83 research outputs found

    Multimodal Panoptic Segmentation of 3D Point Clouds

    Get PDF
    The understanding and interpretation of complex 3D environments is a key challenge of autonomous driving. Lidar sensors and their recorded point clouds are particularly interesting for this challenge since they provide accurate 3D information about the environment. This work presents a multimodal approach based on deep learning for panoptic segmentation of 3D point clouds. It builds upon and combines the three key aspects multi view architecture, temporal feature fusion, and deep sensor fusion

    Multimodal Panoptic Segmentation of 3D Point Clouds

    Get PDF

    UDP-YOLO: High Efficiency and Real-Time Performance of Autonomous Driving Technology

    Get PDF
    In recent years, autonomous driving technology has gradually appeared in our field of vision. It senses the surrounding environment by using radar, laser, ultrasound, GPS, computer vision and other technologies, and then identifies obstacles and various signboards, and plans a suitable path to control the driving of vehicles. However, some problems occur when this technology is applied in foggy environment, such as the low probability of recognizing objects, or the fact that some objects cannot be recognized because the fog's fuzzy degree makes the planned path wrong. In view of this defect, and considering that automatic driving technology needs to respond quickly to objects when driving, this paper extends the prior defogging algorithm of dark channel, and proposes UDP-YOLO network to apply it to automatic driving technology. This paper is mainly divided into two parts: 1. Image processing: firstly, the data set is discriminated whether there is fog or not, then the fogged data set is defogged by defogging algorithm, and finally, the defogged data set is subjected to adaptive brightness enhancement; 2. Target detection: UDP-YOLO network proposed in this paper is used to detect the defogged data set. Through the observation results, it is found that the performance of the model proposed in this paper has been greatly improved while balancing the speed

    Robot navigation in vineyards based on the visual vanish point concept

    Get PDF
    One of the biggest challenges of autonomous navigation in robots for agriculture is the path following in a large dimension map and various terrains. An important ability is to follow corridors and or vine rows which are frequent situation and with some complexity given the outline of real vegetation. One method to locate and guide the robot in between vineyards is making use of vanishing point detection on vine rows in order to obtain a reference point and send the adequate velocity commands to the motors. This detection will be conceived utilizing convectional image processing algorithms and Deep Learning techniques. It will be necessary to adapt the image processing algorithms or Deep Learning for use in ROS 2 context.One of the biggest challenges of autonomous navigation in robots for agriculture is the path following in a large dimension map and various terrains. An important ability is to follow corridors and or vine rows which are frequent situation and with some complexity given the outline of real vegetation. One method to locate and guide the robot in between vineyards is making use of vanishing point detection on vine rows in order to obtain a reference point and send the adequate velocity commands to the motors. This detection will be conceived utilizing convectional image processing algorithms and Deep Learning techniques. It will be necessary to adapt the image processing algorithms or Deep Learning for use in ROS 2 context

    TractorEYE: Vision-based Real-time Detection for Autonomous Vehicles in Agriculture

    Get PDF
    Agricultural vehicles such as tractors and harvesters have for decades been able to navigate automatically and more efficiently using commercially available products such as auto-steering and tractor-guidance systems. However, a human operator is still required inside the vehicle to ensure the safety of vehicle and especially surroundings such as humans and animals. To get fully autonomous vehicles certified for farming, computer vision algorithms and sensor technologies must detect obstacles with equivalent or better than human-level performance. Furthermore, detections must run in real-time to allow vehicles to actuate and avoid collision.This thesis proposes a detection system (TractorEYE), a dataset (FieldSAFE), and procedures to fuse information from multiple sensor technologies to improve detection of obstacles and to generate a map. TractorEYE is a multi-sensor detection system for autonomous vehicles in agriculture. The multi-sensor system consists of three hardware synchronized and registered sensors (stereo camera, thermal camera and multi-beam lidar) mounted on/in a ruggedized and water-resistant casing. Algorithms have been developed to run a total of six detection algorithms (four for rgb camera, one for thermal camera and one for a Multi-beam lidar) and fuse detection information in a common format using either 3D positions or Inverse Sensor Models. A GPU powered computational platform is able to run detection algorithms online. For the rgb camera, a deep learning algorithm is proposed DeepAnomaly to perform real-time anomaly detection of distant, heavy occluded and unknown obstacles in agriculture. DeepAnomaly is -- compared to a state-of-the-art object detector Faster R-CNN -- for an agricultural use-case able to detect humans better and at longer ranges (45-90m) using a smaller memory footprint and 7.3-times faster processing. Low memory footprint and fast processing makes DeepAnomaly suitable for real-time applications running on an embedded GPU. FieldSAFE is a multi-modal dataset for detection of static and moving obstacles in agriculture. The dataset includes synchronized recordings from a rgb camera, stereo camera, thermal camera, 360-degree camera, lidar and radar. Precise localization and pose is provided using IMU and GPS. Ground truth of static and moving obstacles (humans, mannequin dolls, barrels, buildings, vehicles, and vegetation) are available as an annotated orthophoto and GPS coordinates for moving obstacles. Detection information from multiple detection algorithms and sensors are fused into a map using Inverse Sensor Models and occupancy grid maps. This thesis presented many scientific contribution and state-of-the-art within perception for autonomous tractors; this includes a dataset, sensor platform, detection algorithms and procedures to perform multi-sensor fusion. Furthermore, important engineering contributions to autonomous farming vehicles are presented such as easily applicable, open-source software packages and algorithms that have been demonstrated in an end-to-end real-time detection system. The contributions of this thesis have demonstrated, addressed and solved critical issues to utilize camera-based perception systems that are essential to make autonomous vehicles in agriculture a reality

    Advanced traffic video analytics for robust traffic accident detection

    Get PDF
    Automatic traffic accident detection is an important task in traffic video analysis due to its key applications in developing intelligent transportation systems. Reducing the time delay between the occurrence of an accident and the dispatch of the first responders to the scene may help lower the mortality rate and save lives. Since 1980, many approaches have been presented for the automatic detection of incidents in traffic videos. In this dissertation, some challenging problems for accident detection in traffic videos are discussed and a new framework is presented in order to automatically detect single-vehicle and intersection traffic accidents in real-time. First, a new foreground detection method is applied in order to detect the moving vehicles and subtract the ever-changing background in the traffic video frames captured by static or non-stationary cameras. For the traffic videos captured during day-time, the cast shadows degrade the performance of the foreground detection and road segmentation. A novel cast shadow detection method is therefore presented to detect and remove the shadows cast by moving vehicles and also the shadows cast by static objects on the road. Second, a new method is presented to detect the region of interest (ROI), which applies the location of the moving vehicles and the initial road samples and extracts the discriminating features to segment the road region. After detecting the ROI, the moving direction of the traffic is estimated based on the rationale that the crashed vehicles often make rapid change of direction. Lastly, single-vehicle traffic accidents and trajectory conflicts are detected using the first-order logic decision-making system. The experimental results using publicly available videos and a dataset provided by the New Jersey Department of Transportation (NJDOT) demonstrate the feasibility of the proposed methods. Additionally, the main challenges and future directions are discussed regarding (i) improving the performance of the foreground segmentation, (ii) reducing the computational complexity, and (iii) detecting other types of traffic accidents
    • …
    corecore