 154 1271 0.0517 0.0051 0.0071 3 

GRNN 154 1271 4.2218 0.4000 0.2666 3 

Linear 154 1271 52.3923 2.0653 1.6074 3 
              

 

Table: 4.2: MDE Performance comparison of Location Predictors with Signal Strength 

Measurements using Three Base Stations 

 

 

4.4.1.4 Effect of grid size on Location Accuracy (for simulated data)  

The effect of varying the grid size for the COST231 propagation model on the location 

accuracy was experimentally investigated. For this purpose, the test grid size was fixed 

to 0.1kmx0.1km (resulting in 1271 test data points) whereas the training grid size was 

varied between 0.1kmx0.1km (resulting in 1271 training data points) to 0.7kmx0.7km 

(resulting in 30 training data points). The MDE results of the MLP location predictor 

are shown in Table 4.3 and plotted in Figure 4.14. It can be seen from both Table 4.3 

and Figure 4.14 that, as expected, the training MDE performance of the location 

predictor improves with the increasing size of training set (generated using small grid 

sizes). However, in a real environment, a trade-off would have to be determined 

between the grid size (used for generating the training set) and the desired accuracy of 

location estimation on the unseen test set. 

Location 
Predictor 
Used 

Training 
Set Grid 
Size (km2) 

Training 
Set size 

Test  
Set Size 

Mean 
Distance 
Error (km) 

No. of 
Base 
Stations 

0.1 1271 1271 0.0503 3 

0.3 154 1271 0.0528 3 

0.5 63 1271 0.1567 3 

0.6 42 1271 2.8607 3 
MLP 
 
 0.7 30 1271 3.6073 3 

Table: 4.3: MDE Performance vs Grid Size 
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Figure 4.14: Mean Distance Error vs Grid Size 

 

 

4.4.2 Simulation results using real data 

Limited real signal-strength data was obtained for evaluation purposes from a UK 

telecommunications company, which was measured in a small English town, 

Chippenham. The measurements were obtained from three base stations. Additional 

information on the real data was not available.  

 

4.4.2.1 Case I: Performance comparison of Location Predictors using Real Data 
from 3 BSs 

 

The performance of the linear and two neural network predictors, namely the MLP and 

GRNN models, was evaluated on the 772 sample real data set which, due to its very 

limited size, was arbitrarily partitioned into a 501 sample training set and a 271 sized 

test set. The structure and parameters of the neural and the linear predictors were 

obtained experimentally using a trial and error approach. The best MLP predictor’s 

structure comprised three inputs (corresponding to the three BS signal strength 

measurements), two hidden layers of 8 and 16 (sigmoidal) nodes respectively, and two 
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outputs (representing the dual output co-ordinates). On the other hand, the best GRNN 

predictor also comprised three inputs, two outputs and two hidden layers, but with the 

first hidden layer consisting of 501 Gaussian RBF neurons corresponding to the number 

of input/target vectors (and with a spread of 1.2 which was experimentally selected to 

provide a smooth fitting of the data) and the second layer comprising 501 linear 

(summation) neurons. Lastly, the best linear (least squares based) predictor comprised 4 

weights (co-efficients) estimated using the least squares method. The MDE performance 

measures obtained by the three location predictors are illustrated in Table 4.4. 

 

As can be seen from the Table 4.4, the MLP predictor gives the best MDE performance 

(with the lowest MDE of 0.0482km, and maximum X and Y co-ordinate prediction 

errors of 0.005km and 0.0069km respectively) closely followed by the GRNN (with an 

MDE of 0.0526km) and the linear adaptive predictor which gives the worst performance 

as expected (with an MDE of 223km). For illustrative purposes, the results for the MLP 

predictor (X and Y location co-ordinate predictions) are also shown in Figures 4.15 and 

4.16 respectively, along with the corresponding prediction errors which are illustrated in 

Figures 4.17 and 4.18 respectively.  
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Figure 4.15: X-location co-ordinates (MLP predicted vs target test data) 

 

 

 
 

Figure 4.16: Y-location co-ordinates (MLP predicted vs target test data) 
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Figure 4.17: Estimation error in X co-ordinates for the MLP location predictor 

 

Figure 4.18: Estimation error in Y co-ordinates for the MLP location predictor 

Location 
Predictor 
Used 

Training 
Set size (grid 
size=0.3km

2
) 

Test  
Set Size (grid 
size=0.1km

2
) 

Mean 
Distance 
Error 
(km) 

Maximum 
Error X 
(km) 

Maximum 
Error Y 
(km) 

No. of 
BS 

MLP 501 271 0.0482 0.0054 0.0069 3 

GRNN 501 271 0.0526 0.0049 0.0066 3 

Linear 501 271 223.1791 33.8377 1.3953 3 

             

 

Table: 4.4: MDE Performance comparison of Location Predictors with Signal Strength 

Measurements using Three BSs 



Chapter – 4: New Neural Network Based Location Estimation 70

   

 

4.4.2.2 Case II: Performance comparison of Location Predictors using Real Data 
from two BSs 

 

Next, the performance of the two neural predictors was compared for the case of data 

measurements taken from just two BSs. The MDE performance measures are shown in 

Table 4.5, from which it can be seen that both the neural location predictors are still 

capable of providing accurate location estimates in spite of the very limited information 

available. For this case, the GRNN predictor can be seen to be slightly more effective 

compared to the MLP predictor in providing accurate locations estimates in spite of 

having been trained on measurements from only 2 BSs, yielding a MDE of 0.0430km 

(with maximum X and Y co-ordinate prediction errors of 0.005km and 0.0069km 

respectively) compared to the MLP’s MDE of 0.0044 (with maximum X and Y co-

ordinate prediction errors of 0.0063km and 0.0058km respectively). However, since this 

study has only involved very limited (available) real data, additional experiments will 

need to be conducted in order to draw more general conclusions about the comparative 

performance evaluation of the two neural predictors. 
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Figure 4.19: X-location co-ordinates for GRNN predictor: predicted vs target test data 

for 2 BSs 

 

Figure 4.20: Y-location co-ordinates for GRNN predictor: predicted vs target test data 

for 2 BSs 
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Figure 4.21: Estimation error in X co-ordinates for the GRNN location predictor 

 

 

Figure 4.22: Estimation error in Y co-ordinates for the GRNN location predictor 
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Location 
Predictor 
Used 

Training 
Set size (grid 
size=0.3km

2
) 

Test  
Set Size 
(grid 
size=0.1km

2
) 

Mean 
Distance 
Error (km) 

Maximum 
Error X (km) 

Maximum 
Error Y 
(km) 

No. 
of BS 

MLP 500 270 0.0444 0.0063 0.0058 2 

GRNN 500 270 0.0430 0.0049 0.0066 2 

              

 

Table: 4.5: MDE Performance comparison of Location Predictors with Signal Strength 

Measurements using Two BSs 

 

4.5 Discussion & Conclusions: 

This chapter has presented new MLP and GRNN neural network based location 

predictors which have been shown to be capable of performing effective approximation 

of the non-linear mapping of signal strength input (received at the two or more Base 

Stations) onto the dual output variable representing the mobile location co-ordinates. 

The MDE performance of the various location predictors was investigated for the case 

of a simulated mobile architecture employing the COST-231 NLOS propagation model. 

It was found that the MLP location predictor was more effective than the RBF based 

GRNN and linear predictors. Next, the performance of the neural predictors was 

evaluated using very limited real data provided by a UK telecommunications company 

(for a small UK town), and both the neural predictors were found to produce impressive 

location predictions for the case of data from three BSs. Following this, additional 

simulation results were used to demonstrate that both the neural predictors are capable 

of providing almost equally accurate location estimates even in the case of more limited 

real data from just two BSs. This is a very interesting finding which needs further 

investigation (using more extensive real data from a range of urban and indoor 

environments). 

Note that the parameters (number of hidden layers, neurons, learning rates, RBF 

centres, spreads etc.) were all determined experimentally using a trial and error 
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approach and are thought to be reasonable but these could be further optimised. In 

conclusion, it can be argued that the MLP predictor can perform better than the GRNN 

in terms of the MDE performance measure. As mentioned earlier, a reduction in the 

number of BSs from three to two was found to have minimal detrimental effect on the 

MDE performance measure of both the neural location predictors. On the contrary, for 

the case of the conventional tri-lateration technique, an accurate and unique 

determination of the relative location of a point on a 2D plane requires at least 3 

reference points.  

 

The next chapter reviews the co-channel interference suppression problem in cellular 

networks and compares the performance of selected neural network based equalizers for   

overcoming co-channel interference in co-channel systems. 

 

 

 

 



Chapter – 5: Neural Network Based Equalizers for Co-Channel Interference 

Suppression Problem  75

   

 

Chapter 5 

 

5 Neural Networks for Co-Channel Interference 

Suppression in Cellular Networks 

 

In this chapter, the problem of adaptive equalization of digital communication channels 

in the presence of co-channel interference is briefly reviewed. An overview of 

conventional approaches to the problem including the use of neural networks is 

presented and selected neural networks are then applied to the problem of adaptive 

equalization in the presence of Inter-Symbol Interference (ISI), Additive White 

Gaussian Noise (AWGN), and Co-Channel Interference (CCI). The neural network 

based equalizers are shown to work without any prior knowledge of the interfering 

signals or the transmission and co-channel orders. Finally, a realistic severe amplitude 

distorted co-channel system is used as a case study to illustrate the superior Bit Error 

Rate (BER) performance of the functional-link neural network based Decision 

Feedback Equalizer compared to other conventional linear and non-linear neural 

network equalizers. 

5.1 Introduction 

 

Adaptive equalization is known to be an important technique for combating distortion 

and Inter-Symbol Interference (ISI) in communication channels. However, many 

communication systems are also impaired by what is known as co-channel interference 

(CCI). Many digital communications systems such as digital cellular radio (DCR) 
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systems encounter CCI, adjacent channel interference (ACI), ISI and AWGN. The CCI 

is caused due to frequency reuse and the frequency spacing in different cells contributes 

to the ACI. While these effects affect the DCR in particular, the effects of ISI due to 

narrow-band channel characteristics affect all digital communication systems in general.  

Frequency reuse is referred to the employment of radio channels on the same carrier 

frequency to cover different areas or cells situated sufficiently apart from one other, and 

allow cellular radio systems to handle far more simultaneous calls than the total number 

of allocated channel frequencies. Signals for co-channel cells (i.e. cells of the same 

channel frequency) will however interfere with each other thus requiring the use of 

adaptive equalizers in these communications systems for reliable data transmission. In 

DCR applications, CCI primarily limits the performance of the equalizers.  Therefore, 

simple and effective interference suppression techniques, in the form of adaptive 

equalizers, are required to mitigate the interference for a high-quality signal reception. 

 

Two basic categories of adaptive equalizers exist, namely the sequence estimation and 

symbol decision equalizers. The optimal sequence estimation equalizer is the Maximum 

Likelihood sequence estimator (MLSE) which provides the best attainable performance 

in combating channel ISI and Additive White Gaussian Noise (AWGN) at the expense 

of very high computational complexity and deferring decisions. The MLSE is however 

much less effective in dealing with Co-Channel Interference. It can best treat the 

unknown interfering signal as an additional colored noise since it is very difficult to 

derive the likelihood function for the non-Gaussian interfering signals to enable them to 

be explicitly distinguishable from the Gaussian noise [53, 62-63, 68].  
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Most of the equalization applications today employ equalizers that operate symbol-by-

symbol. Symbol decision equalizers can be further qualified into two categories namely, 

the direct-modelling equalizers in which the channel model is identified explicitly, and 

the indirect-modelling equalizers which recover the transmitted symbols by directly 

filtering the channel observations, usually using the Linear Transversal Equalizer (also 

known as the Finite Impulse Response filter), without estimating a channel model 

explicitly. The indirect-modelling approach is by far most widely used and it is 

considered in the present study in the context of CCI. The current work primarily 

involves a review of the application of neural network based equalizers to the problem 

of combating co-channel interference, without a priori knowledge of the channel or 

interfering co-channel orders. 

 

This chapter is organized as follow: In section 2, the discrete time model of the digital 

communication system is presented. Simulation results are presented in section 3, where 

selected neural network based equalizers are applied to a realistic co-channel system 

and their BER performance characteristics compared. Finally, section 4 presents some 

concluding remarks. 
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5.2 System Model 

 

 

Figure 5.1: Discrete time model of the DCR system affected by CCI, ISI and AWGN.  

 

Following [53] and [63], the discrete time model of the data transmission system 

considered in this work is shown in Figure 5.1. In this model, H0(z) is the dispersive 

channel transfer function and H1(z) . . . Hγ(z) represent the interfering co-channels. All 

channels are modelled by Finite Impulse Response (FIR) filters: 

 

Hi(z) = ∑j=0 
li
 hij z

-j
       i = 0, 1, . . . , γ   (5.1) 

 

In Figure 5.1, s0(k) represent the transmitted data (which is known during the equalizer  

Training phase and si(k), i = 1, . . .γ , are unknown interfering data sequences. All si(k), i  

= 0, . . . ,γ are assumed to be equi-probable and bipolar independent identically 

distributed (iid) and the output from the co-channels c(k) are corrupted by Additive 

White Gaussian Noise (AWGN) n(k) of zero mean and variance σn
2
.  
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All si(k), i = 0, 1, . . . γ, are assumed to be uncorrelated with n(k). The overall channel  

observation can thus be written as: 

 

y(k) = ŷ(k) + c(k) + n(k)    (5.2) 

where 

ŷ(k) = ∑j=0 
l0
 h0j s0(k-j)    (5.3) 

where l0 is order of the distorting channel; and 

c(k) = ∑i=1
γ 
∑j=0

li 
hij si(k-j)    (5.4) 

 

where li , i = 1, . . . γ  is the order of the i - th interfering co-channel. If E{ŷ
2
 (k)} = σs

2
 

(where E{.} is the expectation operator) and E{c
2
(k)} = σc

2
 ; then the following 

expressions can be defined: 

 

The Signal to Noise Ratio (SNR) given by: 

SNR =  σs
2
 / σn

2
    (5.4) 

The Signal to Interference Ratio (SIR) defined as: 

SIR =  σs
2 
/ σc

2
     (5.6) 

 

And finally the Signal to Interference to Noise Ratio (SINR) given by: 

SINR = σs
2
 / (σn

2 
+ σc

2 
)  (5.7) 

The task of any indirect-modelling equalizer is: 

Given the overall channel observation y(k), estimate the transmitted data s0(k). The 

symbol decision equalizer at any sample instant k processes the n most recent channel 
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observations, and makes a decision ŝ0(k-τ)  regarding the symbol transmitted at k - τ , 

where integer n and τ are referred to as the equalizer order and delay respectively.  

 

For decision Feedback structures, a Feedback order m is also added. Thus, s0(k-τ) is 

estimated from the n most recent channel observations, and the m past decisions of the 

equalizer (ŝ0(k-τ-p) for p =1,…,m). During the training period of most adaptive 

equalization systems (including DCR systems), the reference desired signal s0(k-τ)  

which is to be re-constructed, is available, whereas the other interfering signals si(k), i = 

1, . . .γ, are not known. 

5.3 Review of Existing Equalizers 

For equalization of channels in the presence of ISI, AWGN and co-channel interference, 

the following main developments have been reported.  

 

Wales [60] presented a reduced complexity receiver structure for improving the 

tolerance of a receiver to the presence of like modulated co-channel interference. 

Performance improvements were demonstrated over a conventional receiver of static 

channels using an analytical technique, and for Rayleigh fading channels using Monte 

Carlo simulation techniques. However, for Rayleigh fading channels, the performance 

of the receiver structure was seen to degrade at high signal to interference ratios.  

 

In [54] an equalizer structure for combating co-channel interference was described that 

relied upon the stronger of the wanted and interfering signals to capture a conventional 
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BPSK demodulator. The detected signal was then re-modulated and cancelled from the 

received signal to allow the detection of the weaker signal. This approach has a low 

complexity but performance improvements are strictly limited to the situations where 

the interfering signal level exceed that of the wanted signal and the technique has yet to 

be extended to time disperse channels.  

 

In [50] Giridhar, Shynk and Gooch presented a non-linear co-channel demodulation 

techniques based on the MLSE and the Maximum Aposteriori Probability (MAP) (also 

known as the Bayesian transerval equalizer (TE)) symbol detection for  joint recovery 

of both the desired and the interfering signals. However the algorithms are 

computationally expensive and assume perfect priori knowledge of both the primary 

and interfering channels. Also they provide optimal performance only for the case of 

comparable energies of the desired and interfering signals.  

 

In [48] Chen and Mulgrew employed a non-linear adaptive equalizer based on the 

Radial Basis function (RBF) neural network to overcome co-channel interference. A 

complex two stage learning strategy was employed to model the effects of the channel 

ISI and co-channel interference and thus provide the optimal Bayesian transversal TE 

solution. Performance improvements were reported over the LTE for moderate to high 

signal to interference ratios. However, even for small orders of the primary and 

interfering channels, computing the optimal equalizer performance using the 

feedforward RBF is extremely costly and impractical as a prohibitively large number of 

centres are needed to present an equal number of the noise-free observation states. 
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Determination of the number of noise free observation states (which set the required 

number of RBF centres for optimal performance) also requires apriori knowledge of the 

orders of both the distorting channel and the unknown interfering co-channels.  

 

Chen et al. [62] derived a new optimal Bayesian decision feedback equaliser (DFE) 

which incorporated co-channel interference compensation. The authors showed how 

decision feedback can be utilized to improve equalizer performance as well as to reduce 

computational complexity. The relationship between the Bayesian solution and the 

radial basis function (RBF) network was emphasized and two adaptive schemes were 

described for implementing the Bayesian DFE using the RBF network. By exploiting 

the structure of co-channel interfering signals, the Bayesian DFE was able to distinguish 

an interfering signal from white noise and utilised this information to improve 

performance. Adaptive implementation of the Bayesian DFE included identifying the 

channel model using the least mean square algorithm and estimating the co-channel 

states by means of an unsupervised clustering scheme. Simulation involving a binary 

signal constellation was used to compare both the theoretical and adaptive performance 

of the Bayesian DFE with those of the maximum likelihood sequence estimator. The 

results obtained indicated that, in the presence of severe co-channel interference, the 

Bayesian decision DFE employing the proposed simple scheme to compensate co-

channel interference can outperform maximum likelihood sequence estimator that only 

treats co-channel interference as an additional coloured noise.  
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Patra and Mulgrew [63][70] proposed a fuzzy logic based implementation of the 

optimal Bayesian DFE solution and showed that the fuzzy implemented equaliser is 

able to provide performance close to the optimal equaliser with a reasonable reduction 

in computational complexity. However, like the RBF, the fuzzy implementations of the 

Bayesian DFE were also found to exhibit a significantly increased computational 

requirement for the case of large equalizer orders. 

 

In [59], new Functional-link neural network based TE and DFE structures were 

developed and shown to approximate the optimal Bayesian TE and Bayesian DFE 

performance with a lower computational requirement compared to the RBF, MLP [45] 

and volterra (polynomial) neural network [46] based equalizers for the case of small 

equalizer orders. 

 

Several other reduced complexity indirect modelling TE and DFE structures have been 

proposed to approximate the optimal Bayesian TE & DFE solutions, including more 

recently, the Support Vector Machine [64] and Wavelet neural network [65] based 

equalizers [67]. 

 

Note that, in general, both the Bayesian TE and Bayesian DFE cannot achieve the 

theoretical best performance bound set by the adaptive sequence based MLVA since 

they are only symbol-decision equalizers. However, in a preliminary study [62], Chen et 

al. have shown that for highly non-stationary channels such as multi-path mobile radio 

fading channels, the adaptive Bayesian DFE is actually superior to the adaptive MLVA. 
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A classification of the various equalizers (some of which have been briefly reviewed in 

this chapter), in terms of types, structures and algorithms is given in Figure 5.2. This 

Chart extends that reported by Proakis [66] and Hussain [59].  

EQUALIZERS

Symbol-Decision Based

Types

Sequence Based

Linear

TE Lattice

Non-Linear

TE based DFE based

Bayesian

(MAP)

MLP RBF VNN FLNN Bayesian
Lattice

MLP RBF

LMS

RLS

Fast RLS

Gradient

RLS

BP

(GDR)

LMS

RLS
DR Bayes

Theory

MLSE

Viterbl

Algorithm

BP

(GDR)

LMS

RLS

FLNN FuzzyFuzzy

LMS LMSDR

 

Figure 5.2: Classification of various equalizers types and algorithms  

 

In the next section, the performance of selected neural network based equalizers is 

compared. 
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5.4 Simulation Results 

 

First, in order to highlight the basic concepts involved in the equalization of the above 

co-channel system we first present an example by considering the following co-channel 

system: 

)8.5(5.00.1)( 1

0

−+= zzH  

)9.5()2.00.1()( 1

1

−+= zzH β  

Let SIR = 10dB which gives rise to 346.0=β . For the above co-channel system, use of 

2 – ary PAM input signal and an equalizer of order m = 2 with delay τ = 0, results in 8 

desired signal states (that is, outputs from primary distorting channel 0H ) and 8 

interfering signal states (that is, outputs from the interfering co-channel 1H ). The total 

number of channel observation states ( that is, the overall outputs from the co-channel 

system )(ky ) are thus 64 [48] which are plotted in the state diagram of figure 5.3, 

where the circles o’s represent the desired channel states when a 1)(0 +=−τks  input 

symbol is transmitted, and the crosses x’s represent the desired channel states for a -1 

transmitted input. The dots in figure 5.3 represent noise free channel observation states 

(that is output from the co-channel system without the addition of Gaussian noise), the 

observations will form clusters with the means of these data clusters obviously being the 

noise-free observations, and their variance equal to that of the noise 
2

nσ .  As can be 

seen from figure 5.3, the composite effects of the distorting channel and the interfering 

co-channels has led to the noise free observations forming clusters around the desired 

signal states. It can be easily shown that for a high SIR value, the noise observations 
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states will concentrate around the desired signal states, whereas for a low SIR the nois-

free observations states becomes more widely spread. In figure 5.3, the optimal decision 

boundary for this co-channel system [59], for the case of additive noise power of 

2

nσ =0.0125 is also shown in a dotted line. The optimal decision boundary partitions the 

observation space (which is also the equalizer input space) into two decision regions. 

When an observation vector ))1))(())1(),...,(( −=+− kykymkyky  appears in the right 

hand region of the boundary, the underlying optimal Bayesian decision function (which 

was derived for co-channel systems in [48] by Chen and Mulgrew) is positive and a 

decision 1)(
^

0 +=−τks  is made corresponding to a transmitted 1)(0 +=−τks . If an 

observation vector appears in the left hand region of the optimal boundary then a 

decision 1)(
^

0 −=−τks  is made (as the optimal Bayesian decision function is negative) 

corresponding to a transmitted 1)(0 −=−τks . This way of making symbol decisions 

(based on the values of the optimal Bayesian decision function) is optimal because it 

produces the minimum average error probability or BER [59].  Note that it can be 

clearly seen from Figure 5.3 that a non-linear equalizer will be required to approximate 

the optimal non-linear Bayesian decision boundary and the performance of linear 

equalizers (such as the LTE) would be sub-optimal as they are only capable of forming 

linear decision boundaries [48,59,68].  



Chapter – 5: Neural Network Based Equalizers for Co-Channel Interference 

Suppression Problem  87

   

 

 

Figure 5.3: Outputs of Co-channel System for 2-ary PAM input and transmission delay 
= zero. The o and x denote desired signal states (+1 and -1 respectively), and the dots 
indicate the noise-free observation states. The dotted line is the approximate optimal 
Bayesian decision boundary. 

 

Next, a second scenario was simulated as follows:  

As in [53][67] a severe amplitude distorted co-channel involving one interfering co-

channel, represented by H0(z) = 0.3482 + 0.8704z
-1
 + 0.3482 z

-2
 and H1(z) = λ(0.6 +0.8 

z
-1
), is used to compare the performance of the following equalizers (all of which were 

implemented in MATLAB): 

i. The conventional Linear Transversal Equalizer (LTE) (additional details can be 

found in [48])  

ii. The Radial Basis Function Neural Network based Transversal Equalizer 

(additional details in [48] [59]) 

iii. The newly reported Decision Feedback Wavelet Neural Network-Based 

Equalizer (DFWNE) (additional details can be found in [67]) 
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iv. The Decision Feedback Functional Link Equalizer (DFFLE) (additional details 

in [53]) 

 

For a fair comparison, following [59] and [67], all the transversal equalizers employed 

above (LTE and RBF) were chosen to be of order 4 and the equalization delay was set 

to (τ = 1). The decision feedback equalizers were simulated with a feed forward and 

feedback order of 2 and 2, respectively, and an identical delay τ = 1. The training of all 

equalizers was stopped when the error had reached a steady state as in [67].   

 

The best configurations for all the considered equalizers were determined beforehand 

using a trail and error basis (namely the hidden-layer size and choice of the transfer 

function for the Wavenet, the number of functional terms for the DFFLE and the 

number of centres and spreads for the RBF). These trial results were computed with a 

SNR = 15dB and a SIR = 15dB (which gives to a global SINR=12dB).  

 

For the case of the wavelet based equalizer (DFWNE), following [55][67], a sigmoidal 

transfer function and a hidden layer size of 4 was experimentally selected, and an 

incremental gradient descent update rule was used to adapt the weights. For the case of 

the DFFLE, following [53], a number of 41 functional terms (comprising a combination 

of trigonometric and polynomial subset basis functions) were selected and the Delta 

Rule (DR) update was employed. For the case of the RBF, following [48,59], a total of 

64 Gaussian basis functions with randomly selected centres (and spreads) were selected 

and the Least Mean Squares (LMS) weight update was employed. The LTE weights 
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(associated with the four equalizer input taps) were also adapted using the conventional 

LMS algorithm. The best step sizes for all the equalizers’ weight update rules were 

determined experimentally and the training period for each equalizer was chosen to 

allow convergence to the lowest possible MSE on the training data set. The Bit Error 

Rate (BER) results on the test set were obtained from the averaging of ten independents 

runs over a hundred thousand bipolar test samples as in [48, 53, 67]. 

 

In order to evaluate the performance of the above equalizers, two scenarios where 

simulated as described below [53]: 

 

Case 1: A value of λ = 0.0631 was chosen to provide a constant SIR = 24 dB, and the 

noise power was varied to produce different SINRs. 

Case 2: The noise power was fixed to σn
2
 = 0.00398 giving rise to constant SNR = 24 

dB. Then, the interfering signal power was changed by choosing different values of λ.      

 

The BER results are shown in figure 5.4 for case 1, and in figure 5.5 for the second 

case. As can be seen from Figures 5.4 and 5.5, the DFFLE gives the best BER 

performance, followed by the RBF, the DFWNA and the conventional LTE for both 

Cases.  
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Figure 5.4: Case 1: BER Performance Comparison for SIR fixed at 24dB, and Noise 

Power 2

nσ varied to produce different SINRs. 

 

 

 

 

 

Figure 5.5: Case 2: BER Performance Comparison for SNR fixed at 24dB and λ varied 
to produce different SINRs.                   
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5.5 Discussion and Conclusions 

 

Comparing Figures 5.4 and 5.5 for the two Cases, it can be seen that the two BER 

curves of the linear LTE equalizer are similar confirming previous studies that it cannot 

distinguish between the interfering signal from the noise [48, 53, 59, 63, 70]. The best 

the LTE can do is to treat the interfering signals as additional coloured noise. This is 

due to its inability to form non-linear decision boundaries. On the other hand, the BER 

performance curves of all the non-linear equalizers (DFFLE, DFWNE and RBF) are 

seen to exhibit significant differences (particularly at high SINR values) with the 

performance obtained by changing the SIR for a fixed SNR (Case 2) being markedly 

better than that obtained by changing the SNR for a fixed SIR (Case 1), which is also 

consistent with previous studies [48,53,70], This confirms that the non-linear equalizers 

treat the noise and interference signals differently and are more effective in 

approximating the optimal equalizer solution on account of their inherent non-linear 

decision making capability. As can be seen from Figures 5.4 and 5.5, the DFFLE gives 

the best overall BER performance at all SINR values for both Cases, followed by the 

RBF and the DFWNE. The LTE provides the worst performance as expected on 

account of its inability to form the required non-linear classification/decision 

boundaries.. 

 

It was shown in [48] that computing the optimal Bayesian transversal equalizer for the 

above co-channel system is extremely costly. The full RBF network able to realize the 

optimal solution would need a total of 2048 centres corresponding to the number of 
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observation states = number of desired states (64) x number of interfering states (32)) 

which makes the calculation of BERs impractical. Hence the DFFLE based structure 

requiring just 41 functional terms (or basis functions), is a viable alternative to the 

(4,64) RBF, the (2,4;2) DFWNE, and the (4)LTE structures for providing a close 

approximation to the underlying optimal co-channel equalization solution.  

 

To conclude, this chapter has reviewed the problem of adaptive equalization of digital 

communication channels in the presence of ISI, AWGN and co-channel interference. A 

realistic co-channel system was used as a case study to demonstrate the equalization 

capability of selected neural network based equalizers. The results have shown better 

BER performance characteristics for the functional-link-DFE, compared to the 

conventional LTE, DFE, wavenet and RBF equalizers. Note that the parameters of all 

the neural network equalizers were all determined experimentally using a trial and error 

approach and are thought to be reasonable but these could be further optimised. The 

results in this study have considered single co-channel systems, but they can be readily 

extended to the multi-co-channel case. 

 

For future work, the error propagation properties of the functional-link DFE and the 

wavenet DFE need investigation (due to the possible feedback of incorrect detected bits 

affecting future decisions [59][65][67]), and a more detailed theoretical analysis is 

required to define their attainable performance. The performance of the proposed 

equalizers also needs to be compared with the optimal Bayesian DFE and MLVA based 

approaches (both of which require a priori knowledge of the channel and interfering co-
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channel orders for combating the co-channel interference problem in mobile cellular 

networks [53, 67, 68] 
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Chapter 6 

 

6 Conclusions and Future Work Directions 

 

6.1 Conclusions: 

 

This thesis has presented new neural network based approaches for tackling two 

important problems encountered in cellular networks, namely prediction of mobile 

locations and co-channel interference suppression.   

 

An overview of radio wave principles and various propagation models reported to-date 

was first presented in Chapter 2. Next, the predominant location estimation techniques 

in use were critically evaluated in Chapter 3. Next, Chapter 4 presented an overview of 

a few selected conventional neural network paradigms, including the most widely used 

feedforward Multi Layer Perceptron (MLP), and the Radial Basis Function (RBF) based 

Generalized Regression Neural Network (GRNN), and then described their novel use 

for location estimation in cellular networks. The application of neural networks 

discussed in this thesis was considered as a function approximation problem consisting 

of a non-linear mapping of signal strength input (received at several Base Stations) onto 

a dual output variable representing the mobile location co-ordinates.  

 

Simulation results were presented assessing the generalization performance of neural 

network based location predictors and compared with a linear adaptive filtering based 
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approach. The simulated signal strength data was first generated using a COST 231-

Walfisch Ikegami Non-line of Sight (NLOS) model on account of its extensive use in 

practice in typical suburban and urban environments where the building heights are 

quasi-uniform. The designers of the public mobile radio systems (e.g., GSM, PCS, 

DECT, DCS, etc.) also often use this model [10]. The MDE performance of the various 

location predictors was compared on the COST-231 model and the MLP location 

predictor was found to be more effective than the RBF based GRNN and linear 

predictors.  Preliminary findings using very limited real data were also presented and 

discussed which showed that the neural predictors are capable of providing highly 

accurate location estimates even in the case of very limited real data from just two BSs. 

This is an interesting finding which needs further investigation (using more extensive 

real data from a range of urban and indoor environments). 

 

Next, Chapter 5 presented an overview of the co-channel interference problem in 

cellular networks, including the conventional approaches that have been developed to-

date. Following the overview, selected neural network based equalizers were employed 

for co-channel interference suppression using a realistic co-channel system. Simulation 

results demonstrated superior Bit Error Rate (BER) performance for the Functional-

Link neural network based DFE compared to other conventional linear and non-linear 

equalizers, particularly at low SINR values. The overview of adaptive equalizers 

presented in this chapter has shown the need for developing new efficient non-linear 

equalizers that can effectively approximate the optimal Bayesian DFE with 

comparatively reduced computational requirement. 



Chapter – 6: Conclusions and Future Work Directions 96

   

 

6.2 Future Work Directions 

Many issues and research topics related to this research thesis were not addressed and 

accomplished in this thesis due to limitations in time and resources. In this section, 

some of these issues are suggested and outlined for possible future study. 

• The performance of the neural network based location estimators needs to be 

further evaluated using extensive real data for a range of environments. Their 

performance also needs to be compared with other neural network and non-

linear function approximation techniques not considered in this thesis.  

• Note that in this study, different grid sizes were used to generate the simulated 

training and test sets. However, other more conventional ways could also be 

explored, such as, by randomly dividing parts of the same data (generated at a 

fixed grid size) for both training and test purposes. An approach similar to this 

was adopted for the case of very limited real signal strength data used in section 

4.4.2. Comparison of the various approaches reported in literature [38] for 

selection of training and test sets needs to be carried out and their effect on the 

performance of the neural network location predictors evaluated. 

• The performance of neural network location predictors needs to be compared (in 

terms of performance-complexity trade-off) with several other techniques that 

are currently available for determining mobile location, based on a variety of 

measuring schemes, which include time of arrival (TOA), time difference of 

arrival (TDOA), angle of arrival (AOA) and assisted GPS (A-GPS) [6]. 



Chapter – 6: Conclusions and Future Work Directions 97

   

 

• Detailed theoretical analysis of attainable performance and detailed practical 

(hardware and software) implementation aspects also need to be considered for 

the proposed neural network based mobile location predictors for further work.  

• The possibility of using neural network location predictors in conjunction with 

other recently reported statistical location estimation techniques [52] can also be 

explored, in order to further improve their performance.   

• The preliminary work reported in this thesis on location estimation of mobile 

users can be extended to deal with the more challenging case of locating moving 

vehicles etc. [52] in which case the signal strength and the mobile station 

velocity could be used together to provide accurate location predictions through 

the use of neural networks. This would be an interesting and challenging topic 

for future research. 

• Future work is also required to develop interference models that can be used to 

predict levels of co-channel interference and identify sources of interference in 

digital communications systems. The developed models will need to cover 

system-specific interference modelling to determine CCI from both immediate 

and adjacent cells. Whilst, several standard propagation models are accepted by 

industry [10] (i.e. Okumura and COST-231/Walfish/Ikegami as discussed in this 

thesis), no interference models have been developed or accepted to-date 

according to our knowledge. This area of research is currently being investigated 

by the Institute for Telecommunication Sciences (ITS) who are aiming to 

develop a series of Personal Communication Services (PCS) interference models 

that cover 3G systems [69, 74].  
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• For future work, a detailed theoretical analysis of the neural network based 

equalizers is required to define their attainable performance. The performance of 

the neural network equalizers evaluated in this thesis also needs to be compared 

with other emerging neural network and soft computing based approaches, 

including the Support Vector Machine [64] [67], Fuzzy [63] [70], Recurrent 

Neural Networks [71] as well as with optimal Bayesian DFE and MLVA based 

approaches [68] for combating the co-channel interference problem in mobile 

cellular networks.  

• Another interesting possibility, following the recent work of [56], could be to 

investigate the possible use of neural network based DFEs for developing an 

alternative model for expected throughput in a Bluetooth network in the 

presence of a number of other Bluetooth networks that cause radio interference. 

The results from this work could prove potentially useful when designing ad-hoc 

networking functionality for future versions of Bluetooth. 

• Also in chapter 5, single co-channel systems have been considered and 

therefore, the multi co-channel interference scenario can be readily simulated. It 

is also important to note that all results presented in chapter 5 were for 2-ary 

baseband PAM systems, and therefore extensions of the reported equalizer 

structures to multi-level M-ary PAM and QAM based systems need to be 

investigated and compared with the existing techniques [57].  One way to 

equalize M-ary PAM signals would be to employ multi-output equalizers 

(similar to the multi-output RBF equalizer reported by Chen and Grant et al 

[58]) with one output node assigned to each class. However with this approach 
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the equalizer complexity will increase in proportion with the number of 

transmitted symbol categories.  Alternatively,  a single multi-level sigmoidal 

function can be employed, for example, in the wavelet and functional-link DFE 

equalizers’ output layer as follows [47]: 
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Where ko  is the output from the linear combiner, and the constants α and h are 

referred to as the slope and drift parameters respectively, which have been 

shown in [47] to give efficient equalization performance with values set to 

( 0.1=β ) and ( 15=h ). The functional-link and wavelet basis functions used 

within their single hidden layers would also need to be modified to 

accommodate M-ary PAM signalling. This would simply involve scaling all the 

basis functions by a scaling factor A, which for M-ary PAM will be A=(M-1). 

This scaling factor will enable the basis functions to cover the new range (-(M-

1),(M-1)), from their previous (-1,+1) range employed for 2-ary PAM signalling.  

• Also for future work, application of the neural network based equalizers to Code 

Division Multiple Access (CDMA) Spread Spectrum (SS) communication systems 

can be investigated, and their performance compared (in terms of performance-

complexity trade-off) with the optimal Bayesian DFE methods which have been 

successfully applied to CDMA systems  [68].  

• The use of the neural network equalizer structures in blind adaptive equalization 

schemes can also be investigated. This may also include these equalizers operating 

in hybrid systems, where for example, a computationally expensive Higher Order 
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Statistics (HOS) based blind equalizer initially estimates the channel coefficients, 

and the system then switches to the computationally efficient functional-link DFE or 

other neural network based adaptive non-linear equalizers operating in Decision 

Direct Mode (DDM), as in [61]. Finally, application of the functional-link and 

wavenet DFE structures to equalization of non-stationary communication channels 

such as those encountered in fading mobile radio environments [68]) also needs to 

be investigated. 

• Note that since the performance of a communication system is often evaluated in 

terms of BER, intuition suggests that the equalizer is optimised when the probability 

of error is minimised. However the probability of error is a highly non-linear 

function of the equalizer tap coefficients [66], and the solution to this problem is 

mathematically intractable. Finding an analytical solution or its approximation is a 

challenging yet interesting future research topic. Furthermore, the convergence of 

the various equalizers (in terms of the average mean squared error) was not 

compared in this thesis, and finding and comparing the average MSE is also a good 

topic for theoretical analysis. 

• Lastly, it should be noted that whilst this thesis has presented the application of 

neural networks to two important problems encountered in cellular networks, 

namely prediction of mobile locations and co-channel interference suppression, 

there are there are many links and similarities between the two problems considered, 

and the techniques used, but the second problem investigation has used little 

knowledge and experience gained from the first investigation. This is proposed for 

future work. 
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