

TIME SERIES PREDICTION AND CHANNEL

EQUALIZER USING ARTIFICIAL NEURAL

NETWORKS WITH VLSI IMPLEMENTATION

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

Master of Technology

in

VLSI DESIGN and EMBEDDED SYSTEM

By

JIJU MV

Roll No:20607001

Department of Electronics and Communication Engineering

National Institute Of Technology

Rourkela
 2008

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ethesis@nitr

https://core.ac.uk/display/53188915?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

TIME SERIES PREDICTION AND CHANNEL

EQUALIZATION USING ARTIFICIAL NEURAL

NETWORKS WITH VLSI IMPLEMENTATION

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

Master of Technology

in

VLSI DESIGN and EMBEDDED SYSTEM

By

JIJU MV

Roll No:20607001

Under the Guidance of

Prof. G. Panda

Department of Electronics and Communication Engineering

National Institute Of Technology

Rourkela
 2008

National Institute Of Technology

Rourkela

CERTIFICATE

 This is to certify that the thesis entitled, “Time series Prediction and channel

Equalization Using Artificial Neural Networks with VLSI implementation” submitted by Sri

JIJU MV in partial fulfillment of the requirements for the award of Master of Technology

Degree in Electronics & communication Engineering with specialization in “VLSI DESIGN

& EMBEDDED SYSTEM ” at the National Institute of Technology, Rourkela (Deemed

University) is an authentic work carried out by him under my supervision and guidance.

 To the best of my knowledge, the matter embodied in the thesis has not been submitted to any

other University / Institute for the award of any Degree or Diploma.

 Prof. G. Panda (FNAE , FNASc)
Dept. of Electronics & Communication Engg.

Date: National Institute of Technology

 Rourkela-769008

ACKNOWLEDGEMENTS

 This project is by far the most significant accomplishment in my life and it would be

impossible without people who supported me and believed in me.

 I would like to extend my gratitude and my sincere thanks to my honorable, esteemed

supervisor Prof. G. Panda, Head, Department of Electronics and Communication Engineering.

He is not only a great lecturer with deep vision but also and most importantly a kind person. I

sincerely thank for his exemplary guidance and encouragement. His trust and support inspired

me in the most important moments of making right decisions and I am glad to work with him.

 I want to thank all my teachers Prof. K. K. Mahapatra, Prof. G.S. Rath, Prof. S.K.

Patra and Prof. S.Meher for providing a solid background for my studies and research

thereafter. They have been great sources of inspiration to me and I thank them from the bottom

of my heart.

 I would like to thank all my friends and especially my classmates for all the thoughtful

and mind stimulating discussions we had, which prompted us to think beyond the obvious. I’ve

enjoyed their companionship so much during my stay at NIT, Rourkela.

 I would like to thank all those who made my stay in Rourkela an unforgettable and

rewarding experience.

 Last but not least I would like to thank my parents, who taught me the value of hard work

by their own example. They rendered me enormous support during the whole tenure of my stay

in NIT Rourkela.

 JIJU MV

 Roll No 20607001

CONTENTS

Abstract .. vii

List Of Figures .. iii

List Of Tables .. iv

Abbreviations Used ...v

CHAPTER 1.INTRODUCTION ..1

1.1 Motivation ..2

1.2 Thesis Layout ...3

CHAPTER 2.CONCEPTS OF NEURAL NETWORK ...4

2.1 Single Neuron Structure ...5

2.2 Activation Functions and Bias..6

2.3 Learning Processes ..7

2.3.1 Supervised Learning: ...8

2.4 Recurrent Neural Network ..9

2.5 The Back-Propagation Algorithm .. 10

CHAPTER 3.MULTIFEED-BACK LAYER NEURAL NETWORK AND ITS

APPLICATION... 12

3.1 Introduction ... 13

3.2 LM algorithm .. 15

3.3 Multifeedback layer Neural Network (MFLNN) ... 20

3.4 Online training training Structure. ... 28

3.5 Application of MFLNN ... 30

3.5.1 Predicting Chaotic Time Series.. 30

3.5.2 Identification of a MIMO Nonlinear Plant .. 32

3.5.3 Predictive Modeling of a NARMA Process ... 35

CHAPTER 4.CONCEPT OF CHANNEL EQUALIZATION .. 38

4.1. Introduction .. 39

4.2. Baseband Communication System .. 40

4.3. Channel Interference ... 40

4.3.1. Multipath Propagation. ... 41

4.4. Minimum And Nonminimum Phase Channels .. 42

4.5 Intersymbol Interference .. 43

4.5.1 Symbol Overlap. ... 43

4.6. Channel Equalization .. 45

4.7 Summary ... 45

CHAPTER 5.NONLINEAR CHANNEL EQUALIZER USING ANN 46

5.1 Introduction ... 47

5.2 System Architecture ... 48

5.3 LIN Structure ... 49

5.4 FLANN ... 51

5.5 Design Procedure ... 53

5.6 Simulation study and results: ... 55

5.7 Summary ... 57

CHAPTER 6.VLSI IMPLEMENTATION OF NONLINEAR CHANNEL EQUALIZER

 ... 58

6.1 Introduction ... 59

6.2 CORDIC algorithm .. 60

6.2.1The Rotation Transform ... 62

6.3 Linear Feedback Shift Register: ... 64

6.4 Design of LUT ... 66

6.5 VHDL simulation Results ... 68

6.6 Comparison of VHDL and MATLAB simulation results .. 71

CHAPTER 7.CONCLUSION ... 72

REFERENCES .. 75

 ii

Abstract

 The architecture and training procedure of a novel recurrent neural network (RNN),

referred to as the multifeedbacklayer neural network (MFLNN), is described in this paper. The

main difference of the proposed network compared to the available RNNs is that the temporal

relations are provided by means of neurons arranged in three feedback layers, not by simple

feedback elements, in order to enrich the representation capabilities of the recurrent networks.

The feedback layers provide local and global recurrences via nonlinear processing elements. In

these feedback layers, weighted sums of the delayed outputs of the hidden and of the output

layers are passed through certain activation functions and applied to the feedforward neurons via

adjustable weights. Both online and offline training procedures based on the backpropagation

through time (BPTT) algorithm are developed. The adjoint model of the MFLNN is built to

compute the derivatives with respect to the MFLNN weights which are then used in the training

procedures. The Levenberg–Marquardt (LM) method with a trust region approach is used to

update the MFLNN weights. The performance of the MFLNN is demonstrated by applying to

several illustrative temporal problems including chaotic time series prediction and nonlinear

dynamic system identification, and it performed better than several networks available in the

literature.

 iii

 List Of Figures

Figure No Figure Title Page No.

Figure 2.1 Single Neuron structure ...5

Figure 2.2 A simple Recurrent network ...9

Figure 3.1 Transition between the Steepest Descent and the Gauss-Newton.......................... 18

Figure 3.2 Structure of MFLANN .. 18

Figure 3.3 Layers of the MFLNN ... 18

Figure 3.4 Adjoint model of the MFLANN... 18

Figure 3.5 Online Training structure of the MFLANN .. 18

Figure 3.6 RMSE curves in the logarithamic scale .. 31

Figure 3.7 Mackey-Glass Time series values (from t= 124 to 1123) and six step ahead

prediction ... 32

Figure 3.8 Basic Block diagram of system identification model .. 33

Figure 3.9 Output of plant and the MFLNN .. 34

Figure 3.10 Instaneous identification error.. 35

Figure 3.11 MSE curve for 0.7V  ... 36

Figure 4.1 Base band communication System ... 40

Figure 4.3 Interaction between two neighboring symbols ... 44

Figure 5.1 Block diagram of channel Equalization .. 49

Figure 5.2 LIN structure ... 50

Figure 5.3 FLANN Structure .. 51

Figure 5.4 MSE and BER plot for FLANN and LIN equalizer structure................................ 56

Figure 6.2 Block Diagram of FLANN weight refresher .. 60

Figure 6.3 The basic block diagram of CORDIC processing ... 62

Figure 6.4 Block diagram of 4-bit LSFR ... 64

Figure 6.5 Output waveform of weight updating for FLANN structure

(CH=4:0.341+.876Z
-1

+.341Z
-2

 ,NL=2)

 .. 40

file:///C:\Documents%20and%20Settings\LAKSHMI\Desktop\New%20Microsoft%20Office%20Word%20Document.docx%23_Toc199576950
file:///C:\Documents%20and%20Settings\LAKSHMI\Desktop\New%20Microsoft%20Office%20Word%20Document.docx%23_Toc199576951
file:///C:\Documents%20and%20Settings\LAKSHMI\Desktop\New%20Microsoft%20Office%20Word%20Document.docx%23_Toc199576951
file:///C:\Documents%20and%20Settings\LAKSHMI\Desktop\New%20Microsoft%20Office%20Word%20Document.docx%23_Toc199576951
file:///C:\Documents%20and%20Settings\LAKSHMI\Desktop\New%20Microsoft%20Office%20Word%20Document.docx%23_Toc199576951
file:///C:\Documents%20and%20Settings\LAKSHMI\Desktop\New%20Microsoft%20Office%20Word%20Document.docx%23_Toc199576951
file:///C:\Documents%20and%20Settings\LAKSHMI\Desktop\New%20Microsoft%20Office%20Word%20Document.docx%23_Toc199576951
file:///C:\Documents%20and%20Settings\LAKSHMI\Desktop\New%20Microsoft%20Office%20Word%20Document.docx%23_Toc199576951
file:///C:\Documents%20and%20Settings\LAKSHMI\Desktop\New%20Microsoft%20Office%20Word%20Document.docx%23_Toc199576951
file:///C:\Documents%20and%20Settings\LAKSHMI\Desktop\New%20Microsoft%20Office%20Word%20Document.docx%23_Toc199576951
file:///C:\Documents%20and%20Settings\LAKSHMI\Desktop\New%20Microsoft%20Office%20Word%20Document.docx%23_Toc199576951
file:///C:\Documents%20and%20Settings\LAKSHMI\Desktop\New%20Microsoft%20Office%20Word%20Document.docx%23_Toc199576951
file:///C:\Documents%20and%20Settings\LAKSHMI\Desktop\New%20Microsoft%20Office%20Word%20Document.docx%23_Toc199576951
file:///C:\Documents%20and%20Settings\LAKSHMI\Desktop\New%20Microsoft%20Office%20Word%20Document.docx%23_Toc199576951
file:///C:\Documents%20and%20Settings\LAKSHMI\Desktop\New%20Microsoft%20Office%20Word%20Document.docx%23_Toc199576951
file:///C:\Documents%20and%20Settings\LAKSHMI\Desktop\New%20Microsoft%20Office%20Word%20Document.docx%23_Toc199576951
file:///C:\Documents%20and%20Settings\LAKSHMI\Desktop\New%20Microsoft%20Office%20Word%20Document.docx%23_Toc199576951
file:///C:\Documents%20and%20Settings\LAKSHMI\Desktop\New%20Microsoft%20Office%20Word%20Document.docx%23_Toc199576951

 iv

List Of Tables

Table No. Table Title Page No.

Table 2.1:Common activation function ..7

Table 2 Number of operation for LIN and FLANN .. 53

Table 3 Feedback expression for LSFR ... 66

 v

Abbreviations Used

RNN Recurrent Neural Network

BP Back propagation

LMS Least Mean Square

RLS Recursive Least Square

ANN Artificial Neural Network

MFLNN Multifeedback-layer Neural Network

LM Levenberg-Marquardt

BPTT Back Propagation Through Time

MLP Multi layer perceptron

FLANN Functional Link Artificial Neural Network

LIN Linear least square-based equalizer

FIR Finite Impulse Response

MSE Mean Square Error

BER Bit Error Rate

FPGA Field programmable Gate Array

HDL Hardardware Description Language

Chapter 1

 INTRODUCTION

Introduction

 2

In recent years, with the growth of internet technologies, high speed and efficient data

transmission over communication channels has gained significant importance. The rapidly

increasing computer communication has necessitated higher speed data transmission over wide

spread network of voice bandwidth channels. In digital communications the symbols are sent

through linearly dispersive mediums such as telephone, cable and wireless. In band width

efficient data transmission systems, the effect of each symbol transmitted over such time-

dispersive channel extends to the neighboring symbol intervals. This distortion caused by the

resulting overlap of received data is called inter symbol interference (ISI) [4.5].

 The pursuit to build intelligent human like machines led to the birth of artificial neural network

(ANN).Much work based on computer simulations has proved capability of ANNs to map,

model, and classify nonlinear systems. The special features of ANNs such as capability to learn

from examples , adaptation, parallelism, robustness to noise, and fault tolerance have opened

their application fields of engineering, science economics. Real time application are feasible only

if low cost high speed neural computation is made viable.

1.1 Motivation

 The majority of physical systems contain complex nonlinear relations, which are difficult

to model with conventional techniques. Neural networks (NNs) have learning, adaptation, and

powerful nonlinear mapping capabilities. Therefore, they have been studied to deal with

predicting, modeling, and control of complex, nonlinear, and uncertain systems, in which the

conventional methods fail to give satisfactory results Recurrent neural networks (RNNs)

naturally involve dynamic elements in the form of feedback connections providing powerful

dynamic mapping and representational capabilities. The main difference of the proposed network

(MFLNN) compared to the available RNNs is that the temporal relations are provided by means

of neurons arranged in three feedback layers, not by simple feedback elements, in order to enrich

the representation capabilities of the recurrent networks.

Introduction

 3

 Another motivation of thesis is to design and implement a neural-network-based nonlinear

channel equalizer under the consideration of tradeoffs between the hardware chip size, the

processing speed, and the cost.

1.2 Thesis Layout

 Chapter2 introduces artificial neural network and illustrates its learning process.

 Chapter 3 discussed the architecture and Training procedure of a novel recurrent

network,referred as MFLNN.The performance of the MFLNN demonstrated by applying to

several illustrative temporal problems including chatic time series prediction and nonlinear

system identification.

 Chapter 4 introduces basic theory of channel equalizer

 Chapter 5 explains the applications of neural network techniques on digital communication

systems. We compare the performance of two different structures of equalizer, namely, the linear

least-mean-square-based equalizer (LIN) and the functional link artificial neural networks

(FLANN).

 In chapter 6 discussed the hardware implementation of equalizers for transmissions through

nonlinear communication channels based on artificial neural networks structure. After the

designing procedure is finished, the circuit implemented using hardware description languages

(HDLs). We choose field-programmable-gate-array (FPGA) devices for the hardware realization

of our channel equalizer. And compared performance of two different structures of equalizer

 Chapter 7 summarizes the work done in this thesis work

Chapter 2

CONCEPTS OF NEURAL NETWORK

Concept of Neural Network

 5

2.1 Single Neuron Structure

 A neuron is an information processing unit that is fundamental to the operation of a neural

network. The three basic elements of the neuronal model:

1. A set of synapses or connecting links, each of which is characterized by a weight or streght

of its own.

2. An adder for summing the input signals, weighted by the respective synapses of the neuron

3. An activation function for limiting the amplitude of the output of a neuron. The activation

function is also referred to As a squashing function in that it squashes the permissible

amplitude range of the output signal to some finite value.

Figure 2.1 Single Neuron structure

The structure of a single neuron is presented in Fig. 2.1.An artificial neuron involves the computation

of the weighted sum of inputs and threshold .The resultant signal is then passed through a non-linear

activation function. The output of the neuron may be represented as,

1

() () () ()
N

j j

j

y n f w n x n b n


 
  

 


Concept of Neural Network

 6

Where x1 ,x2 ,xn are the input signals ; w
j
(n) = weight associated with the j

th

input,

b(n) = threshold to the neuron is called as bias.

and N = no. of inputs to the neuron.

2.2 Activation Functions and Bias.

The perceptron internal sum of the inputs is passed through an activation function, which can be

any monotonic function. Linear functions can be used but these will not contribute to a non-

linear transformation within a layered structure, which defeats the purpose of using a neural filter

implementation. A function that limits the amplitude range and limits the output strength of each

perceptron of a layered network to a defined range in a non-linear manner will contribute to a

nonlinear transformation. There are many forms of activation functions, which are selected

according to the specific problem. All the neural network architectures employ the activation

function which defines as the output of a neuron in terms of the activity level at its input (ranges

from -1 to 1 or 0 to 1). Table 2.1 summarizes the basic types of activation functions. The most

practical activation functions are the sigmoid and the hyperbolic tangent functions. This is

because they are differentiable.

The bias gives the network an extra variable and the networks with bias are more powerful than

those of without bias. The neuron without a bias always gives a net input of zero to the activation

function when the network inputs are zero. This may not be desirable and can be avoided by the

use of a bias.

Concept of Neural Network

 7

 Table 2.1:Common activation function

 2.3 Learning Processes

 The property that is of primary significance for a neural network is that the ability of the network to

learn from its environment, and to improve its performance through learning. The improvement in

performance takes place over time in accordance with some prescribed measure. A neural network

learns about its environment through an interactive process of adjustments applied to its synaptic

weights and bias levels. Ideally, the network becomes more knowledgeable about its environment

after each iteration of learning process. Hence we define learning as: “It is a process by which the

free parameters of a neural network are adapted through a process of stimulation by the environment

in which the network is embedded.”

 The processes used are classified into two categories as

 (A) Supervised Learning (Learning With a Teacher)

 (B) Unsupervised Learning (Learning Without a Teacher)

Concept of Neural Network

 8

 2.3.1 Supervised Learning:

We may think of the teacher as having knowledge of the environment, with that knowledge being

represented by a set of input-output examples. The environment is, however unknown to neural

network of interest. Suppose now the teacher and the neural network are both exposed to a training

vector, by virtue of built-in knowledge, the teacher is able to provide the neural network with a

desired response for that training vector. Hence the desired response represents the optimum action to

be performed by the neural network. The network parameters such as the weights and the thresholds

are chosen arbitrarily and are updated during the training procedure to minimize the difference

between the desired and the estimated signal. This updation is carried out iteratively in a step-by-step

procedure with the aim of eventually making the neural network emulate the teacher. In this way

knowledge of the environment available to the teacher is transferred to the neural network. When this

condition is reached, we may then dispense with the teacher and let the neural network deal with the

environment completely by itself. This is the form of supervised learning.

The update equations for weights are derived as LMS :

(1) () ()j j jw n w n w n   

()jw n is the change in w
j
in nth iteration.

2.3.2 Unsupervised Learning

In unsupervised learning or self-supervised learning there is no teacher to over-see the learning

process, rather provision is made for a task independent measure of the quantity of representation

that the network is required to learn, and the free parameters of the network are optimized with

respect to that measure. Once the network has become turned to the statistical regularities of the

input data, it develops the ability to form the internal representations for encoding features of the

input and thereby to create new classes automatically. In this learning the weights and biases are

updated in response to network input only. There are no desired outputs available. Most of these

algorithms perform some kind of clustering operation. They learn to categorize the input patterns

into some classes.

Concept of Neural Network

 9

2.4 Recurrent Neural Network

 A strict feedforward architecture does not maintain a short-term memory. Any memory effects

are due to the way past inputs are re-presented to the network (as for the tapped delay line). A

simple recurrent network (SRN; (Elman, 1990)) has activation feedback which embodies short-

term memory. A state layer is updated not only with the external input of the network but also

with activation from the previous forward propagation. The feedback is modified by a set of

weights as to enable automatic adaptation through learning (e.g. backpropagation). Recurrent

network are the neural network with one or more feedback loop. The feedback can be of a local

or global kind. Recurrent neural networks (RNNs) naturally involve dynamic elements in the

form of feedback connections providing powerful dynamic mapping and representational

capabilities. Figure below The application of feedback enables recurrent network to acquire state

representations, which make them suitable devices for such diverse applications as nonlinear

prediction and modeling, adaptive equalization speech processing, plant control, automobile

engine diagnostics

 Copy(delayed)

State/hidden

Input Previous state

Output

Weights, V
Weights ,U

 Weights,W

Figure 2. 2 A simple Recurrent network

Concept of Neural Network

 10

2.5 The Back-Propagation Algorithm

 In order to train a neural network to perform some task, we must adjust the weights of

each unit in such a way that the error between the desired output and the actual output is reduced.

This process requires that the neural network compute the error derivative of the weights (EW).

In other words, it must calculate how the error changes as each weight is increased or decreased

slightly. The back propagation algorithm is the most widely used method for determining the

error derivatives of the weights.

 The back-propagation algorithm is easiest to understand if all the units in the network are

linear. The algorithm computes each EW by first computing the EA, the rate at which the error

changes as the activity level of a unit is changed. For output units, the EA is simply the

difference between the actual and the desired output. To compute the EA for a hidden unit in the

layer just before the output layer, we first identify all the weights between that hidden unit and

the output units to which it is connected. We then multiply those weights by the EAs of those

output units and add the products. This sum equals the EA for the chosen hidden unit. After

calculating all the EAs in the hidden layer just before the output layer, we can compute in like

fashion the EAs for other layers, moving from layer to layer in a direction opposite to the way

activities propagate through the network. This is what gives back propagation its name. Once the

EA has been computed for a unit, it is straight forward to compute the EW for each incoming

connection of the unit. The EW is the product of the EA and the activity through the incoming

connection.Note that for non-linear units, the back-propagation algorithm includes an extra step.

Before back-propagating, the EA must be converted into the EI, the rate at which the error

changes as the total input received by a unit is changed.

 The steps involve in applying back propagation algorithm is as described below :

First the input is propagated through the ANN to the output. After this the error ek on a single

output neuron k can be calculated as:

 k k ke d y  (2.1)

Concept of Neural Network

 11

Where yk is the calculated output and dk is the desired output of neuron k. This error value is

used to calculate a δk value, which is again used for adjusting the weights. The δk value is

calculated by:

!()k k ke g y  (2.2)

 !

0

()
K

j j k jk

k

g y w  


  (2.3)

Where K is the number of neurons in this layer and η is the learning rate parameter, which determines

how much the weight should be adjusted. The more advanced gradient descent algorithms does not use a

learning rate, but a set of more advanced parameters that makes a more qualified guess to how much the

weight should be adjusted.

Using these δ values, the ∆w values that the weights should be adjusted by, can be calculated by:

 jk k kw y  (2.4)

The jkw value is used to adjust the weight jkw , by jk jk jkw w w   and the backpropagation

algorithm moves on to the next input and adjusts the weights according to the output. This process goes

on until a certain stop criteria is reached. The stop criteria is typically determined by measuring the mean

square error of the training data while training with the data, when this mean square error reaches a

certain limit, the training is stopped. More advanced stopping criteria involving both training and testing

data are also used.

Chapter 3

MULTIFEED-BACK LAYER NEURAL NETWORK AND

ITS APPLICATION

MFLNN And Its Applications

 13

3.1 Introduction

 The majority of physical systems contain complex nonlinear relations, which are

difficult to model with conventional techniques. Neural networks (NNs) have learning,

adaptation, and powerful nonlinear mapping capabilities. Therefore, they have been studied to

deal with predicting, modeling, and control of complex, nonlinear, and uncertain systems, in

which the conventional methods fail to give satisfactory results .The NNs can be classified as

static (feedforward) and dynamic (recurrent). Because of their inherent feedforward structure, the

role of the static NNs are limited to realize static mappings. However, the output of a dynamic

system is a function of past outputs and past inputs. In order to use them for identification of

nonlinear dynamical systems, all necessary past inputs and past outputs of the dynamic system

have to be fed to the static NN, explicitly; so, the number of delayed inputs and outputs should

be known in advance. The use of the long tapped delay input increases the input dimensions

resulting in curse of dimensionality problem [16].

 Recurrent neural networks (RNNs) naturally involve dynamic elements in the form of

feedback onnections providing powerful dynamic mapping and representational apabilities.

They are able to learn the system dynamics without assuming much knowledge about the

structure of the system under consideration such as the number of delayed inputs and outputs.

Furthermore, the recurrent systems can inherently produce multistep ahead predictions; so, the

multistep ahead prediction models, which are required in some process control applications, such

as predictive control, can efficiently be built by RNNs . Thus, the RNNs have attracted great

interest. The Hopfield , the Elman , the Jordan , the fully recurrent , the locally-recurrent , the

memory neuron , the recurrent radial basis function, and the block-structured recurrent networks

are some of the examples of RNNs. The Hopfield network is a simple recurrent network which

has a fully connected single-layer structure. It is capable of restoring previously learned static

patterns from their corrupted realizations. Elman and Jordan proposed specific recurrent

networks which have an extra set of context nodes that copy the delayed states of the hidden or

output nodes back to the hidden layer neurons. In these structures, the feedback weights,

assumed to be unity, are not trainable. The fully recurrent neural network allows any neuron to

be connected to any other neuron in the network. While being more general, it lacks stability. In ,

the local feedback has been taken before the entry into the nonlinearity activation function, while

MFLNN And Its Applications

 14

in , it has been taken after the nonlinearity. In the memory neuron network , each feedforward

neuron is associated with a memory neuron the single scalar output of which summarizes the

history of past activation of that unit. In the past output values of a radial basis function network

are fed back to both the network input and output nodes. In a systematic way to build networks

of high complexity using a block notation was given.

 Recently, a number of recurrent fuzzy neural network (RFNN) structures appeared in

the literature. Dynamic fuzzy logic systems (DFLSs) and their nonsingleton generalizations were

investigated in [17]. In [11], a recurrent neurofuzzy network was proposed to build long-term

prediction models for nonlinear processes. In [18], a recurrent self-organizing neural fuzzy

inference network was constructed by realizing dynamic fuzzy reasoning. In [19], an RFNN

structure was proposed by realizing fuzzy inference using dynamic fuzzy rules. In [20], a

Takagi–Sugeno–Kang (TSK)-type RFNN was developed from a series of recurrent fuzzy if-then

rules with TSK-type consequent parts. In [21], a type of RFNN called additive delay feedback

neural-fuzzy networks trained with the backpropagation approach was proposed. In [22], a

DFNN consisting of the recurrent TSK rules was developed. Its premise and defuzzification parts

are static while its consequent part rules are recurrent neural networks with internal feedback and

time delay synapses. In [23], a wavelet-based RFNN was developed by combining the traditional

TSK fuzzy model and the wavelet neural networks with some feedback connections.

 In this paper, the architecture and training procedure of a new RNN, called the

multifeedback-layer neural network (MFLNN), are presented. The structure of the proposed

MFLNN differs from the other RNNs in the literature. The main difference of the proposed

network compared to the available RNNs is that the temporal relations are provided by means of

neurons arranged in three feedback layers, not by simple feedback elements, in order to enrich

the representation capabilities of the recurrent networks. The feedback signals are processed in

three feedback layers which contain nonlinear pocessing elements (neurons) as in feedforward

layers. In these feedback layers, the weighted sums of the delayed outputs of the hidden and

output layers are passed through activation functions and applied to the feedforward neurons via

some adjustable weights.

 Both online and offline training procedures based on the backpropagation through time

BPTT) algorithm have been investigated [11]. The adjoint model of the MFLNN is built to

MFLNN And Its Applications

 15

compute the derivatives with respect to the network weights, which are used for training purpose.

It is shown that the offline training fails to adapt to changes in system dynamics. Hence, an

online training procedure is derived. In this procedure, the online adjustment of the weights is

performed over a certain history of the input–output data stored in a stack. The stack discards the

oldest pattern and accepts a new pattern from the system at each time step. Therefore, the stack

contains enough data to represent plant dynamics, and eliminates the too old data to adapt to the

changes in system dynamics at each time step. The derivatives for the MFLNN weights are

computed with a type of truncated BPTT algorithm in a manner which gives the same result as

the unfolding of the MFLNN in time through the stack. The Levenberg–Marquardt (LM) method

with a trust region approach is used to adjust the MFLNN weights .The learning, adaptation, and

generalization performances of the developed MFLNN are tested by applying several temporal

problems including chaotic time series prediction and nonlinear dynamic system identification.

Performance comparisons are made against several networks suggested in the literature.

 3.2 LM algorithm

Standard Levenberg-Marquardt algorithm, a variation on the error back-propagation algorithm,

provides us with a good switching capability between the Gauss-Newton algorithm and the

Steepest Descent method. The quadratic performance index F(w) to be minimized is sum of the

squares of the error between desired output and actual output for all patterns as given by

 () TF w e e


 (3.1)

In Eq.(3.1), e is the error vector defined by

where er,q is error between dr,q (desired value for the r
th
 output and q

th
 pattern) and ar,q (actual

value of the r
th
 output for q

th
 pattern), Q is the number of patterns, and R is the number of

outputs. Moreover, w is the parameter vector given by

 1 2[.....]T

Mw w w w



MFLNN And Its Applications

 16

where M is the number of adjustable parameters. Eq.(3.1) can also be written as

 
2

, ,

1 1

()
Q R

r q r q

q r

F w d a


 

 

  
2

,

1 1

Q R

r q

q r

e
 

 (3.2)

In general, the update rule is

k k kw w w

  

    (3.3)

In the Newton’s method, adjustable parameters are updated by

  
1

() ()k k kw H w g w




  (3.4)

where H(wk) is the Hessian matrix given by

 (3.5)

and g(wk) is the gradient vector given by

 (3.6)

The gradient vector and the Hessian matrix can be written in terms of the Jacobian matrix as

 (3.7)

MFLNN And Its Applications

 17

And

 (3.8)

Where J(wk) is the RQxM Jacobian matrix given by

 (3.9)

Afterwards, substitution of (3.7) and (3.8) into (3.4) yields the update rule for Gauss-Newton

method, and the weight updates are calculated by

1[() ()] ()T T

k k k k kw J w J w J w e

  
   (3.10)

 Whereas the neglected terms in Eq.(3.8) may cause some accuracy errors in the calculation

of the Hessian, the most significant advantage of the Gauss-Newton method over Newton’s

method is the elimination of the necessity of calculation of the second derivatives. Furthermore,

the fact that the matrix [JT(wk)J(wk)] may be singular constitutes the main disadvantage of the

Gauss- Newton method. In the Levenberg-Marquardt algorithm, the singularity problem in the

Gauss-Newton method is overcome by introducing an additional term, which as well provides a

MFLNN And Its Applications

 18

good switching between the Steepest Descent and the Gauss-Newton method. For standard

Levenberg-Marquardt algorithm, adjustable parameters are updated by

1[() ()] ()T T

k k k k k kw J w J w I J w e 

   

    (3.11)

where μ is the learning rate, I is identity matrix . During training process the learning rate μ is

incremented or decremented by a scale at weight updates. As the learning rate draws closer to

zero, the Levenberg-Marquardt algorithm approaches the Gauss-Newton method, while it

approaches the Steepest Descent algorithm as the learning rate takes large value.

 Although the Levenberg-Marquardt algorithm gives a good compromise between those

methods, its main disadvantage, as can be seen from Eq.(3.11), is the necessity of computation of

[J
T
(wk)J(wk) + μkI]

-1
 square matrix at every weight updates, the dimension of which is MxM. In

[18], one modification on the performance index is proposed in order to reduce the

abovementioned computational complexity, where the performance index given by Eq.(3.2) is

replaced with the performance index given by Eq.(3.12),

 (3.12)

The new performance index can also be written in a quadratic form :

 Figure 3.1 Transition between the Steepest Descent and the Gauss-Newton

MFLNN And Its Applications

 19

where e is the new error vector and

It can be observed that the continuity requirements are still preserved and that the new measure

can well be considered as a measure of similarity between the desired and the produced patterns.

By this modification, proposed in [18], the new update rule is then written by,

 (3.13)

where ˆJ is the new Jacobian matrix, the size of which is now RxM. Consequently, in the new

update rule the size of the matrix to be inverted becomes RxR. In most neural network

applications R is less than M. Another modification investigated during the study is on the

gradient computation of the sigmoidal activation function, which is proposed in .This

modification aims at improving the slow asymptotic convergence rate of the error-back

propagation algorithm by using the slope of the line connecting the output value and the desired

value instead of using derivative of the activation function as the gradient information. In the

limit case that the output value approaches the desired value, the calculated slope becomes very

near to the calculated derivative of the activation function, and then both algorithms become

identical.

MFLNN And Its Applications

 20

3.3 Multifeedback layer Neural Network (MFLNN)

input and output of the MFLNN, respectively, and k is the time index. The MFLNN has three

feedforward and feedback layers. In the feedforward layers, W1 and W2 represent the weights

between the input and hidden layers, and the hidden and output layers, respectively. In addition

to the feedforward layers, the MFLNN has two local and one global feedback layers. In these

feedback layers, the weighted sums of the delayed outputs of the hidden and output layers are

applied to certain activation functions as in the feedforward layer neurons. 1

bW , 2

bW and 3

bW

represent the weights connected to the inputs of the feedback layer neurons and represents the

time delay operators. The outputs of the feedback layers neurons ((), (), ()c c ch k y k and Z k) are

applied to the hidden and output layers neurons via the adjustable weights (1 2 3,c c cW W andW).

The bias connections to the neurons are omitted to simplify the resentation in Fig. 1.

 As a rule of thumb, the number of plant states should be a good starting value for the

number of neurons in the hidden layer. The number of neurons in the feedback layer from the

hidden-to-hidden layer is set equal to the number of the hidden layer neurons. The number of

neurons in the feedback layer from the output-to-hidden layer is set equal to the number of the

output layer neurons. The number of neurons in the feedback layer from the output-to-output

layer is set equal to the number of the output layer neurons. However, their numbers can be

incremented to perhaps improve the accuracy. One uses trial–error or previous data about the

system to come up with a proper number.

 Fig. 2 depicts the details of the MFLNN where each layer is simply represented by

only one of its neurons boxed in dashed lines. In the figure, the neurons of each feedback layer

are labeled by their connection to their corresponding inputs and outputs.

 To train the recurrent systems, the BPTT-like derivative calculation is required.

However, the calculation of the derivatives by using the chain rule or by the unfolding in time is

very complicated, so we built the adjoint model of the MFLNN, which is depicted in Fig. 3, to

simplify the computations. It is constructed by reversing the branch directions, replacing

summing junctions with branching points and vice versa, and replacing the time delay operators

MFLNN And Its Applications

 21

with time advance operators. The Jacobian matrix or the gradient vector is easily computed by

means of the adjoint model of the MFLNN. Since the weights are updated by the LM method

Figure 3.2 Structure of MFLANN

 the calculation of the Jacobian matrix is required. The elements of the Jacobian matrix for an

output of the MFLNN are computed by feeding 1 instead of the corresponding error value in the

adjoint model and 0 for others. The backward phase computations from k=T to k=1 are

performed by means of the adjoint model of the MFLNN. When the forward and ackward phases

of the computations are completed, the sensitivities for each weight, which form the Jacobian

matrix, are obtained as in the BPTT algorithm.

MFLNN And Its Applications

 22

Figure 3.3 Layers of the MFLNN

MFLNN And Its Applications

 23

Figure 3.4 Adjoint model of the MFLANN

As it was expressed previously, the elements of the Jacobian matrix are computed in two stages

which are eferred to as the forward and backward phases. In the forward phase, the MFLNN

actions are computed and stored from k=1 to k=T through the trajectory. The errors at every are

determined as the differences between the desired outputs and the MFLNN outputs. The initial

MFLNN And Its Applications

 24

values for the output of the hidden layer(h) and of the output layer are (y) set to 0

h(0)=0 y(0)=0

The induced local fields (net quantities) produced at the input of the activation functions of the

feedback neurons are

1 1() [(1)]c b h

hnet k W h k B  

1 2() [(1)]c b h

ynet k W y k B  
 (3.14)

1 3() [(1)]c b h

znet k W y k B  

Where 1

bW , 2

bW and 3

bW are the input weights of the feed back layers. 1

bB , 2

bB ,and 3

bB are

the biases of the feedback layer neurons. Then, the outputs of the feedback layer neurons(ch , cy

and
cZ) are computed by,

 () (())c c c

h hh k net k

 () (())c c c

h yy k net k
 (3.15)

 () (())c c c

z zz k net k

Where c

h , c

y , and c

z represents the activation function of the feedback layer neuron.The net

quantities (hnet) of the hidden layer nerons and their output(h) are computed by

 1 1 2() [()] [()] [()] 1c c c c

hnet k W x k W h k W y k B   
 (3.16)

 () (())h hh k net k

Where W1 represents the weights between the input and hidden layers, and B1 the biases

applied to the hidden layer neurons. 1

cW and 2

cW are the output weights of the feedback layers.

h represents the hidden layer activation functions. Similarly, the net quantities of the output

layer neurons and their outputs are computed by

MFLNN And Its Applications

 25

 1 1 2() [()] [()] [()] 1c c c c

hnet k W x k W h k W y k B   

 () (())h hh k net k

Where 2W , 2B and y represent the weights between the .hidden and output layers, neurons, and

the output layer activation function ,respectively. 3

cW represents the output weights of the

feedback layer.

The error (e) signal is defined as the difference between the MFLNN output () and the desired

output (y) and the desired output (dy)

 () () ()e k y k yd k  (3.17)

We define the instantaneous value of the error energy, which is a function of all the free

parameters, as

1

() (() ())
2

TE k e k e k
 (3.18)

Then, the cost function defined as a measure of the learning performance is

1

1
()

T

total

k

E E k
T 

  (3.19)

 The weights are adjusted to minimize the cost function, so the sensitivities with respect to

each weight have to be computed. At every k, the sensitivity for each weight is computed by

multiplyingthe input of this weight in the MFLNN and the adjoint model, so the inputs of the

weights in the adjoint model have to be computed.Therefore, after completing the forward phase

computations, the backward phase computation is carried out through the adjoint model of

MFLNN from k=T to k=1. The local sensitivities at k=T+1 are set to 0

3 (1) 0c T   , 2 (1) 0c T   , 1 (1) 0c T  

MFLNN And Its Applications

 26

The derivatives of the activation functions of each layer with respect to their inputs are

computed as

' (())
(()) ()

()

c

c c cz

z z z

net k
net k net net k

net k





 



'
(())

(()) ()
()

c

yc c c

y y y

net k
net k net net k

net k





 



' (())
(()) ()

()

c

c c ch

h h h

net k
net k net net k

net k





 

 (3.20)

'
(())

(()) ()
()

yc

y y y

net k
net k net net k

net k





 



' (())
(()) ()

()

c h

h h h

net k
net k net net k

net k





 



The local sensitivities are obtained as

'

2 2 2 3 3() [(())][() () (1) (() (1)]b T c b T c

y yk net k e k W k W k       

'

1 1 1 2 2() [(())][(() (1)) (())]b T c T

y yk net k W k W k     

'

3 3 2() [(())][() ()]c c c c T

z zk net k W k  

'

2 2 1() [(())][() ()]c c c c T

y yk net k W k  

'

1 3 2() [(())][() ()]c c c c T

y yk net k W k  

 In the case of the calculation of the Jacobian matrix, e(k) is set to in (11). Then, the sensitivity

or each weight is computed by multiplying the values scaled by this weight in the MFLNN and

the adjoint model as follows:

MFLNN And Its Applications

 27

2

()
() ()

2

Te k
k h k

W







2

2

()
()

e k
k

B







2

()
() ()

1

Te k
k X k

W







1

()
()

1

e k
k

B







2

3

()
() ()cT

c

e k
k Z k

W






 3

2

3

()
() (1)T

b

e k
k y k

W



 



1

2

()
() ()cT

c

e k
k y k

W







2

2

()
() (1)c T

b

e k
k y k

W



 


 (3.21)

1

1

()
() ()cT

c

e k
k h k

W






 1

2

()
() (1)c T

b

e k
k h k

W



 



3

3

()
()c

b

e k
k

B






 2

2

()
()c

b

e k
k

B






 1

1

()
()c

b

e k
k

B







The overall sensitivity for each weight is obtained by summing the related sensitivity in (3.21)

over the trajectory. The Jacobian matrix which is required to train the MFLNN is

2 21 1 1 2 2 2 3 3 3
1 2 c b b c b b c c b

e e e e e e e e e e e e e
J

W W W BW W B W W B W W B

             
  

            

The gradient vector is computed from the Jacobian matrix is by

Tg J e (3.22)

The network weight vector w is defined as

 1 1 1 1 1 2 3 1 2 2 3 3 3[, , , , , , , , ,]c b c b b b b c b bW W B W W B B W B B W W W B

MFLNN And Its Applications

 28

The change in the weight vector nW at the th iteration is computed by the LM method

 [)T T

n n n n n nJ J I W J e   
 (3.23)

where 0n  is a scalar and is the identity matrix. For a sufficiently large value of , the matrix

[)T

n n nJ J I is positive definite and nW is a descent direction. When 0n  , nW is the

Gauss–Newton vector. As n   , n I term dominates so that represents an infinitesimal step

in the steepest descent direction. We used the trust region approach of Fletcher to determine n

3.4 Online training Structure.

 The online training procedure of the MFLNN is described in Fig. 4. In this procedure, a

short history of the training patterns is stored in a first-in–first-out (FIFO) stack with a certain

size . The stack discards the oldest pattern from it and accepts a new pattern from the system at

each time step. Therefore, the stack should be properly sized to contain enough data to represent

system dynamics and eliminate the too old data to adapt

to the changes in system dynamics at each time step. The sensitivities of the MFLNN weights are

computed in the manner of unfolding the MFLNN in time through the stack. The online training

is performed using the entire patterns stored in the stack at each time step by the LM method

with the trust region approach.

MFLNN And Its Applications

 29

Figure 3.5 Online Training structure of the MFLANN

The training of the MFLNN is performed by adjusting the weight vector at each time step as

 1k k kW W W   

 The cost function at each time step is given as

1

0

1
[() ()] [() ()]

2

TL

p p

m

E y k m y k m y k m y k m
L





      

Where L is the stack size which determines the data length and m is the time delay index . yp and

y represent the desired output and the MFLNN output, respectively. The training is performed

over the L patterns at each time step. The elements of the Jacobian matrix are computed in two

MFLNN And Its Applications

 30

stages which are referred to as the forward and backward phases. The forward phase

computations are performed, by starting L-1 steps back in time to the present time, from time

 k-L+1 to k , and the values of the variables (x ,h , y,h
c
 , y

c
, and z

c
) are stored at each time step.

The error values, which are obtained as the difference between the plant outputs stored in the

stack and the MFLNN output, are also stored. After completing the forward phase computations,

the backward phase computation is carried out through the adjoint model of MFLNN, starting

from the present time , going backward by steps to time . Finally, the elements of the Jacobian

matrix are computed by means of the forward and backward computations. These computations

correspond to a type of BPTT algorithm by unfolding the MFLNN in time through the stack. The

procedure operates online and the dynamic derivative calculation is performed over more than

one pattern in the stack avoiding the shortcomings of static gradient calculation and of

employing only one pattern at a time.

3.5 Application of MFLNN

3.5.1 Predicting Chaotic Time Series

In this first example, the learning and generalization performance of the MFLNNis tested

through a chaotic time series prediction problem. The time series data is generated by using the

Mackey–Glass equation that models the white blood cell production in leukemia patients [26].

The model is described by

10

0.2 ()
.1 ()

1 ()

dx x t
x t

dt x t






 

 

The prediction of future values of this time series is studied in [27] by comparing with several

other approaches. To make a comparison, we prepare the data in the same way as [27]. The

equation is integrated by the fourth-order Runge–Kutta method.The time step used in the method

is 0.1, initial condition (for in the integration), and delay term

. The time series values are stored at integer points. We extracted 1000 input–output data pairs of

the following form:

MFLNN And Its Applications

 31

{[(18) (12) (6) ()], [(6)] }d dx x k x k x k x k y x k     

where 118 to 1117.We use the first 500 pairs as the training data set, while the remaining 500

pairs as the testing data set. In this example, the MFLNN has five hidden-layer neurons. The

hyperbolic tangent activation functions are used in the hidden and feedback layers. The linear

activation function is used in the output layer. The training and prediction performances are

determined by the root-mean-squared error (rmse) criteria defined as the positive square root of

the mean-squared error (mse):

 2

1

1
() ())

N
d

k

rmse y k y k
N 

 

where is the size of data pairs in the training or testing set and represents the predictions of the

MFLNN. Fig. 5 shows the rmse curves in the logarithmic scale for both training and testing data

sets. It indicates that the most of the learning was done in the first 20 epochs. One should notice

that the testing rmse is less than the training rmse, which is clearly explained in [27], to be due to

the initial conditions having been set to zero,

where the rest of the data set having well represented. The desired and predicted values for both

training data and testing data are essentially the same in Fig. 3.7. Their differences can only be

seen on a finer scale by plotting the prediction error in Fig. 3.6.

0 2 4 6 8 10 12 14 16 18 20
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

epoch

M
S

E

Testing

training

Figure 3.6 RMSE curves in the logarithmic scale

MFLNN And Its Applications

 32

 Fig;6 RMSE curve in the Logarithmic scale

3.5.2 Identification of a MIMO Nonlinear Plant

 The method for system identification of a time invariant, causal, discrete time plant is

depicted in Fig.. the plant is excited by a signal u(k) , and the output d(k) is measured. The plant

is assumed to be stable with known parameterization but with unknown values of the parameters.

The objective is to construct a suitable identification model which when subjected to the same

input as the plant, produces an output which approximates in the sense described by for some

desired and a suitably defined norm. The choice of the identification model and the method of

adjusting its parameters based on the identification error constitute the two principal parts of the

identification problem.

Figure 3.7 Mackey-Glass Time series values (from t=124 to 1123) and six step

ahead prediction

MFLNN And Its Applications

 33

 As a second example, the identification of a multiple input–multiple-output (MIMO)

nonlinear dynamical system with two inputs and two outputs is considered to demonstrate

the structural capabilities of the MFLNN to model a certain nonlinear mapping. To make a

comparison with other recurrent networks, the same plant that was used in [18] was chosen. The

plant is described by the following difference equation:

Where k is the discrete time step u1(k), u2(k) and yp1(k), yp2(k) are the inputs and the outputs of

the plant, respectively.In this example, the MFLNN has two inputs, two outputs, and two hidden-

layer neurons. The hyperbolic tangent activation functions are used in the hidden and feedback

Figure 3.8 Basic Block diagram of system identification model

MFLNN And Its Applications

 34

layers. The linear activation functions are used in the output layer. The weights are initialized by

the Nguyen–Widrow method. The LM method with the trust region approach is used to update

the MFLNN weights. The training data set is obtained by applying independent and identically

distributed (i.i.d.) uniform sequence over [2, 2] for 500 samples and a sinusoid signal given by

sin (πk/45) for the remaining 500 samples to both plant inputs. The testing data set is obtained by

applying the following inputs to both plant inputs:

The identification performance of the MFLNN for the testing data is shown in Figures below

0 100 200 300 400 500 600 700 800 900 1000
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

output

tim
e i

nd
ex

plant output

MFLNN output

0 100 200 300 400 500 600 700 800 900 1000
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

plant output

MFLNN output

 Figure 3.9 Output of plant and the MFLNN

MFLNN And Its Applications

 35

where we obtained that the MFLNN needs fewer training time steps and network parameters, and still

achieves higher accuracy

3.5.3 Predictive Modeling of a NARMA Process

 As a third example, the predictive ability of the MFLNN for a nonlinear autoregressive

moving average (NARMA) process is examined and compared with the DFLS and the DFNN,

reported in [17] and [23], respectively. The process is described by the following difference

equation:

0 100 200 300 400 500 600 700 800 900 1000
-5

-4

-3

-2

-1

0

1

2

3

4

5

time index

err
or

0 100 200 300 400 500 600 700 800 900 1000
-5

-4

-3

-2

-1

0

1

2

3

4

5

time index

Er
ror

 Figure 3.10 Instantaneous identification error

MFLNN And Its Applications

 36

Where v(k) is a zero-mean uniform white noise process with standard deviation V . In this

example, the MFLNN has one input, one output, and two hidden-layer neurons. The hyperbolic

tangent activation functions are used in all layers. The input of the MFLNN is yp(k-1) and its

output is yp^(k). Training and testing data sets contain 1000 and 500 data pairs, respectively.

Both sets are scaled into the range [1, 1]. Training lasted for 20 epochs. The whole procedure

was repeated for 100 times, with the weights being initialized randomly within the interval [0.6,

0.6]. Fig. 10 shows the mse curves that correspond to V = 0.7 for the last of the 100 trials. The

uniform white noise v(k) and the instantaneous error (e(k)= yp(k)- yp^(k)) for the last 100

samples of the testing set are depicted in Fig 3. 11. One should note that v(k) and e(k) match, and

the variances and the mean mse for the testing phase are almost equal, and, thus, one may

conclude that the MFLNN can adequately learn the plant characteristics. In addition, the standard

deviation of the error measure is smaller in the case of MFLNN, indicating the method

robustness. The weight values of the MFLNN for 0.7.

Figure 3.11 MSE curve for 0.7V 

0 2 4 6 8 10 12 14 16 18 20
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

epoch

M
S

E

Testing

training

MFLNN And Its Applications

 37

Figure 3.12 White noise V(k)

0.7V 
 and Instantaneous error e(k)

Chapter 4

CONCEPTS OF CHANNEL EQUALIZATION

4.1. Introduction

 Recently, there has been substantial increase of demand for high speed digital data

transmission effectively over physical communication channel. Communication channels are

usually modeled as band-limited linear finite impulse response (FIR) filters with low pass

frequency response. When the amplitude and the envelope delay response are not constant within

the bandwidth of the filter, the channel distorts the transmitted signal causing intersymbol

interference (ISI).B because of this linear distortion, the transmitted symbols are spread and

overlapped over successive time intervals. In addition to the linear distortion, the transmitted

symbols are subject to other impairments such as thermal noise, impulse noise, and nonlinear

distortion arising from the modulation/demodulation process, cross-talk interference, the use of

amplifiers and converters, and the nature of the channel itself. All the signal processing methods

used at the receiver's end to compensate the introduced channel ver the transmitted symbols are

referred as channel equalization techniques High speed communications channels are often

impaired by channel inter symbol interference (ISI) and additive noise. Adaptive equalizers are

required in these communication systems to obtain reliable data transmission. In adaptive

equalizers the main constraint is training the equalizer. Many algorithms have been applied to

train the equalizer, each having their own advantages and disadvantages. More over the

importance of the channel equalization always keeps the research going on to introduce new

algorithm to train the equalizer.

 Adaptive channel equalization was first proposed by Lucky in 1965. One of the major

drawback of the MLP structure is the long training time required for generalization and thus, this

network has very poor convergence speed which is primarily due to its multilayer architecture. A

single layer polynomial perceptron network(PP N) has been utilized for the purpose of channel

equalization [5.3] in which the original input pattern is expanded using polynomials and cross-

product terms of the pattern and then,this expanded pattern is utilized for the equalization

problem. Superior performance of this network over a linear equalizer has been reported. An

alternative ANN structure called functional link ANN(FLANN) originally proposed by Pao is a

novel single layer ANN capable of forming arbitrarily complex decision regions. In this network,

Concepts of Channel Equalization

 40

the initial representation of pattern is enhanced by the use of nonlinear function resulting in

higher dimensional pattern and hence, the separability of the patterns becomes possible. The

PPN, which uses the polynomials for the expansion of the input pattern , in fact, is a subset of the

broader FLANN family. Applications of the FLANN have been reported for functional

approximation and for channel equalization. In the case of 2-ary PAM signal, BER and MSE

performance of the FLANN-based equalizer is superior than two other ANN structures such as

MLP and PPN.

4.2. Baseband Communication System

 In an ideal communication channel, the received information is identical to that transmitted.

However, this is not the case for real communication channels, where signal distortions take

place. A channel can interfere with the transmitted data through three types of distorting effects:

power degradation and fades, multi-path time dispersions and background thermal noise.

Equalization is the process of recovering the data sequence from the corrupted channel samples.

A typical base band transmission system is depicted in Fig.4.1., where an equalizer is

incorporated within the receiver

Figure 4.1 Base band communication System

4.3. Channel Interference

 In a communication system data signals can either be transmitted sequentially or in

parallel across a channel medium in a manner that can be recovered at the receiver. To increase

the data rate within a fixed bandwidth, data compression in space and/or time is required.

Transmitter

Filter

Channel

Medium

Receiver

Filter

Equalizer
+

Concepts of Channel Equalization

 41

4.3.1. Multipath Propagation.

 Within telecommunication channels multiple paths of propagation commonly occur. In

practical terms this is equivalent to transmitting the same signal through a number of separate

channels, each having a different attenuation and delay. Consider an open-air radio transmission

channel that has three propagation paths, as illustrated in Fig.4.2 [14].These could be direct,

earth bound and sky bound. Fig.4.2 (b) describes how a receiver picks up the transmitted data.

The direct signal is received first whilst the earth and sky bound are delayed. All three of the

signals are attenuated with the sky path suffering the most. Multipath interference between

consecutively transmitted signals will take place if one signal is received whilst the previous

signal is still being detected. In Fig.4.2. this would occur if the symbol transmission rate is

greater than1/η. Because bandwidth efficiency leads to high data rates, multi-path interference

commonly occurs.

Figure 4.2 Impulse Response of a transmitted signal in a channel which has 3 modes of

propagation, (a) The signal transmitted paths, (b) The received samples.

Concepts of Channel Equalization

 42

Channel models are used to describe the channel distorting effects and are given as a summation

of weighted time delayed channel inputs d(n-i).

1 2

0

() (1) () (1) (2)
m

i

i

H z d n z d n d n z d n z  



        (4.1)

The transfer function of a multi-path channel is given in Equation 5.1. The model coefficients

d(n-i) describe the strength of each multipath signal.

4.4. Minimum And Nonminimum Phase Channels

When all the roots of the model z-transform lie within the unit circle, the channel is termed

minimum phase . The inverse of a minimum phase channel is convergent ,illustrated by the

equation

1() 1.0 0.5H z z 

1

1 1

() 1.0 .5H z z




0

1

2

i

i

i

z






 
  

 


 1 2 31 0.5 0.25 0.125z z z       (4.2)

0

1

2

i

i

i

z z






  
   

   


2 3.[1 0.5 .25 0.125]z z z z   

 Since equalizers are designed to invert the channel distortion process they will in effect

model the channel inverse. The minimum phase channel has a linear inverse model therefore

a linear equalization solution exists. However, limiting the inverse model to m-dimensions

will approximate the solution and it has been shown that nonlinear solution can provide a

superior inverse model in the same dimension.

 A linear inverse of a non-minimum phase channel does not exist without incorporating

Concepts of Channel Equalization

 43

time delay. A time delay creates a convergent series for the non-minimum phase model,

where longer delays are necessary to provide a reasonable equalizer. Equations (4.3)

describe a nonminimum phase channel with a single delay inverse and a four sample delay

inverse. The latter of these is the more suitable for a linear filter.

1() 1.0 0.5H z z 

1 2 3

1

1 1
1 .5 .25 0.125()

() 1.0 .5
z z z z noncausal

H z z




    

 (4.3)

4 3 3 11
.5 .25 0.125

()
z z z z z

H z

        (truncated and causal)

4.5 Intersymbol Interference

 Inter-symbol interference (ISI) has already been described as the overlapping of the

transmitted data. It is difficult to recover the original data from one channel sample

dimension because there is no statistical information about the multipath propagation.

Increasing the dimensionality of the channel output vector helps characterize the multipath

propagation .this has the effect of not only increasing the number of symbol but also

increase the Euclidian distance between the output classes. When additive Gaussian noise,

η, is present within the channel , the input sample will form Gaussian clusters around the

symbol centers. These symbol clusters can be characterized by a probability density

function(pdf) with a noise variance 2

 ,where the noise can cause the symbol clusters to

interfere. Once this occurs, equalization filtering will become inadequate to classify all of

the input samples. Error control coding schemes can be employed in such cases but these

often require extra bandwidth.

4.5.1 Symbol Overlap.

 The expected number of errors can be calculated by considering the amount of symbol

interaction, assuming Gaussian noise . Taking any two neighboring symbols, the cumulative

Concepts of Channel Equalization

 44

distribution function(CDF) can be used to describe the overlap between the two noise

characteristics.The overlap is directly related to the probability of error between the two

symbols and if these two symbols belong to opposing classes,a class error will occur.

Figure 2.3 shows two Gaussian functions that could represent two symbol noise

distributions. The Euclidean distance, L, between symbol canters and the noise variance 2 ,

can be used in the cumulative distribution and therefore the probability of error, as in

equation (5.6)

2

2

1
() exp

22

x
x

CDF x dx


 
  

 
 (4.4)

Figure4.3 Interaction between two neighboring symbols.

() 2
2

L
p e CDF

 
  

 

Since each channel symbol is equally likely to occure, the robability of unrecoverable

errors occurring in the equalization space can be calculated using the sum of all the CDF

overlap between each opposing class symbol. The probability of error is more commonly

described as the BER. Equation(5.7)describes the BER based upon the Gaussian noise

overlap, where spN is the number of symbols in the positive class, mN is the distance

between the i th positive symbol and its closest neighboring symbol in the negative class.

Concepts of Channel Equalization

 45

1

2
() log

2

Nsp
i

n
sp m i n

BER CDF
N N




  
   

   


4.6. Channel Equalization

 High speed communications channels are often impaired by channel inter symbol

interference (ISI) and additive noise. Adaptive equalizers are required in these

communication systems to obtain reliable data transmission. In adaptive equalizers the mn

constraint is training the equalizer. Many algorithms have been applied to train the equalizer,

each having their own advantages and disadvantages. More over the importance of the

channel equalizer always keeps the reaserch going on to introduce new algorithm to train the

equalizer.

 The optimal BER equalization performance is obtained using a maximum likelihood

sequence estimator (MLSE) on the entire transmitted data sequence.A more practical MLSE

would operate on smaller data sequence but these can still be computationally expensive ,

they also have problem tracking time-varying channels and can only produce sequence of

output with a significant time delay .Another equalization approach implements a symbol-

by-symbol detection procedure and is based upon adaptive filter.The symbol to symbol

approachs to equalization applies the channel output samples to a decision classifier that

separate the symbol into their respective classes. Traditionally these equalizers have been

designed using linear filters,LTE and LDFE, with a simple FIR structure.The ideal equalizer

will model the inverse of the channel model but this code doesnot take into account the

effect of noise within the channel.

 4.7 Summary

 To compensate the ISI, Multipath channel effects on frequency response and other types

of noise effects an equalizer placed at the receiver end. Since equalizer comes under inverse

modeling it is difficult to design. Proper care is taken in choosing the while training the channel.

LMS types equalizer performs well in case of linear channels but its performance degrades while

the channel becomes nonlinear. So different nonlinear structures are being used to design

nonlinear equalizer like MLP,RBF,FLANN and many more.

 Chapter 5

NONLINEAR CHANNEL EQUALIZER USING ANN

Non-Linear Channel Equalizer Using ANN

 47

5.1 Introduction

Generally speaking, message signals will inevitablysuffer from noise, interference, and

power attenuation during transmission. Therefore, the receiver needs to perform some

compensation for the distortion in order to get correct information . Traditional receivers usually

use linear channel equalizers to solve this problem. However, when the message signals are

transmitted through highly nonlinear channels, linear equalizers are no longer able to provide

satisfactory results. A neural network has a fairly complicated mapping ability between input

and output signals, and is therefore capable of dealing with nonlinear problems [23]. The

motivation of our research is to design and implement a neural-network-based nonlinear channel

equalizer under the consideration of tradeoffs between the hardware chip size, the processing

speed, and the cost.The applications of neural network techniques on digital communication

systems were first proposed by Siu et al. [24].They have made a comparison on the equalization

performance between multilayer perceptron (MLP) based on the backpropagation (BP) algorithm

and linear least-mean-square-based equalizer (LIN) based on least-mean-square (LMS)

algorithms. According to [24], the MLP has superior performance to LIN on both bit-error-rate

(BER) and mean-squared-error (MSE) characteristics, especially when message signals are

transmitted through highly noisy channels. MLP, however, requires longer training time and

tends to converge to undesired local minima instead of the global one. Although Zerguine has

proposed a multilayer perceptron based decision feedback equalizer with lattice structure to solve

the convergence problem, its high computational complexity still greatly limits the applications.

Cha has used adaptive complex radial basis function (RBF) networks to deal with the channel

equalization [9]. However, as the RBF network needs a large number of hidden nodes to achieve

acceptable system performance, it is not quite suitable for parallel processing. The problem of

huge number of hidden nodes encountered by RBF seems to be solved by using the minimum

radial basis function (MRBF) neural networks proposed by Jianping [25]. However, actually in

the equalization procedure of a system applying MRBF, the neural network has to first increase

the number of hidden nodes, and then omits the unnecessary nodes according to rules defined in

the algorithm. Since the chip size of circuit depends on the maximum number of nodes along the

equalization process, the MRBF technique cannot help in simplifying the hardware design.

Reference [8] indicated that the functional link artificial neural network (FLANN) presents even

Non-Linear Channel Equalizer Using ANN

 48

better performance than MLP when techniques. After the designing procedure is finished, the

circuit can be easily implemented using hardware description languages (HDLs). We choose

field-programmable-gate-array (FPGA) devices for the hardware realization of our channel

equalizer.

5.2 System Architecture

 The block diagram of the digital communication system with equalizer is shown in

figure below The channel is composed of the transmitting filter, the transmission medium, and

other component characteristics. A commonly used linearly dispersive channel model is the so-

called finite-impulse-response (FIR) model. The output a(k) from an FIR channel at time kt is

1

0

() () ()
hn

i

a k h i t k i




 

 Where h(i) ,i=0,…..nh-1, are the tap values of the channel, and nh is the length of the

FIR chanel. The nonlinearly distorted output b(k) associated with a(k) can be written as

() (()) ((), (1),.... (1), (0), (1),... (1))h hb k a k t k t k t k n h h h n      

Where (.) is the nonlinear function generated by the block labeled as NL .Since the channel

may also be effected by the additive white Gaussian noise(AWGN) with variance ζ
2

,the

received signal at the equalizer is r(k)=b(k)+q(k), where q(k) is the white Gaussian

noise(AWGN) with variance ζ
2
,the received signal at the equalizer is r(k)=b(k)+q(k), where

q(k) is the white Gaussian noise sample at time instant kT. The compensated output ()y k


 from

the equalizer is then compared with the desired signal. The error signal is defined as e(k)= y(k)-

()y k


, where the desired signal y(k)=t(k-d) represents the delayed version of the received signal,

and D is the time delay of the signal transmitted through the physical channel. If the error e (k) is

over the tolerable limit, for example, ε the parameter of the equalizer will be continued until the

error function. This process will be continued until the error is under the limit value ε.

Non-Linear Channel Equalizer Using ANN

 49

NL=Non linearity

Figure 5.1 Block diagram of channel Equalization

5.3 LIN Structure

The block diagram of an LIN structure is depicted in Fig. 2. The input signals are first

passed through a bank of n delays to to form () [, (), (1)........ ()]T

nX k x k x k x k n   where

the superscript T denotes denotes the transpose of a matrix, and the delayed signals are

multiplied with a set of weights 0 1() [(), ()........... ()],nW k w k w k w k and are then summed up

with a randomly generated bias b(k) The result s(k) is the input to a linear function to obtain

()y k


. Without loss of generality, we will denote the linear function by purelin(.) in the

followings. The error function e(k) is computed as the difference between ()y k


 and y(k) .

q (k)

Channel

Equalizer

NL

Delay

Update

Algorithm 

+
x(k) a(k) b(k)

d(k)

Noise

y(k)
e(k)

Non-Linear Channel Equalizer Using ANN

 50

When is greater than the highest tolerable limit , the system will modify the weighting

coefficients based on LMS criterion .

The whole learning algorithm can ,thus, be summarized as follows:

() () () ()S k W k X k b k 

() (())y k purelin s k




() () ()e k y k y k


 

(1) () 2 () ()TW k W k e k X k  

(1) () 2 ()b k b k e k  

The positive constant appearing in the above equations is the learning factor in a neural network.

The numerical value of α satisfies 0<α<2/ λmax, where λmax is the largest eigenvalue of the

Hessian matrix. The initial values of W(k) and b(k) is randomly generated from an arbitrarily

Z-1

z-1

∑

S(k) y(k)

w0 Z-1

w1

w2

wn

x(k)

x(k-1)

x(k-2)

x(k-n)

b(k)

Figure5.2 LIN structure

Non-Linear Channel Equalizer Using ANN

 51

selected range [-.5 ,0.5]. Although the use of LIN is generally limited on linearly separable

problems, it is still quite popular due to its simplicity. For example, LIN plays a very important

role in the design of adaptive filters .

5.4 FLANN

Pao originally proposed FLANN and it is a novel single layer ANN structure capable of

forming arbitrarily complex decision regions by generating nonlinear decision boundaries [3.4].

Here, the initial representation of a pattern is enhanced by using nonlinear function and thus the

pattern dimension space is increased. The functional link acts on an element of a pattern or entire

pattern itself by generating a set of linearly independent function and then evaluates these

functions with the pattern as the argument. Hence separation of the patterns becomes possible in

the enhanced space. The block diagram of a system with FLNN is shown in figure.

Figure 5.3 FLANN Structure

where the block labeled F.E. denotes a functional expansion. These functions map the input

signal vector 1 2[......]T

nX x x x into N linearly independent functions

FE

∑

∑

∑

1

1

1

x1

x2

.

xn

1()x

1

y


2 ()x

()n x

2
y


n
y


Output layer
Input layer

W S1

sn

Non-Linear Channel Equalizer Using ANN

 52

1 2[() () ()]T

NX X X    The linear combination of these function values is presented in its

matrix form, that is, S W  where 1 2[......]T

mS s s S , and W is the m x N dimensional

weighting matrix. The matrix S is fed into a bank of identical nonlinear functions to generate the

equalized output 1 2[...]T

mY y y y
   

 , where (),j jy s


 j=1,2,………m. Here the nonlinear

function is defined as (.) tanh(.)  .The major difference between the hardware structures of

MLP and FLANN is that FLANN has only input and output layers, and the hidden layers are

completely replaced by the nonlinear mappings. In fact, the task performed by the hidden layers

in MLP is carried out by functional expansions in FLANN. Since the input signals are

nonlinearly mapped into the output signal space, FLANN has also the ability to resolve the

equalization problems for nonlinear channels. Similar to MLP, the FLANN uses the BP

algorithm to train the neural networks. However,since the FLANN has much simpler structure

than MLP, its speed of convergence for training process is a lot faster than MLP. The whole

learning algorithm for the FLANN is summarized as follows :

1

() () ()
N

j ji k

i

y k W k X 




 
  

 


 () () ,j kW k X 

1 2[() ()........ ()] ,T

k nX x k x k x k

1 2() [() ()........... ()],j j j jNW k w k w k w k

1 2() [() () ()]T

k NX X X X   

() ()(())T

kk k X  

(1) () () (1)W k W k k k       

1 2() [() ()..... ()]T

mk k k k   

2

() 1 () (),j j jk y k e k
 

  
 

() () ()j j je k y k y k


 

Non-Linear Channel Equalizer Using ANN

 53

1 2() [() ()..... ()]T

mW k W k W k W k

 In the above equations, μ is the learning factor and γ is the momentum factor that helps to

accelerate the speed of convergence of algorithms. The values of these parameters are chosen

according the inequalities 0 .1 <μ <1.0 and 0 < γ <0.9.

5.5 Design Procedure

The procedure of the equalizer during one iteration can be divided into the following four steps.

1) Compute the estimated output of the network in the forward direction.

2) Evaluate the errors between the signals from the output layer and the input layer.

3) Calculate the amount of modification for the weightings between layers.

4) Update the weighting vector for each layer.

The computational complexities of MLP, LIN, and FLANN for training the neural network

during each iteration are summarized in Table I, where n0
+
 represents the number of input

Number of operation

LIN FLANN

Addition

2n0nL+nL 3(3n0 ++ n0+C2)nL+4nL

Multiplication

3n0nL 4(3n0 ++ n0+C2)nL+2 nL+ n0+C2

Tanh(.)

0 nL

Cos(.) and sin(.)

0 2n0
+

Table 2 Number of operation for LIN and FLANN

Non-Linear Channel Equalizer Using ANN

 54

signals of FLANN structure, n0 is the number of nodes at the LIN . It can be seen from the table

that FLANN requires slightly more additions and multiplications than LIN.

 Now, we turn our attention to the compensating performance of the algorithms over three

different channel models. The normalized responses of the channel models considered in this

thesis are expressed in the form of their Z transformation as follows:

CH=1:0;

CH=2:0.209+0.995Z
-1
+0.209Z

-2

CH=3:0.260+0.93076Z
-1

+0.260Z
-2

CH=4:0.340+0.903Z
-1
+0.304Z

-2

CH=5:0.341+.876Z
-1

+.341Z
-2

 Where the notation CH=1 corresponds to an ideal channel with unit impulse response that

has no intersymbol interference(ISI) . Model CH stands for a finite impulse response (FIR)

channel with channel lenth 3. Following are the channel models we consider four kinds of

nonlinearities, namely,

NL=0; b(k)=a(k);

NL=1: b(k)=tanh(a(k));

NL=2:b(k)=a(k)+.2a2(k)-.1a3(k);

NL=3:b(k)=a(k)+.2a2(k)-.1a3(k)+.5cos(πa(k));

The nonlinear model NL=0 stands for a purely linear module, that is, there is no nonlinearity in

the model. The model NL=1 corresponds to systems suffering from nonlinear distortion which

is possibly caused by the saturation of amplifiers used in the transceivers. In models NL =2 and

Non-Linear Channel Equalizer Using ANN

 55

NL =3 we assume the signals have suffered from some second-order, third-order, and/or

trigonometric nonlinear distortions during transmission.

5.6 Simulation study and results:

 The performance of LIN and FLANN based channel equalizer is compared for linear

and nonlinear channel . To study the effect of nonlinearity on the system performance four

different nonlinear channel models with the following nonlinearities has been introduced. The

learning parameter μ both for LIN and FLANN structure was suitably chosen to obtain best

result.

Four different channels were studied with the following transfer function:

CH=1:0.209+0.995Z
-1

+0.209Z
-2

CH=2:0.260+0.93076Z
-1

+0.260Z
-2

CH=3:0.340+0.903Z
-1

+0.304Z
-2

CH=4:0.341+.876Z
-1

+.341Z
-2

 To study the effect of nonlinearity on the system performance four different nonlinear

channel models with the following nonlinearities has been introduced.

NL=0; b(k)=a(k);

NL=1: b(k)=tanh(a(k));

NL=2:b(k)=a(k)+.2a2(k)-.1a3(k);

NL=3:b(k)=a(k)+.2a2(k)-.1a3(k)+.5cos(πa(k));

Non-Linear Channel Equalizer Using ANN

 56

Simulation result for channel 3 with 20 dB noise has been simulated for different linear

and non linear channel has been studied. From Fig. it is seen that convergence characteristics of

FLANN faster converges than the LIN structure. simulation result have demonstrated that

FLANN presents much better error performance than LIN especially when communication

system is highly nonlinear. From BER plot it is seen that FLANN structure perform better than

the LIN structure for all the linear and nonlinear channel.

 Fig 5.4(a) fig 5.4(b)

Fig 5.4(c) fig 5.4(d)

2 4 6 8 10 12 14 16 18 20
10

-4

10
-3

10
-2

10
-1

10
0

SNR in dB

B
E

R

data1

FLANN

0 500 1000 1500
-30

-25

-20

-15

-10

-5

0
 Plot of MSE

 Number of Samples --->

 E
rr

o
r

S
q
u
a
re

 -
--

>

LMS

FLANN

0 500 1000 1500
-35

-30

-25

-20

-15

-10

-5

0
 Plot of MSE

 Number of Samples --->

 E
rr

o
r

S
q
u
a
re

 -
--

>

data1

FLANN

2 4 6 8 10 12 14 16 18 20

10
-4

10
-3

10
-2

10
-1

10
0

SNR in dB

B
E

R

FLANN

LMS

Non-Linear Channel Equalizer Using ANN

 57

Fig 5.4 (a),(b) corresponds to MSE and BER plot for FLANN and LIN equalizer structure for

NL=1 and fig 4.4 (c), (d) for NL=2 .Fig 4.4(e),(d) for NL=3.

 Fig 5.4(e) Fig 5.4(f)

5.7 Summary

 Artificial neural network based nonlinear channel equalizer is described in this chapter.We

compared the performance of two different structure of equalizer,namely , the linear least

squared-based (LIN) and the functional link artificial neural networs(FLANN).Taking different

types of nonlinearity the MSE and BER are plotted. Simulation results have demonstrated that

FLANN presents much better error performance than LIN, especially when the communication

channel is highly nonlinear.

0 500 1000 1500
-30

-25

-20

-15

-10

-5

0
 Plot of MSE

 Number of Samples --->

 E
rr

o
r

S
q
u
a
re

 -
--

>

LMS

FLANN

2 4 6 8 10 12 14 16 18 20

10
-4

10
-3

10
-2

10
-1

10
0

SNR in dB
B

E
R

FLANN

LMS

Chapter 6

VLSI IMPLEMENTATION OF NONLINEAR

CHANNEL EQUALIZER

VLSI Implementation of Non-Linear Channel Equalizer

6.1 Introduction

 The pursuit to build intelligent human-like machines led to the birth of artificial neural

networks (ANNs). Much work based on computer simulations has proved the capability of

ANNs to map, model, and classify nonlinear systems. The special features of ANNs such as

capability to learn from examples, adaptations, parallelism, robustness to noise, and fault

tolerance have opened their application to various fields of engineering, science, economics, etc.

Real-time applications are feasible only if low-cost high-speed neural computation is made

viable. Implementation of neural networks (NNs) can be accomplished using either analog or

digital hardware. The digital implementation is more popular as it has the advantage of higher

accuracy, better repeatability, lower noise sensitivity, better testability, and higher flexibility and

compatibility with other types of preprocessors. On the other hand, analog systems are more

difficult to be designed and can only be feasible for large scale productions, or for very specific

applications. After the designing procedure of channel equalization for nonlinear transmission

environments using neural network technique is finished, the circuit is implemented using

hardware description language (HDL’s).We implemented using Xilinx FPGA “xcs600bg560”.

 Figure6.1 Generalized module of channel with equalizer

 The generalized model of communication channel with equalizer is shown in figure.

In which equalizer is implemented using FLANN structure and LIN structure. The function of

source generator is to generate random binary signal to the channel. The channel is modeled FIR

model. In LIN structure composed of series-in-parallel-out (SIPO) shift registers and can be

implemented as the tapped delay line structure depicted in Fig. 2. In addition to the simple SIPO,

the FLANN structure also contains a functional expansion block, as shown in Fig. 4. The

Sourse

generator

FIR

model

 NL Noise Equalizer

VLSI Implementation of Non-Linear Channel Equalizer

 60

transcendental functions and in the functional expansion are built using cordic algorithm. The

mathematical operations associated with matrices, such as the computation of S(k,)e(k)(X(k))
T
 in

the LMS algorithm, and δ(k)(Ф(k))
T

in the BP algorithm, are carried out by the matrix

multiplier. The output estimator for FLANN structure is a nonlinear function, which is replaced

by a ROM lookup table in order to speed up the processing. The delta generator computes and

according to (11). The error generator of LIN structure, however, requires only simple

subtraction operations. The block diagram of the weight refresher for FLANN is given in Fig.

8.FLANN demands for two adders to refresh and ∆w. While LIN requires only one adder for the

purpose of refreshing W.

6.2 CORDIC algorithm

In the past decade, the unprecedented advances in VLSI technology have simulated great

interests in developing special purpose, parallel processor arrays to facilitate real time digital

signal processing. Parallel processor arrays such systolic arrays have been extensively studied.

The basic arithmetic computation of these parallel VLSI arrays has often been implemented with

a multiplication and accumulation unit(MAC) ,because these operations arise frequently in DSP

Figure 6.2 Block Diagram of FLANN weight refresher

Adder

 Latch

 Adder Latch

μ∆(k)

∆(k-1)

∆w(k)

W(k+1)

VLSI Implementation of Non-Linear Channel Equalizer

 61

applications. The reduction in hardware cost also motivated the development of more

sophisticated DSP algorithms which require the evaluation of elementary functions such as

trigonometric, exponential and logarithmic functions, which cannot be evaluated efficiently with

MAC based arithmetic units. Consequently, when DSP algorithms incorporate these elementary

functions, it is not unusual to observe significant performance degradation.

 On The other hand, an alternative arithmetic computing algorithm known as CORDIC

(Coordinate Rotation Digital Computer) has received renewed attention, as it offers a unified

iterative formulation to efficiently evaluate each of these elementary functions. Specifically, all

the evaluation tasks in CORDIC are formulated as a rotation of 2x1 vectors in various

Coordinate systems. By varying a few simple parameters, the same CORDIC processor is

capable of iteratively evaluating these elementary functions using the same hardware within the

same amount of time. This regular unified formulation makes the CORDIC based architecture

very appealing for implementation with pipelines VLSI array processors

 The CORDIC is a class of hardware-efficient algorithms for the computation of

trigonometric and other transcendental functions that use only shifts and adds to perform. The

CORDIC set of algorithms for the computation of trigonometric functions was developed by

Jack E. Volder in 1959 to help in building a real-time navigational system for the B-58

supersonic bomber. Later, J. Walther in 1971 extended the CORDIC scheme to other

transcendental functions. The CORDIC method of functional computation is used by most

handheld calculators (such as the ones by Texas Instruments and Hewlett-Packard) to

approximate the standard transcendental functions.

 Depending on the configuration defined by the user, the resulting module implements pipelined

parallel, word-serial, or bit-serial architecture in one of two major modes: rotation or vectoring.

In rotation mode, the CORDIC rotates a vector by a specified angle. This mode is used to

convert polar coordinates to Cartesian coordinates. For example consider the multiplication of

two complex numbers x+jy and (cos(θ) + j sin(θ)).The result u+jv, can be obtained by evaluating

the final coordinate after rotating a 2x1 vector [x y]
T

through an angle θ and then scaled by a

factor r.This is accomplished in CORDIC via a three-phase procedure: angle conversion, Vector

rotation and scaling.

VLSI Implementation of Non-Linear Channel Equalizer

 62

Figure 6.3 The basic block diagram of CORDIC processing

6.2.1The Rotation Transform

 All the trigonometric functions can be computed or derived from functions using vector

rotations. The CORDIC algorithm provides an iterative method of performing vector rotations by

arbitrary angles using only shift and add operations. The algorithm is derived using the general

rotation transform:

 ' cos() sin()X X Y  

 ' cos() sin()Y X Y  

where (X’,Y’) are the coordinates of the resulting vector after rotating a vector with coordinates

(X,Y) through an angle of θ in the Cartesian plane. These equations can be rearranged to give:

 ' cos().[tan()]X X Y  

 ' cos().[sin()]Y Y X  

Now, if the angles of rotation are restricted such that tan(θ=±2
-i then the tangent multiplication

term is reduced to a simple shift operation. Hence arbitrary angles of rotation can be obtained by

performing a series of successively smaller elementary rotations. The iterative equation for

rotation can now be expressed as:

 1 (2)i

i i i i iX K X Y 

  

CORDIC

Algorithm

X = cos(θ) -jsin(θ)

Y= sin(θ)+ jcos(θ)

θ

X

Y

VLSI Implementation of Non-Linear Channel Equalizer

 63

 1 (2)i

i i i i iY K Y X  

  

where K
k

= cos(tan
-1

(2
-k

)) and ∂
k

= ±1 depending upon the previous iteration. Removing the scale

constant from the above equations yields a shift-add algorithm for vector rotation. The product

K
k

approaches the value of 0.6073. The CORDIC algorithm in its binary version can be

expressed as a set of three equations as follows:

 1 [2]k

k k k kX X mY 

   

 1 [2]k

k k k kY Y mY 

   

 1 []k k k kZ Z   

Where m = ±1 and ε
k

are prestored constants. The values of ε
k

will become apparent from the

following example for computing the sine and cosine functions.

To compute the sin θ and cos θ for θ ≤ π/2, we let m = 1, ε
k
= tan

-1

(2
-k

) and define:

0

cos()
n

k

k

C 




Then the equations of the CORDIC algorithm for computing sine and cosine functions can be

written down as:

1 [2]k

k k k kX X mY 

   

1 [2]k

k k k kY Y mY 

   

1 []k k k kZ Z   

δ
k
= sgn(Z

k
), X

0
=C, Y

0
=0 and Z

0
= θ and n is the number of iterations performed. Then

1 cos()kX  

1 sin()kY  

VLSI Implementation of Non-Linear Channel Equalizer

 64

6.3 Linear Feedback Shift Register:

A Linear feedback shift register (LFSR) is a shift register that utilizes a special

feedback circuit to generate the serial input value. . The feedback circuit is essentially the next-

state logic. It performs xor operation on certain bits of the register and forces the register to

cycle through a set of unique states In a properly designed n-bit LFSR, we can use a few xor

gates to force the register to circulate through 2
n
 - 1 states. The initial value of the LFSR is called

the seed, and because the operation of the register is deterministic, the sequence of values

produced by the register is completely determined by its current (or previous) state. Likewise,

because the register has a finite number of possible states, it must eventually enter a repeating

cycle. However, an LFSR with a well-chosen feedback function can produce a sequence of bits

which appears random and which has a very long cycle Applications of LFSRs include

generating pseudo-random number, pseudo-noise fast digital counters, and whitening sequence.

.

The diagram of a 4-bit LFSR is shown in Figure 9.7. The two LSB signals of the register are

xored to generate a new value, which is fed back to the serial-in port of the shift register. Assume

that the initial state of register is "1000". The circuit will circulate through the 15 (i.e., 24 - 1)

FF1

FF3

FF3

FF2

CLK

FF1_ou

t

FF2_out

FF3_ou

t

FF3_ou

t

D

22

D

3

D4
D

1

Figure 6.4 Block diagram of 4-bit LSFR

VLSI Implementation of Non-Linear Channel Equalizer

 65

states as follows: "1000", "0l00", "0010", "1001", '1100", "0110", "1011", "0101", "1010",

"1101", "1110","1 11 l", "01 1 l", "0011", "0001".

Note that the "0000" state is not included and constitutes the only missing state. If the LFSR

enters this state accidentally, it will be stuck in this state. The construction of LFSRs is based on

the theoretical study of finite fields. The term linear comes from the fact that the general

feedback equation of an LFSR is described by an expression of the and and xor operators, which

form a linear system in algebra. The theoretical study shows some interesting properties of

LFSRs:

 An n-bit LFSR can cycle through up to 2
n
 - 1 states.

 The all-zero state is excluded from the sequence.

 A feedback circuit to generate maximal number of states exists for any n. The sequence

generated by the feedback circuit is pseudorandom, which means that the sequence exhibits a

certain statistical property and appears to be random. The feedback circuit depends on the

number of bits of the LFSR and is determined on an ad hoc basis. Despite its irregular pattern,

the feedback expressions are very simple, involving either one or three xor operators most of the

time. Table 9.1 lists the feedback expressions for register sizes between 2 and 8 as well as

several larger values. We assume that the output of the n-bit shift register is qn-1 qn-2, . . . , q1

,q0 . The result of the feedback expression is to be connected to the serial-in port of the shift

register (Le., the input of the (n - 1)th FF).Once we know the feedback expression, the coding of

LFSR is straightforward. Note that the LFSR cannot be initialized with the all-zero pattern. In

pseudo number generation, the initial value of the sequence is known as a seed. We use a

constant to define the initial value and load it into the LFSR during system initialization.

VLSI Implementation of Non-Linear Channel Equalizer

 66

Register size Feed back expression

Table 3 Feedback expression for LSFR

6.4 Design of LUT

 The implementation of the excitation function in FPGA is done using the LUT that

enables to use the inbuilt RAM available in FPGA integrated chip (IC). The use of LUTs reduces

the resource requirement and improves the speed. In addition, the implementation of LUT needs

no external RAM since the inbuilt memory is sufficient to implement the excitation function. As

the excitation function is highly nonlinear a general procedure adopted to obtain an LUT of

minimum size for a given resolution is detailed as follows.

1) Let n be the number of bits

 ()
x x

x x

e e
y f x

e e






 



2) Determine the range of input (x) for which the range of output (y) is between 2
-n

 and 1– 2
-

n
. Let x1 and x2 be the upper and lower limits of the input range.

VLSI Implementation of Non-Linear Channel Equalizer

 67

 Substituting
1 1

1 1
1 2

x x
n

x x

e e

e e










 and

2 2

2 2
1 2

x x
n

x x

e e

e e







 


 , it is found that

1

1 1 2
ln

2 1 2

n

n
x





 
   

 
 and

2

1 2
ln

2 2 2

n

n
x





 
   

 

3) Determine the change in input x that produces change in output (y)equal to 2 n at the

point of maximum slop. For tansigmoid excitation function , the maximum slope is at x=0;

The value of x for the output change of 2 n can be obtained from

2

2

1 (1 2)
ln

4 (1 2)

n

n
x





 
   

 

 4) The minimum number of LUT values is given by

 1 2
min()

x x
LUT

x






Appropriate number of bits that can address (LUT)min are chosen. For the tansigmoid function

with 8 bit resolution, x1, x2 and x are calculated from (7) and (8) .It is found from (8) that

(LUT)min=799. In order to accommodate for (LUT)min, 10 bit address is required. Hence , 1k

RAM is used as LUT for tansigmoid excitation function. The 1K RAM 1024 divisions; each of

step size x =.0039 can accommodate the value of x in the range -3.99 to + 3.99. Here we are

using symmetry property of the tansigmoid function. So we can calculate negative value of

function. With this method of LUT design, the nonlinearity of the excitation function is

maintained for a given 8-bit resolution. Thus, a LUT of 1-K RAM for log-sigmoid excitation

function with 8-bit resolution replaces the complete computation of the excitation function.

However, the size of the LUT increases for higher resolution.

VLSI Implementation of Non-Linear Channel Equalizer

 68

6.5 VHDL simulation Results

 Fig 6.5 (a) Output waveform of weight updating for FLANN structure

 (CH=4:0.341+.876Z
-1

+.341Z
-2

 ,NL=2)

 Fig 6.5(b) Output waveform of weight updating for LIN structure

VLSI Implementation of Non-Linear Channel Equalizer

 69

 Fig 6.6 Output waveform of Nonlinear channel equalizer using FLANN Structure

 (CH=4:0.341+.876Z
-1

+.341Z
-2
 ,NL=2)

VLSI Implementation of Non-Linear Channel Equalizer

 70

 Fig 6.7(a)

 Fig 6.7(b)

 Fig 5.5 (a),(b) shows the Design summery of FLANN and LIN structure respectively

VLSI Implementation of Non-Linear Channel Equalizer

 71

6.6 Comparison of VHDL and MATLAB simulation results

 Fig 6.8(a) Fig 6.8(b)

Fig 5.5(a) shows the comparison VHDL and Matlab result for FLANN structure with

NL=b(k)=a(k)+.2a
2

(k)-.1a
3

(k) and (b) shows for LIN structure.

0 2 4 6 8 10 12 14 16 18 20
10

-4

10
-3

10
-2

10
-1

10
0

SNR in dB

B
E

R

VHDL

MATLAB

2 4 6 8 10 12 14 16 18 20
10

-4

10
-3

10
-2

10
-1

10
0

SNR in dB

B
E

R

MATLAB

VHDL

Chapter 8

CONCLUSION

Conclusion

 73

 The architecture and training procedure of a novel RNN, called MFLNN, have been

described. The recurrences in the network structure have been introduced through the use of

three feedback layers with nonlinear processing units. In these feedback layers, weighted sums of

the delayed outputs of the hidden and of the output layers are passed through certain activation

functions and applied to the feed forward neurons via adjustable weights. Thus, the feedback

signals are processed in the feedback layers in the same way as the feed forward layers.The

BPTT-like derivative calculation is required to train the recurrent systems. Since, the calculation

of the derivatives by the chain rule for the unfolded structure is very complicated, the adjoint

model of the MFLNN is built to simplify the computations. The fast convergence of the MLFNN

weights is obtained by the LM algorithm. The performance of the MFLNN is compared with

several feedforward and recurrent networks to show the structural capabilities of the network and

the effectiveness of the training method. It has been shown that the proposed MFLNN achieves

faster convergence rate and higher design accuracy with fewer parameters in all cases examined.

The main distinguishing features of the MLFNN can be summarized as follows.

 The main difference with the available RNNs is that the temporal relations in the

MLFNN are provided by means of the neurons, not by the simple feedback elements,

which enrich the representation capabilities of the recurrent networks.

 It has a flexible feedback structure which enables use of different kinds of activation

functions and the number of feedback neurons for different applications.

 The online training procedure based on a certain history of the patterns stored in the stack

at each time step improves the adaptation performance.

 The adjoint model of the MFLNN is built to efficiently compute the derivatives for

training.

 A fast convergence of the MLFNN weights is obtained by means of the LM method with

the trust region approach.

 In the light of the simulation studies, we conclude that the developed MFLNN can be

regarded as a new general RNN and can be effectively used for a wide class of temporal

problems.

Conclusion

 74

 We may treat the channel equalization as a problem associated with the classification of

data. The simulation results reveal that FLANN has much better performance than LIN on MSE

and BER. But FLANN requires about more chip area than LIN. One way to reduce the chip area

is to replace the processing architecture by serial processing. By doing so, the chip area can be

tremendously saved, but the processing time will at least become doubled, which is not

acceptable in most applications. Another way to decrease the required chip area is to lower the

number of data bits in the decimal fractions. This provides a tradeoff between hardware cost and

system performance.

References

REFERENCES

[1] K. S. Narendra and K. Parthasarathy, “Identification and control of dynamical systems

using neural networks,” IEEE Trans. Neural Netw.,vol. 1, no. 1, pp. 4–27, Mar. 1990.

[2] W. T. Miller, R. S. Sutton, and P. J.Werbos, Neural Networks for Control.Cambridge, MA:

MIT Press, 1992.

[3] T. Conner, D. Martin, and L. E. Atlas, “Recurrent neural networks and robust time series

prediction,” IEEE Trans. Neural Netw., vol. 5, no. 2,pp. 240–253, Mar. 1994.

[4] J.-S. R. Jang, “ANFIS: Adaptive-network-based fuzzy inference system,” IEEE Trans. Syst.,

Man, Cybern., vol. 23, no. 3, pp. 665–685,May/Jun. 1993.

[5] S Rajasekaran and G.A. Vijayalakshmi pai” neural net works, fuzzy logic, and genetic

lgorithm”

[6] Martin .T .hagan and howard b Dcmuth “ neural network design “

[7] P. Werbos, “Backpropagation through time: What it does and how to do it,” Proc. IEEE, vol.

78, no. 10, pp. 1550–1560, Oct. 1990.

[8] C.-F. Juang and C.-T. Lin, “A recurrent self-organizing neural fuzzy inference network,”

IEEE Trans. Neural Netw., vol. 10, no. 4, pp. 828–845, Jul. 1999.

[9] Cha and S. Kassam, “Channel equalization using adaptive complex radial basis function

networks,” IEEE J. Select. Areas Commun., vol. 13, pp. 122–131, Jan. 1995.

References

 76

[10] J. C. Patra, R. N. Pal, R. Baliarsingh, and G. Panda, “Nonlinear channel equalization for

QAM signal constellation using artificial neural networks,”IEEE Trans. Syst., Man,

Cybern. B., vol. 29, pp. 262–271, Apr. 1999

[11] C. You and D. Hong, “Adaptive equalization using the complex backpropagationalgorithm,”

in Proc. IEEE Int. Conf. Neural Networks, vol. 4, Jun. 1996, pp. 2136–2141.

[12] J. C. Patra, R. N. Pal, B. N. Chatterji, and G. Panda, “Identification of nonlinear dynamic

systems using functional link artificial neural networks,”IEEE Trans. Syst., Man, Cybern.

B., vol. 29, pp. 254–262, Apr.1999.

[13] PONG.P.CHU ,”RTL Hardware Design Using VHDL”

[14] Volnei A.Pedroni. “Circuit Design With VHDL.” New Delhi: Prentice-Hall of India,

2004

[15] Uwe Meyer-Baese ,”Digital Signal Processing with Field Programmable Gate Array”

[16] C. J. Lin and C. C. Chin, “Prediction and identification using waveletbased recurrent

fuzzy neural networks,” IEEE Trans. Syst., Man, Cybern.B, Cybern., vol. 34, no. 5, pp.

2144–2154, ct. 2004.

[17] G. C. Mouzouris and J. M. Mendel, “Dynamic non-singleton fuzzy logic systems for

nonlinear modeling,” IEEE Trans. Fuzzy Syst., vol.5, no. 2, pp. 199–208, May 1997.

[18] C.-F. Juang and C.-T. Lin, “A recurrent self-organizing neural fuzzy inference network,”

IEEE Trans. Neural Netw., vol. 10, no. 4, pp. 828–845, Jul. 1999.

[19] C.-H. Lee and C.-C. Teng, “Identification and control of dynamic systems using recurrent

fuzzy neural networks,” IEEE Trans. Fuzzy Syst.,vol. 8, no. 4, pp. 349–366, Aug. 2000.

[20] C. F. Juang, “ATSK-type recurrent fuzzy network for dynamic systems processing by

neural network and genetic algorithms,” IEEE Trans.Fuzzy Syst., vol. 10, no. 2, pp. 155–

170, Apr. 2002.

[21] S. F. Su and F. Y. Yang, “On the dynamical modeling with neural fuzzy networks,” IEEE

Trans. Neural Netw., vol. 13, no. 6, pp. 1548–1553,Nov. 2002.

References

 77

[22] C. J. Lin and C. C. Chin, “Prediction and identification using waveletbased recurrent fuzzy

neural networks,” IEEE Trans. Syst., Man, Cybern.B, Cybern., vol. 34, no. 5, pp. 2144–

2154, Oct. 2004.

[23] S. Haykin, Neural Networks: A Comprehensive Foundation, 2nded. Englewood Cliffs, NJ:

prentice-Hall, 1999.

[24] S. Siu, G. J. Gibson, and C. F. N. Cowan, “Decision feedback equalizationusing neural

network structures and performance comparison with standard architecture,” Proc. Inst.

Elect. Eng., pt. 1, vol. 137, pp.221–225, Aug. 1990.

[25] A. Zerguine, A. Shafi, and M. Bettayeb, “Multilayer perceptron-based DFE with lattice

structure,” IEEE Trans. Neural Networks, vol. 12, pp. 532–545, May 2001.

[26] M. C. Mackey and L. Glass, “Oscillation and chaos in physiological control systems,”

Science, vol. 197, pp. 287–289, 1977.

[27] J.-S. R. Jang, “ANFIS: Adaptive-network-based fuzzy inference system,” IEEE Trans. Syst.,

Man, Cybern., vol. 23, no. 3, pp. 665–685,May/Jun. 1993.

[23] www.xilinx.com

