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AAbbssttrraacctt  

 

 

A channel equalizer is one of the most important subsystems in any digital 

communication receiver. It is also the subsystem that consumes maximum computation 

time in the receiver. Traditionally maximum-likelihood sequence estimation (MLSE) was 

the most popular form of equalizer. Owing to non-stationary characteristics of the 

communication channel MLSE receivers perform poorly. Under these circumstances 

‘Maximum A-posteriori Probability (MAP)’ receivers also called Bayesian receivers 

perform better.  

Natural selection tends to eliminate animals with poor “foraging strategies” and favor the 

propagation of genes of those animals that have successful foraging strategies since they 

are more likely to enjoy reproductive success. After many generations, poor foraging 

strategies are either eliminated or shaped into good ones (redesigned). Logically, such 

evolutionary principles have led scientists in the field of “foraging theory” to   

hypothesize that it is appropriate to model the activity of foraging as an optimization 

process. 

This thesis presents an investigation on design of bacterial foraging based channel 

equalizer for digital communication. Extensive simulation studies shows that the 

performance of the proposed receiver is close to optimal receiver for variety of channel 

conditions. The proposed receiver also provides near optimal performance when channel 

suffers from nonlinearities. 
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Chapter-1 

Introduction 

 
1.1 Introduction 

High speed communications channels are often impaired by channel inter symbol 

interference (ISI) and additive noise. Adaptive equalizers are required in these 

communication systems to obtain reliable data transmission. In adaptive equalizers the 

main constraint is training the equalizer. Many algorithms have been applied to train the 

equalizer, each having their own advantages and disadvantages. More over the 

importance of the channel equalization always keeps the research going on to introduce 

new algorithms to train the equalizer. 

Evolutionary algorithms are the emerging techniques in engineering and technology 

applications. Unlike the conventional algorithms evolutionary algorithms trains the 

system like a biological system, which means that there is an output (compromised a bit) 

even if a part(s) of the input is missing. As the evolutionary algorithms train the system 

like a biological system, it is possible to implement these algorithms using biological 

computers. 

In this thesis work ‘Bacterial foraging algorithm’, which is a type of evolutionary 

algorithms, is applied in designing an efficient channel equalizer for high speed digital 

communications. 

The chapter begins with an exposition of the principal motivation behind the work 

undertaken in this thesis. Following this, section 1.3 provides a brief literature survey on 

equalization in general and nonlinear equalizers in particular. Section 1.4 outlines the 

contributions made in this thesis. At the end, section 1.5 presents the thesis layout. 

1.2 Motivation of Work 

The field of digital data communications has experienced an explosive growth in recent 

years and its demand reaches at the peak as additional services are being added to 

existing infrastructure. The telephone networks were originally designed for voice 
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communication but, in recent times, the advances in digital communications using ISDN, 

data communications with computers, fax, video conferencing etc. have pushed the use of 

these facilities far beyond the scope of their original intended use. Similarly, introduction 

of digital cellular radio (DCR) and wireless local area networks (LAN’s) have stretched 

the limited available radio spectrum capacity to the limits it can offer. These advances in 

digital communications have been made possible by the effective use of the existing 

communication channels with aid of signal processing techniques. Nevertheless these 

advances on the existing infrastructure have introduced a host of new unanticipated 

problems. 

The revolution in digital communication techniques can be attributed to the invention of 

the automatic linear adaptive equalizer in the late 1960’s [2]. Adaptive equalizers have 

gone through many stages of development and refinement in the last 40 years. Early 

equalizers used linear adaptive filter algorithms with or with out a decision feedback. 

Alternatively maximum likelihood sequence estimator (MLSE) [3] was implemented 

using Viterbi algorithm [4, 5]. 

Both forms of equalizers provided two extremities in-terms of performance achieved and 

the computational cost involved. The linear adaptive equalizers are simple in structure 

and easy to train but they suffer from poor performance in severe condition like varying 

channels as mobile radio channel. On the other hand the infinite memory MLSE provide 

good performance but at the cost of large computational complexity. Under lower 

memory constraints MLSE performance also degraded considerably. 

As the state of the mobile radio channel always changes and multipath causes time 

dispersion of the digital information data causing inter-symbol-interference, makes too 

difficult to detect the actual information at the receiver. It requires adaptive equalizer to 

adjust its parameters during training to coup of with such fading environment but it needs 

large training data or sequences for the linear equalizers and also shows poor 

performance in case of this mobile radio channel. 

The large computational complexity associated with the Viterbi algorithm and poor 

performance of linear equalizers led to the development of symbol-by-symbol equalizers 

using the maximum a-posteriori probability (MAP) principle these were also called 
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Bayesian equalizers[6]. These Bayesian equalizers have been approximated using 

nonlinear signal processing techniques like Artificial Neural Networks (ANN) [7], radial 

basis function (RBF) [8,9], recurrent network [9], Kalman filters [10], Fuzzy systems 

[11] etc. The study of new techniques provides adaptive equalizers which have the 

advantage of both good performance and comparatively low computational cost. The 

study of these nonlinear equalizers helps to achieve good performance for mobile channel. 

Hence different kinds of nonlinear equalizers have been discussed in this thesis. 

Evolutionary trains the system like a biological system, so it is possible to implement the 

systems using biological computers [12].Evolutionary algorithms like genetic algorithms 

and swarm optimization had  already shown encouraging results in solving problems like 

channel equalization and channel identification in digital communication[13,14,15].The 

results obtained in harmonic estimation using bacterial foraging [16], have encouraged 

me to apply the bacterial foraging algorithm to design channel equalizers in digital 

communication. 

1.3 Background Literature Survey 

The research in channel equalization started in early 1960’s. The earlier equalizers basic 

theory was of zero forcing equalizers. In 1960 LMS algorithm by Widrow and Hoff [17] 

shown the way to go for development of adaptive filters used for equalization purposes. 

In 1965, Lucky [2] used this LMS algorithm to design adaptive channel equalizers. As 

these equalizers were very simple to design got popularized but very soon their 

limitations were also revealed in the field of channel equalization. It was seen that these 

linear equalizers, in spite of best training, could not provide acceptable performance in 

case of highly dispersive channel and time varying channels. This is due to the fact that 

linear equalizers treat equalization as an inverse filtering problem whereas equalization 

can be treated as a pattern classification problem. This led to the investigation of other 

equalization techniques beginning with MLSE equalizer [3] and its Viterbi 

implementation [4] in 1970’s. Another form of nonlinear equalizer was infinite impulse 

response (IIR) form of linear adaptive equalizer, where equalizer employs feedback 

termed as decision feedback equalizer (DFE) [18]. In between 1970’s and 1980’s , the 

research works carried out in this field were for the development of faster convergence 
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and computationally efficient algorithms like recursive least square (RLS) algorithm, 

Kalman filters [10] etc. A review of the development of equalizers till 1985 is available 

in [19]. 

In the late 1980’s, the beginning of development of field of adaptive neural network 

(ANN) [7] was seen. The large computational complexity associated with the Viterbi 

algorithm and poor performance of conventional equalizers with adaptive filters has led 

to the development of symbol-by-symbol equalizers [6]. These Bayesian equalizers have 

been approximated using nonlinear signal processing techniques like Artificial Neural 

Networks (ANN) [7], the multi layer perceptron (MLP) [20] which were computationally 

more efficient. Another form of nonlinear processors called radial basis function (RBF) 

[8] were first used for multidimensional functional interpolation. Subsequently these 

were used for equalization applications [21, 22]. In subsequent years, development of     

new training algorithms and equalizer structures using ANN [23, 24] and RBF [25] were 

also developed. 

1.4 Thesis Contribution 

This section outlines some of major contributions of the study presented in this thesis. In 

this thesis linear equalizers like LMS as well as nonlinear equalizers like RBF, and 

Bacterial foraging equalizers have been designed for digital communication applications. 

The bacterial foraging based equalizers described here are generally classified as 

nonlinear equalizers. The digital communication problem is discussed first and then need 

for equalizers is established. Different forms of equalizers are reviewed and with this 

knowledge of equalizer techniques the bacterial foraging based equalizer and its 

advantage over the other are described. In the process of evaluation Bit Error rate (BER) 

has been used as performance measure. 

This thesis presents a bacterial foraging implementation of maximum a-posteriori 

probability (MAP) equalizers based on Bayes’s theory. All equalizers developed here are 

for linear and non-linear channels corrupted with AWGN. It is seen that the advantage 

provided by the bacterial foraging equalizers in terms of computational complexity and 

performance gain can provide efficient equalizer design digital communication. 

 



Chapter-1                                                                                                                                Introduction       

Bacterial Foraging Based Channel Equalizers 5 

1.5 Thesis outline 

Following this introduction the remaining part of the thesis is organized as under: 

Chapter 2 provides the fundamental concepts of channel equalization and discusses 

different linear and nonlinear equalization techniques briefly. The channel characteristics 

that bring out the need for an equalizer in a communication system is also presented. 

Chapter 3 gives the basic idea of evolutionary algorithms and various types of 

evolutionary algorithms with emphasis on bacterial foraging. Chapter 4 gives the design 

of bacterial foraging based equalizers for both linear and non-linear channels. Chapter 5 

presents the results obtained for various linear and non-linear channels and the 

performance is compared with the performance obtained by using LMS and K-means 

clustering algorithms. Chapter 6 summarizes the work done in this thesis work and points 

to possible directions for future work. 
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2.1 Introduction 

This thesis discusses the development of bacterial foraging based channel equalizers for 

digital communication for a variety of channel impairments. In order to establish the 

context and need for the work undertaken, it is necessary to discuss the fundamental 

concepts behind the work. This chapter brings out the need for an adaptive equalizer in a 

digital communication system (DCS) and describes the classification of adaptive 

equalizers. 

This chapter is organized as follows. Following this introduction, section 2.2 discusses 

the communication system in general. Section 2.3 discusses the propagation channel 

model in a DCS, providing the general ‘Finite Impulse Response (FIR)’ filter model for 

‘Inter Symbol Interference (ISI)’ channels and ‘Co Channel Interference (CCI)’ channels. 

Section 2.4 presents the classification of equalizers with emphasis on symbol-by-symbol 

equalizers.2.5 presents the optimal symbol-by-symbol Bayesian equalizer. Sections 2.6 

and 2.7 provide a short overview of developments of linear and nonlinear equalizers 

respectively, finally section 2.8 presents the concluding remarks. 

2.2 Digital Communication System 

The Block diagram of a baseband model of a DCS is presented in Fig 2.1. As the analysis 

of the DCS with all the necessary blocks is very difficult due to complexity associated 

with all subsystems, communication system are studied in baseband frequency where the 

encoder, decoder, modulator and the  demodulators have been removed. The data source 

constitutes the signal generation system that generates the information to be transmitted. 

The work of the encoder in the transmitter is to encode the information bits before 

transmission so as to provide redundancy in the system. This helps for the correction of 
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errors at the receiver end. Some of typical coding schemes are convolution codes, block 

codes and grey codes[26]. The digital data transmission requires very large bandwidth. 

The Efficient use of the available bandwidth is achieved through the transmitter filter, 

also called the modulating filter. The modulator on the other hand places the signal over a 

high frequency carrier for efficient transmission. Some of the typical modulation schemes 

used in digital communication are amplitude shift keying (ASK), frequency shift keying 

(FSK), pulse amplitude modulation (PAM) and phase shift keying (PSK) modulation. 

The channel is the medium through which information propagates from the transmitter to 

the receiver. At the receiver the signal is first demodulated to recover the baseband 

transmitted signal. The demodulated signal is processed by the receiver filter, also called 

receiver demodulating filter, which should be ideally matched to the transmitter filter and 

the channel. Hence physical channel can replace all filters in block diagram. The 

equalizer in the receiver removes the distortion introduced due to the channel 

impairments. The decision device provides the estimate of the encoded transmitted signal. 

The decoder reverses the work of the encoder and removes the encoding effect revealing 

the transmitted information symbols. This simplified communication system model, 

while maintaining the basic principle involved, is easy to analyze. 

 

Fig 2.1 Baseband model of digital communication system 

 

Physical 

channel 

Transmitter 

filter 

Data Source 

+ 

)(kr  

Equalizer 

AWGN 
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2.3 Propagation channel 

This section discusses the channel impairments that limit the performance of a DCS. The 

DCS considered here is shown in Fig 2.1.The transmission of digital pulses over an 

analogue channel would require infinite bandwidth. An ideal physical propagation 

channel should behave like an ideal low pass filter represented by its frequency response,  

                                              )exp()()( fjfHfH cc θ=                                            (2.1) 

Where )( fHc  represents the Fourier transform (FT) of the channel and �is the phase 

response of the channel. The amplitude response of the channel )( fHc  can be defined 

as,  

                                             )( fHc  = 




0

1k
  

c

c

f

f

ω>

ω≤
                                            (2.2)                                                                                                   

Where 1k  is a constant and cω is the upper cutoff frequency. The channel group delay 

characteristic is given by 

                                          1
)(

2

1
)( kf

df

fd
=−=τ

θ

Π
                                         (2.3) 

Where 2k is an arbitrary constant. The conditions described in (2.2) and (2.3) constitute 

fixed amplitude and linear phase characteristics of a channel. This channel can provide 

distortion free transmission of analogue signal band limited to at least cω . Transmission 

of the infinite bandwidth digital signal over a band limited channel of cω  will obviously 

cause distortion. This demands for the infinite bandwidth digital signal is band limited to 

at least at least cω , to guarantee distortion free transmission. This work is done with the 

aid of transmitter and receiver filters shown in Fig 2.1. The combined frequency response 

of the physical channel, transmitter filter and the receiver filter can be represented as,  
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                                           )()()()( fHfHfHfH RcT=                                        (2.4) 

Where )(),(),( fHfHfH RcT  represents the FT of the transmitter, channel and receiver 

respectively. When the receiver filter is matched to the combined response of the 

propagation channel and the transmitter filter, the system provides optimum signal to 

noise ratio (SNR) at the sampling instant. As channel impulse response is not known 

beforehand, hence the receiver filter impulse response )(thR  is generally matched to the 

transmitter filter impulse response )(thT For this condition to be satisfied the frequency 

response of both the transmitter and receiver filters must be complex conjugate to each 

other. For the ideal channel case though it is very difficult but is possible by using a 

raised cosine filter. 

2.3.1 Inter symbol interference (ISI) 

The cascade of the transmitter filter )(thT  the channel )(thc and  the receiver 

)(thR matched filter and the T spaced sampler in the communication system shown in Fig 

2.1 can be modeled by a digital FIR filter. The noise at the equalizer input is correlated 

due to the presence of the matched filter. To take care of this, and since it is easier to deal 

with a white noise sequence in the equalizer, the equalizer is generally preceded by a 

noise whitening filter. This combined channel due to the transmitter filter, propagation 

channel, receiver filter, noise whitening filter and the T  spaced sampler can be modeled 

by the digital FIR filter represented in Fig 2.2. Here the channel observed output )(kr is 

given by the sum of the noise free channel output )(kr
∧

, Which in turn is formed by the 

convolution of the transmitted sequence )(ks  with the channel taps ia , 

10 −≤≤ cni and AWGN )(kη  . 
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Fig.2.2 Finite impulse response channel model 

The channel impulse response in the z  -domain can be represented by the equation 

                                              ∑
−

=

−=
1

0

)(
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i

i
izazH                                                   (2.5) 

Where, the channel provides dispersion up to 1−cn samples. This discrete time white 

noise linear filter model of the continuous channel will be used in the remaining part of 
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∑
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the thesis for evaluation of equalizer algorithms. Here the AWGN, )(kη  is characterized 

by its variance
2
nσ . 

2.3.2 Co-channel interference (CCI) and adjacent channel interference 

(ACI) 

CCI and ACI occur in communication systems due to multiple access techniques using 

space, frequency or time. When the signal of interest in a communication system is 

corrupted by another signal occupying the same frequency band, CCI occurs. However, 

the source of ACI can be attributed to inadequate inter carrier spacing and non ideal 

receiver filter characteristics. In twisted pair cables CCI occurs due to interference of 

signals between different twisted pairs and is termed near end cross talk (NEXT), and far 

end cross talk (FEXT)[27,28]. In DCR the CCI can be attributed to interference from 

cells of neighboring clusters using the same carrier frequency[29] and ACI is due to inter 

carrier spacing between different cells in time division multiple access (TDMA)[30] and 

inter carrier spacing among carriers in the same cell in FDMA[29,31,32] systems. The 

frequency spectrum of the signals that carry the desired signal, the CCI and ACI signals 

is presented in Fig 2.3  

 

Fig.2.3. Spectrum of desired signal, CCI and ACI in DCS [36] 

Here the signal of interest occupies a double sided bandwidth of sω The CCI signal also 

occupies the same frequency band. The ACI signal centre frequency is spaced at aciω  
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with respect to the desired carrier. The receiver filter rejects signal beyond Rω . The 

guard band provided in the system is sacis
ω−ω 2 . From the Fig 2.3 it can be seen that 

a portion of the signal spectrum in the neighboring carrier with respect to the signal of 

interest is received by the receiver filter and this signal is the main cause of ACI. The 

main reasons for this ACI can be attributed to non ideal cutoff characteristics of the 

receiver filter and close spacing of the carrier frequencies. Discrete time representation of 

the channel, the co-channel and the adjacent channel interferers using digital filters is 

presented in Fig 2.4. This system consists of a channel )(zH corrupted with L, CCI 

sources )(_ zH jco , Lj ≤≤1  and B, ACI sources )(_ zH jaci , Bj ≤≤1 each of which 

can be represented in the form of a FIR filter of the type presented in Fig 2.2. The 

channel is also additionally corrupted with AWGN, )(kη . The total CCI and ACI are 

presented as )(krco

∧
and )(kr ac

∧
 respectively. Here )(0 ks are the transmitted symbols 

from the desired channel, )(ksi  Li ≤≤1 represent the transmitted symbols from the co-

channel i  and )(_ kS jaci  represent the transmitted symbols from adjacent channel j . 
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Fig.2.4. FIR filter implementation of channel, CCI and ACI in digital communication 

system 
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2.4 Equalizer classification 

This section provides adaptive equalizer classification and specifies the domain of the 

investigation undertaken in this thesis. The general equalizer classification is presented in 

Fig 2.5. In general the family of adaptive equalizers can be classified as supervised 

equalizers and unsupervised equalizers. The channel distortions introduced into the 

transmitted signal in the process of transmission can be conveniently removed by 

transmitting a training signal or pilot signal periodically during the transmission of 

information. A replica of this pilot signal is available at the receiver and the receiver uses 

this to update its parameters during the training period. These kinds of equalizers are 

known as supervised equalizers. However, the constraints associated with communication 

systems like digital television and digital radio do not provide the scope for the use of a 

training signal. In this situation the equalizer needs some form of unsupervised or self 

recovery method to update its parameters so as to provide near optimal performance. 

These equalizers are called blind equalizers. After training, the equalizer is switched to 

decision directed mode, where the equalizer can update its parameters based on the past 

detected samples. This thesis investigates supervised equalizers in general. 

The process of supervised equalization can be achieved in two forms. These are sequence 

estimation and symbol-by-symbol estimation. The sequence estimator uses the sequence 

of past received samples to estimate the transmitted symbol. For this reason this forms of 

equalizer is considered as an infinite memory equalizer and is termed MLSE. The MLSE 

can be implemented with the Viterbi Algorithm]. An infinite memory sequence estimator 

provides the best bit error ratio (BER) performance for equalization of time invariant 

channels. The symbol-by-symbol equalizer on the other hand works as a finite memory 

equalizer and uses a fixed number of input samples to detect the transmitted symbol. The 

optimum decision function for this type of equalizer is given by MAP criterion and can 

be derived by Bayes’s theory[33]. Hence this optimum finite memory equalizer is  
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Fig.2.5. Classification of adaptive equalizers 
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also called the Bayesian equalizer[34]. An infinite memory Bayesian equalizer can 

provide a performance better than the MLSE, but its computational complexity is very 

large. A finite memory Bayesian equalizer can provide performance comparable to the 

MLSE but with a reduced computational complexity. 

The Bayesian equalizer provides the lower performance bound for symbol-by-symbol 

equalizers in terms of probability of error or BER and can be implemented with linear or 

nonlinear systems. The linear adaptive equalizer is a linear FIR adaptive filter trained 

with an adaptive algorithm like the LMS, RLS or lattice algorithm. These linear 

equalizers treat equalization as inverse filtering and during the process of training 

optimize a certain performance criteria. Like minimum mean square error (MMSE) or 

amplitude distortion. Linear equalizers trained with MMSE criterion provide the Wiener 

filter solution. Recent advances in nonlinear signal processing techniques have provided a 

rich variety of nonlinear equalizers. Some of the equalizers developed with these 

processing techniques are based on Volterra filters, ANN, perceptions, MLP, RBF 

networks, fuzzy filters and fuzzy basis functions. All of these nonlinear equalizers, during 

their training period, optimize some form of a cost function like the MSE or probability 

of error and have the capability of providing the optimum Bayesian equalizer 

performance in terms of BER. The nonlinear equalizers treat equalization as a pattern 

classification process where the equalizer attempts to classify the input vector into a 

number of transmitted symbols. The bacterial foraging based equalizers investigated in 

this thesis falls in this category. 

Another form of nonlinear equalizer that can be constructed with any of the symbol-by-

symbol based equalizers is the DFE, where previously made decisions are used for 

estimating the present and the future decisions. This equalizer is also considered as an 

infinite memory equalizer. The conventional DFE using a linear filter is designated as a 

nonlinear equalizer in wide Verities of communication literature since the decision 

function used here forms a nonlinear combination of the received samples which is, in 

fact the linear combination of the received samples and previously detected samples. In 

this thesis the term nonlinear equalizers is used exclusively for those equalizers that 



Chapter-2                                                                                                                   Channel Equaliztion 

Bacterial Foraging Based Channel Equalizers 17 

provide a nonlinear decision function based on received samples or the received samples 

along with previously detected samples.  

2.5 Optimal symbol-by-symbol equalizer: Bayesian equalizer 

The discrete time model of a digital communication system is as shown in Fig.2.6. 

 

 

 

Fig.2.6. Discrete time model of digital communication system 
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delay associated with equalizer decision. The communication system is assumed to be a 

two level PAM system where the transmitted sequence is drawn )(ks from a independent 

identically distributed (I.I.d) sequence comprising of { }1±  symbols. The noise source 

)(kη   is assumed to be zero mean white Gaussian with a variance of 2
nσ . The received 

signal r(k) at the sampling instant 2 can be represented as, 

)()()( kkrkr η+=
∧

 

                                                                )()(

1

0

kiksa
cn

i

i η+−= ∑
−

=

                                    (2.6) 

 

2.6 Symbol-by-symbol linear equalizers 

This section introduces the concept of the linear equalizer. As discussed in section 2.4, 

the linear equalizers in this thesis refer to equalizers that provide a decision based on the 

linear combination of the input to the equalizer. If decision feedback is employed, the 

linear equalizer provides a decision function based on the linear combination of received 

samples and previously detected samples. The structure of a linear equalizer is presented 

in Fig 2.6. The equalizer consists of a  T  spaced tapped delay line (TDL) which receives 

the receiver sampled input vector   [ ]Tmkrkrkrkr )().....1(),()( −−= and provides an 

output  )(ky  by weighted sum computation of input vector )(kr  with weight vector w . 

The output is computed once per symbol and can be represented as 

                                                    ∑
−

=

−=
1

0

)()(
m

i

i ikrwky                                                   (2.7) 

The weight vector w  optimizes one of the performance criteria like zero forcing (ZF) or 

MMSE criteria. The decision device presented at the output of the filter provides the 

transmitted signal constellation. 

The ZF criterion is defined as the worst case ISI at the output of the equalizer. The 

condition for minimization of peak distortion can be presented as 

                                                       ( )
( )ZH

ZC
1

=                                                           (2.8) 
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Here ( )ZC  is the equalizer impulse response. With this, the combined equalizer and the 

channel response is zero for all but one coefficient. From the equalizer condition 

presented in (2.7) it can be seen that, for FIR channels, the equalizer is realizable when 

the zeros of the channel are inside the unit circle in the  Z -plane. When the zeros are 

outside the unit circle, the equalizer becomes unstable and hence unrealizable. 

Equalization of this type of channel can be overcome by the introduction of a nonzero 

decision delay 0. 

The MMSE criteria provide equalizer tap coefficients ( )kw  to minimize the mean square 

error at the equalizer output before the decision device. This condition can be represented 

as 

                                                        ( ) 2
keJ ε=                                                          (2.9) 

 

                                                ( ) ( ) ( )kydkske −−=                                             (2.10) 
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Fig.2.7 Structure of a linear equalizer 
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the equalizer weights with these criteria requires computation of matrix inversion and the 

knowledge of the channel, which in most cases is not available. However, adaptive 

algorithms like LMS] and RLS can be used to recursively update the equalizer weights 

during the training period. The convergence properties and the performance of linear 

equalization techniques have been well documented in the literature. 

 

2.7 Symbol-by-symbol adaptive nonlinear equalizers 

Some of the popular forms of nonlinear equalizers are introduced in this section. 

Nonlinear equalizers treat equalization as a nonlinear pattern classification problem and 

provide a decision function that partitions the input space 
mℜ to the number of 

transmitted symbols. As a result the equalizer assigns the input vector to one of the signal 

constellations. The nonlinear equalizers introduced in this section are based on the RBF 

networks. Some of the other Forms of nonlinear equalizers based on the recurrent RBF, 

ANN, the recurrent ANN, the Volterra filters, the functional link networks and 

Mahalobonis classifiers have not been discussed.  

 

2.7.1 Radial basis function equalizer 

The RBF network was originally developed for interpolation in multidimensional space. 

The schematic of this RBF network with m  inputs and a scalar output is presented in Fig 

2.7. This network can implement a mapping ℜ→ℜm
rbff :  by the function, 

                                         ( ){ } ( )( )∑ ρ−φ= iirbf kxwkxf                                      (2.11) 

Where  ( ) mkx ℜ∈  is the input vector,  ( ).φ  is the given function from 
+ℜ  to ℜ , 

ri Niw ≤≤1,  are weights and 
m

i ℜ∈ρ are known as RBF centers. This RBF structure 

can be extended for multidimensional output as well.  

Possible choices for the radial basis function ( )γφ  include a thin plate spline, 
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                                                      ( ) )log(
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A multi quadratic, 

                                                       ( ) )( 22
rσ+γ=γφ                                                 (2.13) 

An inverse multi quadratic, 

 

                                                       ( )
)(

1

22
rσ+γ

=γφ                                                 (2.14) 

and Gaussian kernel, 

                                                       )
2

exp()(
2

2

σ

γ−
=γφ                                                   (2.15) 

Here, the parameter 2σ   controls the radius of influence of each basis functions and 

determines how rapidly the function approaches 0  with  γ  . The Gaussian and the 

inverse multi-quadratic kernel provide bounded and localized properties such that 

0)( →γφ  as ∞→γ . Broomhead and Lowe reinterpreted the RBF network as a least 

square estimator which  led to its wide spread use in signal processing applications such 

as time series prediction  system identification, interference cancellation, radar signal 

processing, pattern classification  and channel equalization. In signal processing 

applications the RBF inputs are presented through a TDL. Training of the RBF networks 

involves setting the parameters for the centers iρ , spread rσ  and the linear weights iw . 

 

The RBF networks are easy to train since the training of centers, spread parameter and 

the weights can be done sequentially and the network offers a nonlinear mapping, 

maintaining its linearity in parameter structure at the output layer. One of the most 

popular schemes employed for training the RBF in a supervised manner is to estimate the 

centers using a clustering algorithm like the k -means clustering and setting 2
rσ  to an 

estimate of input noise variance calculated from the centre estimation error. The output 

layer weights can be trained using popular stochastic gradient LMS algorithm. Other 

schemes for RBF training involve selecting a large number of candidate centers  
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Fig.2.8. A radial basis function network for signal processing applications 
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initially and use the orthogonal least squares (OLS) algorithm to pick a subset of the 

centers that provides near optimal performance. The MLP back propagation algorithm 

can also be used to train the RBF centers. In early RBF equalizers the RBF centers were 

selected at random, picked from a few of the initial input vectors. The weights were 

updated using supervised training by the LMS algorithm or its momentum version. This 

resulted in equalizers with large number of centers making the network computationally 

complex. Chen proposed the OLS algorithm for selecting an optimum number of centers 

from a large number of candidate centers, resulting in near optimal performance. 

Subsequently, the close relationship between the RBF network and the Bayesian 

equalizer was found and this provided the parametric implementation of the Bayesian 

equalizers with the RBF. In these equalizers supervised k -means clustering provides the 

estimate of the centers while linear weights are estimated using the LMS algorithm. With 

the development of RBFs that could handle complex signals, they were used for 

equalization in communication systems with complex signal constellation. Cha proposed 

the stochastic gradient algorithm to adapt all the RBF parameters and used this technique 

to equalize 4-QAM digital communication systems. 

 

The RBF equalizer can provide optimal performance with small training sequences but 

they suffer from computational complexity. The number of RBF centers required in the 

equalizer increases exponentially with equalizer order and the channel delay dispersion 

order. This increases all the computations exponentially. In a varied implementation the 

RBF with scalar centers results in a reduction of computational complexity. The issues 

relating to the RBF equalizer design have been discussed extensively in [25]. 

2.8 Conclusion 

In this chapter the optimum symbol-by-symbol equalizer decision function was derived 

and its implementation using the RBF was presented. The RBF equalizer using bacterial 

foraging algorithm is discussed in chapter 4. 
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CChhaapptteerr--33  

EEvvoolluuttiioonnaarryy  AAllggoorriitthhmmss  

  

3.1 Introduction 

Evolutionary algorithms are stochastic search methods that mimic the metaphor of 

natural biological evolution. Evolutionary algorithms operate on a population of potential 

solutions applying the principle of survival of the fittest to produce better and better 

approximations to a solution. At each generation, a new set of approximations is created 

by the process of selecting individuals according to their level of fitness in the problem 

domain and breeding them together using operators borrowed from natural genetics. This 

process leads to the evolution of populations of individuals that are better suited to their 

environment than the individuals that they were created from, just as in natural adaptation. 

This chapter is organized as follows. Following this introduction section 3.2 describes the 

working of evolutionary algorithms, section 3.3 gives some examples of evolutionary 

algorithms, section 3.4 presents the basic idea of bacterial foraging optimization, section 

3.5 discusses the bacterial foraging algorithm, section 3.6 presents the algorithms 

flowchart, section 3.7 discusses the algorithm parameter choices, finally section 3.8 

provides the concluding remarks. 

3.2 working of ‘Evolutionary Algorithms’ 

Evolutionary algorithms model natural processes, such as selection, recombination, 

mutation, migration, locality and neighborhood. Fig.3.1 shows the structure of a simple 

evolutionary algorithm. Evolutionary algorithms work on populations of individuals 

instead of single solutions. In this way the search is performed in a parallel manner.  
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At the beginning of the computation a number of individuals (the population) are 

randomly initialized. The objective function is then evaluated for these individuals. The 

first/initial generation is produced. 

If the optimization criteria are not met the creation of a new generation starts. Individuals 

are selected according to their fitness for the production of offspring. Parents are 

recombined to produce offspring. All offspring will be mutated with a certain probability. 

The fitness of the offspring is then computed. The offspring are inserted into the 

population replacing the parents, producing a new generation. This cycle is performed 

until the optimization criteria are reached. 

 

Fig 3.1 Structure of a single population evolutionary algorithm 

 

Such a single population evolutionary algorithm is powerful and performs well on a wide 

variety of problems. However, better results can be obtained by introducing multiple 

No  

Result 
Start  

No  
Are optimization 

criteria met? 

Best 

individual

s 

Evaluate 

objective 

function 

Generate 

initial 

population 

Selection 

Recombination 

Mutation  

Generate 

new 

population 



Chapter-3                                                                                                            Evolutionary Algorithms 

Bacterial Foraging Based Channel Equalizers 27 

subpopulations. Every subpopulation evolves over a few generations isolated (like the 

single population evolutionary algorithm) before one or more individuals are exchanged 

between the subpopulation. The multi-population evolutionary algorithm models the 

evolution of a species in a way more similar to nature than the single population 

evolutionary algorithm. Fig.3.2. shows the structure of such an extended multi-population 

evolutionary algorithm.  

 

 

Fig 3.2 Structure of an extended multipopulation evolutionary algorithm 
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From the above discussion, it can be seen that evolutionary algorithms differ substantially 

from more traditional search and optimization methods. The most significant differences 

are: 

• Evolutionary algorithms search a population of points in parallel, not just a single 

point.  

• Evolutionary algorithms do not require derivative information or other auxiliary 

knowledge; only the objective function and corresponding fitness levels 

influence the directions of search.  

• Evolutionary algorithms use probabilistic transition rules, not deterministic ones.  

• Evolutionary algorithms are generally more straightforward to apply, because no 

restrictions for the definition of the objective function exist.  

••  Evolutionary algorithms can provide a number of potential solutions to a given 

problem. The final choice is left to the user. (Thus, in cases where the particular 

problem does not have one individual solution, for example a family of pareto-

optimal solutions, as in the case of multi-objective optimization and scheduling 

problems, then the evolutionary algorithm is potentially useful for identifying 

these alternative solutions simultaneously.)  

3.3 Some examples of EA 

Genetic algorithm - This is the most popular type of EA. One seeks the solution of a 

problem in the form of strings of numbers (traditionally binary, although the best 

representations are usually those that reflect something about the problem being solved - 

these are not normally binary), virtually always applying recombination operators in 

addition to selection and mutation. 

Evolutionary programming - Like genetic programming, only the structure of the 

program is fixed and its numerical parameters are allowed to evolve.  

Evolution strategy - Works with vectors of real numbers as representations of solutions, 

and typically uses self-adaptive mutation rates. 
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Genetic programming - Here the solutions are in the form of computer programs, and 

their fitness is determined by their ability to solve a computational problem.  

Learning classifier system - Instead of a using fitness function, rule utility is decided by 

a reinforcement learning technique.  

3.2.1 Related techniques 

Differential evolution - Based on vector differences and is therefore primarily suited for 

numerical optimization problems.  

Particle swarm optimization - Based on the ideas of animal flocking behavior. Also 

primarily suited for numerical optimization problems.  

Ant colony optimization - Based on the ideas of ant foraging by pheromone 

communication to form path. Primarily suited for combinatorial optimization problems. 

Bacterial foraging - Based on the ideas of bacteria foraging by swimming and tumbling. 

Primarily suited for combinatorial optimization problems. 

3.4 Basic Bacterial Foraging Optimization 

Natural selection tends to eliminate animals with poor foraging strategies and favor the 

propagation of genes of those animals that have successful foraging strategies, since they 

are more likely to enjoy reproductive success. After many generations, poor foraging 

strategies are either eliminated or shaped into good ones. This activity of foraging led the 

researchers to use it as optimization process. The E. coli bacteria that are present in our 

intestines also undergo a foraging strategy. The control system of these bacteria that 

dictates how foraging 

should proceed can be subdivided into four sections, namely, chemotaxis, swarming, 

reproduction, and elimination and dispersal. 

3.4.1 Chemotaxis: This process in the control system is achieved through swimming and 

tumbling via Flagella. Each flagellum is a left-handed helix configured so that as the base 

of the flagellum (i.e., where it is connected to the cell) rotates counterclockwise, as 

viewed from the free end of the flagellum looking toward the cell, it produces a force 
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against the bacterium so it pushes the cell. On the other hand, if they rotate clockwise, 

each flagellum pulls on the cell, and the net effect is that each flagellum operates 

relatively independently of others, and so the bacterium tumbles about. Therefore, an E. 

coli bacterium can move in two different ways; it can run (swim for a period of time) or it 

can tumble, and  alternate between these two modes of operation in the entire lifetime. To 

represent a tumble, a unit length random direction, say )( jφ  , is generated; this will be 

used to define the direction of movement after a tumble. In particular 

                                          )()(),,(),,1( jiclkjlkj ii φ+θ=+θ                                       (3.1) 

Where  iθ  (j+1, k, l) represents the i th bacterium at j  th chemotactic k th reproductive 

and l  th elimination and dispersal step. C(i) is the size of the step taken in the random 

direction specified by the tumble (run length unit). 

3.4.2 Swarming: When a group of E. coli cells is placed in the center of a semisolid agar 

with a single nutrient chemo-effecter (sensor), they move out from the center in a 

traveling ring of cells by moving up the nutrient gradient created by consumption of the 

nutrient by the group. Moreover, if high levels of succinate are used as the nutrient, then 

the cells release the attractant aspartate so that they congregate into groups and, hence, 

move as concentric patterns of groups with high bacterial density. The spatial order 

results from outward movement of the ring and the local releases of the attractant; the 

cells provide an attraction signal to each other so they swarm together. The mathematical 

representation for swarming can be represented by  
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where )),,(,( lkjPJcc θ  is the cost function value to be added to the actual cost function 

to be minimized to present a time varying cost function, S  is the total number of bacteria, 

P is the number of parameters to be optimized which are present in each bacterium, and 

repellentrepellentattractattarct whwd ,, ,  are different coefficients that are to be chosen 

properly. 

3.4.3 Reproduction: The least healthy bacteria die and the other healthier bacteria each 

split into two bacteria, which are placed in the same location. This makes the population 

of bacteria constant. 

3.4.4 Elimination and Dispersal: It is possible that in the local environment, the lives of 

a population of bacteria changes either gradually (e.g., via consumption of nutrients) or 

suddenly due to some other influence. Events can occur such that all the bacteria in a 

region are killed or a group is dispersed into a new part of the environment. They have 

the effect of possibly destroying the chemotactic progress, but they also have the effect of 

assisting in chemotaxis, since dispersal may place bacteria near good food sources. From 

a broad perspective, elimination and dispersal are parts of the population-level long-

distance motile behavior. This section is based on the work in[35]. As this paper 

concentrates in applying the new method to harmonic estimation, the in depth discussion 

over the bacterial foraging strategy is not dealt. The detailed mathematical derivations, as 

well as the theoretical aspect of this new concept are presented in[35].  

3.5 Bacterial foraging - Algorithm 

For initialization, we must choose P , S , cN , sN , reN , edN , edP , and the               

C(i),i=1,2…… S. In case of swarming, we will also have to pick the parameters of the 

cell-to-cell attractant functions; here we will use the parameters given above. Also, initial 

values for the θ
i
, i = 12….S must be chosen. Choosing these to be in areas where an 

optimum value is likely to exist is a good choice. Alternatively, we may want to simply 

randomly distribute them across the domain of the optimization problem. The algorithm 

that models bacterial population chemotaxis, swarming, reproduction, elimination, and 

dispersal is given here (initially j=k=l=0). For the algorithm, note that updates to the θ
i
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automatically result in updates to P. Clearly, we could have added a more sophisticated 

termination test than simply specifying a maximum number of iterations. 

1) Elimination-dispersal loop: l=l+1 

2) Reproduction loop: k=k+1 

3) Chemotaxis loop: j=j+1 

a) For i =12….S, take a chemotactic step for bacterium i as follows. 

b) Compute ),,,( lkjiJ Let  ),,,( lkjiJ  = ),,1,( lkjiJ + + ),,1().,,1(( lkjPlkjJ
i

cc ++θ  

 (i.e., add on the cell-to-cell attractant effect to the nutrient concentration). 

c) Let lastJ = ),,,( lkjiJ  to save this value since we may find a better cost via a run. 

d) Tumble: Generate a random vector ∆(i) ∈ ℜ p 
 with each element ∆m(i),m=1,2…..p a 

random number on [-1,1]. 

e) Move: Let ),,1( lkji +θ = ),,1( lkji +θ + )(iC

)()(

1
)(

ii

i
t ∆∆

∆  

This results in a step of size )(iC in the direction of the tumble for bacterium i. 

f)  Compute ),,1,( lkjiJ + and then let  

),,1,( lkjiJ +  = ),,1,( lkjiJ + + ),,1().,,1(( lkjPlkjJ
i

cc ++θ  

g) Swim (note that we use an approximation since we decide swimming behavior of each 

cell as if the bacteria numbered {1, 2…i} have moved and {i+1, i+2…s} have not; this is 

much simpler to simulate than simultaneous decisions about swimming and tumbling by 

all bacteria at the same time): 

I. Let m = 0 (counter for swim length). 
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II. While m < sN   (if have not climbed down too long) 

• Let m = m + 1 

• I f ),,1,( lkjiJ +  < lastJ  (if doing better),  

let  lastJ = ),,1,( lkjiJ +  and let ),,1( lkji +θ = ),,( lkjiθ + c(i)

)()(

1
)(

ii

i
t ∆∆

∆  and use 

this ),,1( lkji +θ to compute the new ),,1,( lkjiJ +  as we did in f). 

• Else, let m= sN   this is the end of the while statement. 

h) Go to next bacterium )1( +i  if Si ≠  (i.e., go to b) to process the next bacterium). 

4) If j < cN  , go to step 3. In this case, continue chemotaxis, since the life of the bacteria 

is not over. 

5) Reproduction: a) For the given k and l, and for each i =1, 2…..S let i
healthJ = 

∑
+

=

1

1

),,,(
cN

j

lkjiJ  be the health of bacterium i  (a measure of how many nutrients it got over 

its lifetime and how successful it was at avoiding noxious substances). Sort bacteria and 

chemotactic parameters )(iC in order of ascending cost healthJ  (higher cost means lower 

health). 

b) The rS  bacteria with the highest healthJ  values die and the other rS  bacteria with the 

best values split (and the copies that are made are placed at the same location as their 

parent). 

6) If K< reN  go to step 2. In this case, we have not reached the number of specified 

reproduction steps, so we start the next generation in the chemotactic loop. 
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7) Elimination-dispersal: For i = 1, 2… S .With probability edP , eliminate and disperse 

each bacterium (this keeps the number of bacteria in the population constant). To do this, 

if you eliminate a bacterium, simply disperse one to a random location on the 

optimization domain. 

8) If l  < edN   then go to step 1; otherwise end. 

3.6 Algorithm flowchart  

 
 

Fig.3.3Fflow chart of the algorithm   
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3.7 Guidelines for Algorithm Parameter Choices 

  

3.7.1 Size of population ‘S’: Increasing the size of S can significantly increase the 

computational complexity of the algorithm. However, for larger values of S, it is more 

likely at least some bacteria near an optimum point should be started, and over time, it is 

then more likely that many bacterium will be in that region, due to either chemotaxis or 

reproduction. 

3.7.2 Length of chemotactic step ‘C(i)’: If the C(i)values are too large, then if the 

optimum value lies in a valley with steep edges, the search will tend to jump out of the 

valley, or it may simply miss possible local minima by swimming through them without 

stopping. On the other hand, if the C(i) values are too small, convergence can be slow, 

but if the search finds a local minimum it will typically not deviate too far from it. )(ic  

can be treated as a type of “step size” for the optimization algorithm. 

3.7.3 Chemotactic step ‘ cN ’:  If the size of cN  is chosen to be too short, the algorithm 

will generally rely more on luck and reproduction, and in some cases, it could more 

easily get trapped in a local minimum (premature convergence). sN  creates a bias in the 

random walk (which would not occur if Ns = 0), with large values tending to bias the 

walk more in the direction of climbing down the hill.  

3.7.4. Reproduction number ‘ reN ’: If reN is too small, the algorithm may converge 

prematurely; however, larger values of reN clearly increase computational complexity.  

3.7.5 Elimination and dispersal number ‘ edN ’: A low value for Ned dictates that the 

algorithm will not rely on random elimination-dispersal events to try to find favorable 

regions. A high value increases computational complexity but allows the bacteria to look 

in more regions to find good nutrient concentrations. Clearly, if edp is large, the 

algorithm can degrade to random exhaustive search. If, however, it is chosen 
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appropriately, it can help the algorithm jump out of local optima and into a global 

optimum.  

3.7.6 The parameters that define the cell-to-cell attractant functions ‘
i
ccJ ’: 

If the attractant width is high and very deep, the cells will have a strong tendency to 

swarm (they may even avoid going after nutrients and favor swarming). On the other 

hand, if the attractant width is small and the depth shallow, there will be little tendency to 

swarm and each cell will search on its own. Social versus independent foraging is then 

dictated by the balance between the strengths of the cell-to-cell attractant signals and 

nutrient concentrations. 

3.8 Conclusion 

This chapter introduces the concept of the ‘Evolutionary Algorithms’ with more 

emphasis on ‘Bacterial Foraging’. The basic ‘Bacterial Foraging Algorithm’ is explained. 

Chapter-4 describes the implementation of the RBF channel equalizer with ‘Bacterial 

Foraging Algorithm’. 
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CChhaapptteerr--44  

CChhaannnneell  eeqquuaalliizzaattiioonn  bbaasseedd  oonn    

‘‘BBaacctteerriiaall  FFoorraaggiinngg  AAllggoorriitthhmm’’  

 

4.1 Introduction 

For effective high-speed digital data transmission over a communication channel, the 

adverse effects of the dispersive channel causing intersymbol interference (ISI), the 

nonlinearities introduced by the modulation/demodulation process, transmitter and 

receiver amplifiers and the noise generated in the system are to be suitably compensated. 

The performance of the linear channel equalizers employing a linear filter with FIR using 

a least mean square (LMS) or recursive least-squares (RLS) algorithm is limited 

especially when the nonlinear distortion is severe. In such cases, nonlinear equalizer 

structures may be conveniently employed with added advantage in terms of lower bit 

error rate (BER), and higher convergence rate than those of a linear equalizer. 

Nonlinear equalizers based on RBF network with bacterial foraging training can perform 

mapping between its input and output space and are capable of forming decision regions 

with nonlinear decision boundaries. Because of nonlinear characteristics of the above 

equalizers and channel equalization being a nonlinear classification problem; these 

equalizers are best suited for channel equalization problem. 

This chapter analyzes the performance of the nonlinear equalizers based on RBF network, 

with bacterial foraging training. Following the introduction this chapter is organized as 

follows. Section 4.2 describes calculation of channel states section 4.3 describes the 

digital transmission system affected by nonlinearities and the channel states of time 

invariant and time-varying channel.  Section 4.4 provides some extensive simulation 

results. 

4.2 Calculation of channel states 

To implement the Bayesian equalizer, the concept of channel states is introduced first. 

The equalizer input vector is defined as, 
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mTmkrkrkrkr ℜ∈+−−= )]1(),...,1(),([)(  and )()()( kkrkr η+=
∧

. The vector )(kr
∧

is 

the noise free received signal vector and mmkrkrkrkr ℜ∈+−−=
∧∧∧∧

)1(),...,1(),([)( . 

 Each of this possible noise free received signal vectors constitutes a channel state. The 

channel states are determined by the transmitted symbol 

vector T
cnmksksksks )]2(),...,1(),([)( +−−−= . Here )(kr

∧
can be represented 

as )]([)( ksHkr =
∧

 , where matrix 
)1( −+×ℜ∈ cnmm

H is the channel matrix. 

 

Since )(ks has 
1

2
−+= cnm

sN  combinations, )(kr
∧

 has sN states. These channel states 

are constructed with sN  sequences of )(ks , which can be denoted as, 

 

                 T
cjjjj nmksksksks )]2(),...,1(),([)( +−−−=  , sNj ≤≤1                       (4.2) 

 

The corresponding channel states are denoted as jc and are given by 

                                           )]([)( ksHkrc jj ==
∧

, sNj ≤≤1                                       (4.3) 

 

The channels state matrix, { }jd cc = , sNj ≤≤1  can be partitioned into two subsets 

depending on the transmitted symbol )( dks −  i.e., 

                                                              −+= ddd Uccc                                                       (4.4) 

 

 

Where, 

 

(4.1) 
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







+=−=
∧

+ 1)()( dkskrcd  

 

                                             








−=−=
∧

− 1)()( dkskrcd                                           (4.5) 

 

Table.4.1. Channel state calculation for the channel 15.1)( −+= zzH  with m =2, 

d =0 and sN =8. 

No: 
jc  S(k)          S(k-1)           S(k-2) 

)(kr
∧

      )1( −
∧

kr  

1 

2 

3 

4 

5 

6 

7 

8 

C1 

C2 

C3 

C4 

C5 

C6 

C7 

C8 

 

-1                -1                    -1 

-1                -1                     1 

-1                 1                    -1 

-1                 1                     1 

1                 -1                     -1 

1                 -1                      1 

1                  1                     -1 

1                  1                      1 

-1.5          -1.5 

-1.5           -0.5 

-0.5            0.5 

-0.5            1.5 

0.5            -1.5 

0.5             -0.5 

1.5              0.5 

1.5              1.5 

 

 

4.3 Digital transmission system with nonlinearity in channel 

The block diagram of the digital transmission system with equalizer where the Channel is 

affected by some nonlinearity is presented in Fig.4.1. 
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Fig.4.1 Digital transmission system with non linearity and equalizer. 

 

In this baseband structure of the digital communication system with the nonlinearity 

introduced at the output of the channel, the combined effect of the transmitter filter, the 

transmission medium, and other components are included in the “channel”. A widely 

used model for a linear dispersive channel is a FIR model whose output at time instant 

k may be written as 

                                                 ( ) ( ) ( )∑
−

=

−=
1

0

cN

n

nktnhka                                                   (4.6) 

Where ( )nh the channel is taps of the channel taps and cN  is the length of the FIR 

channel model, ( )ka  is the noise free channel output. 

If the nonlinear distortion caused by the channel is to be considered, the channel model is 

treated as nonlinear and its output may be expressed as 

                                                         ( ) ( )( )kakb ϕ=                                                       (4.7) 

or  

                    ( ) ( ) ))()),...,1(,0(;1)(),...,1(),(' cc NhhhNktktktka +−−ϕ=               (4.8) 

Channel NL 

Equalizer 

Delay 

∑

∑ 

+ 

)(ks  )(ka  
)(kb  

)(kη

 

)(kr  

( )dks −
∧

 

)( dks −  

( )ke  
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Where (.)ϕ  is some nonlinear function represented by “NL” block shown in Fig 4.1.The 

channel output is corrupted with AWGN )(kη  of variance 2σ  to produce ( )kr , the signal 

received at the receiver. The purpose of the equalizer is to recover the transmitted symbol 

( )ks  from the knowledge of the received signal symbols without any error. As the 

channel is affected by some nonlinearity due to either modulation/demodulation or 

amplifiers used in transmitter and receives, it is difficult to estimate the channel during 

training period. The scalar channel states can be directly estimated by k-mean clustering 

method during the transmission of the known data and these scalar states formulate the 

channel states which forms the centers of the basis function of the equalizers.  

In the Fig. 4.1, we have 

                                                    ( ) ( )[ ] )(

0

kkackr

iN

i

i η+= ∑
=

                                           (4.9) 

 

Where N denotes the number of nonlinear terms. Considering ( ) 15.1 −+= zka and 1c  = 1, 

2c = 0, 3c = − 0.9, the channel states of this channel ( )kr
∧

can be calculated as shown in 

Table.4.2. 

 

Table 4.2:Calculation of nonlinearities with channel states. 

 

S.No: 

 

S(k)           S(k-1)      S(k-2) 

 

a(k)             a(k-1) ( )kr
∧

                 ( )1−
∧

kr  

1 

2 

3 

4 

5 

6 

7 

8 

-1                 -1              -1 

-1                - 1               1 

-1                  1              -1 

-1                  1               1 

 1                 -1              -1 

 1                 -1               1 

 1                  1               -1 

 1                  1                1  

-1.5               -1.5 

-1.5               -0.5  

-0.5                0.5 

-0.5                1.5 

0.5                 -1.5 

0.5                 -0.5 

1.5                 -0.5  

1.5                  1.5   

1.5375              1.5375       

1.5375              -.3875 

-.3875               .3875   

-.3875              -1.5375  

.3875                 1.5375 

.3875                  -.3875 

-1.5375               .3875 

-1.5375            -1.5375  

 

4.4 simulation results 



Chapter-4                                                                                                    Channel Equalization Based 

on ‘Bacterial Foraging Algorithm’ 

Bacterial Foraging Based Channel Equalizers 42 

4.4.1 Results of a linear channel 

Calculation of channel states for the channel 15.1 −+ z  are shown in Table.4.1. These 

channel states can be represented in a two dimensional space is as shown in Fig.4.2.  

These channel states are drawn assuming delay as 0. 

The signal s  is passed through the channel and a noise at an SNR 20db is added to the 

output of the channel. The received signal vector after the addition of noise is shown in 

Fig.4.3. The centers of the clusters formed due to the additive noise as shown in Fig.4.3 is 

calculated using ‘Bacterial foraging algorithm’, with bacteria population =16 and no: 

reproduction steps = 8. Positions of the centers after each reproduction step are shown in 

Fig. 4.4. 

An RBF network is designed, with centers as the centers obtained above. The 

performance of the equalizer can be find out by plotting the BER plot for various SNRs. 

BER vs SNR plot is shown in Fig 4.5.  

Simulated results of the channel 15.1 −+ z  , 15. −+ z with delays 0, 1 and 2 shown in 

Chapter-5 and are compared with the results obtained employing LMS algorithm for the 

same job. Simulations are done for the channels and delays as shown in Table.4.3. 

 

Fig.4.2. channel states for the channel 
15..01 −+ z  with zero delay. 
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Fig.4.3. Received signal after noise at 20db SNR added 

 

 

 

 

Fig.4.4 position of centers in each generation  
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Fig.4.5. SNR vs BER plot for the channel 
15.01 −+ z  with delay = 0. 

 

 

 

Table.4.3.Linear channels simulated  

S.No. Channel Simulated for Delays 

1 15.01 −+ z  0,1,2 

2 15.0 −+ z  0,1,2 

3 21 2682.009296.2682.0 −− ++ zz  0 
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4.4.2 Results of a non-linear channel 

Calculation of  channel states for the non-linear channel are shown in Table.4.2. The 

channel states can be represented in a two dimensional space as shown in Fig.4.6. The 

delay considered here is 0.  

The signal s is passed through the channel 15.1 −+ z and a non-linearity 3)(9.0)( kaka − . 

Noise at an SNR 20db is added to the output of the channel. The received signal samples 

)(kr  are shown in Fig.4.7. 

The centers of the clusters formed due to the additive noise as shown in Fig.4.7 is 

calculated using ‘Bacterial foraging algorithm’, with bacteria population =16 and no: 

reproduction steps = 16. Positions of the centers after each reproduction step are shown in 

Fig. 4.8. 

An RBF network is designed, with centers as the centers obtained above. The 

performance of the equalizer can be finding out by plotting the BER plot for various 

SNRs. BER vs SNR plot is shown in Fig 4.9 

Simulated results of other non-linear channels are shown in Chater-5. List of non-linear 

channels simulated are shown in Table. 4.3. 

Table.4.4 Non-linear channels simulated 

S.No. Channel Non-linearity 

1 15.1 −+ z  39. aa −  

2 15.1 −+ z  32 1.2. aaa −+  

3 15.1 −+ z  )tanh(a  
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Fig 4.6 channel states for the non-linear channel, with non linearity 3)(9.0)( kaka −  

 

 

Fig 4.7 channel states for the non-linear channel, with noise at 20db added 
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Fig.4.8. position of centers in each generation 

 

 

Fig.4.9 performance of the channel 
15.1 −+ z with non-linearity 3)(9.0)( kaka −  
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Chapter-5 

Results & Discussions   

5.1 Introduction 

To validate the performance of the proposed equalizer, the algorithm was tested for 

channel equalization for a variety of conditions. The simulations were carried out for 

different types of channels and results obtained with bacterial foraging algorithm was 

compared with the result obtained with RBF equalizer trained with K-means clustering 

and linear equalization using LMS algorithm. The simulations were carried out using 

MATLAB 6.5 and personal computer. The training signal considered is a BPSK signal 

with symbols{ }1± . These training samples were passed through the channel and AWGN 

is added to the output of the channel. The resulted signal was given to the equalizer and 

the equalizer is trained using an RBF network with bacterial foraging algorithm. 

This chapter is organized as follows: following this introduction section 5.2 presents the 

simulation results for minimum phase channel. Section 5.3 presents the simulation results 

for the non minimum phase channel. Sections 5.4 and 5.5 presents the results for mixed 

phase and non-linear channels respectively. Finally section 5.6 discusses the performance 

of the proposed equalizer. 

 

5.2 Simulation results for minimum phase channel 

First simulation was conducted for a minimum phase channel whose transfer function is 

15.01 −
+ z . This channel has only one zero and it is inside the unit circle in the 2-

dimensional plane. 

The equalizer order used was 2. The equalizer was trained with 1000 samples using 

bacteria population 16 over 8 reproduction steps. Number of chemotactic steps was set to 

the number of members in the particular cluster. The channel states estimated using 

bacterial foraging algorithm were compared with the actual centers as shown in Table 5.1 

The equalizer performance in terms of BER is compared with RBF equalizer trained with 

K-means clustering and LMS equalizer. The BER for varying SNR is plotted in Fig 5.1a 

through 5.1c for decision delay of 0,1 and 2 respectively. 
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Table 5.1 Centers obtained for the channel 
15.01 −

+ z  

 

Centers obtained 

using 

 bacterial foraging 

Actual centers  

r(k) r(k-1) r(k) r(k-1) 

1c  -1.5006 -1.4971 -1.5 -1.5 

2c  -1.5023 -0.5014 -1.5 -0.5 

3c  -0.5001 0.4965 -0.5 0.5 

4c  -0.5032 1.5013 -0.5 1.5 

5c  0.4986 -1.5025 0.5 -1.5 

6c  0.5012 -0.5025 0.5 -0.5 

7c  1.4992 0.4968 1.5 0.5 

8c  1.5037 1.4998 1.5 1.5 

 

 

 
 

Fig.5.1a. performance of the equalizer at delay=0.  
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Fig.5.1b. performance of the equalizer at delay=1. 
 
 
 

 
5.1c. performance of the equalizer at delay=2. 
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From the plots it is seen that at delay = 0 and 1 the proposed equalizer performs better 

than LMS equalizer even though the problem is linearly sepearble. But at delay=2 the 

equalization problem becomes linearly inseparable. In this case LMS algorithm 

completely fails to classify the patterns. The proposed equalizer gains almost 4db SNR at 

a BER of 310− . In all the three cases the proposed equalizer performs close to the RBF 

equalizer trained with K-means clustering. 

 

5.3 Simulation results for non-minimum phase channel 

Second simulation was conducted for a non-minimum phase channel whose transfer 

function is 15.0 −
+ z . The only zero of this channel is located outside the unit circle. 

The parameters taken for the simulation are same as those taken for a minimum phase 

channel.The channel states estimated using bacterial foraging algorithm were compared 

with the actual centers as shown in Table 5.2. The equalizer performance in terms of BER 

is compared with RBF equalizer trained with K-means clustering and LMS equalizer in 

Fig 5.2a through 5.2c  for varying SNR for decision delays 0,1 and 2 respectively. 

Table 5.2 Centers obtained for the channel 
15.0 −

+ z  

Centers obtained 

using  

bacterial foraging 

Actual centers  

r(k) r(k-1) r(k) r(k-1) 

1c  -1.5006 -1.4971 -1.5 -1.5 

2c  -1.5023 0.5007 -1.5 0.5 

3c  0.5026 -0.5004 0.5 -0.5 

4c  0.4959 1.5003 0.5 1.5 

5c  -0.5035 -1.5006 -0.5 -1.5 

6c  -0.5039 0.4982 -0.5 0.5 

7c  1.4984 -0.5017 1.5 -0.5 

8c  1.5037 1.4998 1.5 1.5 
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Fig.5.2a. performance of the equalizer with delay=0 
 

 

 
 

Fig.5.2b. performance of the equalizer with delay=1 

 
. 
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Fig.5.2c. performance of the equalizer with delay=2 

 
 
From the plots it is seen that at delay=0 the proposed equalizer gains SNR of 

approximately 4db (Fig 5.2a), where the equalization problem becomes linearly 

inseparable.  In Fig 5.2b and 5.2c the proposed equalizer performs better than the LMS 

equalizer even though the problem is linearly seperable.In all the three cases the 

‘Bacterial Foraging Algorithm’ performs almost similar to K-means clustering. 

 
5.4 simulation results for a mixed phase channel 

 
Second simulation was conducted for a non-minimum phase channel whose transfer 

function is 21 2682.09296.02682.0 −−
++ zz . Of the two zeros one zero lies inside the unit 

circle and the other one lies out side the unit circle. 

The parameters taken for the simulation are same as those taken in sections 5.2 and 5.3. 

The channel states estimated using bacterial foraging algorithm were compared with the 

actual centers as shown in Table 5.3. The equalizer performance in terms of BER is 

compared with LMS equalizer in Fig 5.3  for varying SNR for decision delay 0. 

 

 



Chapter-5                                                                                                             Results & Discussions 

 

                                            Bacterial foraging based channel equalizers                                             54 

 

 

 

Table 5.3 Centers obtained for the channel 
21 2682.09296.02682.0 −−

++ zz  

 

Centers obtained using  

’Bacterial Foraging 

Algorithm’ 

Actual Centers  

r(k) r(k-1) r(k) r(k-1) 

1c  -1.466 -1.466 -1.4680 -1.4660 

2c  -1.466 -0.9296 -1.4679 -0.9301 

3c  -0.9296 0.3932 -0.9334 0.3945 

4c  -0.9296 0.9296 -0.9283 0.9292 

5c  0.3932 -0.9296 0.3911 -0.9292 

6c  0.3932 -0.3932 0.3907 -0.3920 

7c  0.9296 0.9296 0.9292 0.9292 

8c  0.9296 1.466 0.9298 1.4641 

9c  -0.9296 -1.466 -0.9289 -1.4677 

10c  -0.9296 -0.9296 -0.9310 -0.9298 

11c  -0.3932 0.3932 -0.3939 -0.3920 

12c  -0.3932 0.9296 -0.3998 0.9317 

13c  0.9296 -0.9296 0.9303 -0.9300 

14c  0.9296 -0.3932 0.9309 -0.3959 

15c  1.466 0.9296 1.4637 0.9269 

16c  1.466 1.466 1.4668 1.4641 
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Fig.5.3 performance of the equalizer at delay=0 

 

For the channel 21 2682.09296.02682.0 −−
++ zz , at delay =0 the equalization problem 

becomes linearly inseparable. In this case LMS equalizer fails to solve the problem, 

whereas the proposed equalizer performs well under this non-linear condition. 

 

 

5.5 Simulation results for non-linear channels 

Final simulation was carried on various non-linear channels shown in Table 5.4. training 

parameters chosen are same as those in the previous sections. The equalizer performance 

in terms of BER is compared with LMS equalizer in Fig 5.4 for varying SNR 

 

Table.5.4 Various non-linearities considered for the simulation 

 

NL#1 )(ka 3)(9.0)( kaka −  

NL#2 32 )(1.0)(2.0)( kakaka −+  

NL#3 ))(tanh( ka  

NL#4 3)(9.0)( kaka −  
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Fig. 5.4 performance of the equalizer for various non-linear channels 

(The no-linear channels are shown in Tabl.5.1) 

 

 

5.6 Discussion: 

From the above sections it can be seen that that the proposed equalizer performs similar 

to an RBF equalizer trained with K-means clustering. It can also be seen that the 

proposed equalizer gives good results when the problem becomes linearly inseparable, 

where the LMS equalizer fails to solve the equalization problem. The proposed equalizer 

is expected to give much better results for higher order of the equalizer [25]. 
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Chapter-6 

Conclusion  
 

6.1 Achievement of the thesis work 

This thesis work proposes a new technique for channel equalization. Proposed equalizer 

has been tested for both linear and non-linear equalizers and the performance of the 

equalizer is compared with the conventional LMS algorithm and RBF based equalizer as 

well. Proposed equalizer performs closed to optimal when the channel becomes non-

linear. The proposed equalizer is expected to give much better results for higher equalizer 

orders. 

 

6.2 Scope of future work 

� As the bacterial foraging algorithm is working well for the channel equalization in 

digital communication, it can be applied to design efficient mobile 

communication receiver, which can mitigate the effects of multipath losses. 

� The algorithm trains the system like a biological system, it can be applied to solve 

the blind equalization problem. 

� The algorithm may be tested for QPSK and other modulation techniques. 

� The algorithm may be applied to mobile LAN where length of training samples is 

small. 

� The equalizer may be applied to other communications like satellite 

communication. 

� Other ‘Evolutionary Algorithms’ like ‘Ant Colony Optimization’ may be applied 

to solve the channel equalization problem. 
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