1,868 research outputs found

    Co-regularized Alignment for Unsupervised Domain Adaptation

    Full text link
    Deep neural networks, trained with large amount of labeled data, can fail to generalize well when tested with examples from a \emph{target domain} whose distribution differs from the training data distribution, referred as the \emph{source domain}. It can be expensive or even infeasible to obtain required amount of labeled data in all possible domains. Unsupervised domain adaptation sets out to address this problem, aiming to learn a good predictive model for the target domain using labeled examples from the source domain but only unlabeled examples from the target domain. Domain alignment approaches this problem by matching the source and target feature distributions, and has been used as a key component in many state-of-the-art domain adaptation methods. However, matching the marginal feature distributions does not guarantee that the corresponding class conditional distributions will be aligned across the two domains. We propose co-regularized domain alignment for unsupervised domain adaptation, which constructs multiple diverse feature spaces and aligns source and target distributions in each of them individually, while encouraging that alignments agree with each other with regard to the class predictions on the unlabeled target examples. The proposed method is generic and can be used to improve any domain adaptation method which uses domain alignment. We instantiate it in the context of a recent state-of-the-art method and observe that it provides significant performance improvements on several domain adaptation benchmarks.Comment: NIPS 2018 accepted versio

    Optimal Transport for Domain Adaptation

    Get PDF
    Domain adaptation from one data space (or domain) to another is one of the most challenging tasks of modern data analytics. If the adaptation is done correctly, models built on a specific data space become more robust when confronted to data depicting the same semantic concepts (the classes), but observed by another observation system with its own specificities. Among the many strategies proposed to adapt a domain to another, finding a common representation has shown excellent properties: by finding a common representation for both domains, a single classifier can be effective in both and use labelled samples from the source domain to predict the unlabelled samples of the target domain. In this paper, we propose a regularized unsupervised optimal transportation model to perform the alignment of the representations in the source and target domains. We learn a transportation plan matching both PDFs, which constrains labelled samples in the source domain to remain close during transport. This way, we exploit at the same time the few labeled information in the source and the unlabelled distributions observed in both domains. Experiments in toy and challenging real visual adaptation examples show the interest of the method, that consistently outperforms state of the art approaches

    Unsupervised Domain Adaptation: A Multi-task Learning-based Method

    Full text link
    This paper presents a novel multi-task learning-based method for unsupervised domain adaptation. Specifically, the source and target domain classifiers are jointly learned by considering the geometry of target domain and the divergence between the source and target domains based on the concept of multi-task learning. Two novel algorithms are proposed upon the method using Regularized Least Squares and Support Vector Machines respectively. Experiments on both synthetic and real world cross domain recognition tasks have shown that the proposed methods outperform several state-of-the-art domain adaptation methods

    Joint Distribution Optimal Transportation for Domain Adaptation

    Full text link
    This paper deals with the unsupervised domain adaptation problem, where one wants to estimate a prediction function ff in a given target domain without any labeled sample by exploiting the knowledge available from a source domain where labels are known. Our work makes the following assumption: there exists a non-linear transformation between the joint feature/label space distributions of the two domain Ps\mathcal{P}_s and Pt\mathcal{P}_t. We propose a solution of this problem with optimal transport, that allows to recover an estimated target Ptf=(X,f(X))\mathcal{P}^f_t=(X,f(X)) by optimizing simultaneously the optimal coupling and ff. We show that our method corresponds to the minimization of a bound on the target error, and provide an efficient algorithmic solution, for which convergence is proved. The versatility of our approach, both in terms of class of hypothesis or loss functions is demonstrated with real world classification and regression problems, for which we reach or surpass state-of-the-art results.Comment: Accepted for publication at NIPS 201

    Transfer Learning for Speech and Language Processing

    Full text link
    Transfer learning is a vital technique that generalizes models trained for one setting or task to other settings or tasks. For example in speech recognition, an acoustic model trained for one language can be used to recognize speech in another language, with little or no re-training data. Transfer learning is closely related to multi-task learning (cross-lingual vs. multilingual), and is traditionally studied in the name of `model adaptation'. Recent advance in deep learning shows that transfer learning becomes much easier and more effective with high-level abstract features learned by deep models, and the `transfer' can be conducted not only between data distributions and data types, but also between model structures (e.g., shallow nets and deep nets) or even model types (e.g., Bayesian models and neural models). This review paper summarizes some recent prominent research towards this direction, particularly for speech and language processing. We also report some results from our group and highlight the potential of this very interesting research field.Comment: 13 pages, APSIPA 201
    • …
    corecore