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Abstract 
 

             The architecture and training procedure of a novel recurrent neural network (RNN), 

referred to as the multifeedbacklayer neural network (MFLNN), is described in this paper. The 

main difference of the proposed network compared to the available RNNs is that the temporal 

relations are provided by means of neurons arranged in three feedback layers, not by simple 

feedback elements, in order to enrich the representation capabilities of the recurrent networks. 

The feedback layers provide local and global recurrences via nonlinear processing elements. In 

these feedback layers, weighted sums of the delayed outputs of the hidden and of  the output 

layers are passed through certain activation functions and applied to the feedforward neurons via 

adjustable weights. Both online and offline training procedures based on the backpropagation 

through time (BPTT) algorithm are developed. The adjoint model of the MFLNN is built to 

compute the derivatives with respect to the MFLNN weights which are then used in the training 

procedures. The Levenberg–Marquardt (LM) method with a trust region approach is used to 

update the MFLNN weights. The performance of the MFLNN is demonstrated by applying to 

several illustrative temporal problems including chaotic time series prediction and nonlinear 

dynamic system identification, and it performed better than several networks available in the 

literature. 
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In recent years, with the growth of internet technologies, high speed and efficient data 

transmission over communication channels has gained significant importance. The rapidly 

increasing computer communication has necessitated higher speed data transmission over wide 

spread network of voice bandwidth channels. In digital communications the symbols are sent 

through linearly dispersive mediums such as telephone, cable and wireless. In band width 

efficient data transmission systems, the effect of each symbol transmitted over such time-

dispersive channel extends to the neighboring symbol intervals. This distortion caused by the 

resulting overlap of received data is called inter symbol interference (ISI) [4.5]. 

   The pursuit to build intelligent human like machines led to the birth of artificial neural network 

(ANN).Much work based on computer simulations has proved capability of ANNs to map, 

model, and classify nonlinear systems. The special features of ANNs such as capability to learn 

from examples , adaptation, parallelism, robustness to noise, and fault tolerance have opened 

their application fields of engineering, science economics. Real time application are feasible only 

if  low cost high speed neural computation is made viable.  

 

1.1 Motivation   

      
          The majority of physical systems contain complex nonlinear relations, which are difficult 

to model with conventional techniques. Neural networks (NNs) have learning, adaptation, and 

powerful nonlinear mapping capabilities. Therefore, they have been studied to deal with 

predicting, modeling, and control of complex, nonlinear, and uncertain systems, in which the 

conventional methods fail to give satisfactory results Recurrent neural networks (RNNs) 

naturally involve dynamic elements in the form of feedback connections providing  powerful 

dynamic mapping and representational capabilities. The main difference of the proposed network 

(MFLNN) compared to the available RNNs is that the temporal relations are provided by means 

of neurons arranged in three feedback layers, not by simple feedback elements, in order to enrich 

the representation capabilities of the recurrent networks. 
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         Another motivation of thesis is to design and implement a neural-network-based nonlinear 

channel equalizer under the consideration of tradeoffs between the hardware chip size, the 

processing speed, and the cost. 

1.2 Thesis Layout 
 

   Chapter2  introduces artificial neural network and illustrates its learning process. 

   Chapter 3 discussed the  architecture  and Training procedure of a novel recurrent 

network,referred as MFLNN.The performance of the MFLNN demonstrated by applying to 

several illustrative temporal problems including chatic time series prediction and nonlinear 

system identification. 

  Chapter 4  introduces  basic theory of channel equalizer 

  Chapter 5 explains the applications of neural network techniques on digital communication 

systems. We compare the performance of two different structures of equalizer, namely, the linear 

least-mean-square-based equalizer (LIN) and the functional link artificial neural networks 

(FLANN). 

   In chapter 6 discussed the hardware implementation of equalizers for transmissions through 

nonlinear communication channels based on artificial neural networks structure. After the 

designing procedure is finished, the circuit implemented using hardware description languages 

(HDLs). We choose field-programmable-gate-array (FPGA) devices for the hardware realization 

of our channel equalizer. And compared performance of two different structures of equalizer 

  Chapter 7 summarizes the work done in this thesis work



 

 

                              

Chapter 2  

 

 

                                                             

 

                                                                                                             

CONCEPTS OF NEURAL NETWORK 
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2.1 Single Neuron Structure  

 

  A neuron is an information processing unit that is fundamental to the operation of a neural 

network. The  three basic elements of the neuronal model: 

     

1. A set of synapses or connecting links, each of which is characterized by a weight or streght 

of its own. 

2. An adder for summing the input signals, weighted by the respective synapses of the neuron 

3. An activation function for limiting the amplitude of the output of a neuron. The activation 

function is also referred to As a squashing function in that it squashes the permissible 

amplitude range of the output signal to some finite value.  

 

    

 
Figure 2.1  Single Neuron structure 

       

 

 
 
The structure of a single neuron is presented in Fig. 2.1.An artificial neuron involves the computation 

of the weighted sum of inputs and threshold .The resultant signal is then passed through a non-linear 

activation function. The output of the neuron may be represented as,  

 

 

                         
1

( ) ( ) ( ) ( )
N

j j

j

y n f w n x n b n


 
  

 
  
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Where  x1 ,x2 ,xn  are the input signals ; w
j
(n) = weight associated with the j

th 

input, 

b(n) = threshold to the neuron is called as bias.  

and N = no. of inputs to the neuron.  

2.2 Activation Functions and Bias. 

 

The perceptron internal sum of the inputs is passed through an activation function, which can be 

any monotonic function. Linear functions can be used but these will not contribute to a non-

linear transformation within a layered structure, which defeats the purpose of using a neural filter 

implementation. A function that limits the amplitude range and limits the output strength of each 

perceptron of a layered network to a defined range in a non-linear manner will contribute to a 

nonlinear transformation. There are many forms of activation functions, which are selected 

according to the specific problem. All the neural network architectures employ the activation 

function which defines as the output of a neuron in terms of the activity level at its input (ranges 

from -1 to 1 or 0 to 1). Table 2.1 summarizes the basic types of activation functions. The most 

practical activation functions are the sigmoid and the hyperbolic tangent functions. This is 

because they are differentiable.  

The bias gives the network an extra variable and the networks with bias are more powerful than 

those of without bias. The neuron without a bias always gives a net input of zero to the activation 

function when the network inputs are zero. This may not be desirable and can be avoided by the 

use of a bias. 
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                                                              Table 2.1:Common activation function 

 
                                

    2.3 Learning Processes 
 

   The property that is of primary significance for a neural network is that the ability of the network to 

learn from its environment, and to improve its performance through learning. The improvement in 

performance takes place over time in accordance with some prescribed measure. A neural network 

learns about its environment through an interactive process of adjustments applied to its synaptic 

weights and bias levels. Ideally, the network becomes more knowledgeable about its environment 

after each iteration of learning process. Hence we define learning as: “It is a process by which the 

free parameters of a neural network are adapted through a process of stimulation by the environment 

in which the network is embedded.”  

       The processes used are classified into two categories as 

               

              (A) Supervised Learning (Learning With a Teacher)  

              (B) Unsupervised Learning (Learning Without a Teacher) 
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  2.3.1 Supervised Learning: 

 

We may think of the teacher as having knowledge of the environment, with that knowledge being 

represented by a set of input-output examples. The environment is, however unknown to neural 

network of interest. Suppose now the teacher and the neural network are both exposed to a training 

vector, by virtue of built-in knowledge, the teacher is able to provide the neural network with a 

desired response for that training vector. Hence the desired response represents the optimum action to 

be performed by the neural network. The network parameters such as the weights and the thresholds 

are chosen arbitrarily and are updated during the training procedure to minimize the difference 

between the desired and the estimated signal. This updation is carried out iteratively in a step-by-step 

procedure with the aim of eventually making the neural network emulate the teacher. In this way 

knowledge of the environment available to the teacher is transferred to the neural network. When this 

condition is reached, we may then dispense with the teacher and let the neural network deal with the 

environment completely by itself. This is the form of supervised learning. 

The update equations for weights are derived as LMS : 

( 1) ( ) ( )j j jw n w n w n     

( )jw n  is the change in w
j 
in nth iteration.  

2.3.2 Unsupervised Learning 

In unsupervised learning or self-supervised learning there is no teacher to over-see the learning 

process, rather provision is made for a task independent measure of the quantity of representation 

that the network is required to learn, and the free parameters of the network are optimized with 

respect to that measure. Once the network has become turned to the statistical regularities of the 

input data, it develops the ability to form the internal representations for encoding features of the 

input and thereby to create new classes automatically. In this learning the weights and biases are 

updated in response to network input only. There are no desired outputs available. Most of these 

algorithms perform some kind of clustering operation. They learn to categorize the input patterns 

into some classes. 
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2.4 Recurrent  Neural Network 

 

   A strict feedforward architecture does not maintain a short-term memory. Any memory effects 

are due to the way past inputs are re-presented to the network (as for the tapped delay line). A 

simple recurrent network (SRN; (Elman, 1990)) has activation feedback which  embodies short-

term memory. A state layer is updated not only with the external input of the network but also 

with activation from the previous forward propagation. The feedback is modified by a set of 

weights as to enable automatic adaptation through learning (e.g. backpropagation).  Recurrent 

network are the neural network with one or more feedback loop. The feedback can be of a local 

or global kind. Recurrent neural networks (RNNs) naturally involve dynamic elements in the 

form of feedback connections providing powerful dynamic mapping and representational 

capabilities. Figure below The application of feedback enables recurrent network to acquire state 

representations, which make them suitable devices for such diverse applications as nonlinear 

prediction and modeling, adaptive equalization speech processing, plant control, automobile 

engine diagnostics 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 

 

 

 

          Copy( delayed) 

State/hidden 

Input Previous state 

Output 

Weights, V 
Weights ,U 

           Weights,W 

Figure 2. 2    A simple Recurrent network 
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2.5 The Back-Propagation Algorithm 

           In order to train a neural network to perform some task, we must adjust the weights of 

each unit in such a way that the error between the desired output and the actual output is reduced. 

This process requires that the neural network compute the error derivative of the weights (EW). 

In other words, it must calculate how the error changes as each weight is increased or decreased 

slightly. The back propagation algorithm is the most widely used method for determining the  

error derivatives of the weights. 

     The back-propagation algorithm is easiest to understand if all the units in the network are 

linear. The algorithm computes each EW by first computing the EA, the rate at which the error 

changes as the activity level of a unit is changed. For output units, the EA is simply the 

difference between the actual and the desired output. To compute the EA for a hidden unit in the 

layer just before the output layer, we first identify all the weights between that hidden unit and 

the output units to which it is connected. We then multiply those weights by the EAs of those 

output units and add the products. This sum equals the EA for the chosen hidden unit. After 

calculating all the EAs in the hidden layer just before the output layer, we can compute in like 

fashion the EAs for other layers, moving from layer to layer in a direction opposite to the way 

activities propagate through the network. This is what gives back propagation its name. Once the 

EA has been computed for a unit, it is straight forward to compute the EW for each incoming 

connection of the unit. The EW is the product of the EA and the activity through the incoming 

connection.Note that for non-linear units, the back-propagation algorithm includes an extra step. 

Before back-propagating, the EA must be converted into the EI, the rate at which the error 

changes as the total input received by a unit is changed.  

  The steps involve  in applying back propagation algorithm  is as described  below   : 

First the input is propagated through the ANN to the output. After this the error  ek on a single 

output neuron  k can be calculated as:  

 

                                       k k ke d y   (2.1) 



Concept of Neural Network 
 

  11 

 

 

Where  yk is the calculated output and  dk is the desired output of neuron  k. This error value is 

used to calculate a  δk value, which is again used for adjusting the weights. The  δk value is 

calculated by:  

                                             
!( )k k ke g y   (2.2) 

 

                                        !

0

( )
K

j j k jk

k

g y w  


   (2.3) 

 

Where K is the number of neurons in this layer and  η is the learning rate parameter, which determines 

how much the weight should be adjusted. The more advanced gradient descent algorithms does not use a 

learning rate, but a set of more advanced parameters that makes a more qualified guess to how much the 

weight should be adjusted.  

Using these  δ values, the  ∆w  values that the weights should be adjusted by, can be calculated by:  

                                                  jk k kw y   (2.4) 

 

The jkw value is used to adjust the weight jkw , by jk jk jkw w w    and the backpropagation 

algorithm moves on to the next input and adjusts the weights according to the output. This process goes 

on until a certain stop criteria is reached. The stop criteria is typically determined by measuring the mean 

square error of the training data while training with the data, when this mean square error reaches a 

certain limit, the training is stopped. More advanced stopping criteria involving both training and testing 

data are also used. 
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3.1 Introduction 
 

                 The majority of physical systems contain complex nonlinear  relations, which are 

difficult to model with conventional techniques. Neural networks (NNs) have learning, 

adaptation, and powerful nonlinear mapping capabilities. Therefore, they have been studied to 

deal with predicting, modeling, and control of complex, nonlinear, and uncertain systems, in 

which the conventional methods fail to give satisfactory results .The NNs can be classified as 

static (feedforward) and dynamic (recurrent). Because of their inherent feedforward structure, the 

role of the static NNs are limited to realize static mappings. However, the output of a dynamic 

system is a function of past outputs and past inputs. In order to use them for identification of 

nonlinear dynamical systems, all necessary past inputs and past outputs of the dynamic system 

have to be fed to the static NN, explicitly; so, the number of delayed inputs and outputs  should 

be known in advance. The use of the long tapped delay input increases the input dimensions 

resulting in curse of dimensionality problem [16]. 

            Recurrent neural networks (RNNs) naturally involve dynamic elements in the form of 

feedback onnections providing powerful dynamic mapping and representational  apabilities. 

They are able to learn the system dynamics without assuming much knowledge about the 

structure of the system under consideration such as the number of delayed inputs and outputs. 

Furthermore, the recurrent systems can inherently produce multistep ahead predictions; so, the 

multistep ahead prediction models, which are required in some process control applications, such 

as predictive control, can efficiently be built by RNNs . Thus, the RNNs have attracted great 

interest. The Hopfield , the Elman , the Jordan , the fully recurrent , the locally-recurrent , the 

memory neuron , the recurrent radial basis function, and the block-structured recurrent  networks 

are some of the examples of RNNs. The Hopfield network is a simple recurrent network which 

has a fully connected single-layer structure. It is capable of restoring previously learned static 

patterns from their corrupted realizations. Elman  and Jordan  proposed specific recurrent 

networks which have an extra set of context nodes that copy the delayed states of the hidden or 

output nodes back to the hidden layer neurons. In these structures, the feedback weights, 

assumed to be unity, are not trainable. The fully recurrent neural network  allows any neuron to 

be connected to any other neuron in the network. While being more general, it lacks stability. In , 

the local feedback has been taken before the entry into the nonlinearity activation function, while 
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in , it has been taken after the nonlinearity. In the memory neuron network , each feedforward 

neuron is associated with a memory neuron the single scalar output of which summarizes the 

history of past activation of that unit. In  the past output values of a radial basis function network 

are fed back to both the network input and output nodes. In  a systematic way to build networks 

of high complexity using a block notation was given. 

                  Recently, a number of recurrent fuzzy neural network (RFNN) structures appeared in 

the literature. Dynamic fuzzy logic systems (DFLSs) and their nonsingleton generalizations were 

investigated in [17]. In [11], a recurrent neurofuzzy network was proposed to build long-term 

prediction models for nonlinear processes. In [18], a recurrent self-organizing neural fuzzy 

inference network was constructed by realizing dynamic fuzzy reasoning. In [19], an RFNN 

structure was proposed by realizing fuzzy inference using dynamic fuzzy rules. In [20], a 

Takagi–Sugeno–Kang (TSK)-type RFNN was developed from a series of recurrent fuzzy if-then 

rules with TSK-type consequent parts. In [21], a type of RFNN called additive delay feedback 

neural-fuzzy networks trained with the backpropagation approach was proposed. In [22], a 

DFNN consisting of the recurrent TSK rules was developed. Its premise and defuzzification parts 

are static while its consequent part rules are recurrent neural networks with internal feedback and 

time delay synapses. In [23], a wavelet-based RFNN was developed by combining the traditional 

TSK fuzzy model and the wavelet neural networks with some feedback connections. 

           In this paper, the architecture and training procedure of a new RNN, called the 

multifeedback-layer neural network (MFLNN), are presented. The structure of the proposed 

MFLNN differs from the other RNNs in the literature. The main difference of the proposed 

network compared to the available RNNs is that the temporal relations are provided by means of 

neurons arranged in three feedback layers, not by simple feedback elements, in order to enrich 

the representation capabilities of the recurrent networks. The feedback signals are processed in 

three feedback layers which contain nonlinear pocessing elements (neurons) as in feedforward 

layers. In these feedback layers, the weighted sums of the delayed outputs of the hidden and 

output layers are passed through activation functions and applied to the feedforward neurons via 

some adjustable weights. 

        Both online and offline training procedures based on the backpropagation through time  

BPTT) algorithm have been investigated [11]. The adjoint model of the MFLNN is built to 
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compute the derivatives with respect to the network weights, which are used for training purpose. 

It is shown that the offline training fails to adapt to changes in system dynamics. Hence, an 

online training procedure is derived. In this procedure, the online adjustment of the weights is 

performed over a certain history of the input–output data stored in a stack. The stack discards the 

oldest pattern and accepts a new pattern from the system at each time step. Therefore, the stack 

contains enough data to represent plant dynamics, and eliminates the too old data to adapt to the 

changes in system dynamics at each time step. The derivatives for the MFLNN weights are 

computed with a type of truncated BPTT algorithm in a manner which gives the same result as 

the unfolding of the MFLNN in time through the stack. The Levenberg–Marquardt (LM) method 

with a trust region approach is used to adjust the MFLNN weights .The learning, adaptation, and 

generalization performances of the developed MFLNN are tested by applying several temporal 

problems including chaotic time series prediction and nonlinear dynamic system identification. 

Performance comparisons are made against several networks suggested in the literature. 

 3.2 LM algorithm 
                       

Standard Levenberg-Marquardt algorithm, a variation on the error back-propagation algorithm, 

provides us with a good switching capability between the Gauss-Newton algorithm and the 

Steepest Descent method. The quadratic performance index F(w) to be minimized is sum of the 

squares of the error between desired output and actual output for all patterns as given by  

                  ( ) TF w e e


                                                                                             (3.1)                      

In Eq.(3.1), e is the error vector defined by 

 

 

where er,q is error between dr,q (desired value for the r
th
 output and q

th
 pattern) and ar,q (actual 

value of the r
th
 output for q

th
 pattern), Q is the number of patterns, and R is the number of 

outputs. Moreover, w is the parameter vector given by  

  1 2[ ..... ]T

Mw w w w

                                                                                          
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where M is the number of adjustable parameters. Eq.(3.1) can also be written as 

 
2

, ,

1 1

( )
Q R

r q r q

q r

F w d a


 

   

               
2

,

1 1

Q R

r q

q r

e
 

                                                                                               (3.2)                            

 

In general, the update rule is                                                                                          

                                  
k k kw w w

  

                                                                           (3.3)         

In the Newton’s method, adjustable parameters are updated by 

                              
1

( ) ( )k k kw H w g w




                                                                  (3.4)          

where H(wk) is the Hessian matrix given by 

                                                             (3.5)                                                                                 

and g(wk) is the gradient vector given by 

                                                          (3.6) 

The gradient vector and the Hessian matrix can be written in terms of the Jacobian matrix as     

                                                                                                   (3.7) 
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And   

                                                              (3.8)                     

Where  J(wk) is the RQxM Jacobian matrix given by 

 

 

 

 

 

 

 

   

 

                                                                                                                              (3.9) 

Afterwards, substitution of (3.7) and (3.8) into (3.4) yields the update rule for Gauss-Newton 

method, and the weight updates are calculated by 

1[ ( ) ( )] ( )T T

k k k k kw J w J w J w e

  
                                                (3.10)                                    

          Whereas the neglected terms in Eq.(3.8) may cause some accuracy errors in the calculation 

of the Hessian, the most significant advantage of the Gauss-Newton method over Newton’s 

method is the elimination of the necessity of calculation of the second derivatives. Furthermore, 

the fact that the matrix [JT(wk)J(wk)] may be singular constitutes the main disadvantage of the 

Gauss- Newton method. In the Levenberg-Marquardt algorithm, the singularity problem in the 

Gauss-Newton method is overcome by introducing an additional term, which as well provides a 



MFLNN And Its Applications 
 

  18 

good switching between the Steepest Descent and the Gauss-Newton method. For standard 

Levenberg-Marquardt algorithm, adjustable parameters are updated by  

                           
1[ ( ) ( ) ] ( )T T

k k k k k kw J w J w I J w e 

   

                            (3.11)                                  

where μ is the learning rate, I is identity matrix . During training process the learning rate μ is 

incremented or decremented by a scale at weight updates. As the learning rate draws closer to 

zero, the Levenberg-Marquardt algorithm approaches the Gauss-Newton method, while it 

approaches the Steepest Descent algorithm as the learning rate takes large value. 

 

 

          Although the Levenberg-Marquardt algorithm gives a good compromise between those 

methods, its main disadvantage, as can be seen from Eq.(3.11), is the necessity of computation of 

[J
T
(wk)J(wk) + μkI]

-1
 square matrix at every weight updates, the dimension of which is MxM. In 

[18], one modification on the performance index is proposed in order to reduce the 

abovementioned computational complexity, where the performance index given by Eq.(3.2) is 

replaced with the performance index given by Eq.(3.12), 

                                                                             (3.12) 

The new performance index can also be written in a quadratic form : 

                                     

               Figure 3.1 Transition between the Steepest Descent and the Gauss-Newton 
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where e is the new error vector          and                                                             

 

It can be observed that the continuity requirements are still preserved and that the new  measure 

can well be considered as a measure of similarity between the desired and the produced patterns. 

By this modification, proposed in [18], the new update rule is then written by, 

 

                                                                                                                                      (3.13)    

where ˆJ is the new Jacobian matrix, the size of which is now RxM. Consequently, in the new 

update rule the size of the matrix to be inverted becomes RxR. In most neural network 

applications R is less than M. Another modification investigated during the study is on the 

gradient computation of the sigmoidal activation function, which is proposed in .This 

modification aims at improving the slow asymptotic convergence rate of the error-back 

propagation algorithm by using the slope of the line connecting the output value and the desired 

value instead of using derivative of the activation function as the gradient information. In the 

limit case that the output value approaches the desired value, the calculated slope becomes very 

near to the calculated derivative of the activation function, and then both algorithms become 

identical. 
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3.3 Multifeedback layer Neural Network (MFLNN ) 
 

input and output of the MFLNN, respectively, and k is the time index. The MFLNN has three 

feedforward and feedback layers. In the feedforward layers, W1 and W2 represent the weights 

between the input and hidden layers, and the hidden and output layers, respectively. In addition 

to the feedforward layers, the MFLNN has two local and one global feedback layers. In these 

feedback layers, the weighted sums of the delayed outputs of the hidden and output layers are 

applied to certain activation functions as in the feedforward layer neurons. 1

bW  , 2

bW  and 3

bW  

represent the  weights connected to the inputs of the feedback layer neurons and represents the 

time delay operators. The outputs of the feedback layers neurons ( ( ), ( ), ( )c c ch k y k and Z k ) are 

applied to the hidden and output layers neurons via the adjustable weights ( 1 2 3,c c cW W andW ). 

The bias connections to the neurons are omitted to simplify the resentation in Fig. 1.  

                  As a rule of thumb, the number of plant states should be a  good starting value for the 

number of neurons in the hidden layer. The number of neurons in the feedback layer from the 

hidden-to-hidden layer is set equal to the number of the hidden layer neurons. The number of 

neurons in the feedback layer from the output-to-hidden layer is set equal to the number of the 

output layer neurons. The number of neurons in the feedback layer from the output-to-output 

layer is set equal to the number of the output layer neurons. However, their numbers can be 

incremented to perhaps improve the accuracy. One uses trial–error or previous data about the 

system to come up with a proper number. 

                Fig. 2 depicts the details of the MFLNN where each layer is simply represented by 

only one of its neurons boxed in dashed lines. In the figure, the neurons of each  feedback layer 

are labeled by their connection to their corresponding inputs and outputs. 

               To train the recurrent systems, the BPTT-like derivative calculation is required. 

However, the calculation of the derivatives by using the chain rule or by the unfolding in time is 

very complicated, so we built the adjoint model of the MFLNN, which is depicted in Fig. 3, to 

simplify the computations. It is constructed by reversing the branch directions, replacing 

summing junctions with branching points and vice versa, and replacing the time delay operators 
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with time advance operators. The Jacobian matrix or the gradient vector is easily computed by 

means of the adjoint model of the MFLNN. Since the weights are updated by the LM method 

 

 

Figure 3.2 Structure of MFLANN 

 

  

 the calculation of the Jacobian matrix is required. The elements of the Jacobian matrix for an 

output of the MFLNN are computed by feeding 1 instead of the corresponding error value in the 

adjoint model and 0 for others. The backward phase computations from k=T to k=1 are 

performed by means of the adjoint model of the MFLNN. When the forward and ackward phases 

of the computations are completed, the sensitivities for each weight, which form the Jacobian 

matrix, are obtained as in the BPTT algorithm. 

 



MFLNN And Its Applications 
 

  22 

 

 

Figure 3.3 Layers of the MFLNN 
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Figure 3.4  Adjoint model of the MFLANN 

 

 

As it was expressed previously, the elements of the Jacobian  matrix are computed in two stages 

which are eferred to  as the forward and backward phases. In the forward phase, the MFLNN 

actions are computed and stored from k=1  to k=T through the trajectory. The errors at every are 

determined as the differences between the desired outputs and the MFLNN outputs. The initial 
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values for the output of the hidden layer(h) and of the output layer are (y) set to 0                             

h(0)=0       y(0)=0  

The induced local fields (net quantities) produced at the input of the activation functions  of the 

feedback neurons are 

1 1( ) [ ( 1)]c b h

hnet k W h k B    

1 2( ) [ ( 1)]c b h

ynet k W y k B  
                                                                             (3.14) 

 

1 3( ) [ ( 1)]c b h

znet k W y k B    

Where  1

bW , 2

bW  and 3

bW  are  the input weights of the feed back layers. 1

bB  , 2

bB ,and 3

bB  are 

the biases of the feedback layer neurons. Then, the outputs of the feedback layer neurons( ch , cy

and 
cZ ) are computed by, 

                       ( ) ( ( ))c c c

h hh k net k  

                        ( ) ( ( ))c c c

h yy k net k
                                                               (3.15)

 

                         ( ) ( ( ))c c c

z zz k net k  

Where c

h  , c

y , and c

z  represents the activation function of the feedback layer neuron.The net 

quantities  ( hnet ) of the hidden layer nerons and their output(h) are computed by 

               1 1 2( ) [ ( )] [ ( )] [ ( )] 1c c c c

hnet k W x k W h k W y k B   
                              (3.16)

 

                ( ) ( ( ))h hh k net k  

Where W1  represents the weights between the input and hidden layers, and B1 the biases 

applied to the hidden layer neurons. 1

cW  and  2

cW are the output weights of the feedback layers.

h  represents the hidden layer activation functions. Similarly, the net quantities of the output 

layer neurons and their outputs are computed by  
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                        1 1 2( ) [ ( )] [ ( )] [ ( )] 1c c c c

hnet k W x k W h k W y k B   
                         

 

                           ( ) ( ( ))h hh k net k  

Where 2W , 2B  and y  represent the weights between the  .hidden and output layers, neurons, and 

the output layer activation function ,respectively. 3

cW  represents the output weights of the 

feedback layer. 

The error (e) signal is defined as the difference between the MFLNN output () and the desired 

output (y) and the desired output ( dy ) 

                                       ( ) ( ) ( )e k y k yd k                                                  (3.17)                                        
 

 

We define the instantaneous value of the error energy, which is a function of all the free 

parameters, as 

                                   
1

( ) ( ( ) ( ))
2

TE k e k e k
                                                 (3.18)  

 

Then, the cost function defined as a measure of the learning  performance is 

                                   
1

1
( )

T

total

k

E E k
T 

                                                          (3.19) 

      The weights are adjusted to minimize the cost function, so the sensitivities with respect to 

each weight have to be computed. At every k, the sensitivity for each weight is computed by 

multiplyingthe input of this weight in the MFLNN and the adjoint model, so the inputs of the 

weights in the adjoint model have to be computed.Therefore, after completing the forward phase 

computations, the backward phase computation is carried out through the adjoint model of 

MFLNN  from k=T to  k=1. The local sensitivities at k=T+1 are set to 0  

3 ( 1) 0c T      ,     2 ( 1) 0c T       ,     1 ( 1) 0c T    
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The derivatives of the activation functions of each layer with    respect to their inputs are     

computed as   

' ( ( ))
( ( )) ( )

( )

c

c c cz

z z z

net k
net k net net k

net k





 


 

'
( ( ))

( ( )) ( )
( )

c

yc c c

y y y

net k
net k net net k

net k





 


 

' ( ( ))
( ( )) ( )

( )

c

c c ch

h h h

net k
net k net net k

net k





 

                                                       (3.20)

 

'
( ( ))

( ( )) ( )
( )

yc

y y y

net k
net k net net k

net k





 


 

' ( ( ))
( ( )) ( )

( )

c h

h h h

net k
net k net net k

net k





 


 

 

The local sensitivities are obtained as  

'

2 2 2 3 3( ) [ ( ( ))][ ( ) ( ) ( 1) (( ) ( 1)]b T c b T c

y yk net k e k W k W k         

'

1 1 1 2 2( ) [ ( ( ))][(( ) ( 1)) ( ( ))]b T c T

y yk net k W k W k       

'

3 3 2( ) [ ( ( ))][( ) ( )]c c c c T

z zk net k W k    

'

2 2 1( ) [ ( ( ))][( ) ( )]c c c c T

y yk net k W k    

'

1 3 2( ) [ ( ( ))][( ) ( )]c c c c T

y yk net k W k    

 

   In the case of the calculation of the Jacobian matrix, e(k) is set to in (11). Then, the sensitivity 

or each weight is computed by multiplying the values scaled by this weight in the  MFLNN and 

the adjoint model as follows: 
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1
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k X k
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( )
( )

1
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
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
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2

3

( )
( ) ( )cT

c

e k
k Z k

W






            3

2

3

( )
( ) ( 1)T

b

e k
k y k

W



 


 

1

2

( )
( ) ( )cT

c

e k
k y k

W






              

2

2

( )
( ) ( 1)c T

b

e k
k y k

W



 


                                       (3.21) 

1

1

( )
( ) ( )cT

c

e k
k h k

W






              1

2
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( ) ( 1)c T
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e k
k h k

W



 


 

3

3
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e k
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b

e k
k
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
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The overall sensitivity for each weight is obtained by summing the related sensitivity in (3.21) 

over the trajectory. The Jacobian matrix which is required to train the MFLNN is 

 

2 21 1 1 2 2 2 3 3 3
1 2 c b b c b b c c b

e e e e e e e e e e e e e
J

W W W BW W B W W B W W B

             
  

            
 

 

The gradient vector is computed from the Jacobian matrix is by                              

                                         
Tg J e                                                                                (3.22)   

The network weight vector w is defined as   

 

                    1 1 1 1 1 2 3 1 2 2 3 3 3[ , , , , , , , , , ]c b c b b b b c b bW W B W W B B W B B W W W B   
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The change in the weight vector nW   at the th iteration is computed by the LM method 

                                  [ )T T

n n n n n nJ J I W J e   
                                           (3.23)

 

where  0n  is a scalar and is the identity matrix. For a sufficiently large value of , the matrix

[ )T

n n nJ J I  is  positive definite and nW  is a descent direction. When 0n  , nW  is the 

Gauss–Newton vector. As n   , n I term dominates so that represents an infinitesimal step 

in the steepest descent direction. We used the trust region approach of Fletcher to determine n  

3.4 Online training Structure. 
 

            The online training procedure of the MFLNN is described in Fig. 4. In this procedure, a 

short history of the training patterns is stored in a first-in–first-out (FIFO) stack with a certain 

size . The stack discards the oldest pattern from it and accepts a new pattern from the system at 

each time step. Therefore, the stack should be properly sized to contain enough data to represent 

system dynamics and eliminate the too old data to adapt 

to the changes in system dynamics at each time step. The sensitivities of the MFLNN weights are 

computed in the manner of unfolding the MFLNN in time through the stack. The online training 

is performed using the entire patterns stored in the stack at each time step by the LM method 

with the trust region approach. 
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Figure 3.5 Online Training structure of the MFLANN 

 

The training of the MFLNN is performed by adjusting the weight vector at each time step as 

                             1k k kW W W     

 The  cost function at each time step is given  as 

                               
1

0

1
[ ( ) ( )] [ ( ) ( )]

2

TL

p p

m

E y k m y k m y k m y k m
L





        

Where L is the stack size which determines the data length and  m is the time delay index . yp and  

y represent the desired output and the MFLNN output, respectively. The training is performed 

over the L patterns at each time step. The elements of the Jacobian matrix are computed in two 



MFLNN And Its Applications 
 

  30 

stages which are referred to as the forward and backward phases. The forward phase 

computations are performed, by starting L-1 steps back in time to the present time, from time  

 k-L+1 to k , and the values of the variables (x ,h , y,h
c
 , y

c
, and z

c
) are stored at each time step. 

The error values, which are obtained as the difference between the plant outputs stored in the 

stack and the MFLNN output, are also stored. After completing the forward phase computations, 

the backward phase computation is carried out through the adjoint model of MFLNN, starting 

from the present time , going backward by steps to time . Finally, the elements of the Jacobian 

matrix are computed by means of the forward and backward computations. These computations 

correspond to a type of BPTT algorithm by unfolding the MFLNN in time through the stack. The 

procedure operates online and the dynamic derivative calculation is performed over more than 

one pattern in the stack avoiding the shortcomings of static gradient calculation and of 

employing only one pattern at a time.                      

3.5 Application of MFLNN 
 

3.5.1 Predicting Chaotic Time Series  

 

In this first example, the learning and generalization performance of the MFLNNis tested 

through a chaotic time series prediction problem. The time series data is generated by using the 

Mackey–Glass equation that models the white blood cell production in leukemia patients [26]. 

The model is described by 

                    
10

0.2 ( )
.1 ( )

1 ( )

dx x t
x t

dt x t






 

 
                                        

 

The prediction of future values of this time series is studied in [27] by comparing with several 

other approaches. To make a comparison, we prepare the data in the same way as [27]. The 

equation is integrated by the fourth-order Runge–Kutta method.The time step used in the method 

is 0.1, initial condition ( for in the integration), and delay term 

. The time series values are stored at integer points. We extracted 1000 input–output data pairs of 

the following form: 
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{[ ( 18) ( 12) ( 6) ( ) ], [ ( 6)] }d dx x k x k x k x k y x k       

where 118 to 1117.We use the first 500 pairs as the training data set, while the remaining 500 

pairs as the testing data set. In this example, the MFLNN has five hidden-layer neurons. The 

hyperbolic tangent activation functions are used in the hidden and feedback layers. The linear 

activation function is used in the output layer. The training and prediction performances are 

determined by the root-mean-squared error (rmse) criteria defined as the positive square root of 

the mean-squared error (mse): 

                               2

1

1
( ) ( ))

N
d

k

rmse y k y k
N 

   

where is the size of data pairs in the training or testing set and represents the predictions of the 

MFLNN. Fig. 5 shows the rmse curves in the logarithmic scale for both training and testing data 

sets. It indicates that the most of the learning was done in the first 20 epochs. One should notice 

that the testing rmse is less than the training rmse, which is clearly explained in [27], to be due to 

the initial conditions having been set to zero, 

where the rest of the data set having well represented. The desired and predicted values for both 

training data and testing data are essentially the same in Fig. 3.7. Their differences  can only be 

seen on a finer scale by plotting the prediction error in Fig. 3.6. 
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Figure 3.6  RMSE curves in the logarithmic scale 
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                                       Fig;6       RMSE curve in the Logarithmic scale       

 

 

 

 

 

3.5.2  Identification of a MIMO Nonlinear Plant 

 

              The method for system identification of a time invariant, causal, discrete time plant is 

depicted in Fig.. the plant is excited by a signal u(k) , and the output  d(k) is measured. The plant 

is assumed to be stable with known parameterization but with unknown values of the parameters. 

The objective is to construct a suitable identification model which when subjected to the same 

input as the plant, produces an output which approximates in the sense described by for some 

desired and a suitably defined norm. The choice of the identification model and the method of 

adjusting its parameters based on the identification error constitute the two principal parts of the 

identification problem. 

Figure 3.7 Mackey-Glass Time series values (from t=124 to 1123 ) and six step 

ahead      prediction 
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        As a second example, the identification of a multiple input–multiple-output (MIMO) 

nonlinear dynamical system with two inputs and two outputs is considered to demonstrate 

the structural capabilities of the MFLNN to model a certain nonlinear mapping. To make a 

comparison with other recurrent networks, the same plant that was used in [18] was chosen. The 

plant is described by the following difference equation: 

 

 

 

Where k is the discrete time step u1(k), u2(k) and yp1(k), yp2(k) are the inputs and the outputs of 

the plant, respectively.In this example, the MFLNN has two inputs, two outputs, and two hidden-

layer neurons. The hyperbolic tangent activation functions are used in the hidden and feedback 

Figure 3.8 Basic Block   diagram of system identification model 
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layers. The linear activation functions are used in the output layer. The weights are initialized by 

the Nguyen–Widrow method. The LM method with the trust region approach is used to update 

the MFLNN weights. The training data set is obtained by applying independent and identically 

distributed (i.i.d.) uniform sequence over [ 2, 2] for 500 samples and a sinusoid signal given by 

sin (πk/45) for the remaining 500 samples to both plant inputs. The testing data set is obtained by 

applying the following inputs to both plant inputs: 

  

 

 

The identification performance of the MFLNN for the testing data is shown in Figures below 
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               Figure 3.9 Output of plant and the MFLNN 
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where we obtained that the MFLNN needs fewer training time steps and network parameters, and still 

achieves higher accuracy  

3.5.3 Predictive Modeling of a NARMA Process 

 

         As a third example, the predictive ability of the MFLNN for a nonlinear autoregressive 

moving average (NARMA) process is examined and compared with the DFLS and the DFNN, 

reported in [17] and [23], respectively. The process is described by the following difference 

equation: 
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                            Figure 3.10 Instantaneous identification error 
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Where v(k) is a zero-mean uniform white noise process with standard deviation V  . In this 

example, the MFLNN has one input, one output, and two hidden-layer neurons. The hyperbolic 

tangent activation functions are used in all layers. The input of the MFLNN is yp(k-1) and its 

output is yp^(k). Training and testing data sets contain 1000 and 500 data pairs, respectively. 

Both sets are scaled into the range [ 1, 1]. Training lasted for 20 epochs. The whole procedure 

was repeated for 100 times, with the weights being initialized randomly within the interval [ 0.6, 

0.6]. Fig. 10 shows the mse curves that correspond to V = 0.7 for the last of the 100 trials. The 

uniform white noise v(k) and the instantaneous error (e(k)= yp(k)- yp^(k)) for the last 100 

samples of the testing set are depicted in Fig 3. 11. One should note that v(k) and e(k) match, and 

the variances and the mean mse for the testing phase are almost equal, and, thus, one may 

conclude that the MFLNN can adequately learn the plant characteristics. In addition, the standard 

deviation of the error measure is smaller in the case of MFLNN, indicating the method 

robustness. The weight values  of the MFLNN for 0.7. 

 

 

Figure 3.11 MSE curve for 0.7V   
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Figure 3.12 White noise V(k)
    

0.7V 
 and Instantaneous error e(k)

 



 

 

 

Chapter 4  
 

 

 

 

 

 

 

 

 

CONCEPTS OF CHANNEL EQUALIZATION  
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



 

 

 

4.1. Introduction 

   

       Recently, there has been substantial increase of demand for high speed digital data 

transmission effectively over physical communication channel. Communication channels are 

usually modeled as band-limited linear finite impulse response (FIR) filters with low pass 

frequency response. When the amplitude and the envelope delay response are not constant within 

the bandwidth of  the filter, the channel distorts the transmitted signal causing intersymbol  

interference (ISI).B because of this linear distortion, the transmitted symbols are spread and 

overlapped over successive time intervals. In addition to the linear distortion, the  transmitted 

symbols are subject to other impairments such as thermal noise, impulse noise, and nonlinear 

distortion arising from the modulation/demodulation process, cross-talk interference, the use of 

amplifiers and converters, and the nature of the channel itself. All the signal processing methods 

used at the receiver's end to compensate the introduced channel ver the transmitted symbols are 

referred as channel equalization techniques High speed communications channels are often 

impaired by channel inter symbol interference (ISI) and additive noise. Adaptive equalizers are 

required in these communication systems to obtain reliable data transmission. In adaptive 

equalizers the main constraint is training the equalizer. Many algorithms have been applied to 

train the equalizer, each having their own advantages and disadvantages. More over the 

importance of the channel equalization always keeps the research going on to introduce new 

algorithm to train the equalizer. 

  Adaptive channel equalization was first proposed by Lucky in 1965. One of the major 

drawback of the MLP structure is the long training time required for generalization and thus, this 

network has very poor convergence speed which is primarily due to its multilayer architecture. A 

single layer polynomial perceptron network(PP N) has been utilized for the purpose of channel 

equalization [5.3] in which the original input pattern is expanded using polynomials and cross-

product terms of the pattern and then,this expanded pattern is utilized for the equalization 

problem. Superior performance of this network over a linear equalizer has been reported. An 

alternative ANN structure called functional link ANN(FLANN) originally proposed by Pao is a 

novel single layer ANN capable of forming arbitrarily complex decision regions. In this network, 
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the initial  representation of pattern is enhanced by the use of nonlinear function resulting in 

higher dimensional  pattern and hence, the separability of the patterns becomes possible. The 

PPN, which uses the polynomials for the expansion of the input pattern , in fact, is a subset of the 

broader FLANN family. Applications of the FLANN have been reported for functional 

approximation and for channel equalization. In the case of 2-ary PAM signal, BER and MSE 

performance of the FLANN-based equalizer is superior than two other ANN structures such as 

MLP and PPN.  

4.2. Baseband Communication System  
 

    In an ideal communication channel, the received information is identical to that transmitted. 

However, this is not the case for real communication channels, where signal distortions take 

place. A channel can interfere with the transmitted data through three types of distorting effects: 

power degradation and fades, multi-path time dispersions and background thermal noise. 

Equalization is the process of recovering the data sequence from the corrupted channel samples. 

A typical base band transmission system is depicted in Fig.4.1., where an equalizer is 

incorporated within the receiver    

 

 

 

 

 

Figure 4.1  Base band communication System 

 

4.3. Channel Interference 
     

          In a communication system data signals can either be transmitted sequentially or in 

parallel across a channel medium in a manner that can be recovered at the receiver. To increase 

the data rate within a fixed bandwidth, data compression in space and/or time is required. 
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4.3.1. Multipath Propagation. 

 

        Within telecommunication channels multiple paths of propagation commonly occur. In 

practical terms this is equivalent to transmitting the same signal through a number of separate 

channels, each having a different attenuation and delay. Consider an open-air radio transmission 

channel that has three propagation paths, as illustrated in Fig.4.2 [14].These could be direct, 

earth bound and sky bound. Fig.4.2 (b) describes how a receiver picks up the transmitted data. 

The direct signal is received first whilst the earth and sky bound are delayed. All three of the 

signals are attenuated with the sky path suffering the most. Multipath interference between 

consecutively transmitted signals will take place if one signal is received whilst the previous 

signal is still being detected. In Fig.4.2. this would occur if the symbol transmission rate is 

greater than1/η. Because bandwidth efficiency leads to high data rates, multi-path interference 

commonly occurs.  

 

 

 

Figure 4.2 Impulse Response of a transmitted signal in a channel which has 3 modes of 

propagation, (a) The signal transmitted paths, (b) The received samples. 
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Channel models are used to describe the channel distorting effects and are given as a summation 

of weighted time delayed channel inputs d(n-i). 

1 2

0

( ) ( 1) ( ) ( 1) ( 2) ...............
m

i

i

H z d n z d n d n z d n z  



                                      (4.1)  

The transfer function of a multi-path channel is given in Equation 5.1. The model coefficients 

d(n-i) describe the strength of each multipath signal.  

4.4. Minimum And Nonminimum Phase Channels  

 

When all the roots of the model z-transform lie within the unit circle, the channel is termed  

minimum phase . The inverse of a minimum phase channel is convergent ,illustrated by the 

equation  
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   Since equalizers are designed to invert the channel distortion process they will in effect 

model the channel inverse. The minimum phase channel has a linear inverse model therefore 

a linear equalization solution exists. However, limiting the inverse model to m-dimensions 

will approximate the solution and it has been shown that nonlinear solution can provide a 

superior inverse model in the same dimension. 

      A linear inverse of a non-minimum phase channel does not exist without incorporating 
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time delay. A time delay creates a convergent series for the non-minimum phase model, 

where longer delays are necessary to provide a reasonable equalizer. Equations (4.3) 

describe a nonminimum phase channel with a single delay inverse and a four sample delay 

inverse. The latter of these is the more suitable for a linear filter. 

 

1( ) 1.0 0.5H z z   

 

1 2 3

1

1 1
1 .5 .25 0.125 ...........( )

( ) 1.0 .5
z z z z noncausal

H z z




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                               (4.3)   
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( )
z z z z z

H z

         (truncated and causal) 

 

 

4.5 Intersymbol Interference  

 
        Inter-symbol interference (ISI) has already been described as the overlapping of the 

transmitted data. It is difficult to recover the original data from one channel sample 

dimension because there is no statistical information about the multipath propagation. 

Increasing the dimensionality of the channel output vector helps characterize the multipath 

propagation .this has the effect of not only increasing the number of symbol but also 

increase the Euclidian distance between the output classes.   When additive Gaussian noise, 

η, is present within the channel , the input sample will form Gaussian clusters around the 

symbol centers. These symbol clusters can be characterized by a probability density 

function(pdf) with a noise variance 2

  ,where the noise can cause the symbol clusters to 

interfere. Once this occurs, equalization filtering will become inadequate to classify all of 

the input samples. Error control coding schemes can be employed in such cases but these 

often require extra bandwidth. 

 

4.5.1 Symbol Overlap. 

    

    The expected number of errors can be calculated by considering the amount of symbol 

interaction, assuming Gaussian noise . Taking any two neighboring symbols, the cumulative 
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distribution function(CDF) can be used to describe the overlap between the two noise 

characteristics.The overlap is directly related to the probability  of error between the two 

symbols and if these two symbols belong to opposing classes,a class error will occur. 

Figure 2.3 shows two Gaussian functions that could represent two symbol noise 

distributions. The Euclidean distance, L, between symbol canters and the noise variance 2 , 

can be used in the cumulative distribution and therefore the probability of error, as in 

equation (5.6) 
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 
                                                                        (4.4)                   

 

 

 
 

Figure4.3 Interaction between two neighboring symbols.                        

 

( ) 2
2

L
p e CDF

 
  

 
 

Since each  channel symbol is equally likely to occure, the robability of unrecoverable 

errors occurring in the equalization space can be calculated using the sum of all the CDF 

overlap  between each opposing class symbol. The probability of error is more commonly 

described as the BER. Equation(5.7)describes the BER based upon the Gaussian noise 

overlap, where spN  is the number of symbols in the positive class, mN  is the distance 

between the i th positive symbol and its closest  neighboring symbol in the negative class.
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4.6. Channel Equalization 
 

        High speed communications channels are often impaired by channel inter symbol 

interference (ISI) and additive noise. Adaptive equalizers are required in these 

communication systems to obtain reliable data transmission. In adaptive equalizers the mn 

constraint is training the equalizer. Many algorithms have been applied to train the equalizer, 

each having their own advantages and disadvantages. More over the importance of the 

channel equalizer always keeps the reaserch going on to introduce new algorithm to train the 

equalizer. 

    The optimal BER equalization performance is obtained using a maximum likelihood 

sequence estimator (MLSE) on the entire transmitted data sequence.A more practical  MLSE 

would operate on smaller data sequence but these can still be computationally expensive , 

they also have problem tracking time-varying channels and can only produce sequence of 

output with a significant time delay .Another equalization approach implements a symbol-

by-symbol detection procedure and is based upon adaptive filter.The symbol to symbol 

approachs to equalization applies the channel output samples to a decision classifier that 

separate the symbol into their respective classes. Traditionally these equalizers have been 

designed using  linear filters,LTE and LDFE, with a simple FIR structure.The ideal equalizer 

will model the inverse of the channel model but this code doesnot take into account the 

effect of noise within the channel.    
 

   4.7 Summary 
 

           To compensate the ISI, Multipath channel effects on frequency response and other types 

of noise effects an equalizer placed at the receiver end. Since equalizer comes under inverse 

modeling it is difficult to design. Proper care is taken in choosing the while training the channel. 

LMS types equalizer performs well in case of linear channels but its performance degrades while 

the channel becomes nonlinear. So different nonlinear structures are being used to design  

nonlinear equalizer like MLP,RBF,FLANN and many more.



 

 

 

                                                                                                             Chapter 5  

  
 

 

 

 

 

 

 

 

 

NONLINEAR CHANNEL EQUALIZER USING ANN 
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5.1 Introduction      
 

Generally  speaking, message signals will inevitablysuffer from noise, interference, and 

power attenuation during transmission. Therefore, the receiver needs to perform some 

compensation for the distortion in order to get correct information . Traditional receivers usually 

use linear channel equalizers  to solve this problem. However, when the message signals are 

transmitted through highly nonlinear channels, linear equalizers are no longer able to provide 

satisfactory results. A neural network has a fairly complicated  mapping ability between input 

and output signals, and is therefore capable of dealing with nonlinear problems [23]. The 

motivation of our research is to design and implement a neural-network-based nonlinear channel 

equalizer under the consideration of tradeoffs between the hardware chip size, the processing 

speed, and the cost.The applications of neural network techniques on digital communication 

systems were first proposed by Siu et al. [24].They have made a comparison on the equalization 

performance between multilayer perceptron (MLP) based on the backpropagation (BP) algorithm 

and linear least-mean-square-based equalizer (LIN) based on least-mean-square (LMS) 

algorithms. According to [24], the MLP has superior performance to LIN on both bit-error-rate 

(BER) and mean-squared-error (MSE) characteristics, especially when message signals are 

transmitted through highly noisy channels. MLP, however, requires longer training time and 

tends to converge to undesired local minima instead of the global one. Although Zerguine has 

proposed a multilayer perceptron based decision feedback equalizer with lattice structure to solve 

the convergence problem, its high computational complexity still greatly limits the applications. 

Cha has used adaptive complex radial basis function (RBF) networks to deal with the channel 

equalization [9]. However, as the RBF network needs a large number of hidden nodes to achieve 

acceptable system performance, it is not quite suitable for parallel processing. The problem of 

huge number of hidden nodes encountered by RBF seems to be solved by using the minimum 

radial basis function (MRBF) neural networks proposed by Jianping [25]. However, actually in 

the equalization procedure of a system applying MRBF, the neural network has to first increase 

the number of hidden nodes, and then omits the unnecessary nodes according to rules defined in 

the algorithm. Since the chip size of circuit depends on the maximum number of nodes along the 

equalization process, the MRBF technique cannot help in simplifying the hardware design. 

Reference [8] indicated that the functional link artificial neural network (FLANN) presents even 
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better performance than MLP when techniques. After the designing procedure is finished, the 

circuit can be easily implemented using hardware description languages (HDLs). We choose 

field-programmable-gate-array (FPGA) devices for the hardware realization of our channel 

equalizer. 

 

 

5.2 System Architecture 
 

   The block diagram of the digital communication system with equalizer is shown in 

figure below The channel is composed of the transmitting filter, the transmission medium, and 

other component characteristics. A commonly used linearly dispersive channel model is the so-

called finite-impulse-response (FIR) model. The output a(k) from an FIR channel at time kt  is  

 

                        
1

0

( ) ( ) ( )
hn

i

a k h i t k i




   

             Where  h(i) ,i=0,…..nh-1, are the tap values of the channel, and nh is the length of the 

FIR chanel. The nonlinearly distorted output b(k) associated with a(k) can be written as  

 

( ) ( ( )) ( ( ), ( 1),.... ( 1), (0), (1),... ( 1))h hb k a k t k t k t k n h h h n        

 

Where  (.)  is the nonlinear function generated by the block labeled as NL .Since the channel 

may also be effected by the additive white Gaussian noise(AWGN)  with variance ζ
2 

,the 

received signal at the equalizer is  r(k)=b(k)+q(k), where q(k) is the white Gaussian 

noise(AWGN) with  variance ζ
2
,the received signal at the equalizer is r(k)=b(k)+q(k), where 

q(k) is the white Gaussian noise sample at time instant kT. The compensated output ( )y k


 from 

the equalizer is then compared with the desired signal. The error signal is defined as e(k)= y(k)- 

( )y k


, where the desired signal y(k)=t(k-d) represents the delayed version of the received signal, 

and D is the time delay of the signal transmitted through the physical channel. If the error e (k) is 

over the tolerable limit, for example, ε the parameter of the equalizer will be continued until the 

error  function. This process will be continued until the error is under the limit value ε. 
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NL=Non linearity      

Figure 5.1   Block diagram of channel Equalization 

                          

5.3 LIN Structure   
 

The block diagram of an LIN structure is depicted in Fig. 2. The input signals are first 

passed through a bank of   n  delays to to form  ( ) [ , ( ), ( 1)........ ( )]T

nX k x k x k x k n    where 

the superscript T denotes  denotes the transpose of a matrix, and the delayed signals are 

multiplied with a set of weights  0 1( ) [ ( ), ( )........... ( )],nW k w k w k w k  and are then summed up 

with a randomly generated bias  b(k) The result s(k) is the input to a linear function to obtain  

( )y k


. Without loss of generality, we will denote the linear function by  purelin(.) in the 

followings. The error function e(k) is computed as the difference between  ( )y k


  and  y(k) . 
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When is greater than the highest tolerable limit , the system will modify the weighting 

coefficients based on LMS criterion .  

  

 

 

 

 

 

 

 

 

 

                                                          

The whole learning algorithm can ,thus, be summarized as follows: 

( ) ( ) ( ) ( )S k W k X k b k   

( ) ( ( ))y k purelin s k


  

( ) ( ) ( )e k y k y k


   

( 1) ( ) 2 ( ) ( )TW k W k e k X k    

( 1) ( ) 2 ( )b k b k e k    

The positive constant appearing in the above equations is the learning factor in a neural network. 

The numerical value of α satisfies 0<α<2/ λmax, where λmax is the largest eigenvalue of the 

Hessian matrix. The initial values of W(k) and b(k) is randomly generated from an arbitrarily 
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selected range [-.5 ,0.5]. Although the use of LIN is generally limited on linearly separable 

problems, it is still quite popular due to its simplicity. For example, LIN plays a very important 

role in the design of adaptive filters . 

 

5.4 FLANN 
 

Pao originally proposed FLANN and it is a novel single layer ANN structure capable of 

forming arbitrarily complex decision regions by generating nonlinear decision boundaries [3.4]. 

Here, the initial representation of a pattern is enhanced by using nonlinear function and thus the 

pattern dimension space is increased. The functional link acts on an element of a pattern or entire 

pattern itself by generating a set of linearly independent function and then evaluates these 

functions with the pattern as the argument. Hence separation of the patterns becomes possible in 

the enhanced space. The block diagram of a system with FLNN is shown in figure.  

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 5.3  FLANN Structure 
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1 2[ ( ) ( ) ( )]T

NX X X    The linear combination of these function values is presented in its 

matrix form, that is, S W   where 1 2[ ...... ]T

mS s s S , and  W   is the  m x N dimensional 

weighting matrix. The matrix S is fed into a bank of identical nonlinear functions to generate the 

equalized output 1 2[ ... ]T

mY y y y
   

 , where  ( ),j jy s


  j=1,2,………m. Here the nonlinear 

function is defined as (.) tanh(.)  .The  major difference between the hardware structures of 

MLP and FLANN is that FLANN has only input and output layers, and the hidden layers are 

completely replaced by the nonlinear mappings. In fact, the task performed by the hidden layers 

in MLP is carried out by functional expansions in FLANN. Since the input signals are 

nonlinearly mapped into the output signal space, FLANN has also the ability to resolve the 

equalization problems for nonlinear channels. Similar to MLP, the FLANN uses the BP 

algorithm to train the neural networks. However,since the FLANN has much simpler structure 

than MLP, its speed of  convergence for training process is a lot faster than MLP. The whole 

learning algorithm for the FLANN is summarized as follows : 
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1 2( ) [ ( ) ( )..... ( )]T

mW k W k W k W k
 

     

     In the above equations, μ  is the learning factor and  γ is the momentum factor that helps to 

accelerate the speed  of convergence of algorithms. The values of these parameters are chosen 

according the inequalities  0 .1 <μ <1.0 and 0 < γ <0.9. 

 

 

 

 
 

 

 
 

 

 

 
 

 

 

5.5 Design Procedure  

 

The procedure of the equalizer during one iteration can be  divided into the following four steps. 

 

1) Compute the estimated output of the network in the forward direction. 

 

2) Evaluate the errors between the signals from the output layer and the input layer. 

 

3) Calculate the amount of modification for the weightings between layers. 

 

4) Update the weighting vector for each layer. 

 

The computational complexities of MLP, LIN, and FLANN for training the neural network  

during each iteration are summarized in Table I, where  n0
+
 represents the number of input 

Number of operation 
 

LIN FLANN 

Addition 
 

2n0nL+nL 3(3n0 ++  n0+C2)nL+4nL 

Multiplication 
 

3n0nL 4(3n0 ++  n0+C2)nL+2 nL+ n0+C2 

Tanh(.) 
 

0 nL 

Cos(.)   and sin(.) 
 

0 2n0
+ 

Table 2  Number of operation for LIN and  FLANN 
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signals of FLANN structure, n0 is the number of nodes at the LIN . It can be seen from the table 

that FLANN requires slightly more additions and multiplications than LIN. 

 

           Now, we turn our attention to the compensating performance of the algorithms over three 

different channel models. The normalized responses of the channel models considered in this 

thesis are expressed in the form of their Z transformation as follows: 

 

CH=1:0; 
 

CH=2:0.209+0.995Z
-1
+0.209Z

-2 

 

CH=3:0.260+0.93076Z
-1

+0.260Z
-2 

 

CH=4:0.340+0.903Z
-1
+0.304Z

-2 

 

CH=5:0.341+.876Z
-1

+.341Z
-2

 

 
 

        Where the  notation CH=1 corresponds to an  ideal channel with unit impulse response that 

has no intersymbol interference(ISI) . Model CH stands for a finite impulse response (FIR) 

channel with channel lenth 3. Following are the channel models we consider four kinds of 

nonlinearities, namely, 

 

NL=0; b(k)=a(k); 

 

NL=1: b(k)=tanh(a(k)); 

 

NL=2:b(k)=a(k)+.2a2(k)-.1a3(k); 

 

NL=3:b(k)=a(k)+.2a2(k)-.1a3(k)+.5cos(πa(k)); 

 

The nonlinear model NL=0   stands for a purely linear module, that is, there is no nonlinearity in 

the model. The model NL=1   corresponds to systems suffering from nonlinear distortion which 

is possibly caused by the saturation of amplifiers used in the transceivers. In models NL =2 and  
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NL =3 we assume the signals have suffered from some second-order, third-order, and/or  

trigonometric nonlinear distortions during transmission.  

 

5.6 Simulation study and results: 
         

     The  performance of LIN and FLANN based channel equalizer  is compared  for linear 

and  nonlinear channel . To study the effect of nonlinearity on the system performance four 

different nonlinear channel models with the following nonlinearities has been introduced. The 

learning parameter μ both for LIN  and FLANN  structure  was suitably chosen to obtain best 

result. 

Four different channels were studied with the following transfer function: 

 

CH=1:0.209+0.995Z
-1

+0.209Z
-2 

 

CH=2:0.260+0.93076Z
-1

+0.260Z
-2 

 

CH=3:0.340+0.903Z
-1

+0.304Z
-2 

 

CH=4:0.341+.876Z
-1

+.341Z
-2

 

 

   To study the effect of nonlinearity on the system performance four different nonlinear 

channel models with the following nonlinearities has been introduced. 

 

NL=0; b(k)=a(k); 

 

NL=1: b(k)=tanh(a(k)); 

 

NL=2:b(k)=a(k)+.2a2(k)-.1a3(k); 

 

NL=3:b(k)=a(k)+.2a2(k)-.1a3(k)+.5cos(πa(k)); 
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Simulation result for channel 3  with 20 dB noise has been simulated for different linear 

and non linear channel has been studied. From Fig. it is seen that convergence characteristics of 

FLANN faster converges than the LIN structure. simulation result have demonstrated that 

FLANN presents much better error performance than LIN especially when communication 

system is highly nonlinear. From BER  plot it is seen that FLANN structure perform better than 

the LIN structure for all the linear and nonlinear channel.  

 
 
 
                         Fig   5.4(a)                                                                             fig 5.4(b) 

 
 
 
 
 

 

   
Fig  5.4(c)                                                                 fig 5.4(d) 
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Fig 5.4 (a),(b)  corresponds to MSE and BER plot for FLANN and LIN equalizer structure for 

NL=1 and fig 4.4 (c), (d) for NL=2 .Fig 4.4(e),(d)  for NL=3. 

 
                      

              Fig 5.4(e)                                                                        Fig 5.4(f) 

    

 
 

 

5.7 Summary 
     

       Artificial neural network based nonlinear channel equalizer is described in this chapter.We 

compared the performance of two different structure of equalizer,namely , the  linear least 

squared-based (LIN) and the functional link artificial neural networs(FLANN).Taking different 

types of nonlinearity the MSE and  BER are plotted. Simulation results have demonstrated that 

FLANN presents much better error performance than LIN, especially when the communication 

channel is highly nonlinear. 
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6.1 Introduction 

           

          The pursuit to build intelligent human-like machines led to the birth of artificial neural 

networks (ANNs). Much work based on computer simulations has proved the capability of 

ANNs to map, model, and classify nonlinear systems. The special features of ANNs such as 

capability to learn from examples, adaptations, parallelism, robustness to noise, and fault 

tolerance have opened their application to various fields of engineering, science, economics, etc. 

Real-time applications are feasible only if low-cost high-speed neural computation is made 

viable. Implementation of neural networks (NNs) can be accomplished using either analog or 

digital hardware. The digital implementation is more popular as it has the advantage of higher 

accuracy, better repeatability, lower noise sensitivity, better testability, and higher flexibility and 

compatibility with other types of preprocessors. On the other hand, analog systems are more 

difficult to be designed and can only be feasible for large scale productions, or for very specific 

applications. After the designing procedure of channel equalization for nonlinear transmission 

environments using neural network technique is finished, the circuit is implemented using 

hardware description language (HDL’s).We implemented using Xilinx FPGA “xcs600bg560”. 

 

 

 

 

 

          Figure6.1 Generalized module of  channel with equalizer 

 

      The generalized model of communication channel with equalizer is shown in figure. 

In which equalizer is implemented using FLANN structure and LIN structure. The function of 

source generator is to generate random binary signal to the channel. The channel is modeled FIR 

model. In LIN structure composed of series-in-parallel-out (SIPO) shift registers and can be 

implemented as the tapped delay line structure depicted in Fig. 2. In addition to the simple SIPO, 

the FLANN structure also contains a functional expansion block, as shown in Fig. 4. The 

Sourse 

generator 

FIR 

model 

     NL Noise Equalizer 
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transcendental functions and in the functional expansion are built using cordic algorithm. The 

mathematical operations associated with matrices, such as the computation of  S(k,)e(k)(X(k))
T
  in 

the LMS algorithm, and δ(k)(Ф(k))
T  

in the BP algorithm, are carried out by the matrix 

multiplier. The output estimator for FLANN structure is a nonlinear function, which is replaced 

by a ROM lookup table in order to speed up the processing. The delta generator computes and 

according to (11). The error generator of LIN structure, however, requires only simple 

subtraction operations. The block diagram of the weight refresher for FLANN is given in Fig. 

8.FLANN demands for two adders to refresh and ∆w. While LIN requires only one adder for the 

purpose of refreshing W. 

 

 

 

 

 

 

 

 

 

 

 

 

6.2 CORDIC algorithm 

 
In the past decade, the unprecedented advances in VLSI technology have simulated great 

interests in developing special purpose, parallel processor arrays to facilitate real time digital 

signal processing. Parallel processor arrays such systolic arrays have been extensively studied. 

The basic arithmetic computation of these parallel VLSI arrays has often been implemented with 

a multiplication and accumulation unit(MAC) ,because these operations arise frequently in DSP 

Figure 6.2    Block Diagram of FLANN weight refresher 

 

Adder 

   Latch 

 

   Adder     Latch 

μ∆(k) 

∆(k-1) 

∆w(k) 

W(k+1) 
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applications. The reduction in hardware cost also motivated the development of more 

sophisticated DSP algorithms which require the evaluation of elementary functions such as 

trigonometric, exponential and logarithmic functions, which cannot be evaluated efficiently with 

MAC based arithmetic units. Consequently, when DSP algorithms incorporate these elementary 

functions, it is not unusual to observe significant performance degradation. 

            On The other hand, an alternative arithmetic computing algorithm known as CORDIC 

(Coordinate Rotation Digital Computer) has received renewed attention, as it offers a unified 

iterative formulation to efficiently evaluate each of these elementary functions. Specifically, all 

the evaluation tasks in CORDIC are formulated as a rotation of 2x1 vectors in various 

Coordinate systems. By varying a few simple parameters, the same CORDIC processor is 

capable of iteratively evaluating these elementary functions using the same hardware within the 

same amount of time. This regular unified formulation makes the CORDIC based architecture 

very appealing for implementation with pipelines VLSI array processors 

 

         The CORDIC is a class of hardware-efficient algorithms for the computation of 

trigonometric and other transcendental functions that use only shifts and adds to perform. The 

CORDIC set of algorithms for the computation of trigonometric functions was developed by 

Jack E. Volder in 1959 to help in building a real-time navigational system for the B-58 

supersonic bomber. Later, J. Walther in 1971 extended the CORDIC scheme to other 

transcendental functions. The CORDIC method of functional computation is used by most 

handheld calculators (such as the ones by Texas Instruments and Hewlett-Packard) to 

approximate the standard transcendental functions.  

  Depending on the configuration defined by the user, the resulting module implements pipelined 

parallel, word-serial, or bit-serial architecture in one of two major modes: rotation or vectoring. 

In rotation mode, the CORDIC rotates a vector by a specified angle. This mode is used to 

convert polar coordinates to Cartesian coordinates. For example consider the multiplication of 

two complex numbers x+jy and (cos(θ) + j sin(θ)).The result u+jv, can be obtained by evaluating 

the final coordinate after rotating a 2x1 vector [x y]
T 

through an angle θ and then scaled by a 

factor r.This is accomplished in CORDIC via a three-phase procedure: angle conversion, Vector 

rotation and scaling.           
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Figure 6.3 The basic block diagram of CORDIC processing 

 

6.2.1The Rotation Transform 

   

      All the trigonometric functions can be computed or derived from functions using vector 

rotations. The CORDIC algorithm provides an iterative method of performing vector rotations by 

arbitrary angles using only shift and add operations. The algorithm is derived using the general 

rotation transform: 

                  

                                   ' cos( ) sin( )X X Y    

 

                                    ' cos( ) sin( )Y X Y    

 

where (X’,Y’) are the coordinates of the resulting vector after rotating a vector with coordinates 

(X,Y) through an angle of θ in the Cartesian plane. These equations can be rearranged to give: 

                            

                                      ' cos( ).[ tan( )]X X Y    

 

                                     ' cos( ).[ sin( )]Y Y X    

Now, if the angles of rotation are restricted such that tan(θ=±2
-i  then the tangent multiplication 

term is reduced to a simple shift operation. Hence arbitrary angles of rotation can be obtained by 

performing a series of successively smaller elementary rotations. The iterative equation for 

rotation can now be expressed as:                                   

                                        1 ( 2 )i

i i i i iX K X Y 

    

                                         

 

CORDIC 

Algorithm 

X = cos(θ) -jsin(θ) 

Y= sin(θ)+ jcos(θ) 

θ 

X 

Y 
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                                          1 ( 2 )i

i i i i iY K Y X  

    

where K
k 

= cos(tan
-1

(2
-k

)) and ∂
k 

= ±1 depending upon the previous iteration. Removing the scale 

constant from the above equations yields a shift-add algorithm for vector rotation. The product 

K
k 

approaches the value of 0.6073. The CORDIC algorithm in its binary version can be 

expressed as a set of three equations as follows: 

 

                                           1 [ 2 ]k

k k k kX X mY 

                                               

                                             1 [ 2 ]k

k k k kY Y mY 

                                                    

                                                 1 [ ]k k k kZ Z     

Where m = ±1 and ε
k 

are prestored constants. The values of ε
k 

will become apparent from the 

following example for computing the sine and cosine functions. 

To compute the sin θ and cos θ for θ ≤ π/2,     we let m = 1, ε
k 
= tan

-1

(2
-k

) and define: 

                                
0

cos( )
n

k

k

C 


  

Then the equations of the CORDIC algorithm for computing sine and cosine functions can be 

written down as: 

1 [ 2 ]k

k k k kX X mY 

     

 

1 [ 2 ]k

k k k kY Y mY 

     

1 [ ]k k k kZ Z     

δ
k 
= sgn(Z

k
), X

0
=C, Y

0
=0 and Z

0 
= θ and n is the number of iterations performed. Then 

1 cos( )kX    

1 sin( )kY    
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6.3 Linear Feedback Shift Register: 

  
A  Linear feedback shift register  (LFSR) is a shift register  that utilizes a special 

feedback circuit to generate the serial input value. . The feedback circuit is essentially the next-

state logic.  It performs xor operation on certain bits of the register and forces the register to 

cycle through a set of unique states  In a properly designed n-bit LFSR, we can use a few xor 

gates to force the register to circulate through 2
n
 - 1 states. The initial value of the LFSR is called 

the seed, and because the operation of the register is deterministic, the sequence of values 

produced by the register is completely determined by its current (or previous) state. Likewise, 

because the register has a finite number of possible states, it  must eventually enter a repeating 

cycle. However, an LFSR with a well-chosen feedback function can produce a sequence of bits 

which appears random and which has a very long cycle Applications of LFSRs include 

generating pseudo-random number, pseudo-noise fast digital counters, and whitening sequence.  

 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 

 
.  

The diagram of a 4-bit LFSR is shown in Figure 9.7. The two LSB signals of the register are 

xored to generate a new value, which is fed back to the serial-in port of the shift register. Assume 

that the initial state of register is "1000". The circuit will circulate through the 15 (i.e., 24 - 1) 
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Figure 6.4  Block diagram of   4-bit LSFR 
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states as follows: "1000", "0l00", "0010", "1001", '1100", "0110", "1011", "0101", "1010", 

"1101", "1110","1 11 l", "01 1 l", "0011", "0001". 

 

Note that the "0000" state is not included and constitutes the only missing state. If the LFSR 

enters this state accidentally, it will be stuck in this state. The construction of LFSRs is based on 

the theoretical study of finite fields. The term linear comes from the fact that the general 

feedback equation of an LFSR is described by an expression of the and and xor operators, which 

form a linear system in algebra. The theoretical study shows some interesting properties of 

LFSRs: 

 

 An n-bit LFSR can cycle through up to 2
n
 - 1 states.  

 

 The all-zero state is excluded from the  sequence. 

 

    A feedback circuit to generate maximal number of states exists for any n. The sequence 

generated by the feedback circuit is pseudorandom, which means that the sequence exhibits a 

certain statistical property and appears to be random. The feedback circuit depends on the 

number of bits of the LFSR and is determined on an ad hoc basis. Despite its irregular pattern, 

the feedback expressions are very simple, involving either one or three xor operators most of the 

time. Table 9.1 lists the feedback expressions for register sizes between 2 and 8 as well as 

several larger values. We assume that the output of the n-bit shift register is qn-1  qn-2, . . . , q1 

,q0 . The result of the feedback expression is to be connected to the serial-in port of the shift 

register (Le., the input of the (n - 1)th FF).Once we know the feedback expression, the coding of 

LFSR is straightforward. Note that the LFSR cannot be initialized with the all-zero pattern. In 

pseudo number generation, the initial value of the sequence is known as a seed. We use a 

constant to define the initial value and load it into  the LFSR during system initialization. 
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Register size Feed back expression 

 

 
 
 
 

 

                                       

Table 3 Feedback expression for LSFR 

 

6.4 Design of LUT 
 

 The implementation of the excitation function in FPGA is done using the LUT that 

enables to use the inbuilt RAM available in FPGA integrated chip (IC). The use of LUTs reduces 

the resource requirement and improves the speed. In addition, the implementation of LUT needs 

no external RAM since the inbuilt memory is sufficient to implement the excitation function. As 

the excitation function is highly nonlinear a general procedure adopted to obtain an LUT of 

minimum size for a given resolution is detailed as follows. 

 

1) Let  n be the number of bits  

                                 ( )
x x

x x

e e
y f x

e e






 


  

2) Determine the range of input (x) for which the range of  output (y) is between 2
-n

 and    1– 2
-

n
. Let x1 and x2 be the  upper and lower limits of the input range.  



VLSI Implementation of Non-Linear Channel Equalizer 
 

  67 

   

                   Substituting  
1 1

1 1
1 2

x x
n

x x

e e

e e










 and  

2 2

2 2
1 2

x x
n

x x

e e

e e







 


 , it is found that   

 

                 
1

1 1 2
ln

2 1 2

n

n
x





 
   

 
   and  

2

1 2
ln

2 2 2

n

n
x





 
   

 
 

3) Determine the change in input x  that produces change in output ( y )equal to 2 n   at the 

point of maximum slop. For tansigmoid excitation function , the maximum slope is at x=0; 

The value of  x  for the output change of 2 n  can be obtained from   

 

                                         
2

2

1 (1 2 )
ln

4 (1 2 )

n

n
x





 
   

 
 

   

       4)    The minimum number of LUT values is given by 

                                                1 2
min( )

x x
LUT

x





 

Appropriate number of bits that can address (LUT)min are chosen. For the tansigmoid function 

with 8 bit resolution, x1, x2 and  x  are calculated from (7) and (8) .It is found from (8) that  

(LUT)min=799. In order to accommodate for (LUT)min, 10 bit address is required. Hence , 1k 

RAM is used as LUT for tansigmoid excitation function. The 1K RAM 1024 divisions; each of 

step size x  =.0039 can accommodate the value of x in the range  -3.99 to + 3.99. Here we are 

using symmetry property of the tansigmoid function. So we can calculate negative value of 

function. With this method of LUT design, the nonlinearity of the excitation function is 

maintained for a given 8-bit resolution. Thus, a LUT of 1-K RAM for log-sigmoid excitation 

function with 8-bit resolution replaces the complete computation of the excitation function. 

However, the size of the LUT increases for higher resolution. 
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6.5 VHDL  simulation Results 
                                       

                          

 
  

                                                   

               Fig  6.5 (a) Output waveform of weight updating for  FLANN structure            

                               (CH=4:0.341+.876Z
-1

+.341Z
-2

 ,NL=2) 

 
 

 

                Fig 6.5(b) Output waveform of weight updating for  LIN structure   
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                    Fig  6.6   Output waveform of  Nonlinear channel equalizer using  FLANN  Structure 

                                                   (CH=4:0.341+.876Z
-1

+.341Z
-2
 ,NL=2) 
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                                                     Fig 6.7(a) 

 

 

 
 
                                                       Fig 6.7(b) 

 

 
         Fig 5.5 (a),(b) shows the Design summery of FLANN and LIN structure respectively 
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6.6  Comparison of VHDL  and  MATLAB  simulation results 

 

 

 

 
     

                        Fig 6.8(a)                                                             Fig  6.8(b)  

 

Fig 5.5(a)  shows the comparison  VHDL and Matlab result for FLANN structure   with  

NL=b(k)=a(k)+.2a
2

(k)-.1a
3

(k)  and  (b) shows for LIN structure.

0 2 4 6 8 10 12 14 16 18 20
10

-4

10
-3

10
-2

10
-1

10
0

SNR in dB

B
E

R

 

 

VHDL

MATLAB

2 4 6 8 10 12 14 16 18 20
10

-4

10
-3

10
-2

10
-1

10
0

SNR in dB

B
E

R

 

 

MATLAB

VHDL



 

 

Chapter 8  

  
 

 

 

 

 

 

 

 

CONCLUSION 
 

 

  



Conclusion 
 

  73 

       The architecture and training procedure of a novel RNN, called MFLNN, have been 

described. The recurrences in the network structure have been introduced through the use of 

three feedback layers with nonlinear processing units. In these feedback layers, weighted sums of 

the delayed outputs of the hidden and of the output layers are passed through certain activation 

functions and applied to the feed forward neurons via adjustable weights. Thus, the feedback 

signals are processed in the feedback layers in the same way as the feed forward layers.The 

BPTT-like derivative calculation is required to train the recurrent systems. Since, the calculation 

of the derivatives by the chain rule for the unfolded structure is very complicated, the adjoint 

model of the MFLNN is built to simplify the computations. The fast convergence of the MLFNN 

weights is obtained by the LM algorithm. The performance of the MFLNN is compared with 

several feedforward and recurrent networks to show the structural capabilities of the network and 

the effectiveness of the training method. It has been shown that the proposed MFLNN achieves 

faster convergence rate and higher design accuracy with fewer parameters in all cases examined. 

The main distinguishing features of the MLFNN can be summarized as follows. 

 

 The main difference with the available RNNs is that the temporal relations in the 

MLFNN are provided by means of the neurons, not by the simple feedback elements, 

which enrich the representation capabilities of the recurrent networks. 

 It has a flexible feedback structure which enables use of different kinds of activation 

functions and the number of feedback neurons for different applications. 

 The online training procedure based on a certain history of the patterns stored in the stack 

at each time step improves the adaptation performance.  

 The adjoint model of the MFLNN is built to efficiently compute the derivatives for 

training. 

 A fast convergence of the MLFNN weights is obtained by means of the LM method with 

the trust region approach. 

 In the light of the simulation studies, we conclude that the developed MFLNN can be 

regarded as a new general RNN and can be effectively used for a wide class of temporal 

problems. 

    

 



Conclusion 
 

  74 

       We may treat the channel equalization as a problem associated with the classification of 

data. The  simulation results reveal that FLANN has much better performance than LIN on MSE 

and BER. But FLANN requires about more  chip area than LIN. One way to reduce the chip area 

is to replace the processing architecture by serial processing. By doing so, the chip area can be 

tremendously saved, but the processing time will at least become doubled, which is not 

acceptable in most applications. Another way to decrease the required chip area is to lower the 

number of data bits in the decimal fractions. This provides a tradeoff between hardware cost and 

system performance. 
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