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Abstract

Channel equalisers are used in digital communication receivers to mitigate the effects of inter
symbol interference (ISI) and inter user interference in the form of co-channel interference
(CClI) and adjacent channel interference (ACI) inthe presence of additive white Gaussian noise
(AWGN). An egualiser uses a large part of the computationsinvolved in the receiver. Linear
equalisers based on adaptive filtering techniques have long been used for this application. Re-
cently, use of nonlinear signal processing techniques like artificial neural networks (ANN) and
radial basis functions (RBF) have shown encouraging results in this application. This thesis
presents the development of a nonlinear fuzzy system based equaliser for digital communica-
tion receivers.

The fuzzy equaliser proposed in this thesis provides a parametric implementation of symbol-
by-symbol maximum a-posteriori probability (MAP) equaliser based on Bayes's theory. This
MAP equaliser is also called Bayesian equaliser. Its decision function uses an estimate of the
noise free received vectors, also called channel states or channel centres. The fuzzy equaliser
developed here can be implemented with lower computational complexity than the RBF im-
plementation of the MAP equaliser by using scalar channel states instead of channel states. It
also provides schemesfor performance tradeoff with complexity and schemes for subset centre
selection. Simulation studies presented in thisthesis suggeststhat the fuzzy equaliser by using
only 10%-20% of the Bayesian equaliser channel states can provide near optimal performance.

Subsequently, this fuzzy equaliser is modified for CCl suppression and is termed fuzzy—CCl

equaliser. The fuzzy—CCl equaliser provides a performance comparable to the MAP equaliser
designed for channels corrupted with CCl. However the structure of this equaliser is similar
to the MAP equaliser that treats CClI as AWGN. A decision feedback form of this equaliser
which uses a subset of channel states based on the feedback state is derived. Simulation studies
presented in this thesis demonstrate that the fuzzy—CCI equaliser can effectively remove CClI

without much increase in computational complexity. Thisequaliser isalso successful in remov-

ing interference from more than one CCI sources, where asthe MAP equaliserstreating CCl as
AWGN fail. Thisfuzzy—CCI equaliser can be treated as a fuzzy equaliser with a preprocessor
for CCl suppression, and the preprocessor can be removed under high signal to interference
ratio condition.
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Chapter 1
| ntroduction

1.1 Introduction

Thefield of digital data communications has experienced an explosive growth in recent years.
The demand for this form of communication is aso on the rise as additional services are being
added to the existing infrastructure. The telephone networkswere originally designed for voice
communication but, in recent times, the advances in digital communications using ISDN, data
communications with computers, fax, video conferencing etc. have pushed the use of these
facilities far beyond the scope of their original intended use. Similarly, introduction of digital

cellular radio (DCR) and wirelesslocal area networks (LAN’s) have stretched the limited avail -
able radio spectrum capacity to thelimitsit can offer. Theseadvancesin digital communications
have been made possible by the effective use of the existing communication channels with aid
of signal processing techniques. Neverthel essthese advances on the existing infrastructure have

introduced a host of new unanticipated problems.

Bandwidth efficient data communication requires the use of adaptive equalisers. This thesis
deal s with the development of fuzzy system based adaptive equalisersto overcome some of the

channel impairments encountered in present day digital communication systems (DCS).

The chapter begins with an exposition of the principal motivation behind the work undertaken
in this thesis. Following this, section 1.3 provides a brief literature survey on equalisation in
general and nonlinear equalisersin particular. Section 1.4 outlines the contributions made in

thisthesis. At the end, section 1.5 presentsthe thesislayout.

1.2 Motivation for work

The revolution in digital communication techniques can be attributed to the invention of the
automatic linear adaptive equaliser in the late 1960’s [1]. From this modest start, adaptive

equalisers have gone through many stages of development and refinement in the last 30 years.
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Early equalisers were based on linear adaptive filter algorithmg[2] with or without a decision
feedback. Alternatively maximum likelihood sequence estimator (MLSE)[3] were implemen-
ted using the Viterbi[4, 5] algorithm. One may ask, if scientists and engineers were satisfied
with these forms of equalisers for nearly two decades, what was the necessity of investigat-
ing new equaliser structures? The reason for this can be attributed to the following two main
factors.

Firstly, both forms of the equalisers provided two extremitiesin-terms of performance achieved
and the computational cost involved. The linear adaptive equalisers are simple in structure and
easy to train but they suffer from poor performance in severe conditions. On the other hand,
the infinite memory MLSE provide good performance but at the cost of large computational

complexity.

Secondly, rapid advancesin digital signal processing (DSP) techniques have provided scopefor
very large scale integration (VL SI) implementation. These can also be implemented with soft-
ware algorithms for testing. The programming capability of DSP processors make them very
attractive for complex signal processing applications. These features of DSP techniques have
been successfully used in a variety of applications like signal processing, speech processing,

image processing and digital communication to name afew.

Owing to the aforementioned reasons nonlinear equalisers have been investigated in the last
decade resulting in arich variety of techniques using artificial neural networks (ANN) [6, 7],
radial basis function (RBF) [8, 9] and recurrent networks [10] etc. But the study of new tech-
niques can provide adaptive equalisers which have the advantages of both good performance
and low computational cost. Based on these reasons, this thesis undertakes the development
of fuzzy system based equalisers. Some of the expected advantages of using fuzzy equalisers
stem from the success of fuzzy systemsin a variety of signal processing applicationsincluding
equalisation [11] and pattern classification [12-15].

1.3 Background literaturesurvey

Nyquist laid the foundation for digital communication over band limited analogue channels
in 1928 [16], with the enunciation of telegraph transmission theory. The research in channel
equalisation started much later in 1960’'s and was centred around the basic theory and structure
of zero forcing equalisers. The LMS agorithm by Widrow and Hoff in 1960 [2] paved the
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way for the development of adaptive filters used for equalisation. But it was Lucky [1] who
used this algorithm in 1965 to design adaptive channel equalisers. With the popularisation of
adaptive linear filters in the field of equalisation their limitations were also soon revealed. It
was seen that the linear equaliser, in-spite of best training, could not provide acceptable per-
formance for highly dispersive channels. This led to the investigation of other equalisation
techniques beginning with the ML SE equaliser [3] and its Viterbi implementation[4] in 1970’s.
Another form of the nonlinear equaliser which appeared around the same time was the infinite
impulse response (11R) form of the linear adaptive equaliser, where the equaliser employsfeed-
back [17] and wastermed decision feedback equaliser (DFE). The adaptive equalisersfor pulse
amplitude modulation (PAM) systems were extended to other complex signalling systems as
well [18]. Other works carried out in thisfield in 1970's and 1980's were the development of
fast convergence and/or computational efficient algorithmslikethe recursiveleast square (RLS)
algorithm, Kalman filterg[19] and RLS lattice algorithm [20]. Other forms of equalisers like
fractionally spaced equalisers (FSE) [21] were also devel oped during this period. A review of
the development of equaliserstill 1985 isavailablein [22].

The late 1980's saw the beginning of development in the field of ANN [10]. The multi layer
perceptron (MLP) based symbol-by-symbol equalisers was developed in 1990 [23, 24]. This
brought new forms of equalisersthat were computationally more efficient than ML SE and could
provide superior performance compared to the conventional equalisers with adaptive filters.
Another form of nonlinear processor called the RBFs, which were first used for multidimen-
sional functional interpolation [25], were also used for equalisation applications subsequently
[26, 27]. Subsequent years saw the devel opment of new training algorithmsand equaliser struc-
turesusing ANN [28, 29] and RBF [30] networks. During thistime the application of these net-
worksto the equalisation of communication systems with complex signal constellation [31, 32]

was also considered. A comprehensive review of some of these works can be found in [30].

The recent advances in nonlinear equalisers are centred around the application of different
signal processing techniques to equalisation. Some of these are recurrent neural networks[33,
34], recurrent RBF [35] and Mahalonobis classifiers [36]. The development of new training
algorithms[37] for selecting the equaliser structuresand, for setting of the equaliser parameters
[38], isan active field of research. Designing low complexity networks [39] is also an area of
interest. Currently use of these signal processing techniques in other digital communication

applications like code division multiple access (CDMA) [40, 41] and spread spectrum [42] is
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also being actively pursued.

1.4 Thesiscontributions

This section outlines some of the major contributions of the study presented in this thesis.
This thesis develops fuzzy system based equalisers for DCS. The fuzzy equalisers devel oped
here can be generally classified as nonlinear equalisers suitable for radio communication ap-
plications where channel dispersions spread over a few symbols. The digital communication
problem is discussed first and the need for an equaliser is established in this context. With
this existing equalisation techniques are reviewed which places the work undertaken here in

context.

Thethesis presents a fuzzy implementation of maximuma-posteriori probability (MAP) equal-
isers based on Bayes's theory. At first a fuzzy equaliser is developed for inter symbol in-
terference (1Sl) channels. Here ISl channels are the channels where, during transmission, the
symbolsare affected by preceding and succeeding symbolsdue to the effect of 1Sl and are addi-
tionally corrupted with additive white Gaussian noise (AWGN). Thisfuzzy equaliser provides
a parametric implementation of the Bayesian equaliser with advantages in terms of compu-
tational complexity. The Bayesian equaliser can also be implemented using a RBF network
with scalar centres, but the use of fuzzy systems provides a flexibility of designing a wider
variety of equalisers with varying computational complexities. One of the major drawbacks
of the Bayesian equaliser and its RBF implementation is the computational complexity due to
the large number of centres needed to implement the decision function. The fuzzy equaliser
proposed here addresses thisissue by providing efficient schemes for subset centre selection to

provide the equaliser decision function.

Subsequently the problem of co-channel interference (CCl) is discussed. In radio communic-
ation systems the problem of CCI limits the equaliser performance when the signal to noise
ratio (SNR) is larger than the signal to interference ratio (SIR). When the SNR is larger than
the SIR an equaliser treating CCl as noise suffers from severe performance degradation and the
performance of the equaliser is limited by the CCl. A Bayesian equaliser designed for a CCl
channel haslarge computational complexity. Here a CCl channel is defined asa communication
channel where the signal isaffected by CCI due from the signal transmitted by other usersusing

the same carrier frequency. In addition to thisthe signal is also corrupted due to the effects of
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ISI and AWGN. The fuzzy equaliser developed for 1Sl channels is modified for CCl mitiga-
tion. This fuzzy—CCl equaliser is shown to provide efficient equalisation where the Bayesian
equaliser treating CCl as AWGN may fail completely. The computational complexity of both
these equalisersis comparable. It is aso shown that the fuzzy—CCI equaliser can provide con-
siderable performance gain when a communication channel is corrupted with interference from

more than one co-channel interferers.

The advantage provided by fuzzy equalisers in terms of computational complexity and per-

formance gain can provide efficient equaliser design for DCR applications.

1.5 Thesisoutline

The rest of the thesisis organised as follows.

Chapter 2 provides the fundamental concepts of channel equalisation and discusses linear and
nonlinear equalisation techniques. This chapter analyses the channel characteristics that bring
out the need for an equaliser in a communication system. Subsequently an equaliser classific-
ation is presented which puts in context the work undertaken in thisthesis. A short review of

linear and nonlinear equalisation techniquesis also undertaken.

Chapter 3 is devoted to fuzzy implementations of Bayesian equalisers. This chapter derives
the normalised Bayesian equaliser with scalar channel states (NBESS) and provides a fuzzy
implementation for it. The computational issues relating to the developed fuzzy equaliser are
also addressed and presented. The results of Monte Carlo simulationsfor bit error ratio (BER)
performance have been presented to demonstrate the performance of the fuzzy equalisers de-

veloped here.

Chapter 4 analyses the problem of CCI in a DCS. The optimal equaliser for CCl channelsis
presented and a suboptimal fuzzy—CCl equaliser for thisisderived. Theresultsof Monte Carlo
simulation for BER performance have been presented to demonstrate the performance of the

fuzzy—CCl equaliser devel oped here in relation to some of the other equalisation techniques.

Chapter 5 summarises the work undertaken in this thesis and points to possible directions for

future research.



Chapter 2
Background

2.1 Introduction

Thisthesis discussesthe devel opment of fuzzy system based channel equalisersfor avariety of
channel impairments. In order to establish the context and need for the work undertaken clearly
and coherently, it is necessary to discuss the fundamental concepts involved in various aspects
of thisstudy. This chapter brings out the need for an adaptive equaliser in aDCS and describes

the classification of adaptive equalisers.

This chapter is organised as follows. Following this introduction, section 2.2 discusses the
communication system in general and section 2.3 discusses the propagation channel model in
a DCS, providing the general finite impulse response (FIR) filter model for ISl channels and
CCI channels. Section 2.4 presents a classification of equalisers with emphasis on symbol-by-
symbol equalisers. Section 2.5 derives the decision function for the optimal Bayesian symbol-
by-symbol equaliser for 1Sl channels. Sections 2.6 and 2.7 provide a short overview of de-
velopments of linear and nonlinear equalisers respectively. Finally, section 2.8 provides the

concluding remarks.

2.2 Digital communication system

The block diagram of a general DCS is presented in Figure 2.1. A DCS, in general, may not
have some of the blocks shown here. The data source constitutes the signal generation sys-
tem that generates the information to be transmitted. Some of the typical examples of this are
telephone, television and computer systems. The work of the encoder in the transmitter is to
encode the information bits before transmission so asto provide redundancy inthe system. This
in turn helpsin error correction at the receiver end. Some of the typical coding schemes used
are convolutional codes, block codes and grey codes. The encoder does not form an essential
part of the communication system but is being increasingly used. The digital data transmis-

sion requires very large bandwidth. The efficient use of the available bandwidth is achieved

6
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through the transmitter filter, also called the modulating filter. The modulator on the other
hand places the signal over an high frequency carrier for efficient transmission. Some of the
typical modulation schemes used in digital communication systems are amplitude shift keying
(ASK), frequency shift keying (FSK), pulse amplitude modulation (PAM) and phase shift key-
ing (PSK) modulation. The channel isthe medium through which information propagatesfrom

the transmitter to the receiver. At the receiver the signal is first demodulated to recover the

| Datasource f= Encoder I» Filter = Modulator

,,,,,,,,,,,,,,,,,, TRANSMITTER .
( Physical Channel )
 — — 1) ey ey |
: De-modulator §—| Filter % Equaliser  ={Decision device :Qk‘d) Decoder I
i RECEIVER ‘

Figure 2.1: Block diagramof a digital communication system

baseband transmitted signal. This demodulated signal is processed by the receiver filter, also
called receiver demodulating filter, which should be ideally matched to the transmitter filter
and channel®. The equaliser in the receiver removes the distortion introduced due to the chan-
nel impairments. The decision device provides the estimate of the encoded transmitted signal.
The decoder reverses the work of the encoder and removes the encoding effect revealing the

transmitted information symbols.

AWGN

K :
Datasource |~ Transmitter filter FC Physical channel )%T
N
. . r(k) . . _ s(k-d
Reciver filter — Equaliser Decision device

Figure 2.2: Baseband model of digital communication system

\

This DCS system in Figure 2.1 has al the necessary blocks. But, the analysis of this system

'Normally the channel transfer function is not known to the receiver and may be non-stationary. For this reason
the receiver is matched to the transmitter filter only.
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isvery difficult due to the complexity associated with all the subsystems. For this reason com-
munication systems are studied in the baseband frequency. Figure 2.2 presents the equivalent
baseband model of the DCS presented in Figure 2.1. Here the encoder, decoder, modulator and
the demodulators have been removed. This ssimplified communication system model, while

maintaining the basic principlesinvolved, is easy to analyse.

2.3 Propagation channel

This section discussesthe channel impairments that limit the performance of aDCS. The DCS
considered hereis shown in Figure 2.2. The transmission of digital pulses over analogue com-
munication channel would require infinite bandwidth?. An ideal physical propagation channel
should behave like an ideal low passfilter represented by its frequency response,

He(f) = [He (f)exp(50f) (2.1)

where, Hc ( f) representsthe Fourier transform (FT) of the channel and @ is the phase response

of the channel . The amplitude response of the channel |H ¢ ( f)| can be defined as,

< we
[He (f)| = k1 |fl <w (22
0 [fl>we

where, 1 isaconstant and w.. isthe upper cutoff frequency. The channel group delay charac-

teristicis given by,

)=t =, 23

where k4 is an arbitrary constant. The conditions described in (2.2) and (2.3) constitute fixed
amplitude and linear phase characteristics of a channel. This channel can provide distortion
free transmission of analogue signal band limited tow,. . Transmission of the infinite bandwidth
digital signal over a band limited channel of w. will obviously cause distortion. This demands
for the infinite bandwidth digital signal be band limited to at least w .., to guarantee distortion

free transmission. This work is done with the aid of transmitter and receiver filters shown in

2The essential bandwidth of the signal isfinite but some portion of signal may extend over infinite bandwidth
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Figure 2.2. The combined frequency response of the physical channel, transmitter filter and the

receiver filter can be represented as,

H(f) = Hr()He(FIHR(S) (2.4)

where, Hr(f), Heo(f) and Hr(f) represent the FT of transmitter filter, propagation channel
and thereceiver filter respectively. When the receiver filter ismatched to the combined response
of the propagation channel and the transmitter filter, the system provides optimum signal to
noiseratio (SNR) [43] at the sampling instant. The channel responseis generally not known to
the receiver beforehand. For this reason the receiver filter impulse response iz () isgenerally

matched to the transmitter filter impulse response .1 (). This condition can be represented as

Hr(f) =Hr(f) (2.5)
hr(t) = hy(=1) (2.6)

where, 5. (f) and R’ (t) are complex conjugatesof Hr( f) and hr(t) respectively. It isdesired
to select H( f) so as to minimise the distortion at the output of the receiver filter at sampling
instants. For the ideal channel presented in (2.1), the design of transmitter and receiver filters
is critical for achieving distortion free transmission. One such filter capable of satisfying this

criterion isthe raised cosinefilter given by,

g 0<f< 5

Hrr(h) =1 T {1t cos [Z(171 - 50|} 52 <1f< 27
0 1> 5

Hrr(f) = Hr(YHRr(f) (2.8)

where, T isthe source symbol periodand 3, 0 < 3 < 1, isthe excess bandwidthand Hrr is
the FT of the combined response of transmitter and receiver filter. The plot of this combined
filter responseis presented in Figure 2.3. Figure 2.3(a) and Figure 2.3(b) represents theimpulse
response and frequency response of the combined filter respectively. From the Figures 2.3(a)
and 2.3(b), it can be observed that any value of 3 can provide distortion free transmission if
the receiver output is sampled at the correct time. A sampling timing error causes ISl, which

reduces with an increase in 3. The special case of 5 = 0 provides a pulse satisfying the
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TR

B=0 —
B =05 ----
B =1 ...

T “12T 2T uT
—— frequency —=

(b) Frequency response

-3T e/ T 3T

- time —=

(a) Impulse response

Figure 2.3: Raised cosine pulse and its spectrum

condition,

sin (th)

(7)

Under this condition the channel can provide highest signalling rate®, 7 = % At the other

c

hrr(t) = (29)

extreme, § = 1 providesasignalling rate equal to reciprocal of the bandwidth, T' = wi Inthis

process selection of 5 provides a compromise between quality and signalling speed.

Here it has been assumed that the physical channel isan ideal low passfilter (2.1). However, in
reality all physical channels deviate from this behaviour. This introduces ISl even though the
receiver is sampled at the correct time. The presence of this ISl requiresan equaliser to provide

proper detection.

In general al types of DCS's are affected by 1SI. Communication systems are also affected by
other forms of distortion. Multiple access techniques give rise to CCl and adjacent channel
interference (ACI) in addition to ISl. The presence of amplifiers in the transmitter and the
receiver front end causes nonlinear distortion. Fibre optic communication systems are aso
affected by nonlinear distortion [44]. On the other hand the mobile radio channels are affected

by multi-path fading due to relative motion between the transmitter and receiver [45].

In the following subsections these channel impairments are discussed and the channel models
are presented. These modelsare used inthe later chaptersfor eval uating equalisation algorithms

that have been presented in thisthesis. The discussionsin these subsectionsare limited only to

3Thisis critical Nyquist criteria

10
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the channel effects that have been analysed in thisthesis.

2.3.1 Inter symbol interference (1S1)

The cascade of the transmitter filter 27 (t), the channel L¢ (t), the receiver matched filter hg(¢)
and the T-spaced sampler in the communication system shown in Figure 2.2 can be modelled
by adigital FIR filter. The noise at the equaliser input is correlated due to the presence of the
matched filter. To take care of this, and since it is easier to deal with a white noise sequence
in the equaliser, the equaliser is generally preceded by a noise whitening filter. This combined
channel due to the transmitter filter, propagation channel, receiver filter, noise whitening filter
and the T-spaced sampler can be modelled by the digital FIR filter represented in Figure 2.4.

Here the channel observed output r (%) isgiven by the sum of the noisefree channel output 7 (&),

s(k)  — s(k=1) o s(k—n+1)

AWGN
n(k)

Figure 2.4: Finiteimpulse responsefilter channel model

which in turn is formed by the convolution of the transmitted sequence s(k) with the channel

taps a;, 0 < ¢ < n. — 1 and AWGN 7 (k). The channel impulse response in the z-domain can

be represented by the equation
Ne—1 '
H(z) = Z a;z"" (2.10)

where, the channel provides a dispersion up to n. samples. This discrete time white noise
linear filter model of the continuous channel will be used in the remaining part of the thesisfor

evaluation of equaliser algorithms. Here the AWGN, 7 (%), is characterised by its variance a%.

11
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2.3.2 Co-channd interference (CCl) and adjacent channel interference (ACI)

CClI and ACI occur in communication systems due to multiple access techniques using space,
frequency or time. When the signal of interest in a communication system is corrupted by
another signal occupying the same frequency band, CCl occurs. However, the source of ACI
can be attributed to inadequate inter carrier spacing and nonideal receiver filter characteristics.
In twisted pair cables CCl occurs due to interference of signals between different twisted pairs
and is termed near end cross talk (NEXT), and far end cross talk (FEXT) [46,47]. In DCR
the CCI can be attributed to interference from cells of neighbouring clusters using the same
carrier frequency [48] and ACI is due to inter carrier spacing between different cellsin time
division multiple access (TDMA) [49] and inter carrier spacing among carriersin the same cell
in FDMA [48,50,51] systems. The frequency spectrum of the signals that carry the desired
signal, the CCl and ACI signalsis presented in Figure 2.5.

Power density spectrum

Receiver filter

_ -— frequency — _
(‘%ci +(*)S waci (‘os

Figure 2.5: Spectrumof desired signal, CCl and ACI in DCS

Here the signal of interest occupies a double sided bandwidth of w,. The CCI signa also
occupies the same frequency band #. The ACI signal centre frequency is spaced at w,.; W.I.t.
the desired carrier. Thereceiver filter rejects signal beyond wr. The guard band providedin the
systemisw,.; — 2w,. From thefigure it can be seen that a portion of the signal spectrumin the
neighbouring carrier w.r.t. the signal of interest is received by the receiver filter and this signal

is the main cause of ACI. The main reasons for this ACI can be attributed to non ideal cutoff
characteristics of the receiver filter and close spacing of the carrier frequencies. Discrete time
representation of the channel, the co-channel and the adjacent channel interferers using digital

filtersispresented in Figure 2.6. Thissystem consistsof achannel H (=) corrupted with L, CCI

sources H, ;(z),1 < j < Land B, ACl sources H,.; ;(z), 1 < j < B each of which can be
represented in the form of a FIR filter of the type presented in Figure 2.4. The channel isaso
additionally corrupted with AWGN, 7 (k). The total CCI and ACI are presented as 7., (k) and

4The CClI generally has adifferent spectrum

12
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Taci (k) respectively. Here sq(k) are the transmitted symbols from the desired channel, s;(k),
1 <@ < L represent the transmitted symbols from the co-channel ¢ and s,;_; (k) represent the

transmitted symbolsfrom adjacent channel ;.

Saci_l(k) '
= Hacia(2) LPF ®:
: ACI
Saci_B(k \L ;
— = Hu.iB(2) LPF 2 i n(k)
so(k) o ?““'(k)l ‘
22 HE Bo—@-Y
Teo (k)
S1 k i
i Hco 1(2) @i
s
L1 cal
sp(k) T

Figure 2.6: FIR filter implementation of channel, CCl and ACI in digital communication sys-
tem

In Chapter 4, amodified form of thischannel model will be used for investigating the perform-

ance of fuzzy equalisersin a CCl environment.

2.4 Equaliser classification

This section provides adaptive equaliser classification and specifies the domain of the invest-
igation undertaken in this thesis. The general equaliser classification is presented in Figure
2.7. In genera the family of adaptive equalisers can be classified as supervised equalisers
and unsupervised equalisers. The channel distortionsintroduced into the transmitted signal in
the process of transmission can be conveniently removed by transmitting a training signal or
pilot signal periodically during the transmission of information. A replica of this pilot sig-

nal is available at the receiver and the receiver uses this to update its parameters during the

13
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training period. These kinds of equalisers are known as supervised equalisers. However, the
constraints associated with communication systems like digital television and digital radio do
not provide the scope for the use of atraining signal. In this situation the equaliser needs some
form of unsupervised or self recovery method to update its parameters so as to provide near
optimal performance. These equaliser are called blind equalisers. After training, the equaliser
is switched to decision directed mode, where the equaliser can update its parameters based on
the past detected samples. Thisthesisinvestigates supervised equalisersin general.

Adaptive Equalisers

| |

Supervised training Unsupervised or Blind training

(Training signal available) (Training signal not available)

l Symbol estimation

Sequence estimation (Bayesian equaliser)
(MLSE)

Viterbi equaliser l

Linear equalisers

Non-linear Equalisers (Filtering problem)
(Classification problem) Wiener filter solution
Volterrafiltering RLS
Mahalonobis classification LMS
Artificial neural networks Lattice
Radial basisfunction
Fuzzy systems

Figure 2.7: Adaptive equaliser classification

The process of supervised equalisation can be achieved in two forms. These are sequence
estimation and symbol-by-symbol estimation. The sequence estimator uses the sequence of past
received samples to estimate the transmitted symbol. For this reason this forms of equaliser
is considered as an infinite memory equaliser and is termed MLSE [3]. The MLSE can be
implemented with the Viterbi Algorithm [4]. An infinite memory sequence estimator provides
the best bit error ratio (BER) performance for equalisation of time invariant channels. The
symbol-by-symbol equaliser on the other hand works as a finite memory equaliser and uses a

fixed number of input samplesto detect the transmitted symbol. The optimum decision function

14
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for this type of egualiser is given by MAP criterion and can be derived by Bayes's theory
[52]. Hence this optimum finite memory equaliser is also called the Bayesian equaliser [53].
An infinite memory Bayesian equaliser can provide a performance better than the ML SE, but
its computational complexity is very large. A finite memory Bayesian equaliser can provide

performance comparable to the ML SE but with areduced computational complexity [54].

The Bayesian equaliser provides the lower performance bound for symbol-by-symbol equal-
isersin terms of probability of error or BER and can be implemented with linear or nonlinear
systems. The linear adaptive equaliser isalinear FIR adaptive filter [55] trained with an adapt-
iveagorithmlikethe LMS, RLS or lattice algorithm. These linear equaliserstreat equalisation
as inverse filtering and during the process of training optimise a certain performance criteria
like minimum mean square error (MM SE) or amplitude distortion. Linear equalisers trained
with MM SE criterion provide the Wiener filter[56] solution. Recent advancesin nonlinear sig-
nal processing techniques have provided a rich variety of nonlinear equalisers. Some of the
equalisers devel oped with these processing techniques are based on Volterrafilters, ANN, per-
ceptrons, MLP, RBF networks, fuzzy filters and fuzzy basis functions. A review of some of
these egualisation techniques can be seen in [28-30]. All of these nonlinear equalisers, during
their training period, optimise some form of a cost function like the M SE or probability of error
and have the capability of providing the optimum Bayesian equaliser performance in terms of
BER. The nonlinear equalisers treat equalisation as a pattern classification process where the
equaliser attempts to classify the input vector into a number of transmitted symbols. The fuzzy

equalisersinvestigated in thisthesisfall into this category.

Another form of nonlinear equaliser that can be constructed with any of the symbol-by-symbol
based equaisers is the DFE, where previously made decisions are used for estimating the
present and the future decisions. This equaliser is also considered as a infinite memory equal-
iser. The conventional DFE using alinear filter is designated as a nonlinear equaliser in awide
varities of communication literature since the decision function used here forms a nonlinear
combination of the received samples which is, in fact the linear combination of the received
samples and previously detected samples. In this thesis the term nonlinear equalisersis used
exclusively for those equalisers that provide a nonlinear decision function based on received
samples or the received samples along with previously detected samples. The following two

sections analyse some of the linear and nonlinear equalisersin greater detail.
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2.5 Optimal symbol-by-symbol equaliser : Bayesian equaliser

In this section the optimum symbol-by-symbol equaliser decision function is derived. This
equaliser istermed as Bayesian equaliser. To derive the equaliser decision function the discrete
time model of the baseband digital communication system presentedin Figure 2.8 isconsidered.
The channel is modelled as an FIR filter as in Figure 2.4. The equaliser uses an input vector
r(k) € R™, them dimensional space. Theterm m istheequaliser length and the equaliser order
can be considered as m — 1. The equaliser provides a decision function §{(r (k) } based on the
input vector and thisis passed through a decision device to provide the estimate of transmitted
signa s(k — d) where d is a delay associated with equaliser decision. The communication
system isassumed to be atwo level PAM system where the transmitted sequence s(k) isdrawn
from aindependent identically distributed (i.i.d.) sequence comprising of {+1} symbols. The
noise source 7(k) is assumed to be zero mean white Gaussian with a variance of o2. The

received signal (k) at the sampling instant £ can be represented as,

Equaliser decision function

— e — = = = o = = = —

S{r(k)}
Decision device
N r(k)
AW
NN [l L =
Channel Equaliser

Figure 2.8: Discret time model of a digital communication system

r(k) = 7(k) + (k)
ne—1 (211)

The equaliser performance is described by the probability of misclassificationw.r.t. SNR. The

16



Background

SNR is defined as,

N GLE

ne—1
< 2.12)
DI (

where, £ isthe expectation operator, o2 represent the signal power and Z?;O_I a? isthe channel
power. With the assumption that the signal isdrawn from ani.i.d. sequenceof {+1}, thesignal
power o2 = 1. With thisthe system SNR can be represented as,

ne—1
D ai
=0
SNR = = (2.13)
n
The equaliser usesthe received signal vector r(k) = [r(k), r(k—1), ..., r(k—m+1)]T €

R™ to estimate the delayed transmitted symbol s(k—d). The equaliser with itsdecision function
and a memoryless detector to quantise the real valued output from decision function §{r(k)},
provides an estimate of the transmitted signal. The memoryless detector isimplemented using

asgn(z) function given by,

+1 ifz>0
sgn (z) = (2.14)
-1 ifz<0

The process of equalisation discussed here can be viewed as a classification processin which
the equaliser partitions the input space r(k) € R™ into two regions corresponding to each of
the transmitted sequences +1/ — 1 [24,53,57]. The locus of points which separate these two
regions is termed as the decision boundary. The partition which provides the minimum prob-

ability of misclassification isthe Bayesian decision boundary derived with the MAP criterion.

25.1 Channd states

To derive the Bayesian equaliser decision function the concept of channel statesis introduced
first. The equaliser input vector hasbeen defined asr (k) = [r(k), r(k—1), ..., r(k —m+

17
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DT e R™andr(k) = 7(k)+n(k). Thevector ¥(k) isthe noisefree received signal vector and
T(k) = [F(k), 7(k—1), ..., F(k—m+1)]T € R™. Each of these possible noisefree received
signal vectors constitutes a channel state. The channel states are determined by the transmitted
symbol vector s(k) = [s(k), s(k—1), ..., s(k—m —n.+2)]7 € R™*"=1 HereT(k) can
be represented ast(k) = H[s(k)], where matrix H € R™*("+7<=1) jsthe channel matrix.

ap ay v Gn,_q 0 R | 0
0 ay *++ Gpoo Au_q --+ 0 - 0

H=| o (2.15)
0O 0 .- ... Y R

Since s(k) has N, = 2m*+"~1 combinations, T(k) has N, states. These channel states are

constructed with N, sequences of s(k), which can be denoted as,

s;(k) = [s;(k), 5;(k = 1), .., 5;(k = m —n.+2)]T, 1<j <N, (2.16)

The corresponding channel states are denoted as c¢; and are given by

c; =1(k) =H[s;(k)], 1<j<N, (2.17)

The channels state matrix C; = {c;},1 < j < N, can be partitioned into two subsets
depending on the transmitted symbol s(k — d), i.e.,

Cy=CjucCy (2.18)

where,

C; = {3(k)|stk—d)=—1} (2.19)
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No. | e | (k) s(k=1) s(k=2) r(’;\)(k —
1 cq 1 1 1 1.5 1.5
2 Co 1 1 —1 1.5 —0.5
3 C3 1 —1 1 —0.5 0.5
4 Cy4 1 —1 —1 —0.5 —1.5
5 cs | —1 1 1 0.5 1.5
6 cg | —1 1 —1 0.5 —0.5
7 cr | —1 —1 1 —1.5 0.5
8 cg | —1 —1 —1 —1.5 —1.5

Table 2.1: Channel states calculation for channel H(z) = 0.5+ 1.0z~ withm = 2,d = 0

and N, =8

Each of the sets of the channel state matrix C;} and C; contain &= channel states. Here the

channel statesc; € C are termed the positive channel statesand ¢; € C; are termed the

negative channel states.

ExXAMPLE 2.1

An example is considered to show the channel states. The channel considered here is

represented by its z-transform,

H(z)=Hy(?) =0.5+1.027"

(2.20)

This channel is a non-minimum phase channel with its zero outside the unit circle (loc-

ated at = = —2.0). The equaliser length considered here is m = 2. This equaliser has
N, = 8 channdl states. The channel states for this equaliser are presented in Table 2.1
and are located at ¥(k) with its components taken from scalars [7(k), 7(k — 1)]%.

252 Bayesian equaliser decision function

The presence of AWGN makes the channel observation vector r (k) arandom process having

a conditional Gaussian density function centred at each noise free received vector r(k). Given
this to be the channel state ¥(k) = ¢;, 1 < j < N,, the conditiona probability density

distribution of the observed vector is,

p(e(k) | ¢5) = (2702~ exp (

e (k) — ¢jl”

2
2077
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where ||.|| constitute the Euclidean distance. If the received signal vector is perturbed suffi-
ciently to cross the decision boundary due to the presence of AWGN, mis-classification res-
ults. To minimise the probability of mis-classification for a given received signal vector r (k)
[52, 58], the transmitted symbol should be estimated based on s(k) € {41} having maximum
a-posteriori probability P(s(k — d) = s | r(k)). The decision device at the equaliser output

provides a decision

b e iy — 4 TSR} >0
(k= d) = sgn ({x(1)) {1 i) <0 222)

where §{r(k)} isthe Bayesian equaliser decision function that compares the a-posteriori prob-

abilities of the binary transmitted symboal, i.e.,

Fr(h)} = P(s(k —d) = +1 | x(k)) = P(s(b—d) = =1 x(k)) (2.23)

WhereP(s(k—d) =41 r(k)) andP(s(k—d) = 1] r(k)) are the a-posteriori probabilit-
iesthat thetransmitted signal is+1 or — 1 respectively, having observed the received signal vec-
tor r(k). Thisfunction isthe Bayesian decision function where Bayes'srule [52] is applied to
express the a-posteriori probability into the product of the a-priori probability P(s(k —d) = s)
and the state conditional probability distribution function (pdf) p (r(k) | s(k — d) = 5) over
the pdf of r(k),

p(r(k) | s(k —d) = s)P(s(k —d) = 5)
p(r(k))

P(s(k —d) | r(k)) - (2.24)

The a-priori and the state conditional probabilities can be calculated in terms of the channel
and the noise statistics. If the transmitted symbol is i.i.d., the a-priori probabilities of the
transmitted signal s(k — d), P(s(k — d)) = +1 and P(s(k — d)) = —1 have equal value of ;.
The state conditional pdf p(r(k) | s(k — d) = +1), isthe sum of pdf for each of channel states
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¢; € CI andisdescribed as,

p(x) [l =) = +1) = = 3 px(h) | <)
“ec (2.25)
—lr(k) = c:|? '
L (mg)_m/zexp( LOE ]u)
CJGCZJI- !

where NL isthea-priori probability of c ;. Similarly the conditional p.d.f of p (r(k) | s(k—d) =
—1) can be expressed as,

p(r(k) | s(k —d) = —1) =L p(r(k) | ;)

R CLLE cju?)

2
2077

(2.26)

With this the Bayesian decision function can be derived by substituting (2.24) into (2.23) lead-

ing to,

P(r(k))

p(r(k) | s(k —d) = —I)P(s(k _d) = —1)

(2.27)

The a-priori probabilities of both the transmitted symbols is same and hence the denominator
of both the parts on the right hand side of (2.27) have the same value. Moreover in the process
of egualisation the sign of the decision function is of interest since it is passed through the

sgn(z) function. With these assumptions, the decision function can be represented as,

Fr(e)} = p(r(k) | stk = d) = +1) = p(x(k) | s(k = d) = 1) (2.28)
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Substituting the values from (2.25) and (2.26) the decision function can be represented as,

1
S0} = Y b)) - 3 pe() <)
CJEC SC,‘EC;
(k) — e 2
o e CEUEETa
N c]€C+ 2077
C LS fanety st ()
N, K P 202
cieCx " (2.29)
1 —|r(k) — eI
_ m/2 J
=N (27ra )" Z exp( 202
cJEC;ll'
S ey (Il
202
CiEC; n

Removing the scaling term N%(era%)—m” from the right hand side, since the sign of the de-

cision function is sufficient to provide the decision, yields,

Frh= 3 exp (W) Sy e (W)

cJEC+ c,€Cy

_szexp(—u <2>02— czu?)

(2.30)

where w; = +1,if¢; € Cj{ and w; = —1,if ¢; € C;. The decision function in (2.30)
represents the Bayesian equaliser decision function. From the decision function it is obvious
that the decision functionis nonlinear and is completely specified in terms of the channel states
and the noise characteristics. So, with the knowledge of the channel and the channel noise

statistics, the Bayesian equaliser decision function can be found.

Below an example is considered to demonstrate the calculation of the Bayesian equaliser de-
cision function.
EXAMPLE 2.2
As seen from the decision function of the Bayesian equaliser in (2.30), the optimal
symbol-by-symbol equaliser decision function is dependent on the location of channel

states, the noise statistics and the decision delay. The noise affects the spread associated
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with channel state functions and this controls how fast the decision function approaches
zero. When the noise is Gaussian, its effect on the decision function is not significant.
This feature is presented here first. The system considered here is same as in Example

2.1 where

H(z)=0.5+1.02""withm =2andd = 0

Thisequaliser has N, = 8 channel states. The channel statesfor thisequaliser are presen-
ted in Table 2.1. The channel states {c, ¢, c3, ¢4} € CJ and {cs, cg, 7, cs} € CJ.

G 12
0
11
. C
2 0 r(k-1)
0
N T SNR=3dB|
y=—SNR=8dB
TSNR=25d8 _,
l l l l
-2 -1 0 1 2
r(k)
Figure2.9: Decision boundary of the Bayesian equaliser for channel H(z) = 0.5+

1.0z71, m = 2 d = 0, with different S\R conditions, ¢ positive channel states
and x negative channel states

The decision boundary of the Bayesian equaliser for SNR =3 dB, 5 dB, 8 dB and 25 dB
are presented in Figure 2.9 where the positive and negative channel states are presented
with ¢ and x symbolsrespectively. From the decision boundary curves it is seen that, 8
dB to 25 dB changein SNR does not affect the decision boundary appreciably. From the
decision boundary curves it can be inferred that as SNR — oo the decision boundary

can be asymptotically approximated with straight lines.
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The Bayesian equaliser for a given SNR condition provides a set of decision boundaries
for different decision delays. This effect of decision delay on the equaliser decision
boundary is presented next. Figure 2.10 presents the decision boundary for the equaliser
considered here for delay d = 0, 1 and 2. Here the SNR=8 dB. For d = 0, {¢;, c2,

- =1

-2 -1 0 1 2

r(k)
Figure 2.10: Effect of decision delay on decision boundary for the Bayesian equaliser for for
channel H (z) = 0.5+ 1.0271, m = 2 and ¢ representsthe channel states

c3, €4} € le' and {cs, cs, c7, cg} € C;. However, whend = 1, {ci, c2, cs,
cg} € le' and {c3, ¢4, 7, cg} € C; andfor d = 2, {cy, ¢c3, ¢c5, c7} € le' and
{e2, ¢4, cg, cg} € C;. From the decision boundary curves it is seen that each set of
combinations of channel states corresponding to C} and C; provide different decision
boundaries. It isinteresting to note that the decision boundary for d =1 and 2, the groups
of positive and negative channel states are linearly separable. But for d = 0 these states
are nonlinearly separable. From the figure it is aso observed that increasing the delay
for this non-minimum phase channel® makes the decision boundary more linear. This
accounts for better performance of the linear equalisers for these types of channel with
maximum permissible delay [59], since the linear equalisers can only provide a linear

decision boundary.

SNon-minimum phase channel hasall its zeros outside the unit circle in z-plane
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2.6 Symbol-by-symbol linear equalisers

This section introduces the concept of the linear equaliser. As discussed in section 2.4, the
linear equalisers in this thesis refer to equalisers that provide a decision based on the linear
combination of the input to the equaliser. If decision feedback is employed, the linear equaliser
provides a decision function based on the linear combination of received samples and previ-
ously detected samples. The structure of a linear equaliser is presented in Figure 2.11. The
equaliser consists of a T-spaced tapped delay line (TDL) which receives the receiver sampled
input vector (k) = [r(k), r(k — 1), ..., r(k —m + 1)]7 and provides an output y(k) by
weighted sum computation of input vector r(k) with weight vector w. The output is computed

once per symbol and can be represented as

y(k) = Z w;r(k — 1) (2.31)

The weight vector w optimisesone of the performance criterialike zero forcing (ZF) or MM SE
criteria. The decision device presented at the output of the filter provides the transmitted signal
constellation.

r(k) @ r(k—l@ r(k—?)”% r(k—m+1)

Adaptive
Algorithm

Decision Device

s(k—d)
r(k) Training Signal
Figure 2.11: Structure of a linear equaliser

The ZF criteriais defined as the worst case | Sl at the output of the equaliser. The condition for

25



Background

minimisation of peak distortion can be presented as

C(z) = (2.32)

Here C'(z) isthe equaliser impul se response. With this, the combined equaliser and the channel
response is zero for al but one coefficient. From the equaliser condition presented in (2.32) it
can be seen that, for FIR channels, the equaliser is realisable when the zeros of the channel are
inside the unit circle in the z-plane. When the zeros are outside the unit circle, the equaliser
becomes unstable and hence unrealisable. Equalisation of thistype of channel can be overcome

by the introduction of a nonzero decision delay d [59].

The MM SE criteria provides equaliser tap coefficients w (k) to minimise the mean square error

at the equaliser output before the decision device. This condition can be represented as

J = E&le(k))? (2.33)
e(k) = s(k —d) — y(k) (2.34)

where e(k) isthe error associated with filter output y (k). The equaliser designed using ZF cri-
teria neglects the effect of noise. However, the MM SE criteria optimises the equaliser weights
for minimisingthe MM SE under noise and 1SI. Minimisation of MM SE criteriaprovides equal-
isers that satisfy the Wiener criterion [56]. The evaluation of the equaliser weights with this
criteria requires computation of matrix inversion and the knowledge of the channel, which in
most cases is not available. However, adaptive agorithms like LMS [2] and RLS[55] can be
used to recursively update the equaliser weights during the training period. the convergence
properties and the performance of linear equalisation techniques have been well documented in
the literature [22, 43, 60].

A DFE [61] using alinear filter is presented in Figure 2.12. This equaliser is characterised by
itsfeed forward length m and the feedback order ¢. The equaliser uses m feed forward samples
and ¢ feedback samples from the previously detected samples. The feedback signal vector
stk) = [5(k—d—1),35(k—d—2), ..., 3(k—d— q)]" isassociated with feedback weight
vector wy = [w], w{, ..., w/_;]7. Thefeedback section in the equaliser helps to remove
the 1Sl contribution from the estimated symbols. This equaliser provides better performance
than the conventional feed forward linear equaliser. When there is an error in the decision the

error is fed back and this resultsin more errors due to error propagation. It has been observed
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Figure 2.12: Srructure of a linear decision feedback equaliser

that the equalisers can recover from this condition automatically and error propagation does not

pose a considerable problem.

2.7 Symbol-by-symbol adaptive nonlinear equalisers

Some of the popular forms of nonlinear equalisers are introduced in this section. Nonlinear
equaliserstreat equalisation asanonlinear pattern classification problem and provide adecision
function that partitionstheinput space R ™ to the number of transmitted symbols. Asaresult the
equaliser assigns the input vector to one of the signal constellations. The nonlinear equalisers
introduced in this section are based on the RBF networks and the ANN. Some of the other
forms of nonlinear equalisers based on the recurrent RBF [35], the recurrent ANN [34], the
Volterra filters [62], the functional link networks [63] and Mahalobonis classifiers [36] have
not been discussed. This section aso presents an introduction to fuzzy systems and adaptive
fuzzy filtersand their use as equalisers. Other fuzzy schemes like neuro fuzzy filter [12], ANN

trained with fuzzy reasoning [64] have not been analysed.
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2.7.1 Radial basisfunction equaliser

The RBF network was originally devel oped for interpolation in multidimensional space [9, 25,
65]. The schematic of this RBF network with m inputs and a scalar output is presented in

Figure 2.13. This network can implement amapping f.+¢ : R” — R by the function,

N,
frop{x(k))} = Zw@(HX(’ﬂ) —pil) (2.35)

Where x(k) € R™ istheinput vector, ¢(.) isthegiven functionfromR* toR, w;, 1 <4 < N,

areweightsand p; € R™ are known as RBF centres. This RBF structure can be extended for

Output

Output layer

PN,

Hidden layer

Figure 2.13: Aradial basisfunction network for signal processing applications

multidimensional output as well. Possible choices for the radial basis function ¢ () include a

thin plate spline,
gl gl
o(y) = = log (U—) (2.36)
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amulti quadratic,

o(v) = V7 + o7 (2.37)

an inverse multi-quadratic,

1

o(y) = \/ﬁ (2.38)
and Gaussian kernel,
2
P(7) = exp (—;7) (2.39)

Here, the parameter o2 controls the radius of influence of each basis functions and determines
how rapidly the function approaches 0 with v. The Gaussian and the inverse multi-quadratic
kernel provide bounded and localised properties such that ¢(y) — 0 asy — oo. Broom-
head and Lowe [8] reinterpreted the RBF network as a least square estimator which led to its
wide spread usein signal processing applicationssuch astime series prediction [26, 66], system
identification[67,68], interference cancellation[69], radar signal processing[70], pattern classi-
fication[71] and channel equalisation[27,72]. In signal processing applicationsthe RBF inputs
are presented through a TDL. Training of the RBF networksinvolves setting the parameters for
the centres p;, spread o, and the linear weights w;. The RBF networks are easy to train since
the training of centres, spread parameter and the weights can be done sequentially and the net-
work offers a nonlinear mapping, maintaining its linearity in parameter structure at the output
layer. One of the most popular schemes employed for training the RBF in a supervised manner
isto estimate the centres using a clustering algorithm like the x-means clustering and setting o 2
to an estimate of input noise variance calculated from the centre estimation error. The output
layer weights can be trained using popular stochastic gradient LM S algorithm. Other schemes
for RBF training involve selecting a large number of candidate centresinitially and use the or-
thogonal least squares (OLS) [26] algorithm to pick a subset of the centres that provides near
optimal performance. The MLP back propagation algorithm can also be used[72] to train the

RBF centres.

In early RBF equalisers[27] the RBF centres were selected at random, picked from afew of the
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initial input vectors. The weightswere updated using supervised training by the LM S algorithm
or its momentum version [ 73]. Thisresulted in equalisers with large number of centres making
the network computationally complex. Chen proposed the OL S algorithm [26, 74] for selecting
an optimum number of centres from a large number of candidate centres, resulting in near
optimal performance. Subsequently, the close relationship between the RBF network and the
Bayesian equaliser was found [57] and this provided the parametric implementation of the
Bayesian equalisers with the RBF. In these equalisers supervised x-means clustering [68, 75]
providesthe estimate of the centreswhilelinear weightsare estimated using the LM S algorithm.
With the development of RBFs that could handle complex signals [31], they were used for
equalisation in communication systems with complex signal constellation [32]. Cha proposed
the stochastic gradient algorithm [76] to adapt all the RBF parameters and used thistechnique
to equalise 4-QAM digital communication systems.

A deeper examination of the RBF decision function in (2.35), in conjunction with a Gaussian
kernel (2.39), and the Bayesian equaliser decision function in (2.30) shows that both of these
functions are similar. The RBF network can provide a Bayesian decision function by setting
the RBF centres, p;, to channel states, c;, RBF spread parameter, o2, to channel noise variance,
U%, and the linear weightsw; = +1 if ¢; € Cj and w; = —1if ¢; € C. Thisprovidesthe
optimum RBF network as an equaliser. In thisimplementation the channel state vectorsc; can
be estimated using supervised x-means clustering or alternatively they can be calculated from

an estimate of the channdl.

The RBF equaliser can provide optimal performance with small training sequences but they
suffer from computational complexity. The number of RBF centres required in the equal-
iser increases exponentially with equaliser order and the channel delay dispersion order. This
increases al the computations exponentially. Some of these issues have been discussed in
[36, 77]. In avaried implementation [78] the RBF with scalar centres resultsin a reduction of
computational complexity. The issuesrelating to the RBF equaliser design have been discussed
extensively in [30].

2.7.2 Neural network equalisers

Neural networksare nonlinear processing el ements like biological neurons and possess univer-
sal approximation capabilities[79]. One of the popular forms of neural networksused in signal

processing applicationsis the MLP. The basic building block of a MLP is a neuron presented
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in Figure 2.14(a). The neuron receives an m-dimensional rea input vector x(k) € R™ and
computes a weighted sum with its weight vector w = [wq, w1, ..., w,_;], and adds a
threshold weight £. The resulting output is passed through a node activation function . The
most popular form of this activation function isthe sigmoid nonlinearity given by

_1—e_y

T 14 ey

©(y) (2.40)

The transfer characteristic of this sigmoidal nonlinearity is presented in Figure 2.14(b).
1 Srndx By =ly)
|
X W :

0
X W\; Y | Node activation [§ /X E)} =AY y
W function

Xm-ly ,,,,,,,,,,,,,,,,, -1

(@ (b)

Figure 2.14: Sructure of a neuron

An MLP constitute a number of processing neurons organised in layers. All the neuronsin a
layer are fully connected to the neurons in the preceding and succeeding layers. Thereis no
interconnection among the neuronsin the same layer. There isalso no interconnection between
the neuronsin layers beyond the preceding and the succeeding layersinan MLP. In equalisation
applications input to the MLP is presented through a set of tapped delay lines and the output
layer has a single neuron. The structure of a MLP for thisis presented in Figure 2.15. The
m-dimensional received signa vector r(k) = [r(k), r(k — 1), ..., r(k — m + 1)} forms
the input to the MLP. The equaliser consists of » layers of neurons with Ny to N, neurons
in each layer and vV,, = 1. The network output is passed through a hard limiter to determine
the estimated signal s(k — d). A two layer neural network is sufficient to model any nonlinear
system but the number of elements needed for this two layer network may be large [79]. For
this reason a three layers MLP should provide reasonable performance with relatively smaller

number of elements.

Training an ML P equaliser involves estimating proper weightsand thresholds. The MLP equal-
iser can be trained in a supervised manner using the back propagation (BP) [80] agorithm. Siu
et. al.[23] developed MLP equalisers with decision feedback and showed that this equaliser
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Figure 2.15: An MLP equaliser

could provide better performance than linear equalisers with decision feedback. On similar
lines Gibson et. a. also proposed an MLP equaliser [24]. Subsequently MLP equalisers have
been developed for equalisation of a number of systems. Some examples are channels with
nonlinear distortion [81], quadrature phase shift keying (QPSK) [82] communication systems,
satellite channel swith nonlinear distortionwith MQAM [83] signal constellation, satelliteradio
channels[84], indoor radio channels[85], combined equalisation and decoding [86], fibre optic
communication systems [44] and data storage equalisation [87]. Chen et. al. [53] showed that
MLP equalisers can provide the nonlinear decision boundary associated with the MAP equal-
iser. MLP has also been used for co-channel interference suppression[88]. In spite of its good
performance, ML Ps have raised many controversial issuesthat need to be addressed. Some of

these are as under.
¢ There has been very little understanding on the relationship between the network archi-
tecture and the communication problem. Hence the networks turn out to be very bulky.

¢ The high degree of nonlinearity of ML Ps makestheir theoretical analysisof the perform-
ance with respect to adaptation parameters difficult, and hence training parameters are
generally selected by trial and error.

¢ No relationship has been derived between the ML P and the optimal Bayesian equalisers.
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¢ The equaliser training starts with random weight initialisation and there is no method

guaranteeing proper weight convergence.

¢ The BP algorithm optimises the weights with the MM SE criterion and also require long
training time. The optimum equalisation criteria is based on minimum error probability

whichisdifferent from MMSE criteria

¢ The computational complexity of the MLP islarge.

Attempts have been made to address some of these issuesin recent yearg[29]. The develop-
ment of fast training schemes based on Kalman filters[89] and other least squares (L S) training
schemes [90] provides better convergence at the cost of computational complexity. Training
schemes to optimise minimum BER of neural network equalisers using fuzzy decision learn-
ing have also been developed [64]. Algorithmsfor training ANN equalisersto achieve MLSE
performance with minimum BER criterioninvolving conditional distributedlearning[37], Hop-
field networkswith mean field annealing [91], cellular neural networkswith hardware annealing
[92-94] have shown better equaliser performance. A single layer neural network can provide
nonlinear mapping if sufficient order of nonlinearity is incorporated in the input [95]. With
this a number of neural equalisers using single layer architecture with polynomial perceptron
[96, 97], functional link perceptron [63, 88, 98—100], polynomia lattice equalisers [101] and
perceptron equalisers with multilevel sigmoidal perceptron [102] have been developed. Some
of the issues relating to the design of MLP structure for equalisation applications have been
addressed in[38]. A review of neural network techniquesfor egqualisation problemis presented
in[28,29].

2.7.3 Fuzzy and neuro fuzzy equalisers

Fuzzy systems or fuzzy logic® system is the name for systems which have a direct relationship
with fuzzy concepts(like fuzzy sets, linguistic variables) and fuzzy logic [103, 104]. The basic
building block of afuzzy logic system is presented in Figure 2.16. Here the fuzzifier converts
the real world crisp input sample z; (k) to a fuzzy output F} described by the membership
function . This provides the degree to which the the input scalar = ; (k) belongs to the fuzzy

set F}. The inference engine provides the relationship between the fuzzy input in terms of

8In the literature it is also commonly referred to as fuzzy logic controller
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membership functionsand the fuzzy output of the controller usingaset of [F ... THEN ...

rules derived from the rule base. Therule! in the fuzzy rule base can be defined as

RO :IF 2yisF! and .. and z,isF THEN yisG! (2.41)

The defuzzifier converts the inferences G* to provide the crisp output »(k). Generaly in a
fuzzy system the rule baseis generated in advance with expert knowledge of the system under
consideration. However, recently [105] online learning properties have been introduced which
provide scope for training. This feature in fuzzy systems is achieved with the adaptation and
learning block that uses the available information in the system. The available linguistic rules
can also be applied in the adaptation algorithm. These types of systemsare also called adaptive
neuro fuzzy filters(ANFF)[12] and they possessesthe ability to incorporate training like neural
networks and can also use rule bases from human experts as in fuzzy systems. The adaptive
fuzzy systems have been applied to a variety of engineering applications 106] such as medical
diagnostics, image processing, pattern classification [107, 108], clustering [109] control applic-
ations [110-112] and time series forecasting [113] etc. Wang et. al. [114] presented fuzzy

Crisp input I FiI | Inference I e} Defuzzifier Crisp output
Fuzzifier eng| ne —
x (K) : l y(k)

Fuzzy rule E

base
A

F ®

x (k)
| Adaptation

F® fomemimimimimimme - <—— Teacher
y(k) Learning
G —_—

Figure 2.16: Atypical fuzzy logic system

basis functions (FBF) and used a combination of these functions for universal approximation
and later on used them as a fuzzy filter [11] for channel equalisation. Based on these con-
cepts other fuzzy filter based equalisers were developed for different applications [115-119].
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Other forms of fuzzy equalisers were presented in [120]. Nieg[121] proposed a learning al-
gorithm to reduce the number of rules used in the equaliser proposed in [11]. Gan [122,123]
proposed fuzzy techniquesfor the adjustment of the step sizein the LM S algorithm and asim-
ilar technique was used [124] for step size adjustment of LMS algorithm for equalisation of
high definition television (HDTV) systems. Lin and Juang [12, 125] devel oped the ANFFs and
used it for equalisation and noise reduction. This ANFF constructsits rule base in a dynamic
way with the training samples. These ANFF provide scope to design nonlinear filters that are

computationally simple and can accept linguistic variables from expert systems.

Most of the fuzzy equalisers devel oped in the recent years have structuressimilar tothe LM S or
RLS fuzzy filters proposed in [11]. An equaliser based on fuzzy RLSfiltersis computationally
complex and the rule base grows exponentially with the number of rulesin each dimension. On
the other hand the LM Sfilter, though computationally simpler than its counterpart, suffersfrom
performance degradation if initial parameters are not selected properly. Thisthesis presentsthe
development of similar forms of fuzzy equaliser that alleviates the problems associated with
fuzzy equalisersin [11] and subsequently a modified form of this filter is designed for CCI

mitigation.

2.8 Conclusion

In this chapter the optimum symbol-by-symbol equaliser decision function was derived and
its implementation using the RBF was presented. Other forms of nonlinear equalisers using
the ANN and fuzzy techniques have also been introduced. The fuzzy equalisers and ANFF
introduced here are used in subsequent chapters for deriving the fuzzy implementation of the
Bayesian equaliser. The concept of CCl was also introduced in this chapter. The equalisation
of CCl channelsusing fuzzy filtersis discussed in Chapter 4.
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Chapter 3

Fuzzy | mplementation of Bayesian
Equalisers

3.1 Introduction

Channel equalisation is a nonlinear classification problem. Even when the channel is linear,
the equalisation problem is still a nonlinear one. This was shown in Chapter 2. Under many
circumstances the nonlinear decision boundary can be approximated by alinear boundary. This
isthe best performance alinear equaliser can provide and thereforeit suffers from performance
degradation. Owing to this suboptimal performance of linear equalisers, it is always desirable
to explore new nonlinear equalisation agorithmsthat can provide a performance trade off with

computational complexity against the optimal MAP Bayesian equaliser.

This chapter discusses the development of a new fuzzy nonlinear equaliser which can be con-
sidered as a fuzzy implementation of the Bayesian equaliser. The chapter addresses the issues

described in following steps:

¢ The fuzzy implementation of the Bayesian equaliser is derived and its performance is
evaluated and compared with the optimal Bayesian equaliser using BER as the perform-

ance criterion.
¢ Computational complexity issues of the fuzzy equaliser are presented.
¢ The concept of subset state selection in the fuzzy implemented Bayesian equaliser is

presented.

The chapter organisation is as follows. Following this, section 3.2 introduces the design of a
fuzzy adaptive filter. Section 3.3 develops the normalised form of Bayesian equaliser! with
scalar channel states. Sections 3.4 develops the fuzzy equaliser design, while section 3.5 and

1The decision function for the Bayesian equaliser was presented in section 2.5
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3.6 discuss its training and computational complexity issues respectively. Some simulation

results are presented in section 3.7. The chapter ends with the concluding remarks.

3.2 Fuzzy adaptivefilter and LM Salgorithm

The fuzzy adaptive filter (FAF) was originally proposed by Wang and Mendel [11]. Fuzzy
filters are nonlinear filters that can incorporate fuzzy IF ... THEN ... rulesfrom ahuman
expert system. Wang and Mendel had proposed two types of fuzzy filters[11], the RLS fuzzy
filter and the LM S fuzzy filter. Thefuzzy filter presented in thisthesis has a structure similar to
the RLS filter proposed in [11] and the equaliser is trained with the LM S algorithm.

Thefilter considered here maps areal input vector R™ — R with the function

Srp{x(k)}: U CR™ =R (3.1)

where x(k) = [z1(k), z2(k), ..., zi(k), ..., 2, (K)]T, 2:(k) € U = [¢7,¢]] isthe input
to the fuzzy filter and g , g are the minimum and maximum limitsfor theinput scalars z; (k).
Here f¢,¢{x(k)} isthe FAF output, corresponding to the filter input x(¢). The filter minimises

the sum squared error performance index such that

k
e(k) = > [y(0) = frar {x(0)})° (32)

K3

where y () isthe desired filter output corresponding to the filter input x(¢) and e(k) isthe sum
of the error sguares that needs to be minimised.

3.21 Filter design

A filter with an input vector of length m having a scalar output is considered. Each element of
thefilter input isfuzzified with a Gaussian membership function. The membership function for

the inputs can be represented as

! (k) = exp {; (96(127]_6]) } 33)
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where 6{ and af are the jth centre and spread parameters respectively corresponding to input
scalar z;, 1 < i < m suchthat theinputspacez; € U = [¢;, ¢;7] iscompletely covered. These
parameters once selected remain fixed and the input x; is associated with the membership func-
tionsy!, vZ, ..., QbZM so that the filter is characterised by atotal of )™, M; membership

functions. Thefilter consistsof fuzzy IF ... THEN ... rulesof theform

ROYD E gy isF} apisFP ... zmisFL THEN yisyiel.. ¢l
R(l.’.l.’“"M’"):IF w1 isFY zpisFy ... zmisFM™ THEN yisyivs...ypMm
RUZeim B g is P isFY2 . apm iSEYT THEN yisoi'es? .. pim
RMuMeo Mo E g s FMY gy is ) L0 mp isFa™ THEN yiso g™ g

where each of theterms i1, ¢2, ... ,im are single indices each ranging from 1 to M, respect-
ively. The filter considered here finds the following nonlinear function of the membership

functions Qb{ so that,

My My Mm o . . . .
DD D0 R (s () ) ()
T ()} = A= G4

ST {wit k) vk i (k)

i1=11:2=1 im=1

where 9(k)(1:72 7" js the weight associated with the fuzzy IF ... THEN ... rule
Ril.i2, e im

The weight parameter (k) (142" js updated during the adaptation procedure so as to min-
imisethe desired cost functionin (3.2). Using the LM S algorithm to update the filter parameter
0k(i1,i2,...,im),

79(]47 + 1)(i1,i2,...,im) — 79(]{7)(2'1,2'2,...,im) + Q[y(k) _ ffaf{x(k)}]\Il{x(k)}(“’iz"“’im) (35)
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where,

‘I,{X(k)}(il,z?,...,im) —

il 12 im
iz L
i (3.6)

Mm . . .
SN Y e

71=172=1 gm=1

Here, ¥ (x) (142 jsthe input to the filter weight 9 (1:2:++im) | o is the learning rate and
1,32, ..., jmcongdtitutesingleindices. Thefilter functionin (3.4) findsaweighted sum of all

possi ble combinationsof the productsof the membership functions, taking one from each input,

and this sum is scaled with the sum of all possible product combinations of the membership

functions taking one from each input. Since the membership functions are Gaussian in nature
the term in the denominator of the filter function will be non-zero, making the filter realisable.
Here it can be seen that the term W{x(k)}(?2") jsa FBF [114] with singleton fuzzifier,
Gaussian membership function, product inference and centre of gravity (COG) defuzzifier. A
combination of these basis functions can be used for universal approximation [114]. With the
use of different types of membership functions, inference rules and defuzzification processes a
variety of fuzzy filters can be designed to optimise any arbitrary function. Each of the FBF's

works as afuzzy rule and the FAF consist of

Ne =[] (3.7)

fuzzy rules.

The effect of normalisationin FBF provides characterisation of local and global properties. Itis
well established in neural literature [126, 127] that the Gaussian RBF is good at characterising
local properties and that the neural networks with sigmoid nonlinearities are good at charac-
terising global properties. The fuzzy filter designed in this section will have the capabilitiesto
optimise both local and global properties. The relationship of the FBF with other form of basis
functionslike RBF and PNN have been discussed in [128, 129].

3.3 Normalised Bayesian equaliser with scalar states (NBESS)

The communication system discussed in this chapter was presented in Figure 2.8. This com-

munication system is again presented here in Figure 3.1 for convenience. The equaliser is
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Figure 3.1: Discretetime model of a digital communication system

characterised by its feed forward length m and decision delay d and it does not use decision
feedback. The decision function of the T-spaced symbol-by-symbol Bayesian equaliser can be
represented as’.

5 {r(k szexp (_” (2272_ cill ) (3.8)

where N, isthe number of channel states, equal to 27<*t™~1 whilew; are the weightsassociated
with each of the channel statesand w; = +1if ¢; € CF andw; = —1if¢; € CJ. Itis
also observed that each of the channel states has m components which can be represented as
C; = |Cio, Cil, Cigy « -+ 5 Ci(m—1) ! € R™. ThisBayesian equaliser presented in (3.8) can be
implemented with RBF networks[57]. In linewith the normalised RBF proposed by Chaet.al.
[69], a normalised Bayesian equaliser, which estimates the transmitted symbols themselves
rather than the decision function can be formed. This equaliser is represented as a normalised

Bayesian equaliser,

N.
—|lr (k) — eil|?
szexp( = )
Snpar {r(k)} = =~ (3.9)

% exp (I (22,;; eI)

=1

2This equaliser decision function was derived in Section 2.5
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where (3.9) is the decision function of the Bayesian equaliser in (3.8) which has been 2normal-
—lr (k) — el )

ised with the sum of the output of all the basis functions given by exp ( 557
n

3.3.1 Effectsof normalisation

The equaliser presented in (3.8) can be implemented with a RBF network [57] and the nor-
malised form of thisin (3.9) can be implemented with a normalised RBF [69]. The effect of
normalisation in RBF networks has been analysed in [130]. The application of the normalised
RBF to Channel equalisation application is similar to interference cancellation discussed in
[69]. Thefollowing characteristics of this problem makes the decision function immune to the
ill effects of normalisation [130]:

¢ In equalisation applications, the network decision function § ysay {r(k)} (3.9) ispassed
through a memoryless detector to recover the transmitted symbol s(k — d) which has a
discrete constellation. The sign of the decision function output is enough to provide the

final decision.

¢ The decision boundary corresponds to the locus of points in the decision surface for
which Fneay {r(k)} = 0, and this does not change with normalisation since the spread

associated with each of the channel states or RBF centresis uniform and equal to 0.

An example is considered below to show the effects of normalisation in Bayesian equaliser
decision function.
EXAMPLE 3.1

The channel and equaliser order considered in the example is same as considered in

Example 2.1. Here

H(z)=Hy(?) =05+1.02"" withm=2,d=0 and SNR=15dB (3.10)

The channel statesfor the equalisers have been presented in Table 2.1.

The decision function provided by the Bayesian equaliser and the normalised Bayesian
equaliser are presented in Figure 3.2(a) and 3.2(b) respectively. From Figure 3.2(a) it is
seen that the Bayesian equaliser decision function has 4 peaks corresponding to channel

statesc; € CF, 1 < j < 4 and 4 valeys correspondingtoc; € C;, 5 < j < 8.
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(a) Bayesian Equaliser (b) Normalised Bayesian Equaliser

Figure 3.2: Effect of normalisationin Bayesian equaliser decisionfunctionwith H (z) = 0.5+
1.0z7Y m =2,d = 0 and SNR=15dB

When the equaliser inputisfar from al of the channel states, the decision function dueto
contributionsfrom all the channel statesis nearly equal and approaches 0. The decision
function of the normalised Bayesian equaliser provides only 2 discrete outputsproviding
adecision of +1/ — 1 corresponding to the transmitted sample s(k). It also provides a

nonzero output of +1/ — 1 when the input isfar from all the channel states.

The decision function of the Bayesian equaliser in (3.8) and (3.9) needsthe channel states. The
channel states can be estimated during the training period. The equaliser decision function in
(3.9) reveal s that the equaliser contains N, channel states, each of m dimensions. The number
of scalar channel states for any channel is M = 2"<. Each of the m components of the N,
channel states are taken from the set of M scalar channel states which form the estimate of

noise free received scalars. Rewriting the squared norm of the exp(.) in (3.9) as a summation
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and exploiting the properties of the exp(.) functionyields:

Snmrss {r(k)} = ZZJIV

i{ﬂﬁleXp(_W”

(3.12)

where ¢;; isthe (14 1) component of channel state c;, corresponding to the input scalar r(k — 1)
and the Euclidean distance||.|| has been replaced by the absol ute distance|.| since the arguments
used are scalars. Thisequaliser istermed as the NBESS.

Equations (3.9) and (3.11) provide aternative realisations of the Bayesian equaliser decision
function. In (3.9) the Euclidean distance between the input vector r (%) and each of the channel
states c; isfirst calculated. Theresult isthen scaled by —1/(207) and the exponential function
is evaluated. These are linearly combined to provide the decision function. Alternatively in
(3.11), the square of scalar distances are first calculated, scaled by —1/(20;7) and the exponen-
tial function evaluated. The exponentia functions associated with particular channel states are
linearly combined to form the channel states output. These are linearly combined with asso-
ciated weights to provide the equaliser decision function. Both of these functions require the
knowledge of channel states for estimating the decision function. It was noted in [131] that
(3.12) may be preferable to (3.9) for implementation. This approach is adopted here.

Each of the components ¢;; of channel states c; is taken from the scalar channel states C';,
1 < ¢ < M. Thisrelationship between the channel states and the scalar channel states can be

represented as
ci€C; Withl<i< N, 0<I<mandl<j<M (3.12)

and is described in the following example.
EXAMPLE 3.2
The process of the generation of channel statesfrom the scalar channel statesis presented

here in thisexample. The channel considered hereis

H(z)= Hy(?) = 1.0 +0.227" (3.13)
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The equaliser with length m = 3 and decision delay d = 0 is considered. The optimal
equaliser for this system has N, = 27<t™~1 = 16 channel statesand M = 2" = 4
scalar channel states. These scalar channel states are presented in Table 3.1. The channel
states for the equaliser along with the combination of scalar channel states that form the
channel states are presented in Table 3.2.

1G] sth) stk=1)] 7(k) |
1(C | 1 1 1.2
2103 1 -1 0.8
3|Cs| -1 1 —0.8
4|04 -1 —1 —1.2

Table 3.1: Thescalar channel state calculation for channel H4(z) = 1.0+ 0.227', M =4

Here each of the channel states is a vector of order 3. Each of the components of the
N, = 16 channel states is taken from the scalar channel states presented in Table 3.1.
From Table 3.2 it can be seen that estimation of the scalar channel statesonly can provide
the channel state for the equaliser in (3.11).

=

Cr if 1<
N
2

IN
|

c; € (3.19)

IN

c; if +1<i< N

With the knowledge of the scalar channel states and the signal vector s(k) generating the
scalar channel states, the channel states can be estimated and the equaliser in (3.11) can
be constructed. This equaliser can be implemented using a normalised RBF with scalar

centreq 78].

With thisunderstanding of processof thetheformation of the channel statesfrom scalar channel

states, the NBESS equaliser decision function in (3.11)can be represented as:

N. m—1

w; { H Cbu}
Snpess{r(k)} = ZZJIV mizlo
Z { H %}

=1 (=0

(3.15)
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Ak Fk—1) 7(k-2)
No s(k)  s(k—1) s(k—2) s(k—3)| ¢ Cio Ci1 €2
Ci0 Ci1 Ci2
1 1 1 1 1 C1 1.2 1.2 1.2 Cl Cl Cl
2 1 1 1 -1 Co 1.2 1.2 0.8 Cp 1 Oy
3 1 1 -1 1 C3 1.2 0.8 —0.8 Cl CQ 03
4 1 1 -1 -1 cy 1.2 0.8 —-1.2 Cp Cy Oy
5 1 -1 1 1 Cs 0.8 —0.8 1.2 CQ 03 Cl
6 1 -1 1 -1 Cg 0.8 —0.8 0.8 CQ 03 CQ
7 1 -1 -1 1 C7 0.8 —1.2 —0.8 CQ C4 03
8 1 -1 -1 -1 Cg 0.8 —1.2 —1.2 CQ C4 C4
9 1 1 1 1 Co —0.8 1.2 1.2 03 Cl Cl
10 -1 1 1 -1 C10 —0.8 1.2 0.8 03 Cl CQ
11 | -1 1 -1 1 C11 —0.8 0.8 —0.8 03 CQ 03
12 | -1 1 -1 -1 cig | —0.8 0.8 —-1.2 Cs Cy Oy
13| -1 -1 1 1 ci3 | —1.2 -0.8 1.2 Cy O3 4
14 | -1 -1 1 -1 Cl4 —1.2 —0.8 0.8 C4 03 CQ
15| -1 -1 -1 1 ci5 | —1.2 —-1.2 -0.8 Cy Cy Cs
16 | -1 -1 -1 -1 Ci6 —1.2 —1.2 —1.2 C4 C4 C4

Table 3.2: The channel states calculation for channel H5(z) = 1.0 + 0.227! with m = 3,
d=0,N,=16and M =4

where ¢;; isabasis function of the form

Gil = exp [—% {MH (3.16)

2
Ty

generated from the (/ + 1) scalar components of the channel states c¢;, corresponding to the
input scalar r(k — 1), 0 <1 < (m — 1). In(3.15) computation of []/"5" ¢: isthe same as the
)=cill?

computation of exp (%

p)
%y

) in (3.9). Here the equaliser decision function presented in
(3.15) can also be considered as alinear combination of nonlinear basis functionslike the RBF
and the FBF.

3.4 Fuzzy implementation of Bayesian equaliser

The FAF presented in Section 3.2, was proposed by Wang and Mendel [11]. This filter in
conjunction with the RLS training algorithm, was used for equalisation. For equalisation the
number of fuzzy sets M; for each input are set equal sothat My = My = -+ = M, =
M. 1In [11] the membership function centres 6{, 0 < j < M, of the FAF were selected
uniformly in the signal space [¢;, ¢;"] and the spread parameter af associated with each of the
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membership functions were set to arbitrary uniform values < 1. The number of fuzzy sets M
corresponding to each of the inputs were selected to provide good performance. This scheme
of using the same set of membership function centres for each of the dimensions of the signal
positions the FBF's in a regular grid in the multidimensional space R™. The use of a large
number of basis functions made the equaliser complex and the RL S training scheme increased
the complexity of the equaliser during training. Based on thisidea Lee [115] proposed a fuzzy
decision feedback equaliser where the fuzzy equaliser centres were positioned at scalar channel
states, and the equaliser used a subset of the available M ™ FBFs depending on the state of the
feedback vector s (k) = [8(k —d — 1), 5(k —d — 2), ..., 3(k — d — ¢)]*, where ¢ isthe
feedback order. This process of using a subset of the V.. basis functions reduces computational
complexity. Later, complex fuzzy filters with a similar architecture were used in a variety of
equalisation applications [116,117]. All these equalisers used M ™ FBFs working as fuzzy
IF ... THEN ... rules. Inthisform the complexity of the equalisersis related exponentially
to the number of scalar channel states. The scalar channel states are exponentially related to the
signal constellation and channel length. Thisaccounted for the high computational complexity
of fuzzy equalisers making them unsuitable for high speed digital communication applications.

3.4.1 Fuzzy implementation

The FAF discussed earlier is used here to derive the fuzzy implementation of the Bayesian
equaliser. The FAF presented in (3.4), aong with its membership function in (3.3), is used
to derive the fuzzy implementation of Bayesian equaliser. Setting the membership function
centresin (3.3) to scalar channel states, spread parameter to channel noise variance and using

My =My =---=M,, = M providesafuzzy equaliser with decision function,

D22 2 R L Oy (k) i () )

Srar(x(k)) = 0=1e1=1 MWLEZI _
ST 3 (e )i )

(3.17)

where, 9! (k)04 1im=1) gre free design parameters of thefilter which are adjusted during the

training process. Here N, correspondsto all possible combinations of the membership function

46



Fuzzy Implementation of Bayesian Equalisers

taking one from each input scalar and N. = M "™ . The membership functions are given by

4 L[ |r(k—=1)—C:|?
) = exp {5 (=22

)} wherel <j<Mand0<I<m-1

(3.18)

The equaliser receives its input from a TDL. Here the membership function centres for each
of the inputs are placed in the same position and all the centres use a uniform spread para-
meter. Under this condition the membership function correspondingto »(k — [ — 1) will bethe
membership functions corresponding to »(k — [), delayed by one sample period. This can be
represented as

Wl (k) = ¥ (k- 1) with1 <i<m—1 (3.19)

-

The equaliser function (3.17) finds a weighted sum of the fuzzy basisfunctions (FBF) given by:
T v
U {r(k)) = Nclo—l

> {ﬁ wi’}

=1 (=0

(3.20)

where j represents the (I 4+ 1) th component of fuzzy IF ... THEN ... rule:. This cor-
responds to the IF part of the fuzzy rule r(k — [) given as Fl] . On observing the decision
functions of the NBESS (3.15) and the fuzzy equaliser (3.17) it can be seen that the NBESS has
N, = 2n<tm=1 pagis functions and the fuzzy equaliser has N, = M™ = (2"<)™ basis func-
tions. The number of basisfunctionsin NBESS (3.15) is a subset of the basis functionsin the
fuzzy equaliser of (3.17), since the centres of the basisfunctionsin (3.16), and the membership
function centresin (3.18), are positioned at the same points and the centre spread parameters
are uniformly set to o2. By comparing the equaliser functionsin (3.15) and (3.17) it is seen
that (V. — Ny) rules are trivial rules which can be neglected to provide optimal performance.
These N, rules can be extracted from the knowledge of the combination of scalar channel states
forming the channel states. With this, the weights corresponding to NV ; terms of the fuzzy filter
can beassigned +1/ — 1 depending on the values of w; in NBESS. Hence, the fuzzy equaliser
in (3.17) can aso be represented by (3.15) where only N, FBFs out of the possible V. func-
tionsare used. This reduces the computationsinvolved with (V. — N,) FBFs and provides the

optimum decision function.
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The membership function in (3.16) involves evaluation of m N ; membership functions for the
equaliser. Thisinvolves calculation of the membership function for each component of m di-
mensiona N, channel stateswith respect to theinput scalars. It can be seen from Table 3.1 that
the scalar components of channel states are givenby ¢; € C;, 1 < j < M. Thuscalculation
of mM membership functionsw.r.t. scalar channel states C'; can provide the required m .V,
membership functions. The combination of these can provide the channel states. This process
has been presented in Table 3.2. The equaliser needsto evaluate only M membership functions.

The membership functionin (3.16) can be described as

¢ €] wherel <i< N, 1<j<Mand0<[<m-—1

With thisthe fuzzy equaliser decision function can be described by the equations:

Fr(h)} = S5 (3.21)
Z { H %}
=1 (=0
i_ 1 (|r(k=1) = Cy?
¥) = exp {—5 ( p ) } (3.22)
bit € b (3.23)

3.4.2 Fuzzy equaliser structure

Thestructure of thefuzzy equaliser ispresentedin Figure 3.3. Here, theincoming signal sample
is presented to the membership function generator. Each of the components of the membership
function generator produces an output zb{ , Characterised by its centres Clj which are positioned
at the scalar channel states. Here j represents the fuzzy centre at the scalar channel states. The
membership functionsfrom r(k —¢) , 1 < ¢ < m — 1 are generated by passing the membership
function from (k) througha TDL.

The inference block of the equaliser has N fuzzy IF ... THEN ... rules with product
inference and the rule base is generated from the information of the combination of scalar
channel states forming the channel states. Each of these rules uses only one of the zb{ terms
corresponding to each of the m inputsto the equaliser. The output of the inference units are

suitably weighted and added to provide a and b which provide the function of the defuzzifier.
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The output of the equaliser is computed by the equaliser function presented in (3.15) which is
(a —b)/(a+ b). The output of the decision function passed through sgn(z) in (2.14) forms the

detected sample. An example is considered to illustrate the working of this equaliser:

Inference rule base
I’(k) (Channel state information)

§{r(k)}
f S(k-d)

Figure 3.3: Sructure of fuzzy implemented Bayesian equaliser

EXAMPLE 3.3

The channel considered hereis H (z) = 0.5 + 1.02~!'. The equaliser is characterised by
m = 2,d = 0 and SNR= 8 dB. Thisprovides N, = 8 channel statesand M = 4 scaar
channel states. The channel states for this equaliser have been presented in Table 2.1.
It is also seen that the m-dimensional NV, channel states take their components from the
available M scalar channel states. The weights w; of the equaliser decision function are

+1foreq, ¢, e3, ¢4 and —1 for c;, cq, c7, cs.

For fuzzy implementation the centres for membership functions are positioned at scalar
channel states +1.5, —0.5, +0.5 and —1.5. The membership functions >}, %, ¥ and
o correspondingto r(k — 1), are delayed samplesof 4}, 42, 5 and 43 corresponding
to r(k). Theinference block consist of N, = 8 fuzzy I ... THEN ... rules. Here
(blO = ¢20 = ¢év ¢30 = ¢40 = ¢37 ¢50 = ¢60 = ¢87 ¢70 = ¢80 = ¢37

(bll = ¢51 = Qﬁ%, ¢21 = ¢61 = ¢%7 ¢31 = ¢71 = Qb?v and ¢41 = ¢81 = Qbil
The products ¢1oé11, Ga0P21, P30¢31, Paodar constitute the rules for CT, are added
to provide a and ¢s5o¢s1, deode1, ProdT1, Psods1 condtitutethe rulesfor C and are

added to provide b. The calculation of the decision function is straight-forward.

The decision boundary of this equaliser is presented in Figure 3.4. Figure 3.4(a) presents

the decision boundary of the fuzzy equaliser and the Bayesian equaliser when the channel
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Figure 3.4: Fuzzy equaliser decision boundary for channel # (z) = 0.5+ 1.0z ' withm = 2,
d = 0 and SNR= 8 dB.¢ positive channel statesand x negative channel states

states and noise statistics are known, whereas in Figure 3.4(b) the fuzzy equaliser uses
the estimated channel states and noise statistics and the Bayesian equaliser uses the true
channel parameters. The positive and negative channel states are shown with ¢ and x
respectively. A study of the decision boundaries shows that, the fuzzy equaliser is able

to provide a near optimal decision boundary even at alow SNR of 8 dB.

The fuzzy equaliser developed here, uses FBF with product inference and COG defuzzifier.
Owing to the close relationship of thisfuzzy equaliser with the Bayesian equaliser, the NBESS
has been implemented using a RBF network with scalar centres [78]. However, the use of
a fuzzy system to implement this equaliser provides the possibility of using other forms of
inference rules and defuzzification processes. This can provide some of the aternate forms of

fuzzy implementation of the Bayesian equaliser.

3.4.3 Alternateforms of fuzzy equalisers

Minimum inference
Thefuzzy equaliser discussed above workswith a product inference type of rule base where the

output of each of the NV, inference rulesis generated using the product rule. It isalso seen from
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the membership function generator (3.18) that the membership for any input is0 < zb{ < 1.
Hence the output of any of theinference ruleswill bein therange (0, 1] and will lwaysbe less
than the smallest membership function input to the rule. For thisreason the product inference

rule can be approximated by the minimum inference rule and the equaliser can be represented

Fir(k)) = = (3.24)

where min}" " selects the minimum of the m inputs to each of the inference rules. With this
the computation of the products can be replaced by a comparison operation which is easy to

implement in hardware.

Maximum defuzzification

The output layer of the fuzzy equaliser (3.15) and (3.17) finds aweighted sum of the inference
rules and normalises this with the sum of all inference outputs. The weights associated with
the inference rules are +1/ — 1. It is seen that the rule nearest to the input vector would
provide the maximum output, and the contribution from the remaining rulesis minimal. These
characteristics of the decision function can be utilised by replacing the COG defuzzifier with a
maximum defuzzifier. This defuzzifier can be combined either with product inference or with

minimum inference. The equaliser decision function for these two cases can be represented as,

m—1
Wmax Hjljilx { ¢zl}
F{r(k)} = —— (3.25)
N,
m_ax { (bzl}
=t =0
with product inference and
m—1
Wmaz H,Jljilx {rln_ln ¢zl}
(k) = — (3.26)
max {min (b”}
=1 (=0

with minimum inference. The notation max.\~, corresponds to the maximum of the available
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N, inferences and w.,,.. IS the weight associated with the maximum inference. With this the
decision functions, (3.25) and (3.26) use maximum defuzzification, where the output of the
equaliser is based on the maximum of the NV, inference rules and the weight associated with it.
The equaliser (3.25) uses product inference whereas (3.26) usesthe minimum inferencerule. In
both of these defuzzification processes the computation of the weighted sum of the inferences

is replaced by comparison operation.

With the above analysis four types of fuzzy equalisers approximating the Bayesian decision
function can be designed. These equalisers can provide alternative equaliser architectures with
a reduction in computational complexity. All four forms of fuzzy equaliser are presented in
Table 3.3.

\ No. Fuzzy Type Inference Defuzzification \
Fuzzy# 1 Product Centroid
Fuzzy# 2 Product Maximum
Fuzzy#3  Minimum Centroid
Fuzzy#4  Minimum Maximum

A WDNPRP

Table 3.3: Different types of fuzzy equaliserswith selection of inference rules and defuzzfica-
tion process

EXAMPLE 3.4
This example discusses the effects of different inference rules and defuzzification pro-
cess on the fuzzy Bayesian equaliser decision surface and decision boundary. Here the
channel usedis

H3(2) = 0.2682 + 0.9298271 4+ 0.26822 2 (3.27)

This channel is a mixed phase channel with its zeros located at z; = —3.1492 and 2z, =
—0.3175. The equaliser is characterised by equaliser length m = 2 and delay d = 0.
The system SNR is assumed to be 15 dB. The equaliser has N, = 16 channel states
which are generated from M = 8 scalar channel states. The fuzzy equaliser centres
are positioned at +1.4662, F0.9298, £0.3934 and £0.9298 which are the locations of
the scalar channel states. The channel states were estimated with 200 training samples
averaged over 50 experiments. All forms of implementation of fuzzy equalisers presented
in Table 3.3 were investigated. The fuzzy equalisers used the estimated noise statistics.

The computational complexity of Fuzzy#1 equaliser is the largest and the complexity
of Fuzzy#4 equaliser is smallest due to the types of inference rules and defuzzification
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processes they implement. The decision surface of these equalisersis plotted in Figure
3.5. From the decision surfaces it can be seen that al the fuzzy equalisers provide near
optimal decision surfaces. The optimal decision surface is the decision surface provided

by the Fuzzy#1 equaliser.

The decision boundaries of the fuzzy equalisers along with the optimal Bayesian equal-
iser are presented in Figure 3.6. The positive and negative channel states are presented
with and x symbolsrespectively. From the decision boundary curvesit is observed that
the Fuzzy#1 and the Fuzzy#2 equalisers provide a near optimal performance. The fact
that the optimal equaliser and the Fuzzy#1 equaliser decision boundaries are nearly the
same confirms the fuzzy implementation of the Bayesian equaliser. The decision bound-
ary provided by the Fuzzy#3 and the Fuzzy#4 equalisers deviatesfrom the optimal equal-
iser decision boundary. These equalisers provide a different decision boundary when the
input vector is far from the channel states. But, these equalisers do provide a nonlinear
decision boundary separating the positive and negative channel states successfully. This
showsthat all form of the fuzzy equalisers presented in Table 3.3 are capabl e of providing

nonlinear decision boundaries.

Thusthe capability of fuzzy equalisersto provide near optimal decision boundary with a

variety of network architectures has been demonstrated.
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(a) Fuzzy#4(Minimum Inference, Maximum De- (b) Fuzzy#3(Minimum Inference, Centroid De-
fuzzification) fuzzification)

2 4

_ 0
4w

(c) Fuzzy#2(Product Inference, Maximum De- (d) Fuzzy#1(Product I nference, Centroid Defuzzi-
fuzzification fication

0.2682 + 0.929827! 4 0.2682271 for m = 2, d = 0 and SNR=15 dB using
estimated channel states

Figure 3.5: Decision surface of different forms of fuzzy equalisers with channdl H(z) =
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Figure 3.6: Decision boundary of different forms of fuzzy equalisers with channel H(z) =
0.2682 + 0.9298271 + 0.26822~! for m = 2, d = 0 and SNR=15 dB using
estimated channel states; ¢ positive channel statesand x negative channel states
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3.5 Fuzzy equaliser training

The fuzzy equaliser was presented in Section 3.4. The design of the fuzzy equaliser developed
in (3.17) requires the knowledge of the channel states ¢;, 1 < ¢ < N, and the weights w;.
These equaliser parameters can be estimated during the training period and after training the
equaliser can useits previous decisionsin decision directed mode to update its parameters. The

process of estimating these parameters is discussed here.

351 Stepl: Channel state estimation

The estimation of the decision function using the fuzzy equaliser given by (3.15) and (3.17)
needs the channel state information to form the rule base. Implicit estimation of the channel
states requires channel information which in most cases is not available. However, the channel

states can be estimated during the training period by any of the following techniques [53].

¢ Thechannel model can beidentified using LMS/RLS algorithms. With the knowledge of
the channd, it is straight forward to cal culate the scalar channel states and their combin-
ationswhich form the channel states. However, when the channel suffers from nonlinear

distortion, estimation of the channel isa difficult process.

¢ The channel states can be directly estimated using a vector clustering algorithm. The
number of channel states are exponentialy related to the channel dispersion order and
equaliser feed forward order. Equalisers with large number of channel states® would

require alonger training sequence.

¢ Thescalar channel states can be estimated using a scalar supervised clustering technique.
These scalar channel states, in conjunction with the training signal, can provide the or-
der in which they occur, and these can be used to estimate the channel states[57]. This
process has been presented in Example 3.2. The number of scalar channel states depends
only on the channel order and hence requires a smaller length of training sequence com-
pared to direct channel state estimation. The scalar channel states always occur in pairs
sothat C; = —Char—j41, 1 < 5 < M. Thisfeature of the scalar channel states is evident
from Table 3.1. Thiswould require only estimation of % = 2"~ scalar states, resulting
in faster estimation. These scalar channel states can be estimated with the supervised

3Thissituation can occur if the equaliser order m islarge or channel order n. islarge
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r-means algorithm which has been presented in Appendix A. The convergence curve for
atypical scalar channel states estimation using x-means clustering algorithmis presented
in Figure 3.7. Here the channel usedis H (z) = H4(z) = 0.5+ 0.8127' 4 0.31272 with
SNR=10 dB. The process of channel state estimate has been averaged over 20 experi-
ments. From the training curves it is seen that the scalar channel states converge to the
desired statesin around 30 iterations. Thisfast training feature can provide considerable

advantage in DCR applications.

2 ‘ ctual States
: : : : : : Esth‘matedStat%-;-.-.

-

05 lu,/"77=="7"n bl P S R ]

Scalar Channel States

'
=
Ir

_____

10 20 30 40 50 60 70 8 90 100
I teration number

Figure 3.7: Scalar Channel states training curve for channel H(z) = 0.5+ 0.81z7! +
0.31272, theactual channel states +£1.62, 1.0, £0.62, +0.00

This experiment indicates that the estimation of scalar channel states for the fuzzy equaliser

requires only afew training samples even at low SNR.

352 Step2: Equaliser weight update

Once the scalar channel states have been estimated the fuzzy rules can be formed and the
equaliser constructed with weights of the inference rules assigned +1/ — 1, depending on
whether the rule belongsto C} or C;. Estimating the channel states and the noise statistics
can involve some error. In order to compensate for this the weights associated with the rules

can be fine tuned with the LM S agorithm given in (3.5). This step would require only a few
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samples as the initial weight assignment is very close to the final values. This process would
not require additional training overhead, since the training signal used to estimate the channel

states can be reused for equaliser weight training.

3.6 Advantages of fuzzy equaliser

The fuzzy implementation of NBESS provides the Bayesian equaliser decision function. A
closer look at the Bayesian decision function in (3.8) and the fuzzy implementation of NBESS
in (3.15) shows some of the advantages of the fuzzy implementation of the Bayesian equaliser.
One of the advantagesof the fuzzy equaliser isthe need for only asmall training sequence. This
aspect has been discussed in the previous section. The other major advantages of this equaliser

are discussed in this section, namely lower complexity and subset state selection.

3.6.1 Computational complexity

On completion of equaliser training, the equaliser parameters are fixed and the actual detec-
tion of transmitted symbol starts. The computational requirements of the fuzzy equaliser and
NBESS are the same. The computations required for estimating each of the samples with the
Bayesian equaliser and its RBF implementation, NBESS and fuzzy equaliser (Fuzzy#1in Table
3.3) arelisted in Table 3.4. The second part of the table provides the typical computational re-
quirementsfor aequaliser withm = 4, n. = 3 and M = 8. From thistable thefollowing points
can be inferred with regards to the computational advantages of the fuzzy implementation of

Bayesian equaliser:

Eﬁ:gllser Aéig/ Mul Div. e™”
Bayesan(RBF)  2mN; mN N, N,
NBESS M+ N, M+mNs, M+1 M
Fuzzy M+N, M+mN, M+1 M
Bayesian (RBF) 512 256 64 64
NBESS 72 264 9 8
Fuzzy 72 264 9 8

Table 3.4: Computational complexity comparison for the Bayesian equalisers, the NBESSand
the fuzzy equalisers. Second part typical computational complexities for equalisers
withm =4,n, =3, N, =64and M = 8.
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¢ The fuzzy implementation of the Bayesian equaliser provides a significant reduction in

addition, divisionand exp(z) evaluations.

¢ The time shift property of the membership function generation provides a considerable

reduction in evaluation of exp(z) functionsand divisions.

¢ The evaluation of exp and division functions in a Bayesian equaliser isrelated to N,
which in turn is exponentially related to the sum of the equaliser and channel order. In
the fuzzy equaliser it is related to M which is exponentially related to channel order
only. Thus, as the equaliser order increases the reduction in computational complexity

for fuzzy equaliser over the Bayesian equaliser is exponentially related.

¢ The minimum inference rule and the maximum defuzzification discussed in subsection
3.4.3 replace each of the product computationsintheinference generator and the defuzzi-
fier by a comparison operation. Thisisvery easy to implement and fast to processin rea
time. The computation involved for the estimation of each symbol with this modification
for the four forms of fuzzy equalisers are presented in Table 3.5. The second part of the
Table provides the typical computational figures for an equaliser with m = 4, n. = 3
and M = 8. From thisit can be seen that using the minimum inference or maximum de-
fuzzification process replaces the product computation by comparison operations. These
provide an alternate approximation to the Bayesian equaliser with areductionin the com-
putational complexity. Thisprovidesalot of scopefor varied implementation of Bayesian

equalisersw.r.t. computational complexity.

Fuzzy Inf. Defuzz. Add/ ; s

Type Type Type Sub Mul Div. e Compare
Fuzzy#1 Prod COG M + N; M 4+ mN; M+1 M

Fuzzy#2 Prod Max. M M+(m-1)N+1 M+1 M Ny
Fuzzy#3 Min. COG M + N, M+ N, M+1 M (m-—1)N,
Fuzzy#4 Min. Max. M M+1 M+1 M mN;
Fuzzy#1 Prod COG 72 264 9 8

Fuzzy#2 Prod Max. 8 201 9 8 64
Fuzzy#3 Min. COG 72 72 9 8 192
Fuzzy#4 Min. Max. 8 9 9 8 256

Table 3.5: Computational complexity comparison for different forms of fuzzy equalisers

In this section the computational complexity of the fuzzy equaliser has been compared with the
Bayesian equaliser which can be implemented with a RBF networks. The Bayesian equaliser

providesthe optimum performance for symbol-by-symbol equalisersproviding thelower bound
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for the BER performance. The computational issues of the Bayesian equaliser against ML SE
and linear equalisers are widely available in the literature [53, 132] and hence have not been
discussed in thisthesis.

3.6.2 Subset state selection

The Bayesian equaliser decision function in (3.8) is based on a weighted sum of N, basis
functions centred at the channel states. From the decision function it can be seen that the con-
tribution of a channel state isinversely related to its distance from the input vector. Under this
circumstance, if aset of channel states near theinput vector can be found, the equaliser decision
function can be approximated with this subset of the available N, channel states. Chng [77]
proposed a process of selecting a subset of available channel statesto approximate the Bayesian
equaliser with a smaller number of channel states. Other forms of subset centre selection with
the RBF implementation of Bayesian equalisers have also been proposed [133]. With fuzzy
implementation it is very easy to employ subset state selection to reduce the number of infer-
ence rules, which reduces the computational complexity. This only involves modification of
the membership function. In genera al M membership functions corresponding to an input
provide non-zero output irrespective of the input scalar. If an input is far from a scalar centre,
the membership function from that centre is negligible and can be neglected. Keeping thisin
view, it may be enough to use only a set of nearest centres from the observed received scal-
ars for membership function calculation and the membership function contribution from other
centres can be neglected. This provides a subset of non-zero membership functions out of the
available M functionsfor each input. This would generate only a smaller number of nonzero
inferences N; < N, where N; isthe subset of the N rulesin the fuzzy equaliser. Using some
simple checks to determine these rules the decision function can be computed. Thisprocessis
illustrated with the following Example.
EXAMPLE 3.5
The system considered in this example was used in Example 3.3. The channel used in
thisstudy is # (z) = 0.5+ 1.02~! and the equaliser order m = 2 and the decision delay
d = 0. The equaliser has 8 channel states constructed from 4 scalar channel states. The
fuzzy equaliser decision making capability for this system was presented in Figure 3.4.
Here in this example the concept of subset centre selection is demonstrated and the de-
cision making capacity of the fuzzy equaliser with membership function generated from

a subset of scalar channel statesis presented in Figure 3.8. The positive channel states
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Figure 3.8: Decision Boundary for subset centre selection with member ship function modifica-
tion, channel H(z) = 0.5+ 1.02~!, m = 2 and d = 0; o positive channel states,
O negative channel states

are shown as o and negative channel states are shown as d. The membership functions
for r(k) and r(k — 1) are shown along the sides*®. Aninput vector [0.0, —0.75)7 iscon-
sidered. Selecting the membership functions from scalar centres that are in immediate
nei ghbourhood and making the membership function from other scalar centres 0, the in-
put vector provides nonzero membership functions for 12, 5 and %, 1} only. These,
when translated with inference rules with channel statesinto R 2, provide only two non-
zero inference rules corresponding to the channel states [—0.5, —1.5]7 and [0.5, —0.5]"
which correspond to centres ¢, € Cj andcy € C, . Theregion of space that will be
covered by these rules correspond to the channel statesis shown as shaded region in the
Figure. With thisthe decision function for thisinput region is a straight line equidistant
from both centres in the space covered by the membership functions. With a change in
the input vector different sets of inference rules corresponding to channel states would
be selected providing a combined decision boundary as shown as shaded region in the

Figure. All these individual decision boundaries join to provide a nonlinear decision

“Membership functionsfor »(k — 1) are the delayed membership function from 7 (k).
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boundary. The region in which the equaliser is unable to approximate the decision region
is aso shown in the figure. From thisit can be seen that the decision boundary formed
with the modified membership function is very closeto the optimal one. Here the equal-
iser is capable of providing a nonlinear decision boundary where the channel states are

nonlinearly separable by using only 2 inference rules out of the total of N, rules.

Thisform of modification of the membership function can reduce the computational complexity
of the equaliser considerably. The computation involved per sample calculation with thisform
of membership function is presented in Table 3.6. The second part of the Table represents
the computations involved when the channel order n. = 3, equaliser order m = 4 when the
equaliser has NV, = 64 channel statesand M = 8 scalar channel states. From Table 3.6 it can be

observed that most of the product computations have been replaced by comparison operations.

This modification of the membership function provides a natural method for selecting a subset
of the available channel states resulting in computational complexity reduction. However, if the
channel statesare very closely spaced this process of using only 2 membership functionsin each
signal dimensions may not provide good performance and more than 2 nonzero membership
functions in each signal dimensions of the input vector may be required. With an increase in
number of membership functions the number of non-zero inference rules increase, providing
a better performance at the cost of higher computational complexity. However, if a subset of
the available scalar channel states is used the numbers of selected fuzzy rules N, will always
be less than maximum possible rules N,. This provides a way of trading performance with

computational complexity within the equaliser. Thisisillustrated in the following Example.

Inf  Defuzz ~ Add/ . .

Type  Type Sub Mul Div. e Compare
Prod COG M +2 M +2m 3 2

Prod  Max. M M+2m-1)4+1 3 2 <2
Min. COG M +2 M +2 3 2 <2(m-1)
Min.  Max. M M+1 3 2 <m
Prod COG 10 16 32

Prod  Max. 8 15 3 2 <2
Min. COG 10 10 3 2 <6
Min.  Max. 8 9 3 2 <4

Table 3.6: Computational complexity comparison for fuzzy egqualiserswith modified member-
ship function generation for subset state selection; second part for equaliserswith
m=4,n.=3, N, =64and M = 8.
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EXAMPLE 3.6

In this example the channel is
H(z) = Hs(z) = 0.3482 4 0.87042~" + 0.348227* (3.28)

This channel has its zeros located at z; = —2 and z3 = —0.5. The egualiser length
m = 2 anddecisiondelay d = 0 isused. These equaliser and channel parameters provide
N, = 16 channel statesand M = 8 scalar channel states. The system SNR=20 dB. The
scalar channel states are located at +1.5668, +0.8704, F0.174, F0.8704. The fuzzy
equaliser uses the knowledge of channel states and noise variance. With this the fuzzy
equaliser membership function centres are positioned at 6; = 1.5668, 62 = 0.8704,

8 = —0.174, 6% = —0.8704, & = 0.8704, & = 0.174, 67 = —0.8704 and
85 = —1.5668.

The decision boundary provided by the Fuzzy#1 equaliser using 2, 3, 4, 5, 6, and 8
scalar centres closest to the input vector is presented in Figure 3.9(a) through Figure
3.9(f). The optimal Bayesian equaliser decision boundary for thiscaseis presented along
with the fuzzy equaliser decision boundaries. From the optimal decision boundary it can
be seen that the decision boundary is nonlinear and the fuzzy equalisers can successfully
partition the channels states corresponding to C and C;, using only 2 fuzzy centres
closest to the input scalars. But, the decision boundary is very different from the optimal
one. With an increase in number of scalar centres used in decision function evaluation,
the decision boundaries approach the Bayesian equaliser decision boundary. It is also
observed that an increase in the number of non zero membership functions used makes
the decision boundary closer to the optimal Bayesian decision boundary only for the
regions in the decision space that are far from the channel states. The fuzzy equaliser

with 8 nonzero membership functions provides the optimal equaliser decision boundary.
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Figure 3.9: Decision boundary with subset centre selection in fuzzy Equalisers with channel
H(z) = 0.34824 0.870427 14 0.3482272, m = 2, d = 0 for SNR=20 dB;¢
positive channel statesand x negative channel states
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3.7 Resultsand discussion

Fuzzy equalisers were developed in Section 3.4 and their advantages discussed in Section 3.6.
From the study of the decision boundaries provided by the fuzzy equalisers it was seen that
al forms of the fuzzy equalisers provide an efficient scheme for equalisation by providing a
nonlinear decision boundary close to the optimal. The actual performance of an equaliser is
the BER. This section investigates the BER performance of fuzzy equalisers for a variety of
channels and equaliser parameters. Here all the experiments were continued untile either 1000

errors were observed or 10® symbolswere transmitted.

3.7.1 Fuzzy implemented Bayesian equaliser

BER performance of different typesof fuzzy equalisersdevelopedin Section 3.4 were evaluated

with extensive computer simulation.

In this study the channel used was

He(z) = 0.407 — 0.81527 — 0.4072 2 (3.29)

The equaliser parameters were set to m = 5 and d = 3. This channel has 2 zeros situated at
z1 = 2.4163 and z, = —0.4139. The scalar channel states are located at +£0.815, +0.001,
F0.815 and F1.629. For the equaliser order of m = 5 there are N, = 128 channel states
constituting 128 fuzzy rules. The BER performance of the Fuzzy#1, Fuzzy#3, Fuzzy#4 and the
Bayesian equalisersfor SNR=1 dB to 14 dB, using Monte Carlo simulationsis shown in Figure
3.10. Here the channel information was assumed to be available and with this scalar channel
states were estimated. The 8 fuzzy equaliser membership function centres were positioned at
65 = 0.815,62 = 0.001, 63 = —0.815, 6¢ = —1.629, 65 = 1.629, 65 = 0.815, &5 =
—0.001, &5 = —0.815.

The following points can be observed from the BER curves for different equaliser configura-
tions. The BER performance of the Fuzzy#1 equaliser is exactly same as the Bayesian equaliser
which can be implemented with the RBF network. Thisresult demonstrates that the Bayesian
equaliser can be implemented by the Fuzzy#1 equaliser. The performance of the computation-
aly efficient Fuzzy#3 and Fuzzy#4 equalisers, are close to the optimal, and they suffer from
nearly 1 dB performance degradation at 10~> BER and < 0.5 dB at 10~2 BER. Thisrevalidates
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Figure 3.10: BER performance for Fuzzy#l, Fuzzy#3, Fuzzy#4 and Bayesian equalisers for
channel H5(z) = 0.407— 0.815z7'— 0.4072% m = 5, d = 3 with knowledge
of the channel

the use of the minimum inference rule and the maximum defuzzification process.

In the next experiment the fuzzy equaliser performance was evaluated by constructing the
equalisers with estimated channel states. Here the channel used was H (z) = Hs(z) =
0.3482+ 0.8704z7'+ 0.348222. The equaliser order and the decision delay were set to
m — 4 and d = 1. The actual scalar channel states for this channel are located at +1.5668,
+0.8704, F0.174 and F0.8704. However, in this study the equaliser scalar channel states and
the channel noise statistics were eval uated using the supervised «-means clustering algorithm®
with 200 training samples averaged over 50 experiments. The Fuzzy equaliser here uses 64
fuzzy IF ... THEN ... inference rules derived from the 64 channel states. The BER per-

formance of different equalisersusing Monte Carlo simulationis presented in Figure 3.11.

After the equaliser was constructed the equaliser weights were trained with the same set of
training samples used for channel states estimation. The step size ¢ in the fuzzy LMS al-
gorithm (3.5) was fixed at 0.01. The linear equaliser was trained with a conventiona LMS
algorithm. Thistraining involved 1000 samples averaged over 50 experiments with a step size
of 0.03. The Bayesian equaliser which can be implemented with RBF was simulated with the
knowledge of the channel states and channel noise statisticsto provide the lower bound for the

equaliser performance. From theequaliser BER curvesit can be seen that the Fuzzy#1 equaliser

SThisalgorithm is presented in Appendix A.
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Figure 3.11: BER performance for Fuzzy#l, Fuzzy#3, Fuzzy#4, Bayesian and LMS linear
equalisers for channel H (z) = 0.3482+ 0.8704z7'+ 0.3482272, m = 4,
d = 1 with estimated channel states and noise statistics

performs nearly like Bayesian equaliser. However, the Fuzzy #3 and Fuzzy#4 equalisers suffer
from minor performance degradation due to the simplified inference rule and/or defuzzification
processes involved. This performance degradation isagain around 1dB at 10~° BER. All these

equalisers outperform the linear equaliser.

3.7.2 Fuzzy equaliser with subset state selection

This subsection presentsthe BER performance of fuzzy equaliser with subset state selection by
modification membership function generation. The channel used for this study was H5(z) =
0.34824+ 0.87042~ '+ 0.3482272, withm = 5. Two types of equalisersfor thisproblem were
investigated. In the first case the equaliser decision delay was set to ¢ = 0 and in the second
case it was set to d = 3. Since thischannel is a mixed phase channel with a zero outside the
unit circle in the z-plane, a linear equaliser with d = 0 can not equalise the channel [59] but,
with d = 3, alinear equaliser can equalise it successfully. The optimal Bayesian equaliser for
this problem has N, = 128 channel states derived in terms of M = 8 scalar channel states.
The fuzzy equaliser uses 128 fuzzy rules which are derived from the channel states. In the
Monte Carlo simulationsthe number of nonzero membership functionsfor the fuzzy equalisers

were varied from M; = 2to My = 8. M; = 8 provides the optimum Bayesian equaliser
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when used with product inference and centroid defuzzifier. The fuzzy equalisers considered in
this study used the minimum inference rule and the maximum defuzzification process which
constitutesthe Fuzzy#4 equaliser with minimum computational complexity. The scalar channel
states and the channel noi se stati stics were estimated using 200 training samples averaged over
50 experiments and the equaliser weights were trained with the same training signal. The
optimal Bayesian equaliser was simulated assuming the true channel information and noise
statistics to estimate the channel states. The BER performance of the equalisers with Monte
Carlo simulations for a wide range of SNR’s is presented in Figure 3.12(a) and 3.12(b) for
d = 0 and d = 3 respectively.
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Figure 3.12: BER performance of fuzzy equaliserswith subset centre selection using channel
H(z) = 0.34824 0.8704z~'+ 0.3482z72

From the BER plotsit can be seen that the fuzzy equaliser with a subset of centres can provide
anear optimal performance. The equaliser with 2 non zero membership functions suffers from
performance degradation. This performance degradation can be attributed to the fact that, under
many input conditions, none of the 128 rulesis used in decision making, thusresulting in large
errors. However, increasing M; from 4 to 8 does not provide any observable performance
improvement. Hence, it can be inferred that, under this circumstance, using the 4 highest
non zero membership function to the input scalars only is sufficient to provide a near optimal
performance. It was also observed from the simulation studies that this condition of using the

4 nearest membership functions selects between 4-12 fuzzy rules from the available 128 rules.
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With this it is seen that using only around 10% of channel states in form of fuzzy rulesis

sufficient to provide the optimal performance in this case.
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Figure 3.13: Effect of number of subset scalar centre on BER performance of fuzzy equalisers
for different channels

In the next part of thisstudy the effect of the number of non zero membership functions closest
to theinput scalars was studied for afixed SNR. For thisstudy two channels [ (z) = H5(z) =
0.3482+ 0.870427'+ 0.3482z7%and H (2) = Hr7(z) = 0.7255+ 0.580427'+ 0.362727 %+
0.0724273 were used. The equaliser length and delay were set to m = 5,d = 3 for Hy
and m = 4,d = 0 for Hg. These parameters provided best performance for the equalisers
and use Ny = 128 fuzzy rulesin both cases. The BER performance of both the equalisers
against the number of non zero membership functions used, for SNR of 10 dB and 18 dB is
presented in Figure 3.13. The x axis aso shows the maximum and minimum number of fuzzy

IF ... THEN ... inferencerulesused for avariety of input conditions.

From the resultsit is seen that if the fuzzy equaliser uses at least one rule in decision making
for al varieties of input the performance of the equaliser approaches the optimal performance.

It can also be seen that the fuzzy equalisers provide near optimal performance when only £
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the membership functionsare used. Thisused only around 10% — 20% of the fuzzy inference
rules, as can be seen from Figure 3.13. For Hs the performance of the fuzzy equaliser does
not improve by using more than 4 nonzero membership functions closest to the input scalar.
Similarly, for H; the performance reaches the optimal performance when a minimum of 8
membership functions are used. These membership functions trandate to use of maximum of

12 and 26 fuzzy rules out of 128 rulesfor the channels H 5 and H; respectively.

3.8 Conclusion

The Bayesian equaliser wasimplemented with fuzzy systems and the performance of the fuzzy
equaliser was evaluated. The following conclusions can be drawn from the study presented in

this chapter.

¢ Thefuzzy equaliser provides an efficient implementation of the Bayesian equaliser.

¢ Thefuzzy implemented Bayesian equaliser providesawider choice of equaliser structure

compared to the RBF implementation of the Bayesian equaliser.

¢ All forms of fuzzy equalisersi.e. Fuzzy#1 and the computationally efficient Fuzzy#2,
Fuzzy#3 and Fuzzy#4 provide a nonlinear decision boundary close to the optimal equal-

iser and provide very little performance degradation in terms of BER.

¢ Fuzzy equalisers incorporating subset centre selection provide efficient schemes for re-
ducing computational complexity. Simulation studies suggest that the use of only 10%-
20% of the channel states out of all channel states is sufficient to provide near optimal
performance. These subset states can be automatically selected by a selective use of a

subset of avail able membership functions.

¢ The computational complexity of the RBF implementation of the Bayesian equaliser is
relatedto N, = 277~ (dependent on m and n.), whereas the complexity of the fuzzy
equaliser isrelated to N, for multiplicationsbut is related to M = 2" (dependent only

on n.) for summation, exponentiation and divisions.

¢ The training overhead in fuzzy equalisersis related to the estimation of M scalar para-
meters which provide fast training and ease of tracking in decision directed mode. This
feature of fuzzy equalisers could make them suitable for use in mobile communication

applications.
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Chapter 4
Fuzzy Equaliser for Co-channel
| nterference Suppression

4.1 Introduction

The problem of channel equalisation in general was discussed in chapter 2 and that of the CCl
was introduced in section 2.3. In Chapter 3 the Bayesian equaliser for the ISl channels was
implemented with a fuzzy system. This chapter analyses the problem of channel equalisation
in DCS which are affected by CCI. It was seen that the channel equalisation is a nonlinear
problem. But the presence of CCI makes it more complex. Under most circumstances the
decision boundary of the optimum equaliser for ISl channels can be approximated by a linear
decision boundary with proper selection of decision delay d. However, in the presence of
moderate to severe CCl, the optimal decision boundary changes, and in most circumstances it
cannot be approximated with a linear boundary. These conditions demand the use of special

forms of nonlinear equalisersthat can compensate for this distortion.

Advancesin TDMA mobile cellular communications and the rising demand for these services
have been partly made possible by sophisticated equalisation techniques. But with the increase
in the number of users CCl is becoming alimitation on the system performance. This chapter
discusses the development of fuzzy equalisersfor CCl channels. An equaliser not designed to
mitigate the effects of CCl can suffer from major performance degradation in moderate to high
CCI conditions. The optimum symbol-by-symbol equaliser for a CCl channel requires large
computational complexity. This trend can be offset by efficient schemes for CCl mitigation
with reduced computational burden. This chapter attempts to address some of the issuesin
this regard. A modified form of the fuzzy equaliser designed for ISl channels is presented.
Thisegualiser possessesthe capability of successfully equalising channelswith CCI. Important

issues discussed in this chapter are as follows.

¢ The fuzzy implementation of the Bayesian equaliser is derived and the computational

issuesfor thisequaliser are discussed.
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¢ A modified form of thefuzzy equaliser discussed in chapter 3ispresented which provides
efficient CCl compensation. Thisequaliser istermed a fuzzy—CCl equaliser. The fuzzy—
CCl equaliser developed here works with an input pre-processor in conjunction with
the fuzzy equaliser for ISl channels. The input pre-processor helps to remove the CCl

efficiently.

o A wide variety of simulation studies are presented to validate the performance of the

equaliser developed in this chapter.

The chapter is organised as follows. The next section provides a background to the concept of
CCI compensation and also surveystheliteraturein relation to equalisation of CCI channels. In
section 4.3 the normalised Bayesian CCl equaliser with scalar centres (NBSS-CCI) is derived
and section 4.4 devel ops the fuzzy implementation of NBSS-CCI as well as presenting a mod-
ified form of the fuzzy equaliser developed for ISl channels to compensate for CCI. Section
4.5 presents the decision feedback concept in this scenario while section 4.6 presents the im-
plementation issues. Section 4.7 includesthe simulation results and finally section 4.8 provides

the concluding remarks.

4.2 Background and literaturereview

A risein demand for DCR has added more users and services to the existing facilities and with
this the CCI is increasingly limiting the system performance. The main cause of CCl here,
is the interference from the signal of a cell in the neighbouring cluster using the same car-
rier frequency as the desired user. This problem becomes more severe in a fading environment
when thesignal suffersfrom multi-path fading in additionto channel 1SI and AWGN [134, 135].
Similar problemsof CClI, 1Sl and AWGN are al so encountered in other communication systems
such as dua polarised microwave radio[47], twisted pair subscriber loops[47, 136], multiuser
spread spectrum systems and multi pair cables. The problem of CCl is aso encountered in
digital magnetic data recording. This section presents the communication model for this prob-
lem where the communication system is affected by CCI. A general communication system in
this type of environment was discussed in section 2.3. It is assumed that the receiver filter in
the receiver front end removes the ACI efficiently and the equaliser only worksto combat the
effects of CCl, 1S and AWGN.
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421 System model

The discrete time model of the communication system discussed in this chapter is presented
in Figure 4.1. Thismodel iswidely used to represent a communication system corrupted with
CCl, ISl and AWGN [47]. Here H (=) isthe channel transfer function which is corrupted with
L interfering co-channels H.,(z), 1 < ¢ < L. The impulse response of the channel can be
represented as !,

Ne—1

H(z) = Z ap ;277 (4.1)

=0

n (k)

ﬂ H(z) " ® r(k)\ E y (k_mﬂ)
’%O(k-d)

Teo(k) Equalizer Function Ié

s1(k) é
— Hco_l (Z) ——
. ! /
T Training Signd
d| I () =) s (k-d)

Figure4.1: Discrete-time model of a DCS corrupted with co-channel interference

and the impul se response of the co-channels can be represented as,

Nei—1
Heoi(2) = Z a2 1<i<L (4.2)

i=0

where n.; and a; ; are the length and tap weights of the i th co-channel impulse responses. It is
assumed that the communication system is binary. Thismakesthe analysissimpleand it can be
extended to any communication system in general. The transmitted symbolss;(k), 0 < ¢ < L
for the channel (: = 0) and the co-channels (1 < ¢« < L) are binary i.i.d., i.e. they comprise

1 Thisimpulse responsefor channel was derived in Chapter 2.
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{£1} symbols. They satisfy the conditions

Elsi(k)] =0 (4.3)

where £[.] denotes the expectation operator and

6(k){ book=0 (4.5)
0 k#0

The channel output scalars can be represented as

r(k) =7(k) + Teo(k) + n(k) (4.6)

where 7(k) isthe desired received signal, 7., (k) istheinterfering signa and 7 (k) is the noise
component. The noise, n(k), is assumed to be Gaussian with zero mean and a variance of
E[n*(k)] = o and isuncorrelated with the data. The desired and the interfering signal can be

represented as

Ne—1
P(k) =" aojsolk — j) (4.7)
7=0
L ne—1
Peolk) =) a; ;si(k — j) (4.8)
i=1 7=0

With thisthe SNR, signa to interference ratio (SIR) and signal to interference plus noise ratio
(SINR) can be defined as

g

SNR = 7 (4.9)
7
o2
SR= = (4.10)
2
o
INR= —&— 411
S O'% + 02, ( )
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where o2 is the co-channel signal power. With the transmitted signal power equal to unity,
o? and o2, can be defined as the channel and co-channel power respectively. The task of the
equaliser depicted in Figure 4.1 is to estimate the transmitted sequence sqo(k — d) based on
the channel observation vector r(k) = [r(k), r(k — 1), ..., 7(k — m + 1)]. The equaliser
estimated symbol 5y(k — d), is desired to provide minimum BER w.r.t. so(k — d). During
the training period, the equaliser uses a copy of the transmitted sequence stored locally and
during actual detection the past detected symbols can be used to update equaliser parameters
in a decision directed mode. The equaliser does not have access to the transmission sequence

si(k), 1 <14 < L corresponding to the co-channels.

422 Literaturereview

The problem of CCI was considered as inter channel interference in multichannel DCS's. The
receivers designed for multi pair cables and the receivers in the up-link path of radio commu-
nication systemsare required to optimise the detection of all transmitter sources. The optimum
receivers under these circumstances using linear and MLSE agorithms were originally pro-
posed in [137] and [138] respectively. The design aspects of receiver and transmitter filters for
joint estimation of all the channelswere analysedin [139]. The process of equalisationfor joint
estimation of signalsin a multi channel TDMA mobile radio systems has been recently repor-
ted in [140]. Joint estimation of multiple channel signalsfor radio communication applications
using ML SE and MAP agorithms were reported in [141] and blind estimation techniques for
these applicationswere presented in [142].

The problem addressed in this chapter of the thesisis similar to the multichannel communica-
tion system but islimited to the system where the receiver recovers only the signal correspond-
ing to the desired user. This corresponds to down-link in atypical mobileradio communication
application. The techniques used for the joint estimation of multiple channel signals can be
used here but the receiver can be further optimised to provide better performance for detection
of only the single desired signal, while rgjecting the interference. The interfering cross talk
signal in DCS possesses cyclostationary property [47] and a receiver not optimised for cross
talk can exhibit severe performance degradation. In [143] a specia form of time dependent
adaptive filter was shown to out perform conventional adaptive filters in CCl mitigation. The
equalisation of crosstalk in digital subscriber lines using an FSE [21] with decision feedback
provides major performance gains[144] since FSE treats CCl as a cyclostationary interference

which is different from stationary noise. The T-spaced equaliserstreat CCl as stationary noise

75



Fuzzy Equaliser for Co-channel Interference Suppression

and in the process of equalisation and exploit the staistical properties of the signal. However
the CCI is similar to the siganl of interest since both consist of a finite set of discrete states.
This accounts for the performance degradation of the T-spaced equalisers. The effects of the
transmitter and receiver filter BW for CCl suppression in multiple twisted pair cables were
analysed in [46, 145], where it was shown that every increase in BW size equal to symbol rate
may providetheflexibility to completely suppressan additional cyclostationary interference. In
[136] the designissuesfor transmitter and receiver filtersin these environmentswere addressed.
FSE with decision feedback in conjunctionwith large transmitter and receiver BW provided en-
couraging performance in a quasi-static fading environment [146, 147]. Even though the use
of large transmitter and receiver BW in conjunction with a DFE with fractional tap spacing
provides major performance advantages, these may not yield a solution to existing problems

since an increase in transmission BW may not always be permissible.

The equaliser that can provide the minimum bit error rate (BER) under the above conditions
is the infinite memory MLSE designed for CCI, which would require the knowledge of the
co-channels. Normally the receiver does not have the access to the training signal for the inter-
fering channels. Excluding this, the formulation of the ML SE detector for this problem would
involve large computational complexity [92]. However, a finite memory symbol-by-symbol
equaliser can be used for this problem in line with the equalisers developed for 1Sl channels.
This equaliser would aso require the knowledge of the channel and co-channel states making
the equaliser training difficult. It has been seen that symbol-by-symbol linear equaliser suffer
from performance degradation since the optimal decision boundary of an equaliser isgenerally
nonlinear. For this reason nonlinear equalisers have been seen to provide better performance
for the ISl channel. Some of these techniques were discussed in section 2.7. Similar nonlin-
ear equalisation techniques have been attempted for equalisation for CCI channels. In [148],
an equaliser designed using a RBF network was shown to out perform the linear equaliser.
Similarly equalisers were designed for CCI channels with a functional link ANN [100] and a
multi layer ANN [149]. A polynomial perceptron [88] with fractional sampling was also shown
to perform satisfactorily for M-QAM communication systems. However, most of these stud-
ies considered high SIR conditions or high SNR conditions. These equalisers suffered severe
performance degradation under low SIR with high SNR conditions. Equalisers based on the
Mahalonobis distance classifier [150] with the Viterbi algorithm have shown good perform-
ance for stationary channels. But, these equalisers need a long decision delay like the Viterbi
equalisers and their complexity grows with decision delay. Thislong delay is likely to cause
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performance degradation in mobile communication applications since a long delay in channel

estimation may result in large tracking errors.

In arecent study, Chen et. al. [92] proposed a Bayesian DFE that incorporates CCl compens-
ation (Bayesian—CCIDFE). This equaliser can provide the optimum decision for the symbol-
by-symbol equaliser. Thisequaliser was trained in two stages. The first stage uses supervised
clustering and subsequently unsupervised clustering is used to remove the effects of CCI. This
equaliser is computationally complex and the computational complexity growsif thereis more
than one co-channels. In this chapter a fuzzy system based equaliser is designed which ad-
dresses some of these issues. The complexity of this fuzzy equaliser is comparable to the
Bayesian equaliser treating CCl as AWGN but provides a performance which is close to the
Bayesian—CCIDFE presented in [92].

4.3 Normalised Bayesian equaliser in CClI, 1Sl and AWGN

The optimal decision function of the Bayesian equaliser for 1Sl channels was presented in
section 2.5 and its normalised form with scalar states was presented in section 3.3. In this
section the decision function for a normalised Bayesian equaliser with scalar states for CCl
channel (NBSS-CCI) is derived.

In order to derive the NBSS-CCI the Bayesian equaliser decision function in (2.30) is con-
sidered first.

N. 12
R S @12

2
2077

where N, = 2"t ~1 isthe number of channel states, w; are the weights associated with each
of the channel states. w; = +1if ¢; € CF and w; = —1if ¢; € C;. The estimate of the

symbol from the memoryless detector is defined as

Sk —d) = { ! §ir(k)} 2 0 (4.13)
-1 F{r(k)} <0

To derive the decision function of the Bayesian equaliser for CCl channels (Bayesian—CCl), it

is assumed that there is only one interfering co-channel. If there are more, the same analysis
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can generally be extended. In the presence of CClI, the interfering signal T, (k) = [Feo(k),
Toolk — 1), ..., Teolk — m + 1)]T will have a finite number of states. These states are
described as co-channel states. There would be N, ., = 2nertm—1 co-channd states Ceonr
1 <a < N, ., Which constitute the noise free received vectors due to the co-channel signal in
the absence of the desired signal. The desired signal, due to channel 1SI, provides NV, channel
statesc;, 1 < i < N, intheabsenceof CCl. Inthe presence of CCl and ISl the noisefree signal
vectorswill be the combination of all possiblechannel and co-channel states. With thisthenoise
free received signal vector can berepresentedasc; +c¢q.;, 1 < ¢ < Ny and N, ., = Qnertm—1

The presence of the co-channel states modifies the decision functionin (4.12) to

N. Neco B e 2
Scorfr(k)} =3 > wiexp ( Irth i:;r Ceoc| ) (4.14)
=1 a=1 n

This forms the optimum equaliser decision function of a symbol spaced equaliser for a CCl

channel. Here the decision function is affected by the channel statesand co-channel states. The
co-channels states surround the channel states. Thereare IV, ., co-channel states corresponding
to each channel state. All the co-channel states corresponding to a specific channel state inherit
the weight associated with that channel state. With this understanding, the channel statesin the
Bayesian equaliser in (2.30) are replaced by a group of co-channel states due to the presence
of CCI. Thisequaliser can be implemented with a RBF network, where the RBF uses NV, N .,

centres each with aspread o = o [148].

4.3.1 Normalised Bayesian CCI equaliser with scalar channel states(NBSS-CCI)

The Bayesian—CCl equaliser in (4.14) can be normalised to provide the actual detected samples
rather than a decision function. This normalisation is in line with the Bayesian equaliser de-

cision function for ISl channelsin (3.9). With this, the Bayesian—-CCl decision function can be

presented as

NS Ns,co _ _ . 2

Z Z Wi exp ( || (k) {C22‘|‘ Ceoa )| )

1=1 a=1 2077

Scer {r(k)} = N (4.15)
3 e (—Hr(k) —{oi+ cco,a}u?)
p

, 202
=1 a=1 n
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Where the decision function in (4.14) has been normalised with the output of al the channel
and co-channel state combinations. The process of working of this normalised Bayesian—CCI
equaliser is presented in the following Example.
EXAMPLE 4.1
The process of channel and co-channel states formation with the decision making pro-
cess in a CCl environment is discussed here. The channel used can be represented by
its z-transform H(z) = Hy(z) = 0.5 + 1.0271. The channdl is corrupted by the co-
channel H.,1(z) = AHz(z) = A(1.0+ 0.2271) where A represents the scale factor for
adjustment of SIR. Selecting A = 0.3467 provides SIR=10 dB. The system SNR was
considered to be 15 dB. The equaliser length and delay are settom = 2 and d = 0.
The channel states for this channel are presented in Table 2.1. The equaliser parameters
provide N, = 8 channel statesand NV, ., = 8 co-channel states.

NO. | conn | s1(k) si(k—1) si(k—2) — teolk)
Cco,on Cco,ozl
1 Ceo1 1 1 1 1.2 1.2
2 Ceo,2 1 1 -1 1.2 0.8
3 | cws | 1 —1 1 0.8 —0.8
4 Ceo,d 1 -1 -1 0.8 —1.2
5 Coos | —1 1 1 —0.8 1.2
6 | cos | 1 1 —1 —08 08
7 Ceo7 | —1 -1 1 —1.2 —0.8
8 Coog | —1 -1 -1 —1.2 —1.2

Table 4.1: The co-channel state calculation for channel H(z) = 1.0+ 0.22~! with m = 2,
d=0,Ns;c, =8and A =1

The co-channel states for the equaliser are presented in Table 4.1. Each of the com-
ponents of the co-channel statesin Table 4.1 is to be scaled with A to provide the co-
channel state at the desired SIR. The components of the co-channel states are presented
as Cqo,00 AN g, 1. EaCh of the 8 channel states are associated with 8 co-channel states.
Thelocations of the channel states, co-channel states and the optimal decision boundary
are presented in Figure 4.2. Here the positive channel states are presented as O and the
negative channel states are represented as (). Each of the channel states are associated
with 8 co-channel states. The co-channel states associated with positive channel states
are represented with ¢ and the co-channel states in association with negative channel

states are presented with 4+ symbols.

From the Figure 4.2 it is seen that the presence of CCI increases the number of states
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15

0 r(k-1)

-15

-3 15 0 15 3 -3

r(k)
Figure 4.2: Bayesian—CCl equaliser decision boundary with channel and co-channel states
with channel H(z) = 0.5+ 1.027', co-channel H.,1(z) = A(1.0+ 0.2271),
m = 2 and d = 0 for SNR=15 dB and SR=10 dB,[J positive channel states,
negative channel states, ¢ co-channel states with positive channel states and +
co-channel states with negative channel states

used in the decision function calculation. Each of the N, channd states ¢;, are sur-
rounded by N; ., co-channel states. For this co-channel at a SIR=10 dB, the decision
boundary is close to the Bayesian equaliser decision boundary that treats CCl as AWGN.
This was presented in Figure 2.9. With a reduction in SIR the co-channel states move
away from the channel states and an increase in the SIR moves the co-channel states
closer to the channel states. When SIR=o0c the co-channel states merge with the chan-
nel states. From the Figure 4.2 it can be inferred that a reduction in SIR will result in
the co-channel states corresponding to the positive and negative channel states to cross
over, which may requires a very complex decision boundary. This situationis presented
in Figure 4.3 for SIR=5 dB. From this Figure it can be seen that the co-channel states
corresponding to positive and negative channel states have crossed over and in this situ-
ation the optimal decision boundary has become very complex. The decision boundary
of a Bayesian equaliser or any other type of nonlinear equaliser treating CCl as AWGN
would be similar to the decision boundary presented in Figure 4.2 and these equalisers

would fail even for a noise free channel, with the interference remaining the same.

In line with NBESS, the equaliser decision function in (4.15) can also be represented in terms
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10 r(k1)

-15
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r(k)
Figure 4.3: Bayesian—CCl equaliser decision boundary with channel and co-channel states
with channel H(z) = 0.5+ 1.02~! and co-channel H.,(z) = A(1.04+ 0.2271),
m = 2 and d = 0 for SNR=15 dB and SR=5 dB,[1 positive channel states, O
negative channel states, ¢ co-channel states with positive channel states and +
co-channel stateswith negative channel states

of its scalar channel states. The channel and co-channel states are taken from combination of
the scalar channel and scalar co-channel states. Each of the channel states c¢; can be represented

as

T (4.16)

C; = [02'07 Cily -y Cily -+ Ci(m—l)]

wherec;;, 0 <1 < (m—1) representsthe (/+1) component of the channel statec;, 1 < ¢ < N;.
Each of these componentsc¢;; € C; and C;, 1 < ;7 < M arethe scalar channel states. In a

similar way each of the co-channel states c,,, , can also be represented as

T (4.17)

Ceo,a = [Cco,oz07 Ceo,aly s+ 9 Ceoaly++ +9Ceo,a (m—l)]

where cqo.q1, 0 < I < (m — 1) represents the (I + 1) component of the co-channel state ., .,

1 <a < N,,.. Eachof these componentsc., o € Coo; and Co ;, 1 < 7 < M., constitutes
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the scalar co-channel states. The number of scalar co-channel states M, = 2"<1.

co —

This concept of the scalar channel and scalar co-channel state combining to form the channel
and co-channel state is presented in Figure 4.4. Here m = 2 so that r(k) = [r(k),r(k —
1)]*. One of the channel states c; is presented with O symbol. The case considered here is
similar to the Example 4.1. The system consists of 8 co-channel states and these co-channel
states surround the channel state. These co-channel states are presented with +. The decision
functionin (4.15) calculates the Euclidean distance of each co-channel states with respect to the
input vector with the function ||r(k) — {c; + c.,.1}||*. The process of this Euclidean distance

calculationis presented in the Figure 4.4. This distance can aso be represented as,

HI'(IC) - {Ci + cco,l}H2 = |T(k) - {CiO + Cco,10}|2 + |T(k - 1) - {Cil + Cco,11}|2
(4.18)

where the Euclidean distancein R ? has been replaced by absolute distancein R.

/ Ceo,5 % Ceo,1
+ .....................................
+\ 4\ ~
J1 =2
CCO,G Cco72 | 3
—_ O
]
o
|
Cil NN il
: | =
. Ceo,3 \&:/ (S
Ceo,7 - - |
N —
: —
+ : + |
. Ceo,4 3
. ' L ~
+‘\ Ceo10 t T( )_CJO_CCOJO ) T(k—l)
5 : r(k) =cjo
Ceo,8 :
r(k)

Figure 4.4: Representation of channel statesand co-channel statesusing scalar channel states
and scalar co-channel states, () channel state and + co-channel states

With this understanding each combination of channel and co-channel statesc; + ¢, ., can be

represented in terms of their scalar components. Taking advantage of the exp(.) operator the
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decision function in (4.15) can be conveniently represented as

iN ~ w; {ﬂi_f exp (_ lr(k —1) —2{;%1 + Cco,al}|2) }

i=1 a=1 =0

iN ) { 1:[ exp (— r(k = 1) —2{;%1 + Cco,al}|2) }

i=1 a=1

(4.19)

Snmss—cor {r(k)} =

The normalised form of the Bayesian CCl equaliser presented in (4.15) and the equaliser in
(4.19) provide the same decision function. But the equaliser in (4.19) can beimplemented with
lower computational complexity as it can take advantage of the regular array of the channel
states and the time shifting property of the equaliser input. A comparison of the computational
complexity of these two forms of equalisersis presented in Table 4.2. The second part of this
Table presents the specific computation involved in estimation of each samplein a system with

Ne = Nep = 3 andm = 5.

From Table 4.2 it is evident that the normalised form of Bayesian equaliser with scalar states
(NBSS-CCI) providesmajor computational advantagesin the computation of addition, division
and exp. The increase in multiplicationsis very little compared to computational savings for

other operations.

Bayesian CCl || Computation Aspects || NBSS-CCI
(4.15) (4.19)
2mN,N; ., Addition NyN; oo + MoM;
MNNs co Multiplication MNsNg o + MoMy
NeNsoo+1 Division MM +1
Nst,co €XDp MOMI
163, 840 Addition 16, 448
81,920 Multiplication 81,984
16, 385 Division 65
16,384 exp 64

M = 2”5, Ml = 27%1,]\/'5 — an—l—m—l and Ns,co — 2n51+m—1

Table 4.2: Computational complexity comparison for alternate implementations of Bayesian—
CCI equaliser. The second part represents specific computational requirements for
Ne=MNe1 =3, M=25

From the above discussionit is seen that NBSS-CCI providesimplementation advantages com-

pared to the Bayesian—CCl equaliser. In-line with the fuzzy implementation of NBESS the
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NBSS-CCI can aso be implemented with fuzzy systems. The computational complexity for
the optimal Bayesian—CCl and the NBSS-CCI equalisersisvery large for rea timeimplement-
ation. The use of the minimum inference rule and the maximum defuzzification process can
reduce the computational complexity of fuzzy implementation of NBSS-CCI equaliser still
further. But the computational complexity remains very large for real time implementation.
The ML SE designed to remove CCI will be computationally more complex than the Bayesian—
CCl equaliser [92]. A MLSE treating CCl as AWGN can be designed with low computational
complexity but the performance of this equaliser degrades at low SIR’s and there is further
performance deterioration in fading channels. These issues relating to the performance com-
parison between the Bayesian equaliser and MLSE in a CCl environment have been analysed
in[92]. For thisreason a computationally efficient fuzzy equaliser for thisproblem is proposed

in the next section and this equaliser istermed as fuzzy—CCI equaliser.

4.4 Fuzzy implementation of the NBSS-CCI

The NBSS-CCI decision function was derived in section 4.3. This equaliser provides the
Bayesian—CClI equaliser implementation with reduced computational complexity. The NBESS
was derived in section 3.3 and it was implemented with fuzzy systems in section 3.4. This
equaliser efficiently implements Bayesian equaliser for ISl channels. Similar to the fuzzy im-
plementation of NBESS the NBSS-CCI can a so be implemented with fuzzy systems. For this
the NBSS-CCI can be described with following equations.

=1 a=1
Sie(b)} = N (4.20)
>3 {1l oi)
=1 a=1 =0
where ¢, is the membership from scalar centres. This membership function can be presented
as
qu € %470&1 (421)
, _—{C. 2
le,ozl — exp [_ (|T(k ) {C]2+ CCO,al} | )] (4.22)
2077

84



Fuzzy Equaliser for Co-channel Interference Suppression

where, 1 < 7 < Ny, 1 < a < Ny, and0 <1< (m—1). ¢, 1 <j < M and
1 < al < M., isthe membership function corresponding to the (/ + 1) component of the
channel state ¢+ and co-channel state a. These channel state components belong to the j th and
a1 th scalar channel and co-channel states respectively. The decision function in (4.20) is a
fuzzy system with N, N, ., fuzzy IF' ... THEN ... inference rules with product inference,
centroid defuzzifier and Gaussian membership function. Thisequaliser has all the properties of
the fuzzy equaliser discussed in section 3.4. The computational complexity of thisequaliser is
similar to the NBSS-CCI equaliser and can be further reduced by the use of minimum inference
and maximum defuzzification processes. The process of subset centre selection can aso be
applied to this equaliser. However, like the NBSS-CCI this equaliser is also computationally

complex and practically difficult to realise.

Here amodified form of the fuzzy equaliser designed for ISl channelsis presented. In order to

derive this, the fuzzy equaliser derived in section 3.4 is considered first,

Fr(h)} = S (4.23)
Z { (bzl}
=1 =0
Y] = exp {—% (W) } (4.24)
i € V] (4.25)

It has been seen that the presence of CCl creates more states. The co-channel states surround
the channd states. Similarly the presence of CCl increases the number of the noisefree received
scalars called the scalar channel states. These would be the scalar co-channel states surrounding

the scalar channel states. Now the noise free received scalars can be represented as

Ci + Cco,lv Cz + Cco,27 ceey Cz + CCO,MCO where 1 < { < M

The presence of CCl increases the number of noise free received samples by a factor equal to
the number of scalar co-channel states. With this understanding the membership function in

(4.24) can be conveniently modified to provide suboptimal CCl compensation. This modified
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membership function can be represented as

where, the membership function in (4.24) has been modified to find the sum of the membership
functions corresponding to all the scalar co-channel states associated with each of the scalar
channel states. This membership function in conjunction with the equaliser presented in (4.23)
can provide suboptimal co-channel compensation. Another form of the membership function
that can also beused is,

b :%%{exp (_|r(k—l) - (cj+cco,a)l2)} 4.27)

2
2077

where, the membership function evaluation is based on the maximum of the co-channel mem-
bership functions corresponding to each of the scalar channel states. This membership function
in (4.27) hasimplementional advantages compared to (4.26) and can be efficiently implemented
with

{?ﬁ_m [Ir(k = 1) = (Cj + Cooa)] }2

a=1
2
2077

W] = exp{ - (4.28)

where the distance between the received scalars and the scalar channel states offset with the
scalar co-channel states is first estimated and the minimum of the distances corresponding to
the co-channel statesis squared and passed through the exponential function after normalisation
with the noise variance. Thisis the same as finding the maximum exp(.) of the distance from
input scalar to the set of co-channel states corresponding to each of scalar channel states. From
simulation studiesit has been seen that the membership functionswith (4.26) and (4.27) provide
similar performances. But (4.27) can be implemented using (4.28) with minimum complexity.
With this the fuzzy equaliser consist of N fuzzy IF ... THEN ... rules with product
inference which are generated from the channel states information, membership function given
by (4.28) and COG defuzzifier.
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4.4.1 Fuzzy—CCl implementation

The schematic of the fuzzy—CCl equaliser discussed here is shown in Figure 4.5. The input
scalar is processed by the membership function generator, whose centres are positioned at the
scalar channel states. Each of the membership function sub-blocks generates the membership
function from only one of the scalar co-channel states corresponding to each of the scalar chan-
nel states. The membership function generation is presented in (4.28). The output of the mem-
bership function generator is delayed and this forms the membership function for previously
received signal samples. The product block has NV, sub-blocksand each of these sub-blocksre-
ceives membership functionsfrom one of the centres corresponding to each input scalar. These
membership functions are suitably combined to provide the modified channel state output. The
membership function generators consist of A membership function sub-blocks. Each of the
sub-blocks has M ., centres. The nearest co-channel state in a sub-block w.r.t. theinput scalar
provides the membership function to the product block. The product blocks corresponding to

positive channel states are added to provide ‘@ and those corresponding to negative channel

states are added to provide 'b’. The equaliser decision functionis represented as _T_z .

Inference Rule base
r(k) (Channel state information)

3
| Tl

Ng
Product Block

Center Output

‘ P1m—-1t0ON, m—1 ‘

__________________________________________________________________

Sy N N

Ci + C'co,l Cz + C'co,2 Cz + C(co,Mc

Figure 4.5: Schematic of fuzzy—CCl equaliser

An example is considered below to show the effect of membership function modification in
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CCI mitigation.
EXAMPLE 4.2
This example takesinto account the channel and co-channels considered in the Example
4.1. The channel used is

H(z)=Hy(?) =0.5+1.027"
corrupted with CCI from

Heon(2) = Ay (2) = A(1.0+0.2271)

where, the scaling factor A controlsthe SIR. A selection of A = 0.55142 provides SIR=5
dB and A = 0.3467 provides SIR=10 dB. Here the decision boundary of the optimal
Bayesian—CClI is compared with the fuzzy—CCl equaliser presented in (4.23) using the
membership function provided by (4.28). The Bayesian—CCl equaliser uses Ny, = 8
channel states and each of the channel states is associated with vV, ., = 8 co-channel
states. In all it uses 64 states and it can aso be implemented with a RBF network using
64 centres. The fuzzy—CCl equaliser uses N, = 8 fuzzy IF ... THEN ... rules
with product inference and centroid defuzzifier. The fuzzy IF ... THEN ... rules
are generated from the channel state information. The decision boundaries provided
by the egqualisers for SIR of 5 dB and 10 dB are presented in Figure 4.6(a) and 4.6(b)
respectively. The decision regions corresponding to s(k) = 41 are marked with + and

the decision region corresponding to s(k) = —1 are marked with — signs.

The effect of SNR on the decision boundary of an equaliser was presented in Example
2.2, where the effect of channel noise on the equaliser decision boundary was analysed
and the change of optimal decision boundary for change in system SNR was al so presen-
ted. Subsequently, Example 4.1 presented the effect of SIR on the decision boundary.
It was seen that at SIR=10 dB the optimal decision boundary is similar to the decision
boundary presented in Figure 2.9 which corresponds to the decision boundary without
CCl.

From the decision boundary curvesin Figure 4.6 it is seen that the fuzzy equaliser with
modified membership function for CCl compensation, provides a decision boundary
which is close to the optimal Bayesian—CCl equaliser decision boundary. The Bayesian

CCI equaliser decision function consistsof 64 channel and co-channel state combinations
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3
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(a)SIR=5 dB(\ = 0.55) (a)SIR=10 dB(\ = 0.31)

Figure 4.6: Comparison of decision boundariesformed by fuzzy—CCl equaliser and Bayesian—
CCI equaliser for channel H(z) = 0.5+ 1.0 27! and co-channel H.,1(z) =
A(1.04 0.2271)

whereas the fuzzy—CCI equaliser decision function consists of 8 rules with 4 scalar co-
channel states associated with each of the scalar channel statesfor membership function
generation. From the decision boundary it isseen that the fuzzy equaliser with amodified
membership function can provide anear optimal decision function for channelswith CCl
using a similar number of channel states as the NBESS. However, NBESS treating CCl

as AWGN would fail under a severe SIR condition using a similar architecture.

From the above example it is seen that the fuzzy—CCIl equaliser can provide performance close
to the Bayesian—CCl equaliser with a complexity similar to the NBESS. The computational
complexities of the Bayesian—CCl equaliser, fuzzy—CCl equaliser and the Bayesian equaliser
for 1Sl channels are presented in Table 4.3. From this Table it is seen that the computational

complexity of the fuzzy—CCI egualiser isslightly lower than Bayesian equaliser that treats CCl

as AWGN. The second part of this Table presents the specific computational requirements for
estimation of each of the sasmpleswhen n. = 3, n.; = 3, m = 5 which provides N, = 64 and
Ny oo = 64.

89



Fuzzy Equaliser for Co-channel Interference Suppression

Computation Aspects | Bayesian—-CCl | Fuzzy—-CCl | Bayesian
(4.29) (4.23, 4.35) (3.17)
Addition 2mN Ny co N+ MM, 2mN,
Multiplication MNsNs co mN, + M miN,
Division NsNsco+1 M+1 N,
Exponentiation NsNs o M N,
Addition 40,960 128 640
Multiplication 20,490 328 320
Division 4096 9 64
Exponentiation 4096 8 64

M =27, Ny=2"etm=l My =2t Ny, = 2metm=l N, = 21

Table 4.3: Computational complexity comparison for the Bayesian—CCl, the Fuzzy—CCl and
the Bayesian equalisers

45 Decision feedback in CCl equalisers

The past decisions of the equaliser can be fed back to provide the DFE structure. The structure
of the DFE used here is presented in Figure 4.7. This equaliser uses the information contained
in the observed channel output vector r (k) and the past detected symbol vector

3 (k) = [Bolk — d — 1), 50k — d — 2), ....30(k — d — )]T (4.29)

to estimate 5o (k — d). Here ¢ is the equaliser feedback order. Without loss of generality, the
equaliser parameters can be selected as[53] d = n. — 1 to cover the entire channel dispersion

withm=d+1=n.andg=n.+m-—-d—-2=n,— 1.

When decision feedback is employed, the feedback vector S (k) can assume one of Ny = 2¢

1)

N
Decision So(k_d)
Device

Figure4.7: Schematic of a DFE
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states, and the equaliser forms the decision based on %—f channel statesfor each of the feedback
states [53]. Thusthe IV, channel statesin (4.14) can be grouped into V ¢ subsets based on the
feedback state and each of the feedback states contain N,y = %—f states.

+ Nog
U (4.30)

=1 [=1

||an

ECH

where, | represents the union operation and (j)th corresponding to the feedback state and {
corresponding to the channel state in each of the feedback states. With this, the process of
decision feedback with Bayesian equalisers can be considered as a process of subset state se-
lection resulting in areduction of computational complexity. The DFE with linear feed forward
filter? isaprocesswhere 1Sl associated with the detected samplesis cancelled with the feedback
filter [43].

The Bayesian—CCl equaliser with decision feedback can be represented as

RO —{lr (k) = & = Caol?
Soemre{r (k) |3(k) =y =) > " w eXp( 202 co.l ) (4.31)

=1 [=1

This equaliser is termed as Bayesian—-CCIDFE. Here the term c{ corresponds to the channel
state « for feedback state j and 1 < ¢ < N, and 1 < 7 < Ny, This forms the optimum
symbol-by-symbol DFE decision function for a CCl channel. In a similar way the NBSS-

N, s — ;
SRS ek = 1) = ed = copa)?

W; exp | — 552

; Ui

Seemre{r(k) | 3 (k) = s/} = ==L ;

N 8,co m— /

o7 N, 1 ||r(k—=1) —CZZ_CCO,MHQ
Z exp | — 202

. n

(4.32)

CCIDFE can be represented as

where cfl correspondsto the [ + 1 component of the vector channel state c;, corresponding to

2Thisequaliser isreferred to asthe nonlinear equaliser in the communication literature.
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the feedback state j, and 1 < j < N; and ¢, o correspondsto the (/ + 1) component of vector
co-channel statec., .,. Each of the componentsof channel and co-channel states are taken from
the set of M = 2"« scalar channel and M., = 2™<! scalar co-channel states. The normalised
form of the equaliser presented in (4.31) and the equaliser in (4.32) provide the same decision
function but the equaliser in (4.32) can be implemented with lower computational complexity
like equalisers without decision feedback. The components of channel and co-channel states
belong to the scalar channel and co-channdl states

cieC; wheael <i< Ny, 0<I<(m—1),1<j<Nyand

Ceo,al € Cco,ozl where 1 <a< Ns,cov 0 < [ < (m - 1)7 1 < al < Mco

where, a1 is a single index and the terms have their usual meanings. The fuzzy—CCIDFE

equaliser can be presented as

Fr(h)[p(k) = 5/} = S =0 (4.33)
Z { ¢fl}
=1 (=0
I € uf (4.34)
Meo 2
{ i 10— 0 = ot o]
Y =exp | — (4.35)

202

where o2 is optimised to provide the best performance. Under high CCI (low SIR) this can be
set to ¢ and under low CCI (high SIR) thiscan be setto o + o2,

45.1 Fuzzy implementation (Fuzzy—CCIDFE)

The fuzzy—CCIDFE can be implemented in a similar way to the fuzzy—CCI equaliser whichis
presented in Figure 4.5. For DFE implementation the fuzzy rules that form the rule base for
the inference system consist of NV, groups of rules each with N, rules, unlike the equaliser
in Figure 4.5 which has N rules. Depending on the feedback state a set of rules are used for

decision function cal cul ation.
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4.6 Fuzzy CCI equaliser: Implementation issues

This section analyses the training issues and the computational complexities related to the

fuzzy—CCIDFE. Here the training issues are considered first.

4.6.1 Adaptiveimplementation

The fuzzy—CCI equaliser and fuzzy—CCIDFE require the knowledge of equaliser channel states
and the scalar co-channel states. The equaliser design also requires the knowledge of channel
noise statistics. The channel states of the equaliser can be estimated from the scalar channel
states as discussed in Chapter 3. The process of estimation of parameters for the Bayesian—
CCIDFE have been analysed in [92]. The problem associated with thisequaliser trainingisthe
estimation of the co-channel states. The co-channel states of the Bayesian—CCl equaliser can
be estimated using unsupervised clustering. Thistechnique requireslong training sequence and
in addition convergence is not guaranteed. The co-channel states can also be estimated from
scalar co-channel states. The scalar co-channel states can be estimated with an unsupervised
clustering algorithm and observation of the state transitionscan provide the channel states[92].
This scheme could aso require a long training sequence, particularly under poor SNR condi-
tions. The fuzzy—CCIl equalisers reported here do not require the co-channel states but only the
scalar co-channel states, which are fairly simple to estimate with an unsupervised clustering
algorithm. The fuzzy—CCIDFE discussed above can be trained in 2 steps. The first step in
training involves estimation of the scalar channel and scalar co-channel states and the second

step involves learning weights with the LM S algorithm.

Step-1: Determination of channel and co-channel states The scalar channel and scalar co-
channel states of the equaliser can be estimated by the x-means clustering algorithm. The
equaliser channel states can be estimated from scalar channel states. This process of the es-
timating scalar channel states and forming of the channel states from these has been analysed
in section 3.5. The estimation of channel states with supervised clustering process can provide
o; + o2,. Subsequently the scalar co-channel states can be estimated. Here the estimation of
scalar co-channel statesis analysed.

Co-channel states: Once the channel states have been determined the channel residua r,. (k)
= r(k)— C; (here C; refers to the scalar channel state j) can be estimated. The channel
residual arises from the CCl and AWGN. An unsupervised clustering algorithm such asthe «-
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means or enhanced x-means [151] clustering algorithm can provide the scalar co-channel states
and the noise variance (¢,,). The process of the estimation of scalar channel states using the
x-means agorithm and the estimation of scalar co-channel states using the enhanced x-mean

algorithm have been discussed in detail in Appendix A.

Step-11 Weight training On completion of the channel and co-channel scalar state estimation,
the equaliser can be constructed (Figure 4.5). Theinitial weights (w;) of the equaliser can be
assigned +1 if ¢; € C elsethey can be assigned —1. The LMS algorithm presented in (3.5)
can be used to fine tune the equaliser weights so as to reduce the error at the equaliser output

due to the channel states estimation error.

The process of training the fuzzy—CCl and its decision feedback form is quick as the number
of scalar channel states and scalar co-channel statesare small. The estimation of scalar channel
states, scalar co-channel states and the weight training can be done in sequence one after the
other. The same set of training sequence can be reused for all the three procedures to maximise

its use.

4.6.2 Advantagesof fuzzy—CCl and fuzzy—CCIDFE

The fuzzy—CCl equaliser and fuzzy—CCIDFE presented in this chapter has several advantages
over the Bayesian—CCl (4.19) equaliser. These advantages are listed below.

¢ The fuzzy—CCl equaliser can provide near optimal performance with substantial reduc-
tionin computational complexity. The computational complexities of the fuzzy—CClI, the
Bayesian—CCI and the Bayesian equalisers were presented in Table 4.3. The computa-
tional complexity of the respective decision feedback equalisersispresented in Table 4.4.
From this Table it can be seen that the complexity of the fuzzy—CCIDFE is comparable
to the Bayesian-DFE that treats CCl as noise. The Bayesian—-CCIDFE isdifficult to im-
plement in real time applications. The second part of the Table 4.4 presents the specific
computational requirementswhen n. = 3, n.; = 3 withwhich the parameters are set to
m=3,d=2andq = 2.

¢ The structures of the fuzzy—CCl equaliser and fuzzy equaliser for 1S channels are the
same, excluding the membership function generation which is the input processor in the

equaliser. This makes the equaliser very flexible. The co-channel compensation module
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in the form of membership function modification can be introduced when the SIR drops

below acceptable limits.

¢ Thescaar channel and co-channel states provide a suitable method of finding the condi-

tion under which co-channel compensation is not required. If

7 1

g

I=;
mi
J
2

(ci = ¢j) > 2% Cp (4.36)

=

[

co-channel compensation is not required. In thisinequality, the left hand side represents
the smallest distance between any two scalar channel states and the right hand side rep-
resents the maximum scalar co-channel state corresponding to any channel state. If this

condition is not true then co-channel compensation in the form of membership modific-

ation should be used.

Computation Aspects Bayes(zjzcli)c IDFE FU(ZL]-Z.)\‘:/”;?::;[;)FE Bayesian-DFE
Addition 2mN5fN57CO st + MM, Qmst
Multiplication MmNssNs co mNgy + M mNss
Division NstNs co M+1 Nss
Exponentiation NstNs co M Nss
Addition 1532 72 48
Multiplication 768 32 24
Division 256 9 8
Exponentiation 256 8 8

M = 2ne, Ny = 2netm=1 ) = gna N, = natm=1 N, — 9

Table 4.4: Computational complexity comparison of Bayesian—CCIDFE, Fuzzy—CCIDFE and
Bayesian—DFE, Second part represents the specific computational complexity re-
quirementwhen n, = ny = 3, m = 3, d = 2, ¢ = 2, providing ¥V, = 32,
Ny=4,and Ny =8

¢ Training the fuzzy—CCl equaliser is simple as it uses scalar unsupervised clustering for
the co-channel state estimate. But, the Bayesian—CCl requires unsupervised vector clus-
tering for the co-channel states estimation. These aspects were discussed in sub-section
4.6.1. In the presence of more than one co-channel the estimation of the co-channel
states is very difficult as the number of co-channels becomes very large. Simulation

studies suggest estimation of scalar co-channel statesisrelatively simple.
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The decision making capacity of fuzzy—CCIDFE is analysed here with an example.
EXAMPLE 4.3
The decision making capability of fuzzy—CCIDFE for CCI channels is analysed here.
The channelsused in this study were,

H(z)=Hy(?) =0.5+1.027"

corrupted with CCI from the channel
Hco_l(Z) = AHQ(Z) = A(10—|— 0.22’_1)

where A controls the SIR. The system SNR=15 dB. The equaliser length m = 2, delay
d = 1 and feedback order ¢ = 1 are selected for optimum performance. These paramet-
ers provide Ny = 2 feedback states correspondingto s(k — 2) = —1 and 5(k — 2) = 1.
The number of channel statesare N,y = 4 and N ., = 8. The decision making capacity

of 4 forms of equalisers are analysed here. These equalisersare

¢ Bayesan-CCIDFE
¢ Bayesan-DFE
¢ fuzzy—CCIDFE and

¢ linear DFE

The Bayesian—CCIDFE uses 4 out of 8 channel states corresponding to each feedback
state. Each of these channel statesis surrounded by 8 co-channel states. Thiscorresponds
to using 32 channel states in the decision functions for estimation of each symbol. In a
RBF implementation thiswould require 32 centres corresponding to each feedback state.
The Bayesian-DFE is the Bayesian equaliser with decision feedback that treats CCl as
noise. Thisequaliser uses4 out of 8 channel states corresponding to each of the feedback
states. Similarly, the fuzzy—CCIDFE usesonly 4 out of 8 fuzzy IF ... THEN ... rules
derived from the channel states correspondingto each feedback state and the membership
function of the equaliser is determined with (4.35). The membership function block uses
4 co-channel states corresponding to each of the scalar channel statesfor calculating the
membership function in the presence of CCl. The equaliser uses the estimated scalar
channel states. These channel states are estimated with a supervised clustering agorithm

and the scalar co-channel states are estimated with an unsupervised clustering al gorithm.
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The linear DFE uses the LMS training algorithm to train the weights of the equaliser.
The performance of these equalisersfor a SIR of 10 dB and 4 dB is presented in Figure
4.8 and Figure 4.9 respectively.

1
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Figure 4.8: Comparison of decision boundaries for DFE equalisers with channel H (z) =
0.5+ 1.0z7! and co-channel H.,(z) = (1.04+ 0.227!) for SR=10 dB and
NR=15dBwithm =2,d=1,g =1

Figure 4.8(a) and 4.8(b) represents the decision boundaries for feedback signal corres-
ponding to s(k — 2) = —1 and 5(k — 2) = +1 respectively for SIR=10 dB. From
Figure 4.8 it is seen that the optimum equaliser Bayesian—CCIDFE decision boundary is
nearly linear and both the fuzzy—CCIDFE and Bayesian—DFE provide a decision bound-
ary which is very close to the optimal. The partitioning of the channel and associated
co-channel states show that the states ¢; + c... € CJ and¢; + ..o € C; arelinearly
separable. Thelinear LM S equaliser also provides a decision boundary which isclose to
the optimal. From these observationsit can be inferred that at this SIR=10 dB CCI can
be treated as AWGN for equaliser design.

In the next stage, the SIR was reduced to 4 dB. The equaliser decision boundaries for
s(k—2) = —1and 5(k — 2) = +1 are presented in Figure 4.9(a) and Figure 4.9(b)
respectively. From the decision boundaries it is observed that the decision boundary
provided by the Bayesian—CCIDFE isnow nonlinear. The partitioningof the channel and
associated co-channel states show that the statesc; + c.., € CF ande; + cqo 0 € CJ
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Figure 4.9: Comparison of decision boundaries for DFE equalisers with channel H (z) =
0.5+ 1.0z7! and co-channel H.,1(z) = (1.04+ 0.227!) for SR=4 dB and
NR=15dB,m =2,d=1,¢=1

are nonlinearly separable. This nonlinearity can be attributed to severe CCl. Under this
conditionthe LM S linear equaliser and Bayesian—-DFE equaliser decision boundariesare
similar to the decision boundaries at SIR=10 dB and they fail to equalise the channel.
The fuzzy—CCIDFE provides a decision boundary close to the Bayesian—-CCIDFE. It is
interesting to note that the fuzzy—CCIDFE using only 4, fuzzy IF ... THEN ...

rules derived from channel state information with product inference provides a decision
boundary close to the one provided by the Bayesian—CCIDFE using 32 states. Further,
with similar computational complexities the Bayesian-DFE using 4 channel states fails

to provide the required decision boundary.

From this Example it can be resolved that the membership function pre-processor with the

fuzzy equaliser provides scope for CCI mitigation.

The following section presents the BER performance of fuzzy equalisersin CCl channels.
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4.7 Resultsand discussion

The BER performance of fuzzy equalisers proposed in this chapter were eval uated with extens-
ive Monte Carlo simulationswith awide variety of channel and co-channel combinations. The
transmitted signal s(k) in all experiments were generated randomly from an i.i.d. sequence
of {£1}. The BER performance of equalisers were evaluated by observing 1000 errorsin a

maximum of 10® transmitted samples.

4.71 Fuzzy—CCl equaliser

First the BER performance of five forms of equalisers without decision feedback wasinvestig-

ated. Theseequaisersare

¢ Bayesan—-CCl
¢ Bayesian equaliser treating CCl as noise

¢ Fuzzy—CCl equaliser with maximum of co-channel membership functionscorresponding
to each scalar channel states (4.28)

¢ Fuzzy—CCl equaliser with sum of co-channel membership functions corresponding to
each scalar channel state (4.26)

¢ Linear equaliserswith RLS training algorithm
The channel and the co-channel impulse responsesfor this experiment were,

H(z) = Hs(2) = 0.3482 + 0.87042~! + 0.34822 2
Heon(2) = Hg(2) = A(0.6 +0.8271) (4.37)

The equaliser parameters were selected as

m=4andd =1

The SIR was set to 10 dB. The equaliserswere designed with knowledge of the channel and the
co-channel. One exception was the linear equaliser which was trained with the RLS algorithm

using 1000 training samples and the filter weights were averaged over 50 experiments. Other
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equalisersdid not undergo any training. The BER performance of these equalisersis presented
in Figure 4.10. From this Figure it is seen that the linear equaliser and Bayesian equaliser per-
formed very poorly and the BER do not improve beyond 10~° and 10~1® respectively, irre-
spective of additive noise power. The fuzzy—CCI equaliser performs closeto the Bayesian—CCl
equaliser. Herethe Bayesian—CCl equaliser uses NV, = 64 channel states, each of these channel
states is associated with N ., = 32 co-channel states and in all, it uses 2048 states to estim-
ate each of the transmitted samples. The Fuzzy—CCl equaliser uses64 IF ... THEN ...

rules derived from channel state information and the Bayesian equaliser uses 64 states. The
Fuzzy—CCI equaliser uses M = 8 scalar channel states and each of the scalar channel statesis
associated with M., = 4 scalar co-channel states. With this, it is seen that the modification of
the fuzzy equaliser membership function provides an efficient equalisationtechnique. Hereitis
also seen that, membership function generation with the sum of co-channel membership func-
tions (4.26) and the maximum of the co-channel membership functions (4.28) provide similar
performance. Similar results were also observed for other channel and co-channel combina-
tionswith varying SIR’s. Based on this, maximum of co-channel membership functions (4.28)

were used for implementational advantagesin all further investigations.
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Figure 4.10: BER performance for different equalisersunder SSR=10dB for Channel H (=) =
0.3482+ 0.8704z7 14 0.3482272%, Co-channel H.,(z) = A(0.6+ 0.8271),
m = 4 and d = 1 with the knowledge of channel and co-channel
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4.7.2 Performance with decision feedback

In the next phase of the experiments, the equaliser parameters were estimated with atraining
signal. Here only decision feedback structures were considered. The DFE parameters were set

to

m=n.,, d=n.—landg=n.—1

The following types of equaliserswere investigated,

Bayesian—CCIDFE

Bayesian-DFE treating CCI as noise

fuzzy—CCIDFE equaliser with maximum of co-channel membership functions corres-

ponding to each scalar channel states (4.28)

¢ Linear DFE with RLS training agorithm

The channel and the co-channel are characterised by their impul se responses,

H(z) = Hg(z) = 0.2294 + 0.458827" + 0.68827% 4 0.458827° + 0.22942~*  (4.38)
Hco_l(Z) = Hl(Z) = A(05 + 1.02’_1)

where the equaliser channel states were first estimated with a supervised «-means clustering
algorithm and subsequently the scalar co-channel states were estimated with the unsupervised
enhanced x-means clustering algorithm. The channel SNR and SIR were a so estimated during
the training phases. During the supervised clustering process for estimation of scalar channel
states, o, 4 o2, was estimated and during the scalar co-channel state estimation o2 was estim-
ated. The estimation error associated with a% was high, as it involves an unsupervised cluster-
ing algorithm in a noisy environment. These estimated scalar channel and scalar co-channel
states were used to construct the fuzzy—CCIDFE equaliser and the scalar channel states were
used to construct the Bayesian—-DFE equaliser. The Bayesian—DFE can aso be treated as the
Fuzzy—DFE equaliser with product inference and centroid defuzzifier as discussed in Chapter
3. The Bayesian—DFE used estimated channel states and the channel states spread parameters
associated with centres were set to o2 4 o2,. Both the fuzzy—CCIDFE and the Bayesian-DFE
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equaliser were trained with 500 training samples and the parameters were averaged over 50 ex-
periments. The linear DFE was trained with 1000 training samples with the RL S algorithm and
the equaliser weights were averaged over 50 individual experiments. The equaliser parameters
after training were maintained fixed during the transmission period. The Bayesian-CCIDFE
used true channel and co-channel states and channel noise statistics which provided the best
possible performance of a symbol-by-symbol equaliser under the specified conditions. In line

with the discussionsin this chapter the equaliser parameters were set to

m=>5d=4andqg=14

From the channel and co-channel impulse responsesit is seen that the equaliser has M = 32
scalar channel states and M., = 4 scalar co-channel states. The equaliser has N,y = 32
channel states corresponding to each of V; = 16 feedback states. The fuzzy—CCIDFE uses
4 scalar co-channel states with each scalar channel state to estimate the membership function
corresponding to each of the scalar channel states. The Bayesian-DFE and fuzzy—CCIDFE
compute the decision function with 32 channel states out of atotal of N, = 512 channel states.
The Bayesian—-CCIDFE uses 32 channel states out of 512 channel states and each channel state
isaffected by NV, ., = 64 co-channel states. Withthis, the Bayesian-CCIDFE uses N N, ., =
1024 statesto estimate each of the transmitted symbols. This equaliser can be treated as a RBF
network with 1024 centres corresponding to each of the 16 feedback states. Each of the centres
used by the equalisers are of order five. The fuzzy equaliser membership spread parameter o
was set to o, estimated from unsupervised clusteringwhen o2 < o2 . Itwassetto o, + o2 at

other times.

The BER performance with Monte Carlo simulationsfor the 4 types of equalisersfor an SIR=10
dB, 15 dB and 20 dB are presented in Figures 4.11(a), 4.11(b) and 4.11(c) respectively. From

the Figure following observations can be made.

1. For SIR=10 dB the Bayesian-DFE and the linear DFE (with RLS training) fail com-
pletely to equalise the channel. It is interesting to note that the fuzzy—CCIDFE provides
a performance which is better than Bayesian—DFE but inferior to the Bayesian-CCIDFE.
The fuzzy—CCIDFE suffers from a performance degradation of < 6 dB at aBER of 10~*
w.r.t the optimal equaliser. The performance degradation can aso be partly attributed

to the error in estimation of co-channel states and a%. Another cause for the inferior
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Figure4.11: BER performance of different equalisers with channe H(z) = 0.2294+

0.458827'4+ 0.68827%+ 0.458827°4 0.2294z7%, co-channel H.,i(z) =
M0.5+ 1.027Y), m = 5, d = 4 and ¢ = 4 with estimated channel and co-
channel states
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performance of the fuzzy—CCIDFE w.r.t. the Bayesian—CCIDFE is due to the fact that
the Bayesian—CCIDFE uses 1024 centres in RBF implementation to estimate each of the
samples where as the fuzzy—CCIDFE uses only 32 fuzzy IF ... THEN ... rulesde-
rived from channel state information, to estimate each sample. The Bayesian-DFE using

32 statesfailsto equalise this channel.

2. For SIR=15 dB, the performance of linear DFE and Bayesian—DFE improves compared
to SIR=10 dB. But here also the Bayesian-DFE and linear DFE fail to provide a BER
performance of better than 10~!6 and 10~!-® respectively even when the SNR— c.
It is also interesting to note that the linear DFE provides better performance than the
Bayesian-DFE. The reason for thisis that the RLS DFE optimises its weights in the
process of training, so that the decision function is in the form of a hyper plane close
to the optimal equaliser decision boundary. But the Bayesian—DFE provides a decision
function without any optimisation for CCl. The fuzzy—CCIDFE equaliser performs bet-
ter than the linear DFE and the Bayesian—-DFE but its performance is poorer than the
Bayesian—CCIDFE. The performance of the Bayesian—CCIDFE and the fuzzy—CCIDFE
areinferior to their respective performances at SIR=10 dB. The performance degradation
can be attributed to the fact that some of the co-channel states corresponding to positive
and negative channel states under this circumstance are very close. When the SIR=10
dB these channel states cross over, leading to increased distance between them, which
provides better performance. More simulations results in this context will be presented

in the next subsection.

3. For aSIR=20dB, performance of the Bayesian-DFE, thefuzzy—CCIDFE and the Bayesian—
CCIDFE are nearly similar. Under low CCI conditions, the co-channel states are situated
very closeto the channel statesin multidimensional space. Dueto thisfact, the nonlinear
decision boundary provided by fuzzy—CCIDFE and Bayesian-DFE are close to the de-
cision boundary of Bayesian—CCIDFE. The RLS DFE used here provides only alinear
approximation of the optimal nonlinear decision surface and hence its performance isthe

poorest.

4.7.3 Equaliser performance against varying SIR

This subsection examines the equaliser performance against varying levels of SIR with fixed

SNR. The problem considered in the previous subsection is considered again. The BER per-
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formance of Bayesian—CCIDFE, fuzzy—CCIDFE and Bayesian-DFE at an SNR=25 dB and for
varying SIR from 1 dB to 19 dB is presented in Figure 4.12
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Figure4.12: BER performance of different equalisers for varying SR with Channel
Hz) = 0.22944 0.4588:7'+ 0.68827%4 0.4588:77+ 0.229427%, co-
channel H.,1(z) = A(0.5+ 1.027Y), m = 5,d = 4 and ¢ = 4 using actual
channel and co-channel states under SNR=25 dB

From the performance curves, it is interesting to note that the BER performance of the op-
timal equaliser (Bayesian—CCIDFE) worsenswith an increase in SIR from 3 dB to 14 dB. The
performance of the equaliser isworst at around SIR=14 dB. Theequaliser BER improves mono-
tonically after an SIR=14 dB. The fuzzy—CCIDFE performance drops with an increase in SIR
between 1 dB to 6 dB. Subsequently the equalisers performs poorly up to a SIR=14 dB. When
the SIR improves beyond 14 dB the equaliser performance improves monotonically like the
Bayesian—CCIDFE. The Bayesian-DFE equaliser provides very poor performance for SIR=1
dB to 15 dB. Subsequently the performance is close to the Bayesian—CCIDFE. When the SIR
is better than 15 dB the performance of al the equalisersis similar. These results validate the
performance drop of the Bayesian—-CCIDFE and the fuzzy—CCIDFE at SIR=15 dB compared
to the performance at SIR=10 dB.

4.74 Fuzzy equaliser performancein presence of multiple co-channels

A further experiment considered the performance of the fuzzy equaliser for achannel corrupted

with 2 co-channel interferes. Here the channel and co-channel impul se responses are,
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H(z) = Hs(2) = 0.3482 + 0.87042~! + 0.34822 2
c01(2) = A1 (2) = A1(0.54+0.1271)

Heo
Hep2(2) = M Hy(2) = A(0.54+0.81271 +0.31272) (4.39)
The equaliser parameters are set to

m=3,d=2andqg=2 (4.40)

The co-channel power scaling parameters A and A\ were adjusted to divide the interference
power equally between both of the co-channels. This system has N,y = 8 channel states cor-
responding to each of N; = 4 feedback states. Each of these channel states is affected by
Ni.co1Ns 002 = 32 X 16 = 512 co-channel states. With this the Bayesian-CCIDFE evaluates
4096 out of 16348 states for estimation of each symbol. The Fuzzy—DFE and the Bayesian—
DFE use only 8 channel states corresponding to each of the feedback states. The BER per-
formance of the fuzzy—CCIDFE and the Bayesian-DFE for SIR of 5 dB, 10 dB and 15 dB
are investigated. The number of scalar co-channel states used by the fuzzy—CCIDFE in the
membership function estimation was limited to 8 instead of the possible 27! x 2" = 32,
This could be viewed as an error in the estimation of co-channel order. The optimal Bayesian—
CCIDFE performance was not simulated due to its large computational complexity. The BER
performance of the fuzzy—CCIDFE and Bayesian—DFE is presented in Figure 4.13. From the
simulation results it is seen that the fuzzy—CCIDFE fails under severe CCl (SIR=5 dB) with
multiple co-channels. But under moderate CCI (SIR=10 dB) it is able to perform better than
the Bayesian—DFE for comparable network complexities. The Bayesian-DFE failsto providea
BER of better than 10~!-7 even under infinite SNR, but the fuzzy—CCIDFE BER performance
shows improvement with an increase in SNR. However for 15 dB SIR the effect of co-channel
compensation is minimal and the fuzzy—CCIDFE performs only marginally better. Under this

condition co-channel compensation pre-processor can be removed.
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Figure 4.13: BER performance of fuzzy—CCIDFE and Bayesian-DFE for channel H (z) =
0.3482+ 0.87042714 0.3482272, co-channels H., 1(z) = A(0.5+ 0.81271+
0.31272), Hepa(2) = A1(0.5+ 1.0271), m = 3,d = 2 and ¢ = 2 under CCI=5
dB, 10dB and 15 dB

475 Effect of number of estimatesof scalar co-channel states

In order to investigate the effect of the number of estimated co-channel states on equaliser BER
performance, the number of scalar co-channel states in the unsupervised clustering algorithm
was varied in the preceding study and the equaliser BER performance was evaluated. This
process can be viewed as an error in estimating the length of the co-channel impul se response.
This also provides alimit on the computational complexity of the fuzzy—CCIDFE with respect
to performance with variationin the number of co-channel statesin membership function estim-
ation. The performance of the fuzzy—CCIDFE for 4, 8, 16 and 32 co-channel states (resulting
from estimate of n.y = 2, 3,4 and5 respectively) for 10 dB SIR is presented in Figure 4.14.
Here the performance of Fuzzy—DFE equaliser is also presented. The fuzzy—DFE issimilar to
the Bayesian-DFE equaliser that treats CCl asnoise. Fromthe Figure4.14 itisseenthat usinga
very small number of co-channel states degrades the equaliser performance substantially. With
the assumption of 8, 16 or 32 co-channel states, however, the performance tradeoff is small.
The performance of the equaliser with fewer number of co-channel states (n.; = 2) iscloser to

the fuzzy—DFES as seen from the figure.

3Thisequaliser is same as the Bayesian-DFE
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Figure 4.14: Effect of number of co-channel clusterson equaliser performancefor SR=10dB,
Channel H(z) = 0.3482+ 0.870427'4 0.3482272, co-channels H ., 1(z) =
A(0.54 0.8127 14 0.31272), Heoz(2) = A (0.5+ 1.0271), m = 3,d = 2 and
q=2

From this study it can be inferred that the assumption of co-channel order n.; < 3 istypically
sufficient to provide performance almost as good as achieved by fuzzy—CCl equaliser with true

number of co-channel states. The performance gain for n.; > 4 isvery little.

4.7.6 DFE error propagation performance

The last part of the simulation study investigates the error propagation characteristics of the
fuzzy—CCIDFE equalisers. Here the error propagation characteristics of fuzzy—CCIDFE is
compared with the optimal Bayesian—-CCIDFE. The channelsand co-channelsused in thisstudy
are characterised by their impul se responses

H(z) = Hs(2) = 0.3482 + 0.87042~! + 0.34822 2
Heo1(2) = Hg(2) = (0.6 +0.8271) (4.41)

where A isset to adjust the system SIR. The equaliser parameters were selected as.

m=3,d=2andq=2.
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The performance of the fuzzy—CCIDFE and the Bayesian—CCIDFE equaliser for SIR=10 dB
and 15 dB are presented in Figure 4.15(a) and 4.15(b) respectively.

In Figures 4.15(a) and 4.15(b) the curves fuzzy—CCIDFE(rx) and fuzzy—CCIDFE(tx) represent
the fuzzy—CCIDFE egualiser BER performance with detected symbol feedback and transmit-
ted symbol feedback respectively. Similarly Bayesian—CCIDFE(rx) and Bayesian—-CCI DFE(tx)
represent the Bayesian—-CCIDFE equaliser BER performance with detected symbol feedback
and transmitted symbol feedback respectively . The fuzzy equaliser here is trained with 500
samples and the equalisers parameters are averaged over 20 experiments. The scalar channel
and scalar co-channel states of the fuzzy—CCIDFE are estimated with the x-means and en-
hanced x-means clustering algorithms respectively. The membership function centre spread
parameter was set to the estimated spread parameter from the channel state estimate for better
performance. A study of the BER performance of the equalisers shows that fuzzy—CCIDFE
provides a performance very close to Bayesian~CCIDFE and the error propagation character-

isticsfor both the equalisers are nearly the same.

In the previous section, the condition for CCl compensation for fuzzy—CCIDFE (4.36) was
presented. The scalar co-channels are estimated by unsupervised clustering and in low SNR
conditions the estimation of the scalar co-channel states is not accurate. From the simulation
studiesthefollowing rule has been determined to justify the necessity of using the pre-processor

for equalising the CCl.

e The scalar co-channel states can be determined with an assumption of n.;, = 1 and
ns = 3 (mer > 3 does not provide much performance improvement). This would

provide My = 2 and M, = 8 scalar co-channel states respectively.

¢ If the scalar co-channel for M, = 2 islessthan half the distance between the closest
scalar channel states, co-channel compensation is not necessary. Otherwise the scalar
co-channel states estimated with n.; = 3 should be used to modify the membership

function generation so asto incorporate CCl compensation.
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(b) SIR=15 dB

Figure 4.15: Error propagation performance of Bayesian—-CCIDFE and Fuzzy—CCIDFE
equaliserswith channel H (») = 0.3482 + 0.87042~! 4 0.3482272, co-channel
Heoq(2) = A0.6+ 0.8271), m = 3,d = 2 and ¢ = 2 with estimated channel
and co-channel states
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4.8 Conclusion

The problem of channel equalisation when the channel is corrupted by CCI from other users
in an ISl environment has been discussed in this chapter. It is seen that fuzzy system based
symbol-by-symbol spaced equaliser is capable of removing ISl in presence of CCI. Thisequal-
iser issimilar to the fuzzy equaliser proposed in Chapter 3 but with a pre-processor for CCI mit-
igation. The pre-processor calculates the smallest absolute distance between the input scalars
and scalar channel states offset with scalar co-channel states. The minimum of these distances
corresponding to each of the scalar channel statesis used for membership function generation.
Thismodified membership functionin conjunctionwith the fuzzy equaliser presented in chapter
3 isused for successful equalisation of CCl channels. This pre-processor can be removed at

high SIR without performance degradation.

The fuzzy equaliser analysed here works with Gaussian membership functions, product in-
ference and a centroid defuzzifier. Only this form of the equaliser has been analysed and
simulation results have been presented in this chapter. Other forms of fuzzy equalisers with
combinations of minimum inference rules and maximum defuzzification rules can provide sim-
ilar performance with a reduction in computational complexity. These complexity issues have

not been addressed here since they are a direct extension of the analysis presented in chapter 3.

Extensive Monte Carlo BER simulation studies demonstrate that the fuzzy equaliser presented
here provides efficient equalisation even under severe CCI conditions. This equaliser is aso
seen to provide moderate to good performance for channels corrupted with two co-channel in-
terferers, where RBF and linear equalisation with decision feedback fail and the computational

complexity of the Bayesian—CClI prohibitsits application.
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Chapter 5
Conclusion

5.1 Introduction

The research carried out for thisthesis primarily discusses fuzzy system based channel equal-
isers in digital communication receivers. The fuzzy implementation of Bayesian equaliser
based on MAP criteria has been presented and the capability of fuzzy equalisersin aCCl envir-
onment has been analysed. Thischapter summarisesthework reported in thisthesis, specifying

the limitations of the study and provides some pointersto future devel opment.

Following this introduction section 5.2 lists the achievements from the work. Section 5.3

provides the limitations and section 5.4 presents few pointers towards future work.

5.2 Achievement of thethesis

The work presented in this thesis can be seen as made up of two distinct parts. The first part
presents the development of a fuzzy equaliser for 1S channelst. Secondly, a fuzzy equaliser
is developed for equalisation of CCI channels 2. Major points of the thesis, highlighting the

contributions at each stage, are presented below.

Chapter 3 of the thesis presents a new fuzzy implementation of the Bayesian equaliser. It
is seen that the Bayesian equaliser uses estimates of noise free received signal vectors called
channel statesto formulate the decision function. The Bayesian equaliser can be efficiently im-
plemented using the estimates of noise free received scalars called scalar channel states and this
implementation has been termed NBESS. Actual imeplementation of NBESS provide a reduc-
tion in computational complexity over the conventional Bayesian equaliser. NBESS can also be
implemented using RBF with scalar centres [78]. Subsequently, the design of fuzzy equalisers
using FAF is presented and it is shown that this FAF equaliser is suboptimal. The majority of

1This part has been presented in Chapter 3
2This part has been presented in Chapter 4
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fuzzy equalisers designed with FAF were based on two types of FAFs, namely the RLS and
LM S fuzzy filters presented in[105]. The equalisers based on the fuzzy RL Sfilter are computa-
tionally complex where as equaliserswith the fuzzy LM Sfilter [105], although useless number
of rulesthan the fuzzy RL Sfilter, the number of rulesare at | east equal to the number of channel
states. This makes both of these forms of popular fuzzy equalisers [105, 116-119] more com-
putationally complex than the NBESS. The computational complexity associated with these
equalisers has limited their application to equalisers with m = 2. The work reported in this
chapter finds the close relationship between the NBESS and the FAF equalisers, providing the
parametric implementation of the NBESS using FAF. Thisfuzzy implemented Bayesian equal-
iser uses Gaussian membership functions, product inferenceintheformof IF ... THEN ...

rules and a COG defuzzifier. The use of fuzzy systemsin implementing the Bayesian equaliser
providesflexibility in the design of Bayesian equalisers. With the application of different forms
of inference rules and defuzzification processes other forms of near optimal equalisers can also
be designed. The use of scalar channel states in these equalisers leads to efficient techniques
for subset centre selection providing major reduction in computational complexity. Some of the
results presented in this chapter have been published in [78, 152, 153]. The parametric imple-
mentation of Bayesian equalisers using fuzzy systems makes the equaliser traceable and it can
be implemented directly in applicationswhere MAP or RBF equalisers are being used. Some

of the mgjor contributionsfrom this chapter are summarised here. Fuzzy equalisers

¢ provide a parametric implementation of the Bayesian equaliser;

¢ are computationally more efficient than other forms of Bayesian equalisers, such as the

RBF, from an implementation viewpoint;

¢ provide efficient schemes for subset centre selection resulting in mgjor reductionin com-

putational complexity;

¢ inan adaptiveimplementation, can be trained with small training sequences making them

suitable for mobile radio communication application;

¢ havean ability to use different forms of inference rules, defuzzification processes provid-
ing alternate schemes to facilitate compromise between equaliser performance and com-

putational complexity.

Chapter 4 of the thesis presents the development of a fuzzy equaliser for a CCl channel. It

is seen that the Bayesian equaliser treating CCI as additive Gaussian noise fails under low to
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moderate SIR. For thisreason the optimal T-spaced symbol-by-symbol equaliser for this prob-
lem is derived. This Bayesian—CCIl equaliser suffers from large computational complexity.
A normalised form of the Bayesian—-CCl equaliser which uses scalar channel and co-channel
states instead of channel and co-channel states for this problem is derived and is termed as
NBSS-CCI. The NBSS-CCI is seen to provide the Bayesian—-CCIl equaliser decision function
with areduction in computational complexity. It can beimplemented with the normalised RBF
network with scalar centres and with FAF in common with the equalisers for ISl channels.
Despite the computational advantages of NBSS-CCIl over Bayesian—CCl, the computational
requirement of NBSS-CCI isseento be very large for real timeimplementationin DCS. These
computational complexity issues prompted the design of a new fuzzy equaliser for CCl mit-
igation. This fuzzy—CCI equaliser is a modified form of the fuzzy equaliser for ISI channels,
providing an improvement in performance w.r.t. the Bayesian equaliser treating CCl as AWGN
for comparable complexity. Performance of the fuzzy—CCI equaliser is seen to be close to that
of the Bayesian—CCl equaliser under most conditions. The concept of decision feedback is
introduced and the decision function of the fuzzy—CCl, the NBSS-CCI and the Bayesian—CCl
are modified for DFE structure. Extensive Monte Carlo simulations for BER performance of
different equalisers demonstrate the performance capabilities of the fuzzy equaliser in CCl mit-
igation. It is shown that the fuzzy—CCl equaliser is a fuzzy equaliser for ISl channels with a
pre-processor for removal of the CCl. This pre-processor can be removed under moderate to
low CCI. The conditions under which the pre-processor can be removed is defined in terms of
the egualiser channel states and the scalar co-channel states. Some of the results reported in
this chapter have appeared in [154, 155]. The major contributions from this chapter are listed
below. The fuzzy—CCl equaliser:

¢ providesan efficient equalisation of channels affected by CClI, ISl and AWGN;

¢ has computational complexity comparable to the Bayesian equaliser treating CCl as
AWGN whereas it provides a performance comparable to the Bayesian—CCl equaliser;

¢ uses a pre-processor for CCl mitigation; this pre-processor can be removed under mod-
erate to low CCl; the use of this preprocessor makes the switching of the equaliser from

high CCI to low CCI environment easy;

¢ isamore general form of the fuzzy equaliser developed for 1Sl channels; computational

complexity reduction methods proposed for fuzzy equalisersin Chapter 3 by the use of
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different form of fuzzy inference rulesand defuzzification processes can also be generally

applied to fuzzy—CCI equalisers.

5.3 Limitationsof thework

This section presents some of the limitations of the work reported in thisthesis.

This thesis presents the devel opment of fuzzy equalisersfor DCS. Fuzzy equalisers devel oped
here implement the Bayesian equaliser with reduction in computational complexity. The com-
putational complexity of Bayesian equalisers are related to (K <) where K is the size of the
symbol alphabet. Thislarge complexity limitsthe use of these forms of nonlinear equalisersto
communication systems where channel dispersion is relatively small, of the order of n. ~ 5.
Additionally efficient use of the available radio frequency spectrum demands efficient modu-
lation schemes like QPSK, 4 level PAM and 8-PSK etc. to increase transmission speed with
limited BW. The equaliser algorithm developed hereislimited to 2-level PAM modulation. But,
it can be extended to other efficient modulation schemes in line with RBF implementation of

Bayesian equalisers[31, 32].

The other limitation of the work reported in the thesis lies in the stationary channel model.
The impulse responses of mobile radio channels are characterised by multi-path fading. This
requires the equalisers in the receivers to track the channel characteristics, which is achieved
by interposing blocks of training data with actual data blocks. The adaptive equalisers use this
training data to set the parameters and during actual transmission the equaliser decisions are
used in a decision directed mode to track the channel fading characteristics. The performance
of the proposed fuzzy equalisersis expected to be similar to RBF implementation of Bayesian
equalisers under these conditions[132, 156], since the fuzzy equaliser provides parametric im-

plementation of Bayesian equaliser.

Some of the other issues that have not been addressed in this thesis are the effects of pres-
ence of ACI, nonlinearitiesin the receiver amplifiers, timing recovery in the receiver, diversity

combining issues related to nonlinear equalisation techniques.
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5.4 Scopefor further research

To conclude the thesis, the following are some pointers for further work which can lead to

interesting results.

The first suggested area in which research can be undertaken follows from the limitation of
the work presented in this chapter. RBF implementation of Bayesian equalisers have provided
good performance for mobile communication channels [156, 157]. The long delay associated
with ML SE causes severe performance degradation in fading channels. Additionally design of
MLSE for CCI environment can be computationally complex [92]. Under these circumstances
fuzzy equalisers could provide major performance advantages. The study of fuzzy equalisers
for mobile communication systems like GSM? systems could provide alternative equalisation

strategies.

Recently it has been observed that fractionally spaced equalisers can provide additional benefit
in interference mitigation in the form of CCI and ACI [145, 146, 158]. One of the possibledir-
ectionsfor research isinvestigating fractionally spaced fuzzy equalisersfor interference limited

communication system applications.

3GSM standsfor global system for mobile communication
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Appendix A
Clustering Algorithm

This appendix presents the x-means supervised clustering algorithm for the estimation of scalar
channel states and the enhanced «-meang[ 151] unsupervised clustering algorithm for the estim-
ation of the scalar co-channel states required for training the fuzzy and fuzzy—CCl equalisers.

A.1 Estimation of scalar channel states

During the training period the transmitted symbol sequence is known to the receiver. At the

time k, it can be inferred from (k) which member of desired scalar channel state occurred.

The noisy observation of Gaussian clustersof r (k) are centred at desired scalar states C';. With
this, the supervised x-means procedure can be used to effectively filter out noise. The compu-

tational algorithm for this procedure is outlined below,

if (s(k) == s:){
Ci(k) = counter; x Ci(k — 1) + r(k);
counter; = counter; + 1;

Ci(k) = Ci(k)/counter;;

Cyv—iv1 = —Cj;
}
The scalar channel states in a non-stationary environment can be estimated using the following
algorithm.
if (s(k) == s:){
if (Ci(k) == 0.0):{
Ci(k) == r(k);
Crr—ip1(k) = =Ci(k);
}
elsef
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Clustering Algorithm

Ci(k) = Ci(k = 1) + p* r(k);
Cr—ig1 = —C5;

13

where p is the learning rate for the states. After the scalar channel states are estimated the
combination of scalar channel stateswith thetraining signal can be used to construct the channel

states information.

A.2 Estimation of scalar co-channel states

The scalar co-channel states can be estimated by the enhanced «-means clustering algorithm
[151]. This clustering assumes the variance of al clustersis equal, which isthe case in equal-

isation applications. The scalar co-channel states can be estimated in the following steps,
1. Compute the channel residual

Tres(k) = (k) — Ci(k) (A1)

2. Computethe cluster variance weighted squares distance between the residual .. (k) and
the scalar co-channel states C', (K — 1), 1 < a < M,,.

Calk) = 0ok = 1)Ca(k)

(A.2)
= Uco,oz(k - 1) (Tres(k) - Cco,oz(k - 1))27 1 <a< Mco

Here o, (k — 1) isthe current variance of ath cluster and ¢, (k) isthe squared distance
between r,.s (k) and Cp o (k — 1).

3. Evauate the minimum weighted distance

4. Updatethe o*thand (M., — o + 1)th co-channel states.

Cooor (k) = Copar(k— 1) 4+ p (rres(k) — Coo (kb — 1)) (A.9)
Cco,Mco—oz*-I—l = _Cco,oz* (k) (A5)
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Clustering Algorithm

where p isthe adaptive gain.

5. Thecluster variance are updated according to therule

Ocoa(k) =100k —1), 1 <a < M,andl # a*, M,, — o™ +1 (A.6)
Uco,oz* (k) = Uco,Mw—oz*—I—l (k) = VUco,a* (k — 1) —|— (10 — V)Coz* (k) (A7)

where v is positive constant dightly lessthan 1.0.

Theinitial spreads o, ., 1 < a < M., canbe setto small values. The symmetry structure of
the states is exploited by setting C'co pm..—a+1 = —Cleon(k) @nd oo (k) = e nmo—at1(k),
which helps to speed up convergence and al the o, , can be set to uniform values for the

equalisation problem.
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Appendix B
Channel Impulse Responses used in
the Thesis

Following channels have been used for evaluation of fuzzy equalisers developed in thisthesis.

| No. | Impulse response |  Zerolocation | Channel type |
Hy(z) 0.5+ 1.0271 —2.0 nonminimum phase
Hy(2) 1.0+ 0.2z71 —0.2 minimum phase
Hs(z) | 0.2682 4 0.92962"" 4 0.2682272 | —3.1484,—-0.3176 mixed phase
Hy(2) 0.5+0.812"14+0.31272 —0.62,—1.0 mixed phase
Hs(z) | 0.3482 4 0.8704z71 4 0.3482272 —-2.0,-0.5 mixed phase
Hg(z) | 0.407 — 0.815z~! — 0.407272 —0.4139,2.4163 mixed phase
I 0.7255 + 0.5842=1 +0.362722 | —0.2608 £ j 0.5333, N h
7(2) 10.0724273 ~0.283 minimum phase
Hg(z) 0.6+ 0.8271 —1.33333 nonminimum phase
0.2294 + 0.45882~1 + 0.688272 | —0.4852 + 7 0.8744, ixed oh
Hs(2) 40.4588273 4 0.2294>~4 —0.5148 + j0.8573 mixed phase
j=+v-1
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Appendix C
Publications

The following publications have either been published or accepted for publication in journals

or conferences. The publications marked with a f have been included in this appendix.

Published in Journals

¢ S K. Patraand B. Mulgrew, “Fuzzy Implementation of Bayesian Equalizer in Presence
of intersymbol and Co-channel Interference,” To be published, IEE Proceedings - Com-

munication, 1998.

e i S. K. Patraand B. Mulgrew, “Efficient Architecture for Bayesian Equalization using
Fuzzy Filters,” |EEE Transaction Circuitsand Systems-11: Analogand Digital Sgnal Pro-
cessing,, vol. 45, number. 7, pp. 812-820,July 1998.

Published in Conferences

e { S. K. Patra and B. Mulgrew, “Co-Channel Interference Supression using a Fuzzy Fil-
ter,” Proceedings of European Sgnal Processing Conference-1998, (Islands of Rhodes,
GREECE), pp. 1609-1612, 8-11 September 1998.

e i S. K. Patra, M. Mulgrew and P. M.Grant, “ Subset Centre Selection with Fuzzy Imple-
mented Radial Basis Function Equalisers,” Proceedings of 1st International Symposium
on Communication System and Digital Sgnal Processing, (Sheffield Hallan University,
Sheffield, U.K.),pp. 21-25, 6-8 April 1998.

¢ i S. K. Patraand B. Mulgrew, “Computational Aspectsfor Adaptive Radial Basis Func-
tion Equalizer Design,” in Proceedings of | EEE | nter national Symposiumon Circuitsand
Systems, vol. 1, (Hong Kong), pp. 521-524, 9-12 June 1997.
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