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Learning Birds-Eye View Representations
for Autonomous Driving

Thomas Edward Roddick

Over the past few years, progress towards the ambitious goal of widespread fully-
autonomous vehicles on our roads has accelerated dramatically. This progress has been
spurred largely by the success of highly accurate LiDAR sensors, as well the use of detailed
high-resolution maps, which together allow a vehicle to navigate its surroundings effectively.
Often, however, one or both of these resources may be unavailable, whether due to cost,
sensor failure, or the need to operate in an unmapped environment. The aim of this thesis is
therefore to demonstrate that it is possible to build detailed three-dimensional representations
of traffic scenes using only 2D monocular camera images as input. Such an approach faces
many challenges: most notably that 2D images do not provide explicit 3D structure. We
overcome this limitation by applying a combination of deep learning and geometry to trans-
form image-based features into an orthographic birds-eye view representation of the scene,
allowing algorithms to reason in a metric, 3D space. This approach is applied to solving two
challenging perception tasks central to autonomous driving.

The first part of this thesis addresses the problem of monocular 3D object detection,
which involves determining the size and location of all objects in the scene. Our solution
was based on a novel convolutional network architecture that processed features in both the
image and birds-eye view perspective. Results on the KITTI dataset showed that this network
outperformed existing works at the time, and although more recent works have improved
on these results, we conducted extensive analysis to find that our solution performed well in
many difficult edge-case scenarios such as objects close to or distant from the camera.

In the second part of the thesis, we consider the related problem of semantic map
prediction. This consists of estimating a birds-eye view map of the world visible from a
given camera, encoding both static elements of the scene such as pavement and road layout,
as well as dynamic objects such as vehicles and pedestrians. This was accomplished using a
second network that built on the experience from the previous work and achieved convincing
performance on two real-world driving datasets. By formulating the maps as an occupancy
grid map (a widely used representation from robotics), we were able to demonstrate how
predictions could be accumulated across multiple frames, and that doing so further improved
the robustness of maps produced by our system.
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Chapter 1

Introduction

Autonomous driving epitomises one of the most difficult and important challenges of robotics
and embodied artificial intelligence: the ability to navigate autonomously in a complex,
dynamic and human-populated world (Alatise and Hancke, 2020). Over recent years the
problem has received a huge resurgence of interest, spurred both by significant advances in
computer vision and deep learning technologies (Krizhevsky et al., 2012; Ren et al., 2015) as
well as the huge benefits to society a solution is expected to bring (Herrmann et al., 2018). In
this fast-paced environment, it is vital that the next generation of autonomous vehicles are
safe and can exhibit an awareness of their surroundings (Wang, Huang, et al., 2020).

To that end, this thesis focuses on the problem of autonomous vehicle perception. In
particular, we are interested in the specific setting where the primary source of information
available to a vehicle is monocular images captured from an on-board camera system.
This represents one of the most challenging scenarios for an autonomous system since
raw camera data provides neither explicit information about the 3D structure of the scene
nor semantic knowledge of the objects and obstacles it contains (Yurtsever et al., 2020).
Deep-learning-based solutions have shown huge promise in solving image-based scene
understanding tasks such as depth prediction (Eigen et al., 2014; Fu, Gong, et al., 2018),
semantic segmentation (Badrinarayanan et al., 2017; Long et al., 2015) and 3D object
detection (Ren et al., 2015; Redmon, Divvala, et al., 2016; Liu et al., 2016). Nevertheless,
the underlying two-dimensional image representation represents a challenging modality
to work with on account of the inherent perspective projection, which distorts the true
three-dimensional nature of the scene. This thesis advocates a unique paradigm for solving
tasks involving 3D scene understanding: to transform perspective image-based features
into an orthographic, birds-eye view of the scene. This approach exploits the fact that
road scenes are typically planar and allows a deep neural network to reason about the 3D
structure of the scene whilst avoiding the intense computational costs of volumetric scene

1



Introduction

(a) 3D object detection (b) Semantic map prediction

Figure 1.1. This thesis focuses on two key autonomous driving problems: 3D object detection
and semantic map prediction. In both cases, we assume only monocular camera sensor data
is available.

representations (Maturana and Scherer, 2015; Wu et al., 2015). Through the investigations
described in this thesis, we show that such an approach improved performance compared to
existing methods in solving monocular 3D scene understanding tasks.

This thesis focuses on solving two specific subtasks within the setting of autonomous
vehicle perception and 3D scene understanding. The first problem we approach is that of 3D
object detection; that is, determining the pose, object type, and dimensions of all specified
objects in the scene (Geiger, Lenz, and Urtasun, 2012). Objects such as cars, pedestrians and
bicycles are represented as a three-dimensional cuboid that must be accurately localised in
space: an essential prerequisite for many downstream tasks such as object tracking (Chiu
et al., 2020) and trajectory prediction (Chandra et al., 2020). While this representation
captures many of the dynamic objects in the scene, it is difficult to incorporate amorphous
surfaces such as the road, pavement and surroundings. Therefore, the second problem we
tackle is that of semantic map prediction, which aims to build a complete birds-eye view
representation of the scene. This representation incorporates both dynamic objects such as
pedestrians and vehicles, as well as the layout of the road and other static elements.

In solving these two tasks, we adopt convolutional neural networks (CNNs) (Fukushima
and Miyake, 1982; LeCun, Bengio, et al., 1995) as our primary tool of choice. We develop
novel network architectures that build on existing ideas from the literature, which have shown
that CNNs are powerful tools in reasoning about both the semantics and 3D geometry of the
scene (Eigen et al., 2014; Badrinarayanan et al., 2017). However, a recurring theme in this
thesis is that, where possible, existing knowledge about geometry and semantics should be
built into these networks explicitly, rather than requiring them to be learned from scratch.
This philosophy informs the use of the pinhole camera model (Hartley and Zisserman, 2003)
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to transform image features into a birds-eye view representation, as well as the use of the
Bayesian Filtering algorithm (Moravec and Elfes, 1985) to build large-scale maps over time.
These topics are addressed in depth in Chapters 3 and 4. This thesis is organised as follows:

• The remainder of Chapter 1 motivates the work discussed in this thesis, including the
significance of autonomous driving to society; the necessity to develop algorithms that
operate on monocular images; and the reasoning behind the use of the birds-eye view
representation, which underpins much of the subsequent research.

• Chapter 2 presents an overview of the relevant prior art within the field, covering
general scene understanding topics within computer vision and autonomous driving,
as well as literature surrounding the two core topics of this thesis: object detection and
automatic map generation.

• Chapter 3 introduces the first task addressed by this thesis: that of detecting and local-
ising 3D objects in video. The chapter describes a novel neural network component:
the Orthographic Feature Transform; for mapping image-based representations to the
birds-eye view. This component is employed as part of a neural network architecture
called the OFTNet for 3D object detection. The OFTNet was evaluated on the pioneer-
ing KITTI autonomous driving dataset, and detailed analysis is presented in order to
understand the network’s underlying sources of error.

• Chapter 4 addresses the second main topic of semantic map prediction from monocular
images. The approach of the work in this chapter was centred around a widely used
framework called Bayesian occupancy grid mapping, which is outlined in Section 4.2.
The map prediction problem was addressed using a second network architecture,
building on many ideas from the OFTNet, but incorporated a novel transformer layer
called the Dense Transformer. Two main strands of evaluation are considered in this
chapter. The first focuses on map predictions from a single camera over a local spatial
area. The second discusses building larger-scale maps by combining predictions using
the Bayesian occupancy grid method.

• Chapter 5 considers the overall findings of the research presented in this thesis; their
place within the modern research context as the field has progressed; and future avenues
for research based on these results.
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Introduction

1.1 Motivation

1.1.1 Why autonomous driving?

Achieving fully autonomous driving has emerged as a major research goal across both
academia and industry, and forms the central motivating application for this thesis. The
widespread interest in this technology stems from the potentially seismic impact it may have
on society, both in terms of the direct wellbeing and safety benefits to drivers and road users,
as well as wider socio-economic issues. These impacts fall into four main categories:

Safety In the UK, road traffic accidents were responsible for 1,752 deaths and 25,945
serious injuries during 2019 (UK Department for Transport, 2019) and were respectively the
second and third most prevalent causes of death among children and adults aged 5-19 and
20-35 (Office for National Statistics, 2020). Globally, the mortality from road accidents rises
to 1.35 million deaths annually (World Health Organization, 2018). Autonomous driving
technology would never be able to eliminate all of these deaths, but studies in the US have
found that approximately 94% of accidents were caused by human error (National Highway
Traffic Safety Administration, US Department of Transportation, 2015; National Highway
Traffic Safety Administration, US Department of Transportation, 2008). Despite this huge
potential to save lives, existing autonomous vehicles have not yet achieved the same level of
safety as human drivers. A study by Dixit et al. (2016) found that autonomous vehicles (AVs)
experienced an accident once every 48,000 miles, compared with once every 2.08 million
miles for human drivers (although accidents were typically less severe for AVs). Therefore,
improving the safety record of AVs (including through improved perception systems as
discussed in this thesis) is a vital research imperative.

Environmental Autonomous vehicles also offer huge potential to reduce the environmen-
tal cost of transportation (Kopelias et al., 2020). The improved connectivity and control
offered by AVs can reduce emissions and energy use by enabling driving behaviours such
as intelligent speed adaptation, which avoids stop-start traffic flow; eco-driving, to optimise
braking and acceleration; and platooning, which reduces the aerodynamic drag of a convoy
of vehicles (Barth et al., 2014). Widespread uptake of autonomous technology could also
offer macro-scale benefits, such as reducing traffic congestion due to vehicles travelling
closer together at higher speeds; and lighter vehicle design as safety becomes less of a
concern (Anderson et al., 2014). However, these potential environmental benefits should be
considered with caution, as any net impacts will likely depend on the reaction of consumers.
There is justified concern that the widespread adoption of autonomous vehicles will lead
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to a considerable increase in total vehicle miles travelled as transportation becomes more
convenient, with an accompanying rise in energy usage and emissions (Miller and Heard,
2016). On the other hand, AVs lend themselves to ridesharing and on-demand ownership
models which would allow vehicles to be deployed more efficiently and reduce the size of
the global vehicle fleet (Miller and Heard, 2016).

Social One possible outcome of autonomous driving is wider access to transport to the dis-
abled, elderly, and other groups currently precluded from travelling independently (Ohnemus
and Perl, 2016). Improved physical mobility has significant implications for social mobility,
access to services and personal wellbeing (Herrmann et al., 2018, Chp. 34; Claypool et al.,
2017). Widespread autonomy may also profoundly affect the design of towns and cities, as
fewer inner-city areas need to be devoted to parking and may instead be reserved for parks
and other public spaces (Johnsen et al., 2018).

Economic The UK Centre for Connected and Autonomous Vehicles (CCAV) forecasts the
global market for autonomous vehicles to be worth £907bn globally, including up to £52bn
in the UK, by 2035. It predicts this would create at least 9900 jobs in the UK AV technology
industry and supply chain (Transport Systems Catapult, 2017). Such economic benefits,
however, must be balanced against the potential disruption to other industries, such as the
freight and taxi industries, which may suffer significant displacement due to the proliferation
of autonomous technologies (Crayton and Meier, 2017).

In addition to the potential societal benefits of autonomous driving, it also represents an
attractive topic from a research perspective. Many of the unsolved problems in this area exem-
plify the frontier of remaining challenges in the broader fields of computer vision and robotics.
In particular, this thesis predominantly focuses on how to build detailed representations of
the 3D world. This problem remains an open question across many domains: autonomous
cars, unmanned aerial vehicles, indoor domestic robotics, and augmented reality systems all
rely on the accurate understanding of their three-dimensional surroundings. Breakthrough in
any one of these fields may be largely transferable across others.

Simultaneously, the challenges encountered by autonomous vehicles are particularly acute.
They are required to operate within highly complex environments, navigate independently,
and obey relevant traffic restrictions and interact with other dynamic and often unpredictable
agents. They are subject to considerable constraints on computational power, communication
bandwidth, energy use and processing time. Safety remains a paramount concern, meaning
that algorithms must push the boundaries of accuracy, and when they do fail, they must do
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so elegantly. The hope is that these requirements represent an upper bound for many other
computer vision and robotics applications, and that achievements in this domain may help
drive progress in the field as a whole.

Finally, from a pragmatic perspective, the current surge of public and commercial interest
in autonomous driving has offered unique research opportunities. Many of the deep learning
techniques applied in this thesis are constrained by the vast amounts of data required to train
them. Over the duration of this PhD, companies and organisations including Waymo, Argo
AI, Motional, Ford, Audi, Honda, Daimler, Karlsruhe Institute of Technology and others
have released large-scale, publicly-available multi-modal datasets to help accelerate the
progress of autonomous driving technology. These datasets have provided a unique test-bed
to cultivate novel computer vision algorithms, particularly those which are data-constrained,
in the hope that such developments can be passed on to other application areas as and when
data becomes available.

1.1.2 Why monocular cameras?

Existing autonomous vehicles are generally equipped with an extensive array of sensing
apparatus used to perceive their surroundings. A typical sensor suite comprises a range
of different sensor types that offer complimentary benefits. Commonly deployed sensors
include:

• RADAR, a low-cost active sensor capable of detecting objects at long ranges, but with
limited accuracy and resolution.

• LiDAR (Light detection and ranging), which provides highly accurate point distance
measurements at medium ranges.

• Ultrasound, used to detect the proximity of objects at close range.

• Monocular cameras, passive sensors which can capture colour information at poten-
tially high resolutions, but provide no automatic measurements of distance.

• Stereo camera pairs, consisting of two twinned cameras which can reconstruct 3D
information from images by comparing the visual disparity.

• IMU (Inertial measurement unit), a proprioceptive sensor which measures accelera-
tion and orientation.

• GNSS (Global navigation satellite system) receiver, used to approximately localise
the vehicle against a global coordinate frame.
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At the start of this PhD, the vast majority of research into autonomous driving had focused
on LiDAR as the primary perception modality. LiDAR has many advantages over other
sensors: they are very high accuracy (can measure distances up to an accuracy of < 2cm),
work in low-light conditions, and directly produce a 3D representation of the world with no
need for further preprocessing. As a result, few existing works had explored the potential of
other sensing modalities.

The start of this PhD also coincided with rapid advancement in computer vision al-
gorithms, spurred on by the resurgence of deep neural networks for image classification
(Krizhevsky et al. (2012)) and subsequent powerful deep learning architectures that followed
(He, Zhang, et al. (2016), Huang, Liu, et al. (2017), and Ren et al. (2015)). Particularly
relevant to this thesis were novel neural-network-based algorithms trained for geometric
tasks such as pose regression (Kendall, Grimes, et al., 2015) and monocular depth estimation
(Eigen et al., 2014). These networks demonstrated that it was possible to obtain accurate
measurements of distance and reason about the world’s 3D structure purely from monocular
images. These developments raised an unavoidable question: could many of the achieve-
ments of a LiDAR-based system be replicated using a simple, low-cost camera? Indeed,
aside from cost cameras offer additional benefits that LiDAR systems do not: for example, a
typical Velodyne HDL-64E LiDAR sensor is effective up to a range of approximately 120m
(although the sparsity of the points often limits their usefulness beyond 80-100m) and has
a vertical resolution of 64 points (Geiger, Lenz, and Urtasun, 2012). Meanwhile, a typical
inexpensive CMOS camera can have a resolution in the thousands of pixels, and its range
is limited only by the physical sensor size. Additionally, images produced by a camera
sensor capture colour information and are much more amenable to processing by existing
algorithms, unlike LiDAR sensors which generate unstructured point cloud outputs.

Some prominent public figures have gone as far as suggesting that once image-based
algorithms approach LiDAR-based systems’ accuracy, cameras may ultimately replace
LiDAR on autonomous platforms completely (McFarland, 2019). Even if this never comes
to fruition, an autonomous vehicle that can operate effectively using cameras alone remains
an important goal for redundancy reasons. No sensor can ever be relied on entirely, and
having vehicles which can fall back on camera-only systems may be essential to bring AV
safety in line with that of human drivers. Even if a failure is only partial, LiDAR and cameras
have many complementary failure modes: cameras perform better in adverse weather such
as rain or snow, while LiDAR is better suited to low-light conditions. Chapter 4 presents a
framework which provides a natural mechanism for combining these two modalities if the
results from a single sensor are uncertain.
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Given the potential benefits of using monocular cameras over LiDAR, the essential
requirement for sensor redundancy, and the relative lack of previous research in this field,
there was a strong incentive to explore further the capacity of image-only systems. This
thesis was therefore devoted to the study of scene understanding in autonomous driving from
purely monocular cameras.

1.1.3 Why birds-eye view representations?

Whilst monocular images present many advantages as outlined above, they nonetheless
represent a challenging modality to work with in the context of autonomous driving. A
camera image is a projection of the 3D world onto a 2D plane. This means that much of
the scene’s structure, for example, the absolute distance between two objects, is discarded.
Such information is vital for autonomous vehicles to infer the positions of obstacles or
decide where to travel to next. Works such as Eigen et al. (2014) and Fu, Gong, et al. (2018)
have shown that deep neural networks have the capability to recover some of this structure;
using the known sizes of features in the scene to infer the distances of each pixel from the
camera. The resulting 2.5D representation is called a depth or range image and encodes
both colour and depth information about the scene. However, such a representation presents
challenges for an autonomous agent trying to reason about its surroundings. In particular,
perspective projection means that points which are close to each other in the depth image
are not necessarily adjacent in the world. Such representations are also challenging from a
learning point of view. For a given 3D object such as a car, its appearance and depth profile
in the range image will vary dramatically depending on its position and orientation relative
to the camera. As a result, a learning-based method such as a deep neural network will have
to learn a different representation of the object for every possible configuration in the scene.

The ideal representation for an autonomous system would be one which closely mirrors
the true 3D structure of the world, allowing the system to make informed judgements about
absolute distances and speeds. Such a representation can easily be obtained from the range
image in the form of a point cloud, where each pixel from the image is represented by a point
in 3D space. These point clouds closely resemble those created directly by a range-measuring
sensor such as LiDAR or RADAR. However, point clouds are inherently unstructured, making
them difficult to process with existing convolutional neural networks (with some exceptions,
see Qi, Su, et al. (2017)). Consequently, a common alternative to point clouds is to represent
the world in the form of a voxel grid. A voxel grid is a 3D structure analogous to an image
which partitions the world into cube-shaped cells called voxels. Because voxel grids are
structured, they can easily be processed by convolutional neural networks. Unfortunately,
this comes with a substantial computational footprint, as both complexity and memory usage
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scales cubically with the voxel grid’s size and resolution. In practice, this means that voxel
grids are typically only feasible for small spatial volumes and low-resolution representations.
Moreover, this representation is inherently inefficient, as the vast majority of voxels represent
regions of empty space.

Fortunately, the types of scenes encountered in autonomous driving (and most ground-
based robotics applications in general) exhibit a unique structure that can be exploited. Since
all objects and agents in the scene are constrained by gravity, the structure and motion of
the world perpendicular to the ground plane have little bearing on an autonomous agent’s
decisions. The vast majority of information relevant to driving can be summarised by a single
plane, representing a 2D orthographic projection of the world along the direction of gravity.
This projective space is referred to as the birds-eye view.

The birds-eye view representation shares many of the advantages of 3D point clouds:
It is metric, so distances in the birds-eye view space are representative of distances in the
real world (neglecting vertical distance, which does not inform path planning and decision
making). The space is translationally equivariant, meaning that features remain the same
regardless of their position on the birds-eye view. This property implies that objects’ size
and appearance remain constant, regardless of their distance from the sensor. Learning-based
algorithms can therefore exploit strong priors about the world and frees up representational
capacity. At the same time, we can choose to represent the birds-eye view as a structured
image-like representation. This allows us to exploit many of the advancements in image
processing conferred by deep convolutional neural networks. It is inherently efficient since
every point on the birds-eye view must correspond to at least one point on the world’s surface.
It also does not suffer from the voxel grid’s extreme scaling issues, allowing larger areas to
be represented and in finer detail.

Given the factors discussed above, the birds-eye view seems to be the natural representa-
tion for 3D tasks. The challenge was how to obtain this representation in cases where full
depth information was not available. Many previous works had focused on either building a
birds-eye view from LiDAR (where full 3D information was available), or performing scene
understanding from images alone. This PhD’s unique characteristic was the aim to build
birds-eye view representations directly from monocular images. This objective motivated the
remaining chapters of this thesis.

1.2 Publications

The material discussed in this thesis is largely drawn from work which was later published in
the form of two conference papers, in collaboration with other coauthors. Specifically, the
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3D object detection research described in Chapter 3 contains results and material which was
first introduced in:

Thomas Roddick, Alex Kendall, and Roberto Cipolla (2019). “Orthographic feature
transform for monocular 3d object detection”. In: Proceedings of the British Machine
Vision Conference

The material in Chapter 4 on semantic map prediction relates to the publication:

Thomas Roddick and Roberto Cipolla (2020). “Predicting Semantic Map Represen-
tations from Images using Pyramid Occupancy Networks”. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11138–11147

All work discussed in this thesis was conducted by the author unless explicitly stated
otherwise in the text.
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Chapter 2

Literature Review

This thesis draws on a wide body of prior research across the fields of computer vision,
robotics, and 3D scene understanding. This literature review will broadly mirror the struc-
ture of the thesis and introduce relevant related work for our two main tasks: 3D object
detection and semantic map prediction. We begin by introducing the problem of 2D object
detection (Felzenszwalb, Girshick, McAllester, and Ramanan, 2009), which defined many
key concepts relevant to Chapter 3 such as bounding boxes, anchor boxes, and the distinction
between single-stage and proposal-based architectures (Zhao et al., 2019). We then turn our
attention to research which focuses on 3D object detection, specifically in the case where
3D information such as LiDAR points are available, which is assumed for most of the key
works in the field (Ku, Mozifian, et al., 2018; Chen, Ma, et al., 2017; Qi, Liu, et al., 2018).
Finally we consider works which, similarly to own, aim to recover 3D object bounding
boxes using only monocular images as input. For the problem of semantic map prediction,
we first review the various representations used to encode spatial information, including
topological maps (Kuipers, 1977), continuous metric maps (Leonard and Durrant-Whyte,
1991a), and probabilistic occupancy grids (Elfes et al., 1990). We then discuss an important
subset of mapping algorithms which address the task of Simultaneous Localisation and
Mapping (SLAM) (Leonard and Durrant-Whyte, 1991b), and in particular those which,
like our method, incorporate semantic information into their mapping pipeline. We consider
the importance of mapping for downstream tasks such as trajectory prediction and motion
planning (Masehian, 2015), and discuss how the requirements of these systems motivates
our choice of representation in Chapter 4. Finally, we describe works which have leveraged
advances in deep learning technology to learn to generate map-like representations from
overhead or forward facing camera images.
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2.1 Object Detection

2.1.1 2D Object Detection

Image-based object detection is one of the most fundamental problems in computer vision. It
extends the problem of image classification by requiring an algorithm to not only determine
the semantic category of an object of interest, but also to accurately localise it within the
image. Generally, the location of the object is specified using a tightly-fitting axis-aligned
bounding box, which also encodes the object’s apparent size and aspect ratio. Unlike the
problem of image classification, any number of instances of objects of the same or different
object categories may be present within a given image.

The taxonomy of object detection algorithms largely consists of two-main families:
two-stage methods which make use of initial bounding box proposals that are subsequently
refined; and single-stage methods which predict bounding boxes directly from image features.
We begin by reviewing early approaches to object detection before discussing both proposal-
based and single-stage methods in depth.

Early methods

Most early object detection algorithms consisted of a two-stage approach: firstly extracting a
dense set of features such as SIFT (Lowe, 2004), HOG (Dalal and Triggs, 2005) or Haar-
wavelets (Mallat, 1989); and then subsequently applying a learning-based classifier such
as Adaboost (Freund and Schapire, 1995) or support vector machines (SVMs) (Cortes and
Vapnik, 1995) to classify regions in a sliding-window manner. The most well-known example
is the seminal face detection algorithm of Viola and Jones (2001), which used Haar-like
rectangular filters to extract features, followed by a cascade of boosted classifiers. This
work was notable for being the first real-time object detector, introducing the integral image
representation as a means of evaluating large numbers of rectangular features rapidly. Viola
and Jones were preceded by Papageorgiou et al. (1998), who also used Haar-like input
features together with a linear SVM classifier.

At this time, convolutional neural networks (CNNs) were already widely used in domain-
specific object detection tasks, such as for handwritten text recognition (Matan et al., 1992;
Delakis and Garcia, 2008), hand tracking (Nowlan and Platt, 1995), and face detection
(Vaillant et al., 1994; Garcia and Delakis, 2004; Osadchy et al., 2007). However prior to
the resurgence of deep learning after 2012 (Krizhevsky et al., 2012), the dominant general
object detection algorithms were based on deformable parts-based models (DPMs) (Divvala
et al., 2012), which were inspired by the pictoral structure models of Fischler and Elschlager
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(1973) developed in the 1970s. Perhaps the most prominent DPM model was the approach of
Felzenszwalb, Girshick, McAllester, and Ramanan (2009), which consisted of a set of part
filters based on HOG features, arranged in a deformable star configuration about a central
root filter. Latent SVMs (Andrews et al., 2003) enabled learning of the individual part models
without direct supervision. Subsequent works improved the accuracy (Felzenszwalb, Gir-
shick, and McAllester, 2010) and runtime (Yan, Lei, et al., 2014) of DPM-based approaches.
Whilst DPMs remained popular in the early 2010s, CNN-based methods quickly came to
dominate the object detection literature following the introduction of Region-CNN (Girshick
et al., 2014).

Two-stage methods

A defining moment in the history of computer vision was the revolutionary neural-network-
based classification algorithm of Krizhevsky et al. (2012), which demonstrated that convo-
lutional neural networks could vastly outperform alternative algorithms for visual object
recognition. A natural response therefore was to adapt such methods to object detection.
Unfortunately, applying a deep neural network such as AlexNet exhaustively across all image
locations, as was common in earlier CNN-based object detectors (Matan et al., 1992; Vaillant
et al., 1994; Delakis and Garcia, 2008), proved to be prohibitively computationally expensive.
A solution was to apply the CNN selectively to a small subset of image locations which were
likely to contain objects, using an inexpensive region proposal algorithm such as selective
search (Uijlings et al., 2013) or EdgeBox (Zitnick and Dollár, 2014). This was the rationale
behind the Region-CNN (R-CNN) architecture of Girshick et al. (2014), inspired by work
from Gu et al. (2009), which took initial region proposals from selective search and classified
them using AlexNet.

In spite of the reduced computation from using region proposals however, R-CNN was
still too slow to be useful in practical scenarios. To overcome this limitation, He, Zhang, et al.
(2015) proposed to share convolutional features across all regions through the use of a spatial
pyramid pooling layer (Lazebnik et al., 2006) which transforms arbitrarily-sized feature map
regions into a fixed-size feature vector. This shared computation formed the basis for Fast
R-CNN by Girshick (2015), which used a simplified version of spatial pyramid pooling called
RoI-pool. Girshick further improved on R-CNN by adding a supervised box regression layer
which refined the approximate bounding boxes produced by the selective search algorithm.
The final component of the algorithm not to make use of the shared convolutional features
was the initial region proposal stage; this was later addressed by Ren et al. (2015) which
replaced selective search with a region proposal network (RPN) for generating regions at
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multiple different scales. Their network: Faster R-CNN, provides the base architecture for
many of the 3D object detection algorithms discussed in Section 2.1.2.

Since the emergence of Faster R-CNN as the dominant object detection architecture,
various refinements have been proposed. One limitation of the RPN network is it is only able
to propose regions with a relatively limited range of scales (three different sizes and three
different aspect ratios). A long-established solution to this problem was to run the algorithm
on images at multiple resolutions and aggregate the resulting bounding boxes (Adelson et al.,
1984). A much more efficient alternative was proposed by Lin, Dollár, et al. (2017), which
involved generating bounding boxes at multiple stages of the CNN feature hierarchy. To
overcome the fact that features at early stages of the CNN have a high spatial resolution
but fairly low-level semantic content, Lin, Dollár, et al. introduced the Feature Pyramid
Network (FPN), in which low-level feature maps with strong semantics were upsampled to
augment the features generated at earlier stages of the network. A very similar concept was
proposed by Shrivastava et al. (2016), who focused on improving just the final layer feature
representation.

One of the major strengths of the Faster R-CNN and its derivatives is its versatility.
Performing additional downstream tasks such as instance segmentation (He, Gkioxari, et al.,
2017), multi-person pose estimation (He, Gkioxari, et al., 2017) and 3D shape reconstruc-
tion (Gkioxari et al., 2019) can easily be accomplished by simply appending additional
task-specific prediction branches alongside those used for classification and bounding box
regression. It is partly as a result of this flexibility that has made Faster R-CNN the basis of
many of the 3D object detection architectures which are the focus of the remainder of this
chapter.

Single-stage methods

Whilst region-based neural networks like R-CNN proved to be highly successful, the ma-
chinery involved in prediction with multiple stages was extremely complex, and prior to
the work of Dai et al. (2016) training such systems end-to-end proved impossible. A much
simpler paradigm was to predict object classes and bounding boxes from deep network
features in a sliding-window fashion. Such an approach is inherently efficient due to the
convolutional nature of the CNN features. This technique had already been widely used in
early CNN-based detectors (Matan et al., 1992; Vaillant et al., 1994; Delakis and Garcia,
2008), but perhaps the first modern incarnation was the OverFeat algorithm of Sermanet
et al. (2013), which densely classified and regressed bounding boxes at every location of an
image. OverFeat however was fairly limited the number and scales of objects that it could
detect, since all predictions were generated from a single downsampled feature map. This
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problem was overcome by the Single Shot MultiBox Detector (SSD) of Liu et al. (2016),
which used a very large number of anchor boxes generated at multiple different scales within
the network. SSD was significant in being the first single-stage network to outperform the
more widespread proposal-based approaches whilst operating at significantly higher frame
rates. Analogously to the addition of a feature pyramid to Faster R-CNN by Lin, Dollár,
et al. (2017), Fu, Liu, et al. (2017) improved SSD by upsampling low-resolution features to
incorporate greater semantic content. Shen et al. (2017) showed that a similar architecture
could be trained completely from scratch without the ubiquitous ImageNet pretraining step
using DenseNet-inspired dense connections (Huang, Liu, et al., 2017).

Another well-known example of the single-stage approach is the “You Only Look Once"
(YOLO) (Redmon, Divvala, et al., 2016; Redmon and Farhadi, 2017; Redmon and Farhadi,
2018) family of architectures. The original YOLO model of Redmon, Divvala, et al. (2016)
resembles the earlier MultiBox algorithm of Erhan et al. (2014), using fully-connected layers
to predict a fixed number of bounding boxes for each image. Subsequent iterations replaced
these fully-connected layers with convolutional layers as well as additional improvements
including a more powerful feature extraction network called DarkNet (Redmon and Farhadi,
2017; Redmon and Farhadi, 2018). YOLO and its derivatives emphasised speed over
accuracy, typically achieving below state-of-the-art performance but with the ability to run at
speeds of up to 155 frames per second (Redmon, Divvala, et al., 2016).

Despite the development of powerful single-stage networks such as SSD and YOLO,
proposal-based methods continued to dominate the field of 2D object detection. Perhaps the
strongest challenge to this monopoly was posed by Lin, Goyal, et al. (2017). They suggested
that the limitations of single-stage methods were down to the severe class imbalance arising
from the fact that the vast majority of image locations do not contain an object. Lin, Goyal,
et al. overcame this with a novel focal loss function, and their single-stage architecture
RetinaNet significantly outperformed existing proposal-based methods and offered a better
speed-accuracy trade-off. The impressive performance of RetinaNet, combined with the
simplicity and efficiency of the single-stage approach, provided considerable motivation for
the OFTNet architecture discussed in Chapter 3.

2.1.2 3D Object Detection from LiDAR

In autonomous driving, simply knowing the 2D size and location of an object in a image is
typically insufficient. In order to make decisions about where to move next, an autonomous
vehicle must know the approximate position, dimensions, and direction of travel of other
dynamic objects in the scene. The 3D object detection task is a challenging variant of the
traditional object detection problem, where it is necessary to obtain a tightly-fitting 3D cuboid
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to every object in the scene. Given the severity of the problem, the vast majority of prior
works have focused on the case where accurate depth measurements are available using
LiDAR or other range sensors. Various different approaches are available.

Perhaps the most conceptually straightforward approach is to apply machine learning
techniques directly to the 3D point clouds produced by LiDAR sensors. Point clouds have
traditionally been viewed as a difficult modality to work with given their lack of structure
and inherent ordering. The pioneering PointNet network of Qi, Su, et al. (2017) showed that
direct processing on point clouds could be achieved through the use of simple symmetric
operations such as max pooling. Several 3D object detection algorithms adopt this approach,
most notably the Frustrum PointNet (Qi, Liu, et al., 2018), which applies a PointNet network
to the subset of points which project to a previously detected 2D bounding box. Despite
the successes of PointNet-based architectures however, this class of architectures is still
relatively immature compared to extensively-studied convolutional neural networks which
have enjoyed considerable success on more structured inputs. Consequently most algorithms
which accept point clouds as inputs directlty, such as PointPillars (Lang et al., 2019) and
VoxelNet (Zhou and Tuzel, 2018), use this approach only as a preprocessing step, before
converting to a more structured representation.

The simplest way to represent a point cloud in a more structured fashion is to discretise
the world into a regular grid of 3D regions called voxels. A voxel is marked as occupied
if it contains one or more points in the point cloud, empty otherwise. Works to adopt this
representation include Voting for Voting (Wang and Posner, 2015), Vote3Deep (Engelcke
et al., 2017), SECOND (Yan, Mao, et al., 2018) and 3D FCN (Li, 2017; Li, Zhang, et al.,
2016). These approaches are however limited by the extreme computational and memory
requirements of voxel grids, which scales cubicly with the size and resolution of the grids.
Engelcke et al. (2017) and Yan, Mao, et al. (2018) sought to overcome this limitation by
employing sparse 3D convolutions within a hierarchical voting scheme, exploiting the fact
that the vast majority of voxels are empty. Given a fixed convolutional kernel size however,
the sparsity of the voxel grid decreases as the number of convolutions increases, making this
approach unsuitable in modern ultra-deep neural networks.

Most works therefore opt to project the 3D point cloud to a more efficient ‘2.5D’ repre-
sentation, which preserves the 3D information about the scene but can be processed much
more efficiently using standard convolutional networks. One natural approach is to construct
an image where the horizontal and vertical pixel coordinates represent the azimuth and eleva-
tion angles respectively of each LiDAR ray, and the greyscale colour value represents the
distance of the corresponding point from the camera (Li, Zhang, et al., 2016; Minemura et al.,
2018). While this closely reflects the way LiDAR point clouds are generated, performing
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convolutions in this space ignores much of the underlying 3D structure, since points which
are close in the range image need not be close in 3D (You et al., 2019).

As a result, the most popular representation for 3D object detection from LiDAR methods
is an orthographic projection of the point cloud onto a birds-eye view plane (Yu, Westfechtel,
et al., 2017; Yang, Luo, et al., 2018; Beltrán et al., 2018; Chen, Ma, et al., 2017; Ku, Mozifian,
et al., 2018; Wirges et al., 2018). In this representation, each location on the birds-eye view
image corresponds to a vertical column of points in 3D space. To retain vertical information,
the colour channels of the birds-eye view image encode information such as the maximum,
minimum and mean height of points within each column (Yu, Westfechtel, et al., 2017);
average reflection intensity (Yang, Luo, et al., 2018; Beltrán et al., 2018); point density (Chen,
Ma, et al., 2017; Ku, Mozifian, et al., 2018; Wirges et al., 2018); and others. An alternative
interpretation on the birds-eye view approach, adopted by the “Fast and Furious" network of
Luo et al. (2018), is to construct a full 3D voxel grid as described above, but then treat the
vertical dimensions as the colour channels of a 2D image. This allowed Luo et al. to process
the voxel grid as efficiently as if it were an image, without losing vertical information. The
success of the above works illustrate the effectiveness of the birds-eye view representation,
which forms the central motivation for this thesis.

2.1.3 Image-based 3D Object Detection

Localising 3D objects from images represents a considerably more challenging task, since
unlike dedicated range sensors like LiDAR and RADAR, images do not provide explicit
measurements of distance. Approximations to a LiDAR-like point cloud representation can
be obtained using stereo imaging, where the pixel intensities of a pair of rectified images
are compared to obtain disparity estimates for each pixel (Szeliski, 2010, Chp. 12). This
technique formed the basis of the 3DOP algorithm of Chen, Kundu, Zhu, et al. (2015), which
spans the 3D space with hypothesised bounding box candidates, then scores each proposal
based on the parts of the stereo point cloud which falls within each box. More recent work
by Li, Chen, et al. (2019) applies a Faster-R-CNN-like (Ren et al., 2015) framework directly
to the pair of stereo images, while You et al. (2019) run LiDAR-based object detectors such
as AVOD (Ku, Mozifian, et al., 2018) and MV3D (Chen, Ma, et al., 2017) on the stereo point
clouds, noting special dispensations that should be made to the underlying stereo algorithm
to facilitate this application.

In many scenarios, paired stereo imagery may not be available, for example in the
surround-view ring cameras mounted on many recent autonomous platforms (Caesar, Bankiti,
et al., 2019; Chang et al., 2019; Sun, Kretzschmar, et al., 2020). Computing stereo disparity
is also computationally expensive, and may stretch computational resources. As a result,
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predicting 3D bounding boxes directly from monocular images remains an important research
goal.

The main challenge behind monocular 3D object detection, however, is the lack of
explicit 3D information. To overcome this, several works have taken advantage of constraints
imposed by the projective camera geometry to lift 2D bounding boxes to 3D. For example,
Mousavian et al. (2017) note that the projection of an object’s 3D bounding box should fit
tightly within the bounds of the corresponding 2D detection. Starting from pre-detected 2D
windows, they train a CNN to regress the dimensions and orientation of each object and then
solve the system of linear constraints to infer the 3D coordinates which best match the 2D
window. This approach is also followed by Gustafsson and Linder-Norén (2018), who adopt
a slightly different parametrisation for the 3D boxes. Payen de La Garanderie et al. (2018)
meanwhile adapt the geometric constraints of Mousavian et al. for panoramic images. Both
Gustafsson et al. and Payen de La Garanderie et al. employ style transfer techniques (Zhu,
Park, et al., 2017) from synthetic images to expand the available training data.

In addition to constraints provided by 2D bounding boxes, assumptions about the structure
of the world can help resolve the 3D positions of objects. Novak (2017) for example assumes
all objects are constrained to a fixed ground plane, and uses homography constraints to infer
the distance of the bounding box vertices from the camera. The Mono3D algorithm of Chen,
Kundu, Zhang, et al. (2016) meanwhile uses assumptions about the ground plane to generate
a large number of 3D bounding boxes proposals which densely span the visible 3D space.
Each candidate box is projected into the image using known camera parameters, and is scored
against a set of image-based metrics to eliminate boxes which are unlikely to contain objects.
Mono3D provides the main baseline which is used in Chapter 3.

A number of authors have argued that the 3D bounding box representation used by the
above methods is overly simplistic and ignores the underlying 3D geometry of the scene,
and instead advocate explicitly modelling the 3D shape of objects (Zeeshan Zia et al., 2014;
Chabot et al., 2017). Zeeshan Zia et al. (2013) propose to represent cars and other vehicles
as a simple wireframe mesh, which forms the basis of their deformable parts model. Zeeshan
Zia et al. (2015) extend this model further, incorporating joint reasoning about all objects in
the scene. A similar methodology is adopted by the Deep MANTA architecture of Chabot
et al. (2017), which uses an iterative CNN to predict a set of 2D keypoints corresponding to
vertices on an annotated template mesh. A 3D-2D template fitting procedure is then used
to lift the 2D keypoints to 3D. Kundu et al. (2018) develop a fully parametric PCA shape
model of objects such as cars and motorcyles, and use a differentiable rendering process to
fit the models to 2D silhouettes. Xiang et al. (2015) by contrast employ a non-parametric
approach, representing objects as 3D voxel occupancy grids. They then train a detector
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to recognise patterns of voxels which have similar appearance, taking into account factors
such as occlusion and clipping due to the camera’s field of view. While the above methods
represent a powerful way of obtaining not just information about an objects’ pose, but also its
shape; they are typically too slow for real-time applications, and rely on annotated databases
of 3D CAD models which limits their use to a few well-defined object categories.

2.2 Maps for autonomous driving

2.2.1 Map representations

Maps for use in robotics and autonomous driving may take a variety of different forms.
The IEEE Standard for Robotic Map Data Representation for Navigation defines a broad
hierarchy for classifying different types of map used for robotics (Yu and Amigoni, 2014).
At the top level of the hierarchy, maps may be subdivided into two broad categories: metric
maps and topological maps. Metric maps aim to capture accurate geographical information
about the scene, including the locations of landmarks and obstacles. Topological maps, on
the other hand, describe the connectivity between locations, representing the environment
as a graph of places and the relationships between those places (Kuipers, 1977; Kuipers
and Byun, 1991). Topological maps are most commonly used for high-level navigation
and route planning, such as planning a path between cities, navigating between rooms in a
complex building, or choosing lanes at an intersection (Qiao et al., 2019). Many works have
shown how topological maps can be built on the fly, either directly from sensor readings
and robot odometry (Shatkay and Kaelbling, 1997), or as a post-processing step applied to a
pre-computed metric map (Thrun and Bücken, 1996a; Thrun and Bücken, 1996b). Another
common paradigm is to combine metric and topological maps: using topological maps for
high-level navigation and localisation and metric maps for lower-level path planning and
obstacle avoidance. Perhaps the most notable example of this strategy is the Spatial Semantic
Hierarchy of Kuipers (2000) as well as work by Chatila and Laumond (1985).

In this thesis, we are predominantly interested in the metric mapping paradigm. The
definition of a metric map is a map where, for any pair of elements (such as points, grid
cells or features) a and b, a given metric distance metric d(a,b) can be evaluated. This
makes metric mapping more applicable in the context of road scene understanding, obstacle
avoidance and short-term trajectory planning. Within this subcategory, the IEEE Standard
(Yu and Amigoni, 2014) makes a further distinction between continuous and discrete metric
map representations. Continuous metric maps are composed of collections of basic geometric
primitives. Popular representations include points (Leonard and Durrant-Whyte, 1991a),
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lines (Ayache and Faugeras, 1989), polygons (Chatila and Laumond, 1985) and cylinders
(Tao et al., 2010). The point-based representation is particularly common in visual mapping
techniques such as visual simultaneous localisation and mapping (SLAM) and structure
from motion (see Section 2.2.2), where map landmarks often correspond to corners or
point-features in an image (Davison, 2003). Continuous representations have the advantage
of being compact since they typically represent a sparse description of the environment.
They are also well suited to the application of probabilistic techniques such as Kalman
filtering (Kalman, 1960) and particle filters (Del Moral, 1997). However, applying motion
planning techniques to continuous metric maps directly is often challenging, and further
post-processing is usually required.

The second type of metric map representation, and the one we focus on in this thesis,
are discrete metric maps. By far the most common discrete metric map representation in
robotics is the occupancy grid map, first proposed by Moravec and Elfes (1985) in 1985.
Occupancy grid maps divide the world into regular 2D grid cells or 3D voxels (Martin and
Moravec, 1996) with a fixed resolution. Each grid cell is associated with a value indicating
the probability that an obstacle occupies the cell. This provides a natural probabilistic
framework, formalised by Moravec (1989), for accumulating map features over time and
combining maps computed by different sensors (Nuss, Thom, et al., 2014). This approach is
more robust to sensor noise than many of the geometric mapping approaches described above
(Elfes, 1989). Occupancy grids also are simple to incorporate into a motion planner. For
example, Elfes et al. (1990) described how an A* path planning algorithm could be applied
directly to an occupancy grid representation, with occupancy probabilities representing the
risk of entering a given grid cell.

One of the drawbacks of the occupancy grid framework is that it typically assumes the
world is static and cannot easily incorporate information about dynamic objects such as cars
and vehicles. This has led to the development of dynamic occupancy grid maps (DOGMa)
algorithms, including those of Nuss, Reuter, et al. (2018), Gindele et al. (2009), and Danescu
et al. (2011).

2.2.2 Simultaneous localisation and mapping

Perhaps the most widely-studied application of map-making in robotics concerns localisation.
For a robot to keep track of its location in an unseen environment, it needs to maintain some
representation of the places it has already visited. This symbiosis between localisation and
map creation has led to the emergence of a major sub-field of robotics called Simultaneous
Localisation and Mapping (SLAM). The term SLAM was first coined by Leonard and
Durrant-Whyte in 1991; however Thrun (2002) traced the field back to the work of Carl
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Friedrich Gauss in mapping the orbits of celestial bodies (Gauss, 1809). The first modern
incarnation of the SLAM problem was proposed in a series of papers by Smith, Self and
Cheeseman, which used Extended Kalman Filters (EKF) (Daum, 2015) to jointly estimate
the ego-pose and positions of a set of landmark points in the environment under uncertainty
(Smith, Self, et al., 1986; Smith and Cheeseman, 1986; Smith, Self, et al., 1990). This
approach builds a map incrementally as the vehicle travels through the environment. Other
notable developments in simultaneous localisation and mapping include Graph-SLAM
(Lu and Milios, 1997), which solved the offline mapping problem; the sparse extended
information filter (SEIF) (Thrun, Liu, et al., 2004) which adapted Graph-SLAM to the
online mapping case; and FAST-SLAM (Montemerlo, 2003), which improved the scalability
of EKF-SLAM using particle filters (Smith, 2013). The above approaches were general
and could be applied to any number of different sensor modalities. In this thesis, we are
principally concerned with mapping from monocular cameras, for which many specialised
algorithms have been proposed (Davison, 2003; Mur-Artal and Tardós, 2015; Engel et al.,
2014; Mur-Artal, Montiel, et al., 2015). Monocular SLAM is also closely related to the
problems of structure from motion (SfM) (Tomasi and Kanade, 1992; Hartley and Zisserman,
2003) and bundle adjustment (Triggs et al., 1999) in computer vision. These approaches all
rely on sequences of monocular images in order to triangulate feature points across time. One
of the attractive features of the mapping approach described in this thesis is that structure
could be inferred from just a single image, although this initial prediction could be refined
with information from subsequent frames.

Most of the above SLAM approaches have focused on building geometric maps of the
scene, either in the form of simple geometric primitives (Moutarlier and Chatila, 1990;
Leonard and Durrant-Whyte, 1991b), 3D point clouds (Davison, 2003) and occupancy grids
(Elfes, 1989). As the field of SLAM has matured, there has been a growing interest in more
semantic map representations. In early works, semantic information was principally used to
identify dynamic objects, which can cause traditional SLAM algorithms to fail. For example,
Wang, Thorpe, et al. (2003) proposed SLAM with detection and tracking of moving objects
(DATMO). Meanwhile, Wolf and Sukhatme (2005) maintained separate occupancy grid maps
for dynamic and static objects, an approach which we adopt in Chapter 4. Similarly, Vineet
et al. (2015) built a semantic mesh representation of a road scene and used the semantic labels
to subtract dynamic instances. As well as aiding with removing moving objects, various
works have shown that incorporating semantic information into SLAM and structure from
motion can improve the accuracy of the produced map (Bao and Savarese, 2011; Yu, Liu,
et al., 2018). In particular Salas-Moreno et al. (2013) and Yang and Scherer (2019) showed
that applying SLAM at the level of semantically-meaningful objects, rather than simple
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features, was able to improve localisation in repetitive environments, as well as producing
richer and more detailed maps. Furthermore, many works have combined SLAM with
semantic segmentation to build complete 3D semantic reconstructions of the environment,
for example works by Hermans et al. (2014), Hane et al. (2013), Koppula et al. (2011), Pham
et al. (2015), and Valentin et al. (2013). These works often adopted a conditional random
field-based (Lafferty et al., 2001; Krähenbühl and Koltun, 2011) refinement step to jointly
optimise semantic labels and 3D structure.

Unlike many of the works described above, our mapping approach in Chapter 4 does
not treat localisation as a primary objective. However, the semantic map representation
we describe could be used to localise the ego-vehicle within a global coordinate system
using a technique called map-matching, which registers a locally predicted map against
a larger global map. Several algorithms have been proposed, including those which used
hill-climbing algorithms (Simmons et al., 2000), iterative closest point (ICP) search (Bosse
and Zlot, 2008) and Gaussian Markov random fields (Thrun and Liu, 2005).

2.2.3 Mapping for motion planning and prediction

Even since the early days of mobile robotics, map-like representations have been essential
for allowing agents to plan and execute trajectories through a real-world environment. One
of the first robots to maintain a simple model of its environment was ‘Shakey the robot’
developed at Stanford between 1966 and 1972 (Nilsson, 1984). Its ability to detect and
track simple primitives like lines in the environment was the basis for the development
of the A* algorithm by Hart et al. (1968), one of the most significant advancements in
robotic motion planning. The later ‘Stanford Cart’ platform was in 1980 augmented with
the ability to track and avoid point-based objects (Moravec, 1980), although the robot would
have to stop for 10-minute intervals to process a single map update (Moravec, 1979). In
keeping with these early works in robotics, much research within autonomous driving has
focused on mapping the free space in front of the vehicle using a variety of range sensors,
including laser scanners (Kirchner and Ameling, 2000), RADAR (Lundquist et al., 2009),
LiDAR (Silver et al., 2010; Chen, Zhang, et al., 2019), stereo cameras (Hadsell et al., 2009;
Sahdev, 2017) and monocular videos (Yao et al., 2015). Many of these works, for example,
those of Badino et al. (2007) and Lundquist et al. (2009), adopted the Bayesian occupancy
grid framework, which is the basis for our mapping approach described in Chapter 4. For
driving in unstructured environments, simple geometric maps of free and occupied space are
sufficient. However, for navigating in urban scenarios, a greater semantic understanding of
the scene is necessary, for example to distinguish between road and pavements. This has
led to a plethora of machine learning-based approaches which focus on road segmentation
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and lane boundary detection (Hillel et al., 2014; Fritsch et al., 2013; Lee, Kim, et al., 2017;
Pan, Shi, et al., 2017; Teichmann et al., 2018). Often this analysis is performed in the
image space, leveraging modern advancements in semantic segmentation (Long et al., 2015;
Badrinarayanan et al., 2017), and then transformed into a birds-eye view map using inverse
perspective mapping as a post-processing step (Patra et al., 2018). This approach suffers from
the fact that small segmentation errors in the pixel space can lead to dramatically incorrect
predictions in the birds-eye view space. One of the main aspirations of the work in Chapter 4
therefore, was to be able to reason semantically about the drivable road surface directly in
the birds-eye view.

In a conventional autonomous driving pipeline, these maps of free or drivable space
derived from one of the methods described above would then be fed into a motion planning
algorithm such as probabilistic roadmaps (Kavraki et al., 1996) or rapidly-exploring random
trees (LaValle, 1998; LaValle and Kuffner Jr, 2001). Recently however, Bansal et al. (2018)
generated considerable excitement in the field of motion planning with their algorithm,
ChauffeurNet; an imitation learning-based method able to learn a driving policy directly
from a rasterised semantic map-like input in the birds-eye view space. Their semantic
map representation included features such as the road lane layout, prior driving history
and positions of other dynamic agents. They showed that this was sufficient to learn to
handle complex driving scenarios such as nudging around parked cars and navigating difficult
intersections. In a similar vein, Hecker et al. (2018) combined camera images with a birds-eye
view map to directly predict steering commands. However, neither of these works addressed
the problem of how to generate such representations on the fly, strongly motivating the work
described in Chapter 4.

Closely related to the problem of motion planning is that of motion prediction or motion
forecasting, i.e. estimating the future trajectories of other non-ego agents in the scene.
Traditional approaches relied purely on extrapolation of observed trajectories (Wan and Van
Der Merwe, 2000). However, recent works have shown that incorporating additional context,
such as road layout and interaction with other agents, can considerably reduce long-term
uncertainty (Lee, Choi, et al., 2017). Luo et al. (2018) predict future trajectories jointly with
detecting and tracking by applying a deep CNN to a LiDAR occupancy grid. Djuric et al.
(2018), Cui et al. (2019) and Casas et al. (2018) meanwhile adopted rasterised semantic maps
similar to those described above to predict future agent motion. Bansal et al. (2018) also
extended their ChauffeurNet framework to the problem of multi-agent prediction. Casas et al.
in particular noted that the inclusion of a semantic map representation significantly improved
prediction quality above simply using raw input data.
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2.2.4 Mapping and deep learning

As with almost every other topic in robotics and vision, in recent years the field of mapping
has been revolutionised by advances in machine learning and computer vision (Krizhevsky
et al., 2012). Among the technologies to have experienced the biggest impact from the
introduction of deep learning methods have been geographic information systems (GIS)
and remote sensing (RS), which generate birds-eye view maps from offline data (Ma et al.,
2019). A common approach is to apply standard semantic segmentation networks such
as U-Net (Ronneberger et al., 2015) or SegNet (Badrinarayanan et al., 2017) to satellite
or aerial images to build a semantic map. For example, works including those of Chen,
Lin, et al. (2014) and Scott et al. (2017) have used this approach to classify the type of
vegetation, soil type or artificial surface at each pixel. Maggiori et al. (2016) and Alshehhi
et al. (2017) focused on segmenting artificial structures such as buildings and roads from
satellite images, while Kampffmeyer et al. (2016) extended these maps to small objects
such as individual cars in aerial images. Máttyus, Luo, et al. (2017) segmented roads
from images and then post-processed them to obtain topological road networks that could
be used for high-level path planning, while Liang et al. (2019) predicted vectorised road
boundaries directly using recurrent neural networks. Máttyus, Wang, et al. (2016) proposed
a method to align semantic road labels predicted in both aerial and road-level views. The
maps produced by these methods are highly relevant to autonomous driving and the work
described in Chapter 4. However, the fact that they were generated in an offline setting makes
them insufficient for full self-driving by themselves, as they could not capture real-time
information such as the positions of individual cars, nor could they track medium-term
changes in the environment such as roadworks or obstacles. Operating entirely in the birds-
eye view (starting from satellite or aerial imagery) made them simpler to implement than the
networks considered in this thesis, which must transform between a ground-level view and
birds-eye view perspective.

Most relevant to the work in Chapter 4, a small number of authors have in recent
years attempted to tackle the same problem of predicting semantic birds-eye view maps
directly from street-level images. Early work in this field by Sengupta et al. (2012) used the
TexonBoost algorithm (Shotton et al., 2006) to perform semantic segmentation in the image
space and transformed the resulting labels to the birds-eye view using inverse perspective
mapping. A conditional random field model (Ladick et al., 2009) was used to construct a
global semantic map representation in the birds-eye view space. Mozos et al. (2007) and
Sünderhauf et al. (2016) built semantic occupancy grid maps of indoor scenes by combining
image-level classification with traditional occupancy grid mapping, although such maps
can only capture large-scale descriptions such as room type rather than fine details such
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as individual objects. Deng et al. (2019) used inverse perspective mapping to transform
image-based segmentations to the birds-eye view, but this approach broke down for points
far away from the cameras. The lack of supervised training data has severely hampered
other works which try to produce semantic maps of outdoor traffic scenes. Schulter et al.
(2018) used an in-painting approach to learn pixel-wise depth and semantic labels for the
road structure behind occluding objects such as cars and pedestrians. A network trained using
a complex combination of simulated data, generative adversarial networks (Goodfellow et al.,
2014) and weakly-aligned annotations from OpenStreetMaps (OpenStreetMap contributors,
2017) was then used to refine an initial birds-eye view map produced by back-projecting
the predicted pixel depths and labels into 3D. Wang, Liu, et al. (2019) adopted a similar
approach to that of Schulter et al., but their final output representation was a parametric road
model consisting of human-interpretable attributes such as ‘number of lanes’ or ‘existence
of sidewalks’. Pan, Sun, et al. (2020) and Reiher et al. (2020) trained birds-eye view map
prediction networks entirely on simulated data, using image-based semantic segmentation
as an intermediate representation to allow their work to generalise to the real world. Reiher
et al. used an inverse perspective mapping approach to transform features from the image to
birds-eye view domain, while Pan, Sun, et al. introduced a ’view transformer model’ to invert
the perspective projection. Prior to work discussed in Chapter 4, the only previous approach
to train their method directly on real monocular images was that of Lu, Molengraft, et al.
(2019), who proposed an encoder-decoder-style network inspired by variational autoencoders.
However, the ground truth semantic map annotations used to train this approach were only
approximate, derived from noisy stereo depth estimates and image-based semantic labels.
A transformative moment in the state of semantic mapping from images was the release of
several large scale 3D object datasets with accompanying semantic map annotations, most
notably the NuScenes dataset (Caesar, Bankiti, et al., 2019) and the Argoverse dataset (Chang
et al., 2019). Alongside enabling the research described in this thesis, these datasets have
been used in other more recent works to provide ground truth semantic map annotations.
These include the FISHINGNet model of Hendy et al. (2020), which predicted the future
positions of vehicles in a semantic occupancy grid-like representation; and Lift, Splat and
Shoot by Philion and Fidler (2020) which predicted birds-eye view semantic maps and
vehicle trajectories, adopting many of the ideas described in this thesis.
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Chapter 3

Monocular 3D Object Detection

3.1 Introduction

What sets autonomous vehicles apart from many other forms of robotics is the hugely dynamic
environment in which they operate. Cars, buses, pedestrians, pets, bicycles, motorcycles:
exhibiting complex interactions and behaviours; all represent obstacles which must be
avoided at all costs. To succeed, an autonomous vehicle must be capable of detecting these
objects, identifying them, estimating their position in 3D space, and tracking their movements
over time.

Addressing this problem has been the primary objective of a major sub-field of computer
vision called object detection. The aim of a traditional 2D object detection algorithm is
to return a list of all objects present in an image, to classify them into one of a number
of semantic categories, and to accurately localise them within a tighly-fitting, axis-aligned
2D spatial window called a bounding box. The problem of 3D object detection meanwhile
represents an additional level of challenge. In this case the aim is not only to determine
the location of each object within the image, but to estimate the parameters of a bounding
cuboid in 3D space. This corresponds to solving the full 6 degree of freedom pose estimation
problem for each object i.e. finding its 3D translation (X ,Y,Z) and rotation (α,β ,θ); as well
as determining the spatial dimensions (w,h, l) of its bounding box.

This chapter will introduce a deep-learning-based solution to the problem of 3D object de-
tection from monocular images alone. The core component of this method is a convolutional
neural network called the OFTNet, which is unique in that it applies convolutional processing
to feature maps in both the perspective image space and the orthographic birds-eye view
space. The rationale behind this design choice was that reasoning in the birds-eye view space
allows the neural network to learn about the fundamental metric nature of 3D space and
the spatial relationships between objects. Obtaining a birds-eye view feature representation
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directly from an image is non-trivial. The OFTNet architecture was therefore built around a
novel neural network module called the orthographic feature transform (OFT), which maps
image-based features into the birds-eye view.

The remainder of this chapter is structured as follows: Section 3.3 introduces the novel
orthographic feature transform component, which is then integrated into the wider OFTNet
architecture which is discussed in Section 3.3. In Section 3.5 the OFTNet network is applied
to a real-world 3D object detection dataset: the KITTI object detection benchmark. The
performance of the OFTNet is evaluated both against contemporary state-of-the-art methods
as well as more recent approaches, and ablation studies are used to gain insight into the
various aspects of the approach. Finally, Section 3.6 discusses further analysis of the various
failure modes of OFTNet and other related works. Concluding remarks are provided in
Section 3.7.

3.2 Preliminaries

At the heart of the work discussed in both in this chapter as well as the following chapter
is the idea of using a combination of machine learning and known camera geometry to
transform features from the image space into the birds-eye view. This idea is predicated on
the mapping from a 3D point to a 2D image which is known as a camera model. We provide
a brief overview of the fundamentals of the types of camera models encountered in this thesis
below.

3.2.1 Perspective camera model

The most common form of camera model is the pinhole camera, which is used to describe
perspective projection of a 3D point onto the image plane (Hartley and Zisserman, 2003).
Consider a plane (known as the image plane) which is placed a distance f along the positive
Z-axis away from the centre of projection C, which we initially assume is the same as the
origin of the coordinate system. The perspective projection of a 3D point X = (X ,Y,Z)T is
given by the intersection of the ray passing through C and X with the image plane, as shown
in Figure 3.1a. We can easily determine the projected coordinates x = (x,y)T of the point X
by considering similar triangles:

x = f X/Z y = fY/Z (3.1)
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Figure 3.1. The two types of camera models discussed in this thesis.

We can represent this transformation efficiently using the multiplication of the point X
expressed in homogeneous coordinates X̃ = (X ,Y,Z,1) with a 3×4 projection matrix P:

x̃ = w
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where x = x̃/w. The coordinates x represent the projection of the point X onto the image
plane in meters. To determine the location of a point on a digital image in pixels, we need
to consider the (possibly non-square) size (ku,kv) and shear s of the pixels as well as the
position of the principle point (the projection of the camera centre) in the image coordinate
system (cu,cv). The pixel coordinates u = (u,v)T of the projection of point X are therefore
given by
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where the matrix K is known as the camera intrinsic matrix or intrinsic calibration matrix,
and is given by

K =

αu s′ cu

0 αv cv

0 0 1
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where α{u,v} = f k{u,v} are the scaled horizontal and vertical focal lengths and s′ = f s the
shear, which are measured in pixels. Note that throughout this thesis, we assume that
the shear s′ is negligible and that the horizontal and vertical scaled focal lengths were
equal αu = αv = α . This assumption reflected the observed intrinsic calibration parameters
provided by the KITTI (Geiger, Lenz, and Urtasun, 2012), NuScenes (Caesar, Bankiti, et al.,
2019) and Argoverse (Chang et al., 2019) datasets used in this thesis.

3.2.2 Orthographic camera model

An important element of our work is the orthographic projection of 3D points onto a birds-eye
view plane. Like the perspective projection discussed above, this transformation can be
represented as a multiplication with a 3×4 matrix P, which has the form

x̃ = w

x
y
1

= PX̃ =

1 0 0 0
0 1 0 0
0 0 0 1




X
Y
Z
1

 (3.4)

Frequently, we will need to refer to birds-eye view coordinates using a discrete grid-based
coordinate system. Analogously to mapping to pixel coordinates as discussed above, we can
map world points to grid coordinates by pre-multiplying P using a 3×3 affine transformation
matrix Kortho, given by

Kortho =

ρu s x0

0 ρv y0

0 0 1


where ρ{u,v} represents the resolution of the grid (measured in m−1), s represents the shear,
and (x0,v0)

T is the projection of the origin in the orthographic coordinate system.

3.2.3 Coordinate system transformations

Thus far we have assumed that the camera centre C for the perspective and orthographic
camera models coincides with the origin of the coordinate system, and that the cameras are
orientated along the positive Z axis. In general, however, this need not be the case, and
it is necessary to transform the 3D point X into the camera’s local coordinate system. A
rigid-body transformation from one coordinate system A to a second coordinate system B is
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Figure 3.2. Overview of the four main coordinate systems considered in this thesis.

achieved through multiplication with a 4×4 transform matrix

TA→B =

[
R t
0T 1

]

which is composed of a 3×3 orthonormal rotation matrix R and a translation vector t. In the
context of camera models, the transform matrix TA→B which maps from the world coordinate
system to the camera coordinate system is commonly referred to as the extrinsic camera
matrix.

In this thesis we consider four main coordinate systems, which are illustrated in Figure 3.2.
These are:

World A fixed coordinate system in space which all other coordinate systems are defined
relative to. The Z axis points vertically upwards and the X and Y axes correspond to
longitude and latitude respectively.

Ego-vehicle A coordinate system which moves with the vehicle of interest. For the NuScenes
(Caesar, Bankiti, et al., 2019) and Argoverse (Chang et al., 2019) datasets, this is posi-
tioned at the location of the onboard inertial measurment unit (IMU). The Z axis points
upwards and the Y axis points in the direction of travel.

Camera The local coordinate system of a camera sensor. The coordinate system origin
is chosen to be the optical centre, and the Z direction is aligned with the camera’s
principle axis. A given vehicle may employ multiple cameras, in which case a unique
coordinate system is defined for each.
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Birds-eye view The birds-eye view coordinate system is a rotation of the camera coordinate
system, such that the Z-axis is aligned with the cameras negative Y direction, and is
placed a fixed distance below the camera. Note that the birds-eye view coordinate
system does not necessarily correspond to the ground plane, although is a reasonable
approximation to it for moderate pitch and roll angles of the ego-vehicle.

3.3 Orthographic Feature Transform

The central philosophy of this thesis is the idea that allowing a neural network to reason
about objects in a metric 3D space is vital to scene understanding tasks such as 3D object
detection. Unfortunately, since the input to our object detection system was a monocular
camera image taken from a street-level view perspective, reasoning in the birds-eye view
directly was impossible. Therefore, in order to overcome this hurdle, we introduced a novel
neural network component called the orthographic feature transform (OFT). The purpose
of the OFT was to take a representation of the world in image space and transform it to a
new representation in the orthographic birds-eye view space, making use of the underlying
camera geometry. This component formed the core novelty of the OFTNet object detection
architecture which is described in the subsequent section.

The orthographic feature transform consisted of three main steps:

1. Construct a voxel grid in the 3D world space.

2. Assign a feature vector to each voxel by accumulating features over its projected area
in the image space.

3. Combine features along the vertical dimension to obtain a birds-eye view feature map.

An overview of the OFT algorithm is shown in Figure 3.3.

Voxel grid construction

The OFT’s voxel grid is a regular 3D lattice Λ ⊂R3 defined in the camera coordinate system,
so that the x-axis points to the left of the camera, y-axis points vertically down and the z-axis
is parallel to the optical axis. Each voxel vi jk ∈ Λ is a 3D cube of size ρ which is centred on
a location Xi jk = (Xi,Yj,Zk)

T ∈ Λ. The grid spans a cuboidal region of space defined by the
Cartesian product Λ = {Xmin,Xmin+ρ, . . . ,Xmax}×{Ymin,Ymin+ρ, . . . ,Ymax}×{Zmin,Zmin+

ρ, . . . ,Zmax}, where {X ,Y,Z}min and {X ,Y,Z}max are the minimum and maximum bounds
of the voxel grid region respectively.
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Figure 3.3. Overview of the Orthographic Feature Transform (OFT). The transform consists
of three steps: (1) A voxel grid is constructed which spans the 3D space of interest. (2)
The voxel feature fvox

i jk is computed by projecting the voxel into the image, and accumulating
image features over the region defined by bounding box (u1,v1,u2,v2). (3) birds-eye view
feature fbev

pq is computed by accumulating voxel features along the vertical axis.

Voxel feature computation

The primary aim of the OFT is to associate with each voxel vi jk a feature vector fvox
i jk . The

voxel feature fvox
i jk is obtained by accumulating image features over a relevant region of the

image which corresponds to the given voxel. For each voxel, we define a region Ω which
corresponds to the projection of the voxel onto the image plane. In general, this region will
be a polygon defined by the convex hull of the projection of the 8 corners of the voxel into
the image:

Ωi jk = Hull


α 0 cu

0 α cv

0 0 1


1 0 0 0

0 1 0 0
0 0 1 0




Xi ± ρ

2
Yj ± ρ

2
Zk ± ρ

2
1


 (3.5)

The parameters α and (cu,cv) correspond to the intrinsic calibration parameters introduced
in Section 3.2.1, which are assumed to be known for this problem. The voxel feature fvox

i jk is
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then given by the mean image feature over the polygonal region Ωi jk:

fvox
i jk =

1
|Ωi jk| ∑

(u,v)∈Ω

fimg(u,v) (3.6)

In practice, computing averages over arbitrary polygons is extremely computationally
expensive, so each polygon was approximated by an axis-aligned rectangular bounding box.
The top-left and bottom right corners of this box (u1,v1) and (u2,v2) are given by

u1 = α
Xi −0.5ρ

Zk +0.5 Xi
|Xi|ρ

+ cu, v1 = α
Yj −0.5ρ

Zk +0.5 Y j
|Y j|ρ

+ cv, (3.7)

u2 = α
Xi +0.5ρ

Zk −0.5 Xi
|Xi|ρ

+ cu, v2 = α
Yj +0.5ρ

Zk −0.5 Y j
|Y j|ρ

+ cv (3.8)

The voxel feature fvox
i could then be computed using a simple average pooling operator over

the image features:

fvox
i jk =

1
(u2 −u1)(v2 − v1)

u2

∑
u=u1

v2

∑
v=v1

fimg(u,v) (3.9)

Birds-eye view feature computation

The voxel grid feature map Fvox in principle encodes a deep feature vector for every 3D
location in the scene. However, operating directly in this space is computationally and
memory intensive. We therefore collapse the 3D representation down to a more compact 2D
birds-eye view feature map. For a given birds-eye-location xik = (Xi,Zk), the corresponding
birds-eye view feature vector fbev

ik is given by taking the sum of voxel features along the
vertical (Y ) axis. A simple summation however discards information about the height of
each voxel, which is relevant for example to determine the correct height of each object’s
bounding box. In order to preserve this height information, we therefore instead concatenate
the 3D feature maps along the vertical dimension, and then apply a 2D convolution to reduce
the features to a more manageable dimensionality. The output from this final stage is a 2D
birds-eye view feature map which encodes a compact 3D representation of the scene.

3.3.1 Fast average pooling using integral images

One of the challenges of the proposed approach was that despite the voxels having a fixed
size in 3D, their projections in 2D could vary greatly as a result of the perspective projec-
tion. For example, under typical settings, a voxel placed 50m from the camera occupied a

34



3.4 OFTNet Architecture

region of the image approximately 6×6 pixels in size, while a voxel just 1m away would
cover approximately 300×300 pixels. Directly computing a mean using the expression in
Equation 3.9 for every voxel would be infeasible for even moderately-sized voxel grids.

This challenge was overcome through the use of an efficient average pooling operation
using integral images. Integral images were popularised by Viola and Jones (2001) in their
seminal paper on face detection, and provide a mechanism to compute sums over large
numbers of rectangular areas with minimal computation. The value of an integral image
F at a given location (u,v) is defined as the sum of features along the preceding rows and
columns of the input feature map f:

F(u,v) =
u

∑
u′=1

v

∑
v′=1

f(u,v). (3.10)

The integral image can be computed efficiently using the recurrence relation:

F(u,v) = f(u,v)+F(u−1,v)+F(u,v−1)−F(u−1,v−1) (3.11)

Once the integral image has been precomputed, the sum S over any rectangular region
defined by coordinates (u1,v1) and (u2,v2) can be computed efficiently using

S = F(u1,v1)+F(u2,v2)−F(u1,v2)−F(u2,v1) (3.12)

This means that each voxel feature in Equation 3.9 can be implemented using just four
lookups in the image-based integral image:

fvox
i jk =

F(u1,v1)+F(u2,v2)−F(u1,v2)−F(u2,v1)

(u2 −u1)(v2 − v1)
(3.13)

Crucially, the computational complexity of Equation 3.13 is O(1) with respect to the size of
the 2D region, which means features corresponding to voxels which are very close to the
camera can be computed without the need to perform a summation over large regions of the
image.

3.4 OFTNet Architecture

The Orthographic Feature Transform described in the previous section formed the central
element of a novel 3D object detection architecture developed during this PhD called the
OFTNet. The OFTNet was a single-stage object detection architecture inspired by the
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RetinaNet architecture of Lin, Goyal, et al. (2017). Its unique novelty lay in the fact that
unlike RetinaNet, which processes feature maps exclusively from the image perspective, it
operated both in the image space and the birds-eye view space. This enabled it to reason both
about low-level appearance features such as edges and simple shapes in the image space, as
well as higher-level geometrical relationships and the three-dimensional scene layout in the
birds-eye view space.

The OFTNet consisted of five main components:

• A frontend feature extractor subnetwork, which processes the input in image space
and generates a set of multiscale image-based feature maps.

• A stack of orthographic feature transforms, which map image-based features into
the birds-eye view.

• A residual topdown network, used to process features in the birds-eye view and
reason about the arrangement of objects in 3D.

• A set of output regression heads, which predict an encoded representation of the
object present at each location.

• An object decoder, which decodes the predicted bounding boxes and applies non-
maximum suppression to remove redundant predictions.

An overview of the architecture is shown in Figure 3.4. A full specification for the network,
including details of individual layers and components is shown in Figure 3.7, and the source
code for the OFTNet can be found at https://github.com/tom-roddick/oft. The remainder of
this section will discuss each component of the network in detail.

3.4.1 Feature Extractor

The main philosophy behind the OFTNet and this thesis in general is that for 3D tasks, as
much reasoning as possible should take place in the birds-eye view space. That said however,
the image-based representation still contains valuable low-level information, such as edges
and basic 2D structure, which would be lost if the image were mapped into a birds-eye view
representation directly. For this reason, before transforming to the birds-eye view the OFTNet
first applies a small convolutional feature extractor network which generates an initial image-
based feature representation of the scene. In OFTNet, this feature extractor took the form of a
modified ResNet-18 network from the highly successful ResNet family of architectures (He,
Zhang, et al., 2016). ResNet-18 is the shallowest of the ResNet architectures proposed by He,
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Figure 3.4. The OFTNet architecture

Zhang, et al. (2016), in contrast to the more commonly used ResNet-50 and ResNet-101. It
was chosen to reduce overfitting and to place greater emphasis on later parts of the network,
which operate on features in the birds-eye view space. This choice of architecture will be
justified further through experiments which are described in Section 3.5.7. The use of a
standard image-based feature extractor also has the added advantage that the weights of
the network can be initialised by pretraining on the ImageNet dataset, which significantly
reduces training time.

The feature extractor network was modified by removing the final average pooling and
classification layers, and instead outputting three intermediate feature maps after the conv3,
conv4 and conv5 layers of the network. These outputs are downsampled by a downsampling
factor d ∈ {8,16,32} respectively with respect to the original input image dimensions.

3.4.2 Orthographic Feature Transform

Given the image-based feature maps generated by the front-end network, the next stage was
to convert these to a birds-eye view representation. This was achieved through the novel
orthographic feature transform introduced in Section 3.3. The OFT took an image-based
feature map fimg, and mapped it to the birds-eye view using the camera intrinsic matrix K.
The OFTNet network used OFT layers with a spatial resolution ρ of 0.5m in all dimensions.
The grid covered a region 40m to the left and right of the camera (along the x-axis), 80m in
front (z-axis), and from 1m above to 3m below the optical axis in the y-axis.
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Figure 3.5. Illustration of the topdown network architecture and detection heads. The
topdown network consisted of a sequence of 8 residual units derived from the basic blocks of
He, Zhang, et al. (2016).

OFTNet included three OFT modules, applied to each of the feature maps fimg
i corre-

sponding to the conv3, conv4 and conv5 stages of the network. Since these feature maps
were downsampled with respect to the input image, the intrinsics matrix K was adjusted by
dividing the first two rows of the matrix by the downsampling factor di. The final birds-eye
view feature map was then obtained by summing the contribution from each OFT module.
This multi-scale approach was similar to the skip connections used by e.g. SegNet (Badri-
narayanan et al., 2017) and U-Net (Ronneberger et al., 2015), or the feature pyramid network
of Lin, Dollár, et al. (2017). It enabled the OFTNet to take advantage of both high frequency
information from higher-resolution feature maps (important for recognising distant objects),
as well as the higher-level semantic context provided by deeper network features.

3.4.3 Topdown Network

While processing in the image space was performed by the feature extractor, processing
in the birds-eye view space was performed by a second dedicated subnetwork called the
topdown network. The topdown network was a simple residual network, consisting of eight
residual blocks. The residual structure of the topdown network is shown in Figure 3.5 . It
consisted of a pair of convolution layers which were bypassed by a residual (skip) connection.
In the original ResNet paper, He, Zhang, et al. (2016) motivated the use of skip connections
by arguing that if additional convolution layers do not bring any benefit, the network can
simply learn to treat the residual block as identity. This takes on special significance in our
model since in the early stages of training it allowed the network to primarily rely on the
predictions from the pretrained frontend network, and gradually incorporate more 3D spatial
context as training progressed.
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A common problem in 2D object detection is that the appearance of objects can vary
significantly depending on their position in 3D space, which complicates the learning process.
Since the topdown network was fully convolutional, the filters applied to the input features
were spatially-invariant. The aspiration of this approach therefore was that the network would
learn a more generalisable representation of objects such as cars and pedestrians, allowing it
to generalise to objects in unseen spatial configurations.

3.4.4 Classification Head

The primary aim of the OFTNet architecture was to identify regions of the 3D space which
may contain objects belonging to one of the categories of interest. In a typical image-based
object detector such as Faster R-CNN (Ren et al., 2015) or SSD (Liu et al., 2016), the space of
all possible bounding box locations is partitioned into a large number of reference bounding
boxes known as ‘anchors’, and the aim of the classification head is to classify each anchor as
positive or negative.

Given the 3D nature of our particular task, choice of architecture and the particular
problem domain of autonomous driving, a number of observations may be made which vastly
simplified the design of the classification portion of the network:

1. No two objects may occupy the same region of 3D space, which means that an object
may be uniquely identified by its centroid (unlike in 2D detection where both bounding
box centroid and size are necessary).

2. All objects are constrained to lie on the ground surface, which means that only one
vertical anchor is needed per birds-eye view location.

3. Because the topdown network operates in the birds-eye view, the variance in bounding
box scale is much smaller and depends only on object dimensions, not on distance of
the object from the camera. This means that fewer anchor boxes are needed to span
the scale space.

4. Bounding box scale is highly correlated with object class. By comparison, intra-class
variations in dimensions are relatively small.

On the basis of these observations, the OFTNet adopted a much simpler approach to
anchor box classification. Each location on the birds-eye view was assigned a single anchor
box per object category. The dimensions of each anchor box were given by the mean
dimensions d̄ over that object category. In other words the prediction of both the class and
anchor box scale were coupled, which avoided the need for a complex two-stage architecture.
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Since each birds-eye view location was associated with just a single anchor box per class,
the anchor classification problem may be viewed as the estimation of a 2D spatial function
S called a confidence map. We would expect the confidence map to have maximum value
close to the centre of objects, and minimum value far away from objects. This problem bore
similarity to the related landmark detection task (Cao et al., 2017), as well as the heatmap-
based object detection approach of Huang, Yang, et al. (2015). We therefore adopted the
following approach:

Instead of performing a binary classification of positive and negative anchors, we instead
represented an object as a peak in the 2D confidence map. Given a set of birds-eye view
feature maps from the topdown network, the aim of the classification head was to predict a
set of C confidence maps {Sc},c ∈ {1, . . . ,C}, where C was the number of object categories.
Each ground truth object on,n ∈ {1, . . . ,N} in the scene with class label cn was represented
by a Gaussian blob, centred on the bounding box centroid X̄n = (X̄n,Ȳn, Z̄n)

T and with
fixed variance σ2. In other words, the ground truth confidence associated with object on at
birds-eye view location xpq = (Xp,Zq) was given by

Spq = exp
(
−
(X̄n −Xp)

2 +(Z̄n −Zq)
2

2σ2

)
. (3.14)

The value of the confidence map Sc associated with class c was then given by the maximum
confidence across all objects belonging to that class, i.e.

Sc
pq = max

n
1(cn = c)exp

(
−
(X̄n −Xp)

2 +(Z̄n −Zq)
2

2σ2

)
, (3.15)

where 1(·) is the boolean indicator function. The use of the maximum function here was
important to ensure that nearby peaks remain separated, unlike the mean or sum aggregation
functions which have a tendency to merge adjacent peaks into a single, poorly-defined
peak (Cao et al., 2017).

The network was then trained to minimise the absolute (ℓ1) difference between the
predicted confidence S and ground truth confidence Ŝ, i.e.

L (S, Ŝ) = ∑
p,q

C

∑
c=1

∣∣Sc
pq − Ŝc

pq
∣∣ (3.16)

An example of the predicted confidence maps obtained using this approach is shown in
Figure 3.6.
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Figure 3.6. Examples of confidence maps for the car class predicted by our approach. The
image on the right shows the predicted peaks in the birds-eye view, while the image on the
left shows their corresponding projection onto the ground plane. Note that the ground plane
is used only for visualisation and is not an input to our approach.

Class balancing

A common problem with object detection is the extreme class imbalance between positive
and negative anchor boxes. Although the OFTNet adopted a confidence regression rather
than a classification approach, the same problem still applied, since the vast majority of
locations had close to zero confidence. In this setting, the network was able to achieve a
low overall loss simply by setting the confidence at all locations to zero. We overcame
this problem using a simple weighting strategy, where each birds-eye view location (p,q)
was assigned a weighting factor αpq based on its associated confidence. The modified loss
function is given by

L (S, Ŝ) = ∑
p,q

C

∑
c=1

β
c
pq
∣∣Sc

pq − Ŝc
pq
∣∣ (3.17)

where

β
c
pq =

1 i f Sc
pq > 0.05

0.01 otherwise
(3.18)

3.4.5 Bounding Box Estimation

The classification procedure described above served to identify objects and their categories
and to provide an approximate localisation of their position in 3D space. Most 3D object
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detection benchmarks however demand a more detailed description of the detected objects,
including their approximate size and orientation. This was achieved using an additional set
of regression heads collectively known as the bounding box regression heads.

In 3D object detection, a 3D bounding box on is typically represented by seven de-
grees of freedom: three position parameters X̄n = (X̄n,Ȳn, Z̄n)

T ; three dimension parameters
dn = (wn,hn, ln)

T representing the width, height and length of the bounding box; and one
orientation parameter θn representing the yaw angle (rotation about the vertical axis). In
autonomous driving applications it is usually assumed that rotation around the pitch and roll
axes are negligible, which simplifies the problem compared to the more general 6 degree of
freedom pose estimation task.

Directly predicting these seven quantities is a challenging learning task. Instead, most
object detection approaches use some form of encoded representation to predict object
bounding boxes. This approach was adopted by the OFTNet, which included three further
regression heads in addition to the classification head described above. These regression
heads were used to predict separate encodings for the position, dimension and orientation
parameters respectively at each location on the birds-eye view. The encoded representations
were as follows:

Position encoding

The coarse position estimate provided by the classification head was refined by encoding
the relative offset between the centre of the object bounding box X̄n and the centre of the
birds-eye view grid cell x. To encode the vertical (Y ) coordinate, we used the offset relative to
a fixed height Y0 below the camera origin. The encoded position offset at birds-eye location
x, referred to as ∆

pos
pq , was therefore given by

∆
pos
pq =

[
X̄n−Xp

σ

Ȳn−Y0
σ

Z̄n−Zq
σ

]T
(3.19)

The offset was scaled by the width of the confidence map peaks σ described in Sec-
tion 3.4.4, which approximately normalised the offsets to a standard unit normal distribution.

Dimension encoding

The dimensions were encoded using the logarithmic offset between the object width, height
and length of the object, and the mean dimensions across all objects belonging to the same
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class. For an object belonging to class cn, the dimension encoding ∆dim was therefore

∆
dim
pq =

[
log wn

w̄cn log hn
h̄cn log ln

l̄cn

]T
(3.20)

where w̄c, h̄c, l̄c were the mean width, height and length respectively of all ground truth
bounding boxes belonging to class c. Predicting the log dimensions rather than estimating the
size parameters directly has the advantage that after decoding the parameters are guaranteed
to be strictly positive.

Orientation encoding

Predicting the orientation parameter θ presented a particular challenge, since it was unclear
how to represent a periodic angle using a linear regression layer. This also raised difficulties
in choosing a loss function due to the discontinuity at 0 = 2π . To overcome this problem, we
followed a number of previous works (Wirges et al., 2018; Ku, Mozifian, et al., 2018; Yang,
Luo, et al., 2018) in encoding the orientation in terms of its sine and cosine, i.e.

∆
ang
pq =

[
sinθn cosθn

]T
. (3.21)

Note that most image-based detection networks (Mousavian et al., 2017) predict an
intermediate quantity called the observation angle, which is the yaw angle θ adjusted for
the perceived rotation due to the relative position of the object with respect to the camera. A
further advantage of the birds-eye view representation is that it decouples this dependency
between object position and rotation, allowing the OFTNet to predict the absolute rotation θ

directly.

Loss functions

As with the classification head, each encoding was predicted using a single convolution layer
which operated on the birds-eye view features generated by the topdown network. In each
case the network was trained to minimise the ℓ1 distance between the ground truth encoding
∆ and the corresponding network prediction ∆̂. The loss was only computed for positive
birds-eye view locations i.e. those which intersected at least one object bounding box. The
total loss for each regression head was given by the sum of the ℓ1 losses over all locations
and object classes.

Lk(∆
k, ∆̂k) = ∑

p,q

C

∑
c=1

1
(
Ŝc

pq > 0.05
)∣∣∣∆k

pq − ∆̂
k
pq

∣∣∣ , k ∈ {pos,dim,ang} (3.22)
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The total loss for the network, including the confidence map loss Lcon f and all three bounding
box encodings, was obtained by a weighted sum

Ltotal = λcon f Lcon f +λposLpos +λdimLdim +λangLang (3.23)

where the values of the weighting factors λ were obtained through hyperparameter search.

3.4.6 Non-Maximum Suppression

The output from the classification and bounding box heads was a set of 2D tensors repre-
senting the confidences and associated bounding box parameters for each location in the
birds-eye view. At test time, the final task of the network is to turn these dense predictions
into a discrete set of object bounding boxes. This was achieved using a process known as
non-maximum suppression (Dalal and Triggs, 2005).

As discussed in Section 3.4.4, the classification head of the OFTNet network was trained
to indicate the existence of an object by generating a Gaussian peak in the predicted confi-
dence function S. We could therefore recover and approximately localise predicted objects
by searching for local maxima in the confidence function. The non-maximum suppression
algorithm consisted of three main steps.

Firstly, a Gaussian smoothing kernel G with variance σ2
NMS was applied to the predicted

confidence maps S. This helped alleviate the effects of high frequency noise in the predicted
confidence function. The smoothed confidence function S̃ was given by

S̃c
pq = Sc

pq ∗G(σNMS). (3.24)

The second step was to identify local maxima by considering the confidence at the eight
neighbouring locations surrounding each point (p,q) in the birds-eye view. A location was
deemed to be a local maximum if

S̃c
pq ≥ S̃c

p+m,q+n, ∀m,n ∈ {−1,0,1}. (3.25)

For each detected maximum, the corresponding confidence score S∗pq (prior to the smooth-
ing score) and bounding box parameters were sampled to obtain a list of detected objects. To
avoid including low confidence bounding box predictions in the final output, the final step
was to apply a confidence threshold t which eliminated all predictions where S∗pq < t.
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3.4 OFTNet Architecture

Figure 3.7. A complete specification of the OFTNet architecture. Filled blocks represent
neural network layers with trainable parameters. Descriptions of submodules within the
network, consisting of the residual basic block (He, Zhang, et al., 2016), residual basic block
with downsampling, and orthographic feature transform, are shown on the right.
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(a) City (b) Residential (c) Road

Figure 3.8. Examples of images from the KITTI object detection benchmark.

3.5 Experiments

3.5.1 KITTI Object Detection Benchmark

At the time that the OFTNet algorithm was developed, the only large-scale computer vision
dataset to provide ground truth 3D object bounding boxes was the object detection dataset
associated with the KITTI vision benchmark suite (Geiger, Lenz, and Urtasun, 2012). KITTI
is a large-scale driving dataset which has been hugely significant in the development of
many autonomous driving technologies and algorithms. It provides training and evaluation
data, metrics and online leaderboards for 14 fundamental computer vision tasks including
optical flow prediction, depth estimation, visual odometry and road segmentation, as well as
approximately 1.5 hours of raw sensor data (Geiger, Lenz, Stiller, et al., 2013). The data was
collected from a mobile data collection platform driving through urban areas of Karlsruhe,
Germany, and incorporates a number of different environments including city, residential and
road scenes. Examples of typical scenes are shown in Figure 3.8. The platform incorporates a
sensor suite including two pairs of stereo cameras (one grayscale and one colour), a Velodyne
LiDAR sensor, and a high-fidelity inertial and GPS navigation system. A rigorous calibration
and synchronisation procedure was used to provide accurate camera intrinsic parameters and
transformation matrices between the different sensor modalities.

Most of the subsequent evaluation and training described in this section focused on the
data provided in the KITTI object detection benchmark. The object detection benchmark
dataset is a subset of the data provided by Geiger, Lenz, Stiller, et al. (2013) which provides
ground truth annotations for eight object categories including cars, trucks, trams and pedes-
trians. These annotations include basic information such as position, size and orientation, as
well as more detailed attributes such as level of occlusion by other objects or truncation by
the boundaries of the image. A wide range of sensor data is available, but for this work only
monocular colour images were used as input.
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The object detection dataset is divided into 7481 frames of training data and 7518 frames
of test data. To prohibit new algorithms from overfitting to the test set, the ground truth
annotations for these frames is withheld. As a result most works in the object detection
literature have adopted the strategy first proposed by Chen, Kundu, Zhu, et al. (2015) and
further subdivide the training set into 3712 frames of training data and 3769 frames of
validation data. In this thesis results are reported on both the official test set and the Chen,
Kundu, Zhu, et al. validation set. Auxiliary experiments, such as the ablation studies in
Section 3.5.7, were conducted on the validation set. The official KITTI benchmark evaluates
detection performance on three object categories: cars, pedestrians and cyclists. However,
at the time of developing the OFTNet, no monocular detection algorithm had demonstrated
reliable performance on the pedestrian and cyclist classes. Therefore, following the example
of other contemporary works (e.g. Xu and Chen (2018)) the majority of the evaluation in this
section focuses predominantly on the car object category.

3.5.2 Training procedure

The OFTNet network was implemented as described in Section 3.4, and was trained on
the KITTI object detection training set using the following procedure. The weights of the
network W were optimised using the stochastic gradient descent (SGD) algorithm (Kiefer,
Wolfowitz, et al., 1952), according to the update rule

Wn+1 =Wn −η ∑
i∈Bn

∇Li (Wn) (3.26)

where η is the learning rate, Li is the loss function evaluated with respect to training example
i, and Bn is a randomly sampled mini-batch of examples at step n. The mini-batch size |Bn|
was set at 8 for the experiments described in this chapter. Following work by Masters and
Luschi (2018), the sum rather than the mean of the mini-batch gradients ∇Li was used to
compute the gradient update. This helped to decouple the choice of learning rate η from
other hyperparameters such as the batch size and birds-eye view dimensions. To compensate,
η was set at a very low value of 10−7, which was approximately equivalent to a learning rate
of 0.2 under the more common gradient averaging scheme. In addition to the standard SGD
update rule, the optimisation made use of the popular momentum technique of Rumelhart
et al. (1986) using an exponential decay factor of 0.9; and an ℓ1 weight regularisation term
with a magnitude of 10−4. The model was trained for 600 epochs over the training set, which
took approximately 120 hours on 4 Titan X GPUs.
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3.5.3 Metrics

Precision and recall

Object detection can be viewed as an information retrieval problem. Given a query (in the
form of an image), the objective is to return a list of all relevant bounding boxes in the scene
(i.e. those that correspond to ground truth objects) while ignoring all irrelevant ones (i.e.
those that correspond to background). Thus, two main metrics are important: the percentage
of relevant objects which are correctly detected, and the percentage of detected objects which
are relevant. These two quantities are referred to as recall and precision respectively.

Recall is defined as the number of correct detections, divided by the total number of
ground truth objects present. In other words,

recall =
number of true positive detections

number of true positive+number of false negative
. (3.27)

A detection is described as a true positive if it overlaps a ground truth bounding box by a
specified amount. In 3D object, this overlap criteria is given by the intersection over union
(IoU) score between the detected and ground truth bounding box, given by:

IoU(B̂,B) =
|B̂∩B|
|B̂∪B|

(3.28)

where |B̂∩B| and |B̂∪B| represent the volumes of intersection and union between the
predicted and ground truth bounding boxes B̂ and B respectively (Everingham et al., 2011). A
false negative detection meanwhile is a ground truth object which does not have any matching
detections.

Similarly, precision is defined as the number of correct detections, divided by the total
number of detections:

precision =
number of true positive detections

number of true positive+number of false positive
. (3.29)

A false positive here means a detection which doesn’t correspond to any ground truth objects.
Note that it is always necessary to quote both precision and recall together when analysing

an object detection system. This is because it is, for example, always possible to achieve
an arbitrarily high recall by enumerating all possible bounding boxes, at the expense of
precision.
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Precision-recall curves

In reality, it is often necessary to compromise between achieving a high precision or a high
recall. The relative importance of these two metrics will often depend on the application. For
example in autonomous driving, a high recall may be favoured to ensure potential hazards
are not missed. Meanwhile, a biometric identity recognition system may prioritise a high
precision to prevent unauthorised users gaining access. It is therefore useful for an object
detection system to be able to adjust the trade-off between precision and recall depending
on the application. This is usually achieved by associating a confidence score si with each
detected bounding box. The actual values of the confidence score are arbitrary, but should be
chosen such that the highest confidence bounding boxes are those most likely to contain an
object. All predicted boxes below a certain confidence threshold t are eliminated, allowing a
particular trade-off between precision and recall, known as the operating point, to be selected
by altering the value of t.

The overall performance of an object detection system can therefore be characterised
by plotting the set of all possible operating points on a pair of axes showing recall against
precision, as functions of the threshold t. Several examples of this type of chart, which are
called precision-recall curves, are shown in Figure 3.10. The optimum precision-recall curve
is one which occupies the top-right corner of the axes, indicating that even at very high recall
rates, very few false-positive predictions are returned.

Average precision

Whilst precision-recall curves are helpful in visualising the range of possible operating points
for a system, in order to compare between methods it is useful to have a single scalar metric
which summarises the overall performance of the system. A common solution is the average
precision (AP) score which corresponds to the area under the precision-recall curve, i.e.

AP =
∫ 1

0
p(r)dr (3.30)

where r is the recall and p(r) is the precision evaluated at a particular recall value.

KITTI AP metric

The KITTI object detection benchmark uses a slight variation on the standard average
precision score as its primary evaluation metric (Geiger, Lenz, and Urtasun, 2012). It adopts
the interpolated AP metric of Everingham et al. (2011), which samples the recall at 11
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discrete thresholds, i.e.

AP =
1

11 ∑
r∈{0,0.1,...,1}

p(r). (3.31)

This is the metric used to rank methods in the official KITTI benchmark, and therefore
provides the basis of the quantitative evaluation in Section 3.5.5 below. The KITTI benchmark
requires an 3D overlap of at least 70% between the ground truth and predicted bounding
boxes for a prediction to be treated as a true positive.

Drawbacks of the KITTI AP metric

One limitation of the KITTI benchmark metric is that for monocular methods including ours,
where it is difficult to accurately estimate the depth of objects, the 70% overlap criteria is
extremely stringent. This commonly results in scenarios where the majority of objects may
be correctly detected and localised in 2D space, but the localisation or scale accuracy in 3D
space is insufficient, resulting in very low average precision scores (<10%) for monocular
methods. For example, given an car object of average dimensions, a localisation error of
just a few centimetres is sufficient for the prediction to be treated as a false positive. Due to
this factor, a large number of otherwise correct detections are rejected, which leads to poor
performance on the official metric.

Despite these drawbacks, we include quantitative evaluation based on this metric in order
to allow comparison against state-of-the-art methods at the time, but we note that the low
average precision scores do not necessarily reflect the quality of driving performance in a real
autonomous driving application. To better understand the true performance of the method,
we consider other metrics, such as the average translation, scale and rotation error (Caesar,
Bankiti, et al., 2019) in Sections 3.5.9 and 3.6. Whilst not considered in this thesis, additional
metrics, such as those which consider the reprojection of the 3D box into the 2D image space
or the impact of missed detections on the path predicted by a complete autonomous system,
may give further insights into the true performance of the method.

3.5.4 Qualitative comparison

Figure 3.9 provides a qualitative comparison between the OFT method and the Mono3D
approach of Chen, Kundu, Zhang, et al. (2016), the leading competitor at the time. For each
image the N most confident bounding boxes are shown, where N is the number of ground
truth bounding boxes present. Using a fixed value for N allows a fair comparison between
the two methods.
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Both methods qualitatively achieve similar recall, with the majority of objects visibly
detected. The advantage of our method appeared to primarily lie in improved localisation
performance: the bounding boxes produced by OFTNet were routinely better aligned with
the shape of the ground truth objects. OFTNet also typically performed better in the case
of objects which are very distant (e.g. row 3) or very close (rows 7, 8) to the camera. We
argue the transformation of features into the birds-eye view space helps the network to better
handle these extrema in scale.

The last two rows illustrate failure cases of the OFTNet. One scenario that both methods
consistently failed on is rows of cars parked at right-angles to the direction of travel. An
example of this effect is shown in row 8 of Figure 3.9. It is clear that both networks were
strongly biased towards predictions which were oriented directly towards or away from the
camera. We suspect this was a product of a severe inbalance between the training set and the
validation set, and consider this problem further in Section 3.6.3.

3.5.5 Comparison to state of the art

The OFTNet method was evaluated by considering two tasks from the KITTI object detection
benchmark. The first was the 3D bounding box detection task. For this task, in order for
a predicted bounding box to be treated as a true positive detection, it must have at least
a 70% IoU score with a ground truth bounding box. At the time OFTNet was originally
developed, the official KITTI benchmark contained only one other published image-only
method: (Novak, 2017), so we evaluated against both the official benchmark test set (with
held-out annotations) as well as the validation set proposed by Chen, Kundu, Zhu, et al.
(2015) (for which ground truth annotations were publicly available). Each evaluation set
further subdivided into three difficulty levels: ‘easy’, ‘moderate’, and ‘hard’, based on the
level of occlusion present and the apparent size of objects in the image. We focused on the
‘car’ object category since no previous monocular method had reported results on either of
the two remaining benchmark classes, ‘cyclist’ or ‘pedestrian’. The results are based on
the interpolated average precision score described in Section 3.5.3, and are tabulated in the
first four rows of Table 3.1. To provide additional context to these results, we also include
a selection of more recent works which were published after OFTNet was first developed,
as well as a small number of contemporary methods which made use of LiDAR and other
sensors.

The second benchmark we considered was the birds-eye view car detection task. This
uses a slightly more lenient overlap criteria: for a predicted bounding box to be considered
correct its projection into the birds-eye view should overlap a ground truth box by at least
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(a) Mono3D (b) OFTNet (Ours)
Figure 3.9. Qualitative comparison between Mono3D (Chen, Kundu, Zhang, et al., 2016)
and OFTNet on the KITTI validation set. We show the top N most confident predictions,
where N is the number of ground truth boxes. The bottom two rows show failure cases for
both approaches. 52
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70%, based on the IoU score. The results on this benchmark, on both the KITTI test and
validation sets, are shown in Table 3.2.

The first observation to be made is that across both benchmarks, the performance of all
monocular-only methods was very low compared to that of methods which made use of
LiDAR data. At the time that OFTNet was first introduced, the highest performing method
on the KITTI test benchmark achieved less than 5% of the AP3D score of corresponding
LiDAR-based methods. As can be seen from the qualitative results in Section 3.5.4, these
low scores do not necessarily reflect the fact that objects are rarely detected, but rather that
the extreme difficulty of accurately localising objects in 3D using monocular methods means
that many predictions fail the extremely challenging 70% overlap requirement of the KITTI
benchmark.

In spite of this challenge however, we were able to achieve modest improvements over
the baseline methods of Novak (2017) and Chen, Kundu, Zhang, et al. (2016) across both
benchmarks and all three difficulty levels. The improvement was particularly pronounced on
the birds-eye view benchmark, where we were able to more than double the performance of
the prior state-of-the-art across all but one metric. The fact that OFTNet performed well on
the birds-eye view benchmark may perhaps be expected, given that the ability to reason in
the topdown space was a key part of the design philosophy of the method.

Another noteworthy observation is that on the birds-eye view benchmark, OFTNet com-
pared favourably with the stereo-image-based 3DOP method of Chen, Kundu, Zhu, et al.
(2015), even outperforming it on the ‘hard’ difficulty category. This result is significant
because Chen, Kundu, Zhu, et al.’s use of stereo images provides them with explicit measure-
ments of the depth of points in the scene, which simplifies the problem of localising objects.
Our method on the other hand must rely on learned, implicit estimates of depth alone.

Precision-recall curves

While the average precision values reported in Tables 3.1 and 3.2 give some indication of the
relative ordering of the different methods, they are rather more difficult to interpret intuitively.
In order to understand these quantities more fully, it was necessary to consider the full set of
possible trade-offs between precision and recall. To visualise these trade-offs, Figure 3.10
shows precision-recall curves for a small subset of methods where full results were available.

The curves in Figure 3.10 show that, compared to the monocular baseline method
Mono3D (Chen, Kundu, Zhang, et al., 2016), the OFTNet was always able to achieve a better
compromise between precision and recall. In other words, for any chosen operating point,
the OFTNet always produced fewer false positive detections for the same number of false
negatives.
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Table 3.1. Average precision (%) for car 3D bounding box detection (AP3D) on the official
KITTI test set as well as the validation set defined by Chen, Kundu, Zhu, et al. (2015). The
first section of the table provides results for image-based methods which predated OFT-Net.
For context the third section shows a selection of more recent methods which illustrate the
rapid advancement in monocular 3D object detection. The fourth section shows LiDAR and
fusion-based methods.

Method Modality Validation Test

Easy Moderate Hard Easy Moderate Hard

3DOP (Chen, Kundu, Zhu, et al., 2015) Stereo 6.55 5.07 4.10 - - -
Mono3D (Chen, Kundu, Zhang, et al., 2016) Mono 2.53 2.31 2.31 - - -

3D-SSMFCNN (Novak, 2017) Mono - - - 2.28 2.39 1.52

OFTNet (Ours) Mono 4.07 3.27 3.29 2.50 3.28 2.27

A3DODWTDA (Gustafsson and Linder-Norén, 2018) Mono 10.13 8.32 8.20 6.76 6.45 4.87
Multi-level Fusion (Xu and Chen, 2018) Mono 10.53 5.69 5.39 7.08 5.18 4.68

MonoPSR (Ku, Pon, et al., 2019) Mono 12.75 11.48 8.59 12.57 10.85 9.06

MV3D (Chen, Ma, et al., 2017) LiDAR+RGB 83.87 72.35 64.56 71.09 62.35 55.12
VoxelNet (Zhou and Tuzel, 2018) LiDAR - - - 77.47 65.11 57.73
AVOD (Ku, Mozifian, et al., 2018) LiDAR+RGB 84.41 74.44 68.65 81.94 71.88 66.38

Table 3.2. Average precision (%) for birds-eye view object detection (APBEV ) on the KITTI
validation and test sets. The first section of the table shows image-based methods which
predated OFT-Net. For context the third section shows a selection of more recent methods
which illustrate the rapid advancement in monocular 3D object detection. The fourth section
shows LiDAR and fusion-based methods.

Method Modality Validation Test

Easy Moderate Hard Easy Moderate Hard

3DOP (Chen, Kundu, Zhu, et al., 2015) Stereo 12.63 9.49 7.59 - - -
Mono3D (Chen, Kundu, Zhang, et al., 2016) Mono 5.22 5.19 4.13 - - -

3D-SSMFCNN (Novak, 2017) Mono - - - 3.66 3.19 3.45

OFTNet (Ours) Mono 11.06 8.79 8.91 9.50 7.99 7.51

A3DODWTDA (Gustafsson and Linder-Norén, 2018) Mono 15.64 12.90 12.30 10.21 10.61 8.64
Multi-level Fusion (Xu and Chen, 2018) Mono 22.03 13.63 11.60 13.73 9.62 8.22

MonoPSR (Ku, Pon, et al., 2019) Mono 20.63 18.67 14.45 20.25 17.66 15.78

MV3D (Chen, Ma, et al., 2017) LiDAR+RGB 86.55 78.10 76.67 86.02 76.90 68.49
VoxelNet (Zhou and Tuzel, 2018) LiDAR - - - 89.35 79.26 77.39
AVOD (Ku, Mozifian, et al., 2018) LiDAR+RGB - - - 88.53 83.79 77.90
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Figure 3.10. Precision-recall curves on the KITTI validation set for the Mono3D (Chen,
Kundu, Zhang, et al., 2016), 3DOP (Chen, Kundu, Zhu, et al., 2015) and OFTNet algorithms.
To better differentiate between the three methods, we use a more lenient IoU threshold of
50% to determine true positive predictions.

The most interesting feature of these curves was the point at which the precision drops to
zero. The recall at this value represents the maximum fraction of ground truth objects that
could be detected, if false positives were not a concern. It can be seen from Figure 3.10 that,
across all difficulty levels, the OFTNet and stereo-based 3DOF method (Chen, Kundu, Zhu,
et al., 2015) obtained almost identical recall, despite the stereo method having a considerable
advantage on account of having access to explicit depth information. At lower recall values,
the 3DOP did achieve considerably better precision than the OFTNet, but this improvement
was less pronounced for the moderate and hard difficulty categories. A higher difficulty
category corresponds to more objects which are heavily occluded or distant from the camera.
The results in Figure 3.10 implied that these edge-cases were an area of strength for the
OFTNet.

3.5.6 Evaluation on other object categories

As discussed in Section 3.5.1, the majority of the evaluation in this chapter focuses exclusively
on the ‘Car’ object category, since no previous works had reported results on the remaining
‘Pedestrian’ or ’Cyclist’ categories. For image-based methods, achieving high average
precision on these classes is extremely challenging, as the objects’ small sizes mean that they
must be localised with extreme accuracy to meet the required bounding box overlap criteria.
Nonetheless, we evaluated the OFTNet’s performance on these classes and compared against
image-based methods where detections for these classes were publicly available. The results
are shown in Table 3.3.
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Table 3.3. Average precision (%) for 3D bounding box detection (AP3D) on the KITTI
validation set for the Cyclist and Pedestrian object categories. No image-based method was
able to achieve > 1% average precision on these categories.

Method Modality Cyclist Pedestrian

Easy Moderate Hard Easy Moderate Hard

3DOP (Chen, Kundu, Zhu, et al., 2015) Stereo 0.73 0.52 0.51 0.60 0.57 0.46
Mono3D (Chen, Kundu, Zhang, et al., 2016) Mono 0.06 0.05 0.05 0.10 0.11 0.11

OFTNet (Ours) Mono 0.07 0.05 0.05 0.65 0.69 0.53

The results in Table 3.3 verified the anecdotal observation that image-based methods at
the time were unable to reliably localise cyclist and pedestrian instances. For the cyclist class,
both Mono3D (Chen, Kundu, Zhang, et al., 2016) and OFTNet, which relied on monocular
inputs, achieved close to 0% average precision. The stereo 3DOP (Chen, Kundu, Zhu, et al.,
2015) method meanwhile performed only marginally better. The Mono3D also failed on the
pedestrian category, but interestingly, OFTNet actually fared better, slightly outperforming
3DOP. However, across both classes and all difficulty categories no method was able to
achieve > 1% average precision. In this low-accuracy domain, random effects such as the
particular composition of the dataset have a significant impact and it was therefore difficult
to draw robust conclusions about the relative performance of the different methods.

3.5.7 Ablation study

The principle philosophy behind the design of the orthographic feature transform and the
derived OFTNet detection architecture was that as much reasoning as possible should take
place in the birds-eye view. As described in Section 3.4, most of the processing in OFTNet
took place in two components: the feature extractor network, which operated on the image-
based features; and the topdown network, which processed birds-eye view features. In order
to assess the importance of operating in the birds-eye view, we conducted an ablation study
where relative processing power is traded-off between these two components by removing
layers from the topdown network and adding layers to the feature extractor network.

Specifically, two variations on the feature extractor network were considered: ResNet-
18, which consists of 8 residual blocks, and ResNet-34, consisting of 16 residual blocks.
Unfortunately deeper feature extractor networks, such as ResNet-50, exceeded the available
GPU memory resources so the study was restricted to these two front-end networks.

We also considered three variants on the topdown network, consisting of 16, 8 and zero
convolution layers. In the zero-unit version, the output features from the orthographic feature
transform were passed directly to the bounding box and classification heads. This allowed
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Table 3.4. Effect of modifying the number of layers in the OFTNet feature extractor and
topdown network on average precision over the KITTI validation dataset.

Feature Extractor Topdown Network #Parameters (million) AP3D (%) APBEV (%)

ResNet-18 0 layers 11.94 0.64 1.35
ResNet-18 8 layers 16.66 5.58 10.43
ResNet-18 16 layers 21.38 8.92 16.73

ResNet-34 0 layers 22.05 2.20 4.11
ResNet-34 8 layers 26.77 4.27 8.73
ResNet-34 16 layers 31.49 5.72 10.63

us to simulate a purely image-based network, where the OFT module effectively acted as a
region of interest pooling layer. The results of this ablation study are tabulated in Table 3.4.

The findings from this study are clear: increasing the number of layers in the topdown
network significantly improved the detection performance, irrespective of the feature extractor
architecture chosen. This strongly suggested that the topdown network and the 3D reasoning
that it performed were crucial to the overall success of the network. One might argue that the
reason that the average precision increase is not specifically due to the topdown representation,
but rather that the overall depth of the network, and therefore its representational power,
increases as more layers are added. However, contrary to expectations we found that using a
deeper feature extractor (ResNet-34 in place of ResNet-18) actually reduced performance, as
a result of increased overfitting. This was true even when the overall number of parameters
across different networks were similar. We conclude, therefore, that layers in the topdown
network were much more generalisable and that reasoning in the birds-eye view space did
make an important contribution to the performance of the OFTNet method.

3.5.8 Impact of voxel grid resolution

Aside from the choice of front-end architecture and topdown network as discussed in the
previous section, perhaps the biggest single factor in the performance of the OFTNet ar-
chitecture was the resolution of the voxels used in the orthographic feature transform. At
low resolutions, the voxel feature representation would be too coarse to represent small
objects such as pedestrians and to capture the fine details of the scene. At high resolutions,
the memory usage and computation time for the OFT layer becomes infeasibly large. We
therefore conducted further investigation to assess the impact of this trade-off.

The results from this investigation, shown in Table 3.5, confirmed the expected trend that
as the size of the voxels increases (i.e. the resolution of the grid decreases), the performance
of the OFTNet degrades significantly. At the lowest resolution considered of ρ = 2.0m, the
average precision of the method is negligible. The best results were obtained using the default
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Table 3.5. Effect of voxel size on speed and detection performance. APBEV and AP3D
represent the birds-eye view and 3D bounding box average precision for the car class on the
KITTI validation set. Runtime measures the time taken for the OFTNet to process a single
image with dimensions 1242×375px.

Metric Voxel grid resolution (m)
0.5 0.75 1.0 2.0

APBEV 7.83 6.16 4.46 1.91
AP3D 5.16 3.93 2.64 0.90

Runtime (ms) 393 188 114 75

resolution of 0.5m: unfortunately we were unable to evaluate at any higher resolutions due
to the memory constraints of the GPU resources available at the time. However there is no
reason not to suspect that using an even higher resolution would yield further improvements.
Such improvements would come at considerable computational cost however: the runtime
measurements in Table 3.5 implied that the resolution of the voxel grid was the dominant
factor in determining the runtime of the method, and that the impact of other components
such as the frontend network was relatively small by comparison. At the default resolution of
0.5m, the network took approximately 0.4 seconds to process a single image: considerably
slower than realtime (approx. 0.04 seconds); a major limitation of this method.

3.5.9 Results on the NuScenes dataset

At the time of publishing OFTNet, KITTI was the only large-scale public dataset for evaluat-
ing 3D object detection. Shortly afterwards an number of alternative autonomous driving
datasets were released, including the NuScenes dataset by Caesar, Bankiti, et al. (2019)
which increased the number of annotated 3D bounding boxes by a factor of almost seven-fold.
NuScenes is considerably more challenging than KITTI, featuring 11 object categories and
over 1.4 million images captured across four locations and diverse driving conditions. As part
of their analysis, Caesar, Bankiti, et al. investigated the performance of OFTNet, alongside
other monocular and LiDAR-based methods, on the NuScenes test set. Results from their
study are reproduced in Table 3.6.

Unfortunately, from the results in Table 3.6, it can be seen that OFTNet was not able to
compete with more recent monocular detection methods such as SSD+3D (Caesar, Bankiti,
et al., 2019) or MonoDIS (Simonelli et al., 2019). Unlike our approach, which aimed to
use the structure of the network (i.e. the transformation to the birds-eye view) to decouple
the relationship between 3D bounding box coordinates and their 2D projections, MonoDIS
instead used a novel disentangling loss which eliminated dependencies between bound-
ing box parameters. They were able to show that this decoupling was able to provide a
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Table 3.6. Object detection results on the NuScenes test set. For Nuscenes detection score
(NDS) and mean average precision (mAP), higher is better. For mean average translation
error (mATE), scale error (mASE) and orientation error (mAOE), lower is better. Results are
reproduced with permission from Caesar, Bankiti, et al. (2019).

Method Modality NDS mAP mATE mASE mAOE
(%) (%) (m) 1-IoU (rad)

OFTNet Mono 21.1 12.6 0.82 0.36 0.85
SSD+3D (Caesar, Bankiti, et al., 2019) Mono 26.8 16.4 0.90 0.33 0.62

MonoDIS (Simonelli et al., 2019) Mono 38.4 30.4 0.74 0.26 0.55
Point Pillars (Lang et al., 2019) LiDAR 45.3 30.5 0.52 0.29 0.50
Megvii (Zhu, Jiang, et al., 2019) LiDAR 63.3 52.8 0.30 0.25 0.38

more direct loss function trajectory for optimisation and thereby improved object detection
performance compared to our and others’ works. SSD+3D, a baseline provided by the
authors of NuScenes (Caesar, Bankiti, et al., 2019), adopted the same loss but incorporated it
into a single-stage architecture more comparable to ours. The one area where the OFTNet
performed well was in the average translation error (mATE), which measures the average
distance from the centre of the predicted bounding box to the corresponding ground truth.
On this metric, the OFTNet performed slightly better than the SSD+3D approach and only
marginally worse than MonoDIS. A strength of the OFTNet therefore was its ability to
accurately localise objects. Across other metrics however, such as average scale error and
average orientation error, the OFTNet performed worse than subsequent methods on the
NuScenes dataset.

Nonetheless, an important observation from the analysis by Caesar, Bankiti, et al. (2019)
was that the performance of OFTNet on the KITTI dataset was heavily data-limited. They
carried out an additional experiment where they trained OFTNet (along with other methods)
on different fractions of the NuScenes training set. The results of this experiment are
reproduced in Figure 3.11. Their finding was that when trained on just 15% of the training
data (roughly the size of the KITTI training set), OFTNet achieved a mean average precision
score of less than 50% of that when the full training set was used. This shows, firstly, that
one of the drawbacks of the OFTNet approach was its large data requirement. However, it
also illustrates the limitations of the KITTI dataset and suggests that more research is needed
to understand the behaviour of OFTNet in the scenario where data is more abundant.
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Figure 3.11. Effect of training set size against average precision on the NuScenes dataset.
Grey shaded area represents the number of annotated images available in the KITTI training
set. Figure generated using data from Caesar, Bankiti, et al. (2019) with permission from the
authors.

3.6 Analysis

3.6.1 Error analysis

As discussed in Section 3.5.3, quantifying the performance of an object detection system is
in general a highly challenging task. This is in part due to the complex interplay between the
different requirements of the task: correctly identifying regions of the image which contain
an object of interest; recognising the object’s semantic category; and accurately localising
the object’s bounding box. To attempt to disentangle some of these factors, Hoiem et al.
(2012) propose a framework for diagnosing sources of error within a 2D object detection
algorithm. The analysis in this section builds on this framework to more deeply understand
the performance of OFTNet in reference to other contemporary methods.

In general, errors in an object detection system may be characterised according to three
main categories: detection errors, classification errors, and localisation errors. Detection
errors occur when a detector fails to recognise that an object is present, or generates a false
positive detection when an object is not present. Classification errors occur when an object is
successfully detected, but is assigned to the wrong semantic category. Finally, a localisation
error arises when an object is correctly identified, but its bounding box is incorrectly placed
around an object. The first question we therefore seek to understand is the relative impact of
these types of errors on the final performance of the OFTNet network.

Following the work of Hoiem et al. (2012), the analysis began by ranking all detections
in descending order of confidence, and then selecting the top N predictions, where N is the
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Figure 3.12. Breakdown of detection and localisation errors in object detection algorithms.
Clockwise from the top, the shaded regions represent the proportion of detections which
were correctly detected (‘hits’), detected but not accurately localised, detected but poorly
localised, and not detected.

total number of ground truth objects present. This implies that all ground truth objects are
successfully detected, there will be no false positive predictions, and also provides a fair
way of comparing between different methods. Each detected bounding box was categorised
according to its intersection over union score with the closest ground truth object. Following
the KITTI evaluation criteria, a bounding box was considered a true-positive detection
(referred to as a ‘hit’) if it has an IoU score of ≥ 70%. Boxes which have no or very little
(< 10%) overlap with a ground truth bounding box were considered a ‘miss’, and are treated
as detection errors. The remaining detections were considered to be localisation errors, which
were further subdivided into ‘approximately localised’ bounding boxes, with an overlap
of 50% ≤ IoU < 70%; and ‘poorly localised’ boxes, with an intersection over union of
10% ≤ IoU < 50%.

A breakdown of the different types of error is shown in Figure 3.12. In addition to
evaluating the OFTNet network, this analysis was repeated for three contemporary approaches
for which detections were publicly available: Mono3D (Chen, Kundu, Zhang, et al., 2016),
the leading monocular approach at the time; 3DOP (Chen, Kundu, Zhu, et al., 2015), a stereo
method; and MV3D (Chen, Ma, et al., 2017), a LiDAR-image fusion method which has full
access to 3D information.

The first interesting observation from Figure 3.12 was that for the baseline method,
Mono3D, the majority of errors were caused by failures in detecting objects, whereas for
the OFTNet method, localisation errors made up the majority of false-negative detections.
The original hypothesis behind the OFTNet was that reasoning in the birds-eye view should
primarily improve localisation, due to the metric representation and better use of 3D context.
This intuition seemed to be correct, since out of the objects which were detected, OFTNet
did improve the proportion which were approximately or correctly localised. However these
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results also suggested that the birds-eye view representation had an important impact on
detection performance, implying it may be easier to recognise objects in this space.

Also noteworthy is that the addition of stereo information, as in the 3DOP (Chen, Kundu,
Zhu, et al., 2015) framework, did not seem to help either detection or localisation, as the
error profiles of OFTNet and 3DOP are almost identical. This was surprising, as one might
expect that the addition of the metric depth information provided by stereo triangulation
would improve localisation performance. Given, however, that MV3D, which uses accurate
LiDAR measurements, does receive a significant reduction in both detection and localisation
errors, this may simply suggest that stereo alone does not provide accurate or dense enough
depth measurements for robust 3D detection.

In the next two sections, we seek to understand these results further and determine the
cause of both failures in detection and in localisation.

3.6.2 Detection errors

The first objective was to understand why certain objects in the scene failed to be detected
completely. Hoiem et al. (2012) attempted to quantify this false-negative behaviour by
categorising detections according to various object attributes such as bounding box size,
shape and visible parts. In analogy to their work, we considered four attributes and their
effects on the detection accuracy: bounding box average depth, orientation, level of occlusion,
and level of truncation.

Depth

The distance of an object away from the camera was perhaps the most important factor to
consider, as this largely determined the apparent size of objects in the camera frame. To
investigate the effects of depth on detection performance, each object was first sorted into one
of D equally-spaced bins based on its average z-coordinate. Each bin was then scored based
on the recall-@-N metric, which corresponds to the percentage of ground truth objects that
were in the top-N most confident predictions. Here N was chosen to be the number of ground
truth objects, so that at 100% recall, all ground truth objects were detected. To decouple the
detection accuracy from localisation accuracy, a relatively permissive intersection over union
threshold of IoU ≥ 0.1 was used to determine true-positive matches. The results for each of
the four detection algorithms discussed in Section 3.6.1 are shown in Figure 3.13.

At relatively short depths, around the range 5m < Z ≤ 20m, all four methods achieved
roughly similar recall, with the 3D LiDAR depth information used by MV3D providing little
advantage over the image-only methods. The main benefit of the MV3D framework was
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Figure 3.13. Top N recall as a function of distance of the object centre away from the camera.

most evident over medium range detections, between 20m and 40m, where the detection
performance remains largely stable. Over this range the accuracy of the image-based systems,
including OFTNet, fell gradually. This was anticipated behaviour, as modern image-based
object detectors are widely known to struggle to detect small objects (Nguyen et al., 2020).
Nonetheless OFTNet, which like MV3D used an birds-eye view feature representation,
significantly outperformed Mono3D, and compared favourably with the stereo-based 3DOP
approach.

The most interesting observation however was that at extreme distances, beyond 50m,
OFTNet outperformed all other approaches, including the LiDAR-based MV3D method.
This was likely to be because, although the Velodyne LiDAR sensor has a manufacturer-
specified range of 120m (Glennie and Lichti, 2010), at large distances the sparsity of the
point cloud increases dramatically, making it more difficult to identify objects. The input to
the OFTNet was an image with a vertical resolution of 384 pixels: considerably higher than
that of the Velodyne LiDAR sensor, giving the network more information to work with.

The other area in which OFTNet excelled was for objects at very close ranges, less than
5m away from the camera. Under these conditions, the object typically occupies a large
proportion of the camera’s field of view. Typical image-based object detectors often fail in
this scenario because they have a limited receptive field size which cannot capture the full
extents of the object. Part of the motivation behind the orthographic feature transform was
that the receptive field size is adaptive, with a large receptive range for objects at close range
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Figure 3.14. Top N recall as a function of orientation. Zero radians represents objects facing
directly towards the camera, while ±π radians represents objects facing directly away.

and a smaller receptive field for objects at long range. This may go some way to explain the
improved performance at small distances.

Orientation

In Section 3.5.4, qualitative observations showed that a common failure case for both
Mono3D and OFTNet was for objects at right angles to the camera. This failure case was
investigated further by sorting each ground truth object into one of 8 orientation bins, centred
on orientations θ̄ ∈ {−3π

4 ,−π

2 , ...,π} radians. We then computed the recall @ N values for
each bin, which are shown in Figure 3.14.

The results in Figure 3.14 seemed to confirm the qualitative observation that both OFTNet
and Mono3D performed best for objects which were either facing directly towards (0 radians)
or away from (±π radians) the camera. In fact, all methods experienced a significant drop in
performance at oblique or perpendicular directions. This consistent loss of performance was
symptomatic of the fact that the training dataset is heavily biased towards scenes of driving
along straight roads, with the majority of visible vehicles oriented parallel or anti-parallel to
the direction of travel.

Occlusion and truncation

The final element of detection performance that was considered was the visibility of the object
within the image. For each object, the KITTI dataset provided two useful attributes: the level
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Figure 3.15. Top N recall as a function of
truncation.

Figure 3.16. Top N recall as a function of
occlusion.

of truncation i.e. what percentage of the object’s bounding box is outside the boundaries
of the image, and the level of occlusion i.e. to what extent the object is obscured by other
objects in the foreground. The effects of these attributes on performance are visualised in
Figures 3.15 and 3.16 respectively.

At first glance, the results in Figures 3.15 and 3.16 seemed somewhat contradictory, as
the OFTNet ostensibly excelled in the scenario where objects were occluded by the edges
of the image, but under-performed compared to other methods when objects were occluded
by other objects in the scene. This implied that the reason why occluded objects were
challenging was not simply the fact that the object was only partially visible, but rather
the visual clutter implied by multiple objects in front of one another, making it harder to
disambiguate individual instances. OFTNet may have been particularly susceptible to this
since it contained more trainable parameters than competing methods so may be more prone
to overfitting.

It should also be noted however that truncation is strongly correlated with depth, as
objects closer to the camera are more likely to appear partially outside the field of view. In
Figure 3.13 it was observed that OFTNet performed uniquely well at short distances, which
may also partly explain the behaviour at high levels of truncation.

3.6.3 Localisation errors

The second factor which could have an impact on the overall accuracy of an object detection
system was the effect of localisation errors, where an object is correctly detected, but the
predicted bounding box is not accurately aligned to the underlying shape of the ground truth
object. From the analysis in Section 3.6.1 it was found that localisation errors made up
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Figure 3.17. Percentage improvement in true-positive detections when translation, scale or
orientation predictions are corrected to their ground truth value. T - translation, S - scale,
O - orientation, TS - translation and scale, TO - translation and orientation, SO - scale and
orientation.

more that 50% of the total number of failed detections in the OFTNet system. This section
considers how these errors may have arisen.

In 3D object detection, localisation can be decomposed into three separate sub-tasks:
translation estimation, scale estimation, and orientation estimation. The first question to
consider is what is the relative importance of each of these three sub-tasks in determining
overall localisation performance? This impact could be quantified by imagining that an
omniscient oracle was able to predict the value of one of these attributes with perfect
accuracy, and observing how the performance improved. Specifically, for each detection,
the predicted translation, scale or orientation was replaced with the appropriate value from
the corresponding ground truth bounding box. The proportion of poorly or approximately
localised predictions which would now meet the criteria for a true positive detection (IoU ≥
70%) were then computed using the same method as described in Section 3.12. This analysis
also considered the importance of pairs of attributes: for example, if both translation and
scale were estimated accurately, what proportion of predictions could be corrected, which
were not corrected by fixing either translation or scale alone? The results of this analysis are
shown in Figure 3.17.

It is clear from Figure 3.17 that across all methods the vast majority of localisation errors
were caused by inaccurate translation predictions. In contrast, whilst orientation errors were
visually noticable (see Figure 3.9), they seemed to have negligible impact on the overall
detection performance. The importance of scale estimation varied between the different
methods. For Mono3D and 3DOP, improving scale estimation had the potential to reduce the
number of false-negatives by more than 20%, but only if the translation estimation was also
corrected. For OFTNet on the other hand, completely solving the scale estimation problem
would only confer minor improvements. This suggested either that the scale estimation in
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Table 3.7. Average translation error (ATE), average scale error (ASE) and average orientation
error (AOE) on the KITTI validation set. Lower numbers are better.

Method Modality ATE (m) ASE AOE (rad)

Mono3D Mono 1.095 0.218 0.338
OFTNet Mono 0.824 0.178 0.648
3DOP Stereo 0.855 0.217 0.343
MV3D LiDAR 0.220 0.150 1.374

OFTNet was particularly accurate, or that the effects of translation errors are dominated by
other types of error. To seek to tease apart these two scenarios, each aspect of localisation
was considered individually.

Position estimation

As identified in Figure 3.17, errors in accurately estimating the translational offset of objects
had by far the largest impact on overall detection performance. In order to compare the
accuracy of translation estimation between methods, Caesar, Bankiti, et al. (2019) introduced
a metric called Average Translation Error (ATE), which is defined as the average Euclidean
distance between each predicted bounding box centre and that of the corresponding ground
truth bounding box, where one exists, i.e.

AT E =
1
N ∑

i j
ai j

∣∣|xi − x̂ j
∣∣ | (3.32)

where xi is the centre of predicted bounding box i, x̂ j is the centre of ground truth bounding
box j, and aiJ is a binary indicator which is equal to 1 if prediction i is assigned to ground
truth j, 0 otherwise. The average translation error for OFTNet and other methods on the
KITTI dataset is tabulated in Table 3.7. To help visualise the translation error in greater
detail, Figure 3.18 shows histograms which approximate the distribution of translation errors.

The results in Table 3.7 and Figure 3.18 first of all make abundantly apparent the benefit
of having access to accurate 3D measurements from LiDAR, as MV3D outperformed both
OFTNet and 3DOP by almost a factor of four in terms of average translation error. In contrast,
across all three image-based approaches only a very small proportion of objects could be
localised to within 20cm. Interestingly 3DOP performs marginally worse than OFTNet based
on translation error, suggesting that the noisy depth estimates provided by stereo triangulation
may even have been detrimental to detection performance, compared to learning depth solely
from monocular cues.

This conclusion is further supported by considering the anisotropy in localisation errors in
different spatial dimensions. Figure 3.19 contains kernel density estimate plots showing the
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Figure 3.18. Histogram of translation error.

Figure 3.19. Kernel density estimate showing the distribution of position errors in the
birds-eye view XZ-plane.
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distribution of localisation errors in the depth (z) dimension and lateral (x) dimension. In the
case of MV3D, where accurate LiDAR depth information was available, the distribution was
relatively isotropic, with roughly similar error in both the depth and lateral dimensions. Given
that stereo provides absolute estimates of depth based on disparity, one might have expected
a similar distribution for 3DOP, perhaps somewhat scaled up to account for inaccurate depth
at low disparity. In fact, errors in depth estimation were more significant in 3DOP than they
were for OFTNet, suggesting that the dense monocular depth information encoded in the
orthographic feature transform were at least as robust as the sparser, explicit depth estimates
used in 3DOP.

Dimension estimation

In analogy to the average translation metric described above, Caesar, Bankiti, et al. (2019)
introduced a second metric called the Average Scale Error (ASE), which captures the accuracy
of estimating the dimensions of a predicted bounding box. The scale error is defined as one
minus the intersection over union between the predicted box and ground truth box, assuming
the translation and rotation of the predicted bounding box are aligned to the ground truth
values. This can be expressed as

ASE =
1
N ∑

i j
ai j

min(wi, ŵ j)min(hi, ĥ j)min(li, l̂ j)

wihili + ŵ jĥ j l̂ j −min(wi, ŵ j)min(hi, ĥ j)min(li, l̂ j)
(3.33)

where wi, hi, li are the width, height and length of the predicted bounding box and ŵ j, ĥ j, l̂ j

are the corresponding ground truth values. These values are tabulated in Table 3.7 and plot
the distribution of errors in Figure 3.20.

It is under this metric that OFTNet clearly differentiated itself from previous methods,
outperforming 3DOP by a considerable margin and even approaching the performance of
the LiDAR-based MV3D approach. This may be interpreted as a clear indication that the
transformation into the metric birds-eye view space is beneficial to accurate estimation of
object dimensions. This supports the observation from Figure 3.17 that OFTNet suffered less
from errors in scale estimation, but unfortunately given that errors due to translation have a
much bigger impact, this has a small overall effect on localisation performance.

Orientation estimation

Despite observing in Figure 3.17 that orientation has a very small overall impact, we briefly
consider a final metric: Average Orientation Error (AOE). This is defined as the smallest
difference in yaw angle between the predicted and ground truth box.
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Figure 3.20. Histogram of scale error. Figure 3.21. Histogram of orientation error.

Plotting the distribution of orientation error in Figure 3.21 sheds light on an interesting
failure mechanism of MV3D. Although MV3D was more precise in its predictions, it often
became confused between the front and back of the vehicle, resulting in not insignificant
number of predictions which are incorrect by almost 180 degrees. This may have been
differentiating between the front and back of a car is a highly appearance-based task, so
the LiDAR point cloud alone may have been insufficient to resolve this ambiguity. Unlike
Mono3D and 3DOP, the OFTNet method also suffered from this problem to some extent,
suggesting that by operating in a birds-eye view space takes on some of the downsides of
a LiDAR-based method, as well as the advantages. This had a large effect on the average
orientation error for OFTNet and MV3D, but was not reflected in the overall average precision
score as the KITTI IoU metric did not distinguish between boxes which are correctly aligned
and boxes which are 180 degrees out of phase.

3.7 Conclusions

This chapter discussed the fundamental and challenging problem of monocular 3D object
detection in the context of autonomous driving. The main contribution was a new object
detection architecture, OFTNet, which was inspired by recent developments in single-stage
2D object detection and LiDAR-based 3D object detection. This architecture incorporated
ideas from both these areas, reasoning about the world in both the perspective image space
and the orthographic birds-eye view space. The core novelty of the architecture was a
neural network component called the Orthographic Feature Transform, which provided a
geometry-based mechanism for transforming features between the two spaces.
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The efficacy of the OFTNet algorithm was extensively evaluated on the KITTI 3D object
detection dataset. It was found that compared to the limited number of monocular methods
available at the same time, the OFTNet performed very favourably, achieving state of the art
results among comparable methods on the official KITTI benchmark. The performance of the
OFTNet however fell significantly short of the success of methods which employed LiDAR
or multiple sensors, and was quickly surpassed by other more recent monocular 3D object
detection methods which made use of explicit estimates of depth. Experiments conducted by
Caesar, Bankiti, et al. (2019) on the more recent NuScenes dataset suggested that the small
size of the KITTI dataset was a major obstructing factor for the OFTNet.

To try and understand the behaviour of the OFTNet more deeply, detailed analysis of the
various failure modes was conducted for the OFT and other similar methods. This exploration
gave insights into the failure mechanisms of the OFTNet, as well as revealing several areas
in which the philosophies of camera-only 3D object detection and reasoning in the birds-eye
view were beneficial, such as the ability to identify objects at very long ranges and accurately
estimate the scale of objects from images alone.

3.7.1 Limitations

At the time that much of the research presented in this chapter was conducted, monocular
3D object detection was a relatively under-explored topic. As reported in Section 3.5.5,
there were only two methods that offered a suitable direct comparison to our work: the
Mono3D algorithm of Chen, Kundu, Zhang, et al. (2016) as well as the network proposed by
Novak (2017). Although we were able to exceed the performance of these methods, the best
average precision score we were able to achieve was only 11.1% on the KITTI birds-eye view
detection task. By comparison, even relatively low-performing LiDAR-based methods such
as the MV3D algorithm (Chen, Ma, et al., 2017) routinely achieve >80% average precision on
the same task (see Table 3.2 for more details). The analysis in Section 3.6.1 elucidated some
of the reasons behind this, such as the poor detection performance of monocular compared
to LiDAR-based methods at medium ranges (20 - 50m) and the inability to localise objects
accurately. Results on the NuScenes dataset in Section 3.5.9 suggested that the OFTNet was
relatively data inefficient, with large datasets essential for the method to generalise. The
complexity of the OFT layer also incurred a heavy computation time penalty, restricting our
algorithm from operating in a real-time setting. These findings suggested that our method
was still far from replacing LiDAR-based counterparts in deployment-ready autonomous
vehicles.
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3.7.2 Current context

In the intervening years since this work was first presented, however, considerable progress
has been made in closing the performance gap between image-based and LiDAR-based
methods (Ku, Pon, et al., 2019; Xu and Chen, 2018; Wang, Chao, et al., 2019; You et al.,
2019). The main innovation behind the success of many of these more recent methods
has been to train networks to explicitly predict the depth of each pixel in the input image,
rather than learn this information implicitly as was the aim of our network. For example,
Xu and Chen (2018) used an unsupervised monocular depth estimation network called
MonoDepth (Godard et al., 2017) to estimate per-pixel depth estimates. These estimates,
together with image features, were used as input to the second stage of a Faster R-CNN-like
(Ren et al., 2015) architecture. Ku, Pon, et al. (2019) predicted a 3D point cloud for each
object instance, and used this information to refine the initial 3D bounding box. The most
impressive improvements in monocular object detection performance have been achieved by
Wang, Chao, et al. (2019), who simply applied a stand-alone monocular depth estimation
network (DORN (Fu, Gong, et al., 2018)) to generate a dense 3D point cloud, and then fed
this directly to an established LiDAR-based 3D object detector such AVOD (Ku, Mozifian,
et al., 2018) or Frustum PointNet (Qi, Liu, et al., 2018). This simple approach, which
they term “Psuedo-LiDAR” was remarkably effective, achieving 26.3% average precision
on the KITTI validation set. While this performance was still significantly below that of
most LiDAR based methods, it is encouraging to note that within just a couple of years
the state-of-the-art performance of monocular detection algorithms has more than doubled,
promoting optimism that camera-only systems may one day offer a reliable replacement for
LiDAR.
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Chapter 4

Semantic Map Prediction

4.1 Introduction

Over the years many researchers in computer vision (Caesar, Uijlings, et al. (2018), Sun, Kim,
et al. (2013), and Heitz and Koller (2008)) have subscribed to the philosophy the world can
generally be decomposed two broad concepts: “Things" (objects with a well defined shape
and position), and “Stuff" (amorphous concept such as patches of grass, road or sky). The
previous chapter was devoted to identifying the “Things” of a scene: detecting obstacles such
as cars, bikes and pedestrians, and accurately estimating their pose and dimensions. However,
these objects only represent part of the challenge for an autonomous car. Understanding the
layout of the road, positions of road markings, and areas which may contain parked cars or
pedestrians, are vital to achieving full autonomy. This chapter therefore turns to the problem
of discovering the “stuff” components of the environment. Many works have focused on
classifying these amorphous categories from the image perspective: this corresponds to
the common scene-understanding task of semantic segmentation (Ulku and Akagunduz,
2019). The objective of this thesis however was to discover both the semantic content and
3D layout of the world, so we therefore represent the scene in the form of a two-dimensional
map, viewed from the birds-eye view perspective, which captures the 3D arrangement of all
relevant obstacles and surfaces.

The aim of the work in this chapter was, given a sequence of images, to predict a semantic
2D map of the environment. This map should contain all essential information needed for
driving, so should encode the position of both static scene elements, such as roads and
pavements, as well as dynamic objects such as cars, motorbikes and pedestrians. Combining
these elements into a single compact representation opened the possibility that these maps
could directly be used by a path planning algorithm to determine the optimal trajectory for
the vehicle. The scope of these maps encompassed not just the immediate area surrounding
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the autonomous platform at a given moment in time, but information accumulated over an
entire journey.

These goals were accomplished through the use of a well-known framework from the
robotics community known as Bayesian occupancy grid mapping (Moravec, 1989). This
framework divides the world into a discrete grid of cells, and reasons probabilistically
about whether each cell is occupied. For this thesis the concept of an occupancy grid was
expanded to incorporate the notion of semantic occupancy i.e. to determine whether an
instance of a given class was present at each location. To estimate the semantic occupancy
state of the scene from a given camera, a novel neural network architecture, the Pyramid
Occupancy Network, was introduced, which used only a single monocular image as input.
The final element of this pipeline was then to combine multiple predictions from the Pyramid
Occupancy Network into a global map representation using the Bayes filter algorithm; a
central feature of the Bayesian occupancy grid framework.

The remainder of this chapter is divided into the following sections: Section 4.2 for-
mulates the problem of semantic occupancy grid mapping. In Section 4.3. the Pyramid
Occupancy Network, which formed the basis of a deep-learning-based approach to predicting
semantic maps from images, is introduced. Section 4.5 presents evaluation of the Pyramid
Occupancy Network on two large scale autonomous driving datasets: the NuScenes dataset
of Caesar, Bankiti, et al. (2019) and the Argoverse dataset of Chang et al. (2019). This section
focuses exclusively on the problem of predicting maps from a single image, and includes
discussion of the design trade-offs and comparisons to existing works. Finally, Section 4.6
introduces the Bayesian occupancy grid framework which enables the construction of large-
scale maps using sequences of images. Additional quantitative evaluation is presented on
this task. Section 4.7 summarises the main findings from this chapter.

4.2 Semantic occupancy grid mapping

In this chapter, our principal goal was, given some observation of the world in the form
of an image z, to construct a map-like representation m which completely described our
surroundings. As discussed in Chapter 2, numerous possible representations for the map m
exist, including discrete, geometric or topological maps. In this work we chose to adopt the
discrete occupancy grid representation first proposed by Moravec and Elfes (1985). This
representation has several key advantages, namely, it is simple to construct and is amenable
to processing by a convolutional neural network. Crucially, occupancy grids are also highly
suited to incremental updates over time via the Bayesian filtering algorithm: a property which
we shall return to in Section 4.6.
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An occupancy grid map represents the world by partitioning it into a set of discrete grid
cells, i.e.

m =
{

mpq
}
. (4.1)

Each grid cell mpq is a binary random variable which represents the underlying state of
the world at a location (Xp,Yq) in the birds-eye view map. A cell can either be occupied,
indicating that an object is present at the given location, or free, denoting that the cell is
empty and may be traversed by an autonomous vehicle or other mobile robot. The aim of
the occupancy grid mapping algorithm is then to estimate the most likely map state m, given
an observation z. In practice, estimating the joint posterior of the map P(m|z) directly is
intractable since an occupancy grid map can consist of thousands or even millions of grid
cells. We therefore approximate the map as a zeroth-order Markov random field, in which
each grid cell mpq is assumed to be independent of its neighbours. Under this assumption,
we can then approximate the joint posterior as the product of marginal posteriors:

P(m|z) = ∏
p,q

P
(
mpq|z

)
(4.2)

The optimal estimate for our global map m∗ can then be found by maximising the log
posterior:

m∗ = argmax
m ∑

p,q
logP

(
mpq|z

)
. (4.3)

4.2.1 Semantic occupancy grids

In traditional occupancy grid mapping, the main purpose is simply to be able to distinguish
between drivable and non-drivable areas. In this work, we aimed to capture a richer represen-
tation of the world: encoding different types of road features, obstacles and dynamic objects.
We therefore proposed a simple extension to the standard occupancy grid representation to
incorporate semantic information. Rather than encoding a single state, free or occupied, each
grid cell pq is associated with a set of binary random variables

{
mc

pq
}

, where the index c
refers to one of several semantic categories representing road, pavement, car etc. Each of
these state variables now encodes the presence or absence of the semantic concept at that
location, for example mcar

pq = 1 if a car is present at grid location (p,q), mcar
pq = 0 otherwise.

In contrast to other works (Lu, Molengraft, et al. (2019) and Pan, Sun, et al. (2020)) we do
not assume that the semantic categories are mutually exclusive: it is perfectly conceivable
that a road, pedestrian crossing, pedestrian and stroller can all co-exist at the same location.
Making this assumption allows us to employ the binary Bayesian filter algorithm described
in Section 4.6.1.
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4.2.2 Deep inverse sensor model

In traditional occupancy grid parlance, the function used to estimate the marginal probability
of occupancy P(mpq|z) is typically referred to as the inverse sensor model, in contrast to the
forwards sensor model which measures the likelihood of an observation given the underlying
state of the map. Where the observation z represents a single scalar measurement from a
range sensor such as LiDAR, the inverse sensor model would often take the form of a simple
hand-crafted function or a shallow neural network (Thrun, 2002). In our scenario however,
the observation variable z represents a high-dimensional image will may contain millions
of pixels. We therefore chose to represent the inverse sensor model as a deep convolutional
neural network Φ. The network accepts as input an image z and set of camera parameters K,
and predicts the probability of occupancy φ c

pq = P(mc
pq = 1|z) for each occupancy grid cell

pq and semantic class c. The network is trained by minimising the binary cross entropy loss
between the predicted φ̂ c

pq ∈ (0,1) and ground truth φ c
pq ∈ {0,1} occupancy probabilities:

L
(
φ , φ̂

)
= ∑

p,q,c
φ

c
pq log φ̂

c
pq (4.4)

The architecture and training scheme for this neural network is described in more detail in
Section 4.6.

4.3 Pyramid Occupancy Network Architecture

In this section we begin by describing the convolutional neural network-based solution to
the problem of semantic occupancy grid prediction, which was referred to as the Pyramid
Occupancy Network (PyrOccNet). The PyrOccNet network fulfilled the role of a deep
inverse sensor model Φ as described in Section 4.2.2, taking a monocular image Ik, set of
camera parameters x and batch of grid cells {xi} as input, and estimating the probability of
(semantic) occupancy for each grid cell. Since the occupancy grid was defined in the 2D
birds-eye view, transferring image-based features into the birds-eye view proved a major
design challenge. Once in this space, the occupancy grid map probabilities could be computed
efficiently by operating convolutionally on birds-eye view features, allowing the network
to share computation across different grid locations and reason about the structure of the
3D world. An overview of the Pyramid Occupancy Network is shown in Figure 4.1, while a
complete network specification, including details of each individual layer type, is provided
in Figure 4.4.Complete source code is also available at https://github.com/tom-roddick/
mono-semantic-maps.
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4.3 Pyramid Occupancy Network Architecture
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Figure 4.1. Overview of the Pyramid Occupancy Network architecture.

Architecturally, the PyrOccNet network shared many design features in common with
the OFTNet architecture described in Chapter 3. Despite differences in the final output
representation, both networks adopted the same broad approach to solving their respective
problems: processing features in the image-space, transforming to a birds-eye view and
then applying further processing in this space. However, the PyrOccNet network built on
experiences from the OFT layer and OFTNet network, allowing substantial improvements
to its design. Most significantly, the orthographic feature transform was extremely memory
intensive, due to the need to explicitly build the full 3D voxel grid. To overcome this challenge
an improved transformer module, called the dense transformer layer1, was introduced, which
bypassed the need for an explicit 3D representation. The resulting reduction in memory
usage allowed for greater flexibility in the design of the front-end and topdown networks,
which is discuss below.

The Pyramid Occupancy network consisted of four principle components:

• A frontend feature extractor network, based on the ResNet-50 architecture, which
processed features in the image space.

• A feature pyramid, which upsampled low-resolution feature maps from the frontend
network to provide context to shallower, higher-resolution features.

• A stack of dense transformer layers, which transformed the multiscale image-based
features from the feature pyramid into the birds-eye view perspective.

• A topdown network, which processed the features in the birds-eye view and generated
the final map occupancy estimates for each location in the occupancy grid.

1Note that the term ‘transformer’ was chosen in reference to the spatial transformer networks of Jaderberg
et al. (2015), which first demonstrated the use of a differentiable resampling layer to transform spatial feature
maps into a new representation. It does not relate to the more recent transformer networks proposed by Vaswani
et al. (2017) commonly employed in sequence modelling tasks.
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Figure 4.2. Comparison between the two types of residual block used in the ResNet-18 and
ResNet-50 feature extractors. K ×K indicates the size of the convolutional kernel. N is the
number of feature channels, and H ×W indicates the spatial dimensions of the feature map.

This architecture is visualised in Figure 4.1, and each component is described in detail in the
sections below.

4.3.1 Feature extractor

As was the case with the OFTNet, the primary purpose of the PyrOccNet’s front-end feature
extractor was to identify low-level features in the image and to implicitly infer the depth
of each image location from the camera. In the OFTNet architecture, the choice of feature
was largely restricted by two factors: GPU memory constraints; and the relatively small
size of the KITTI dataset (Geiger, Lenz, and Urtasun (2012)), which made overfitting to
the training set a considerable challenge. However, this work had access to considerably
larger datasets (Caesar, Bankiti, et al. (2019) and Chang et al. (2019)), as well as a greater
memory budget on account of the more efficient dense transformer layer. As a result, the
PyrOccNet was able to employ a much deeper and more powerful feature extractor, based
on a pretrained ResNet-50 network (He, Zhang, et al., 2016). Like the shallower ResNet-
18 used in the previous chapter, ResNet-50 is composed of a hierarchy of convolutional
network blocks with residual skip connections. ResNet-50 however makes use of an efficient
‘bottleneck’ residual structure, as shown in Figure 4.2b, which allows for a deeper and wider
network with minimal computational and memory cost. The ResNet-50 network produces
a stack of output feature maps which are a factor d ∈ {8,16,32} smaller than the original
input dimensions. In the PyrOccNet network, the architecture was extended to include two
additional downsampling stages, resulting in a final set of feature maps with downsampling
factors d ∈ {8,16,32,64,128}.
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4.3.2 Dense transformer layer

The dense transformer layer sought to accomplish the same task as the orthographic feature
transform from the previous chapter: to map a feature map which was computed in the image
perspective, into an orthographic birds-eve-view projection. However, while the previous
chapter demonstrated the effectiveness of the OFT layer and the birds-eye view philosophy
in general, it also highlighted one its shortcomings: the extreme memory use required to
explicitly build the 3D voxel grid.

The solution to this problem was inspired by recent works at the time such as those of
Lu, Molengraft, et al. (2019) and Pan, Sun, et al. (2020), who also tackled the problem of
transforming image-based features to the birds-eye view. The orthographic feature transform
may be viewed as a ‘geometry-based’ approach, in that it predominantly used known camera
geometry to determine the relationship between features in the image and locations in the
birds-eye view. In contrast, Lu, Molengraft, et al. and Pan, Sun, et al., adopted a purely
‘learning-based’ approach. They employed auto-encoder-like architectures to directly learn
the transformation from image to topdown perspective. This approach had the advantage
that there was no need to explicitly construct the 3D full voxel grid. In fact, the memory
consumption was considerably reduced since the image-based feature map was reduced
down to a single feature vector which, in principle, summarised all the relevant information
contained within the image. However, collapsing the image to a single feature vector had
the downside that the spatial configuration of the image was lost, making it difficult to
accurately reconstruct the 3D layout of the scene in the birds-eye view. Recovering these
details required a central feature encoding with a large number of parameters, which could
expose the network to overfitting.

The dense transformer layer therefore sought to combine the advantages of both ap-
proaches, providing a hybrid solution to the problem. The approach was based on the
observation that, for a given point p,q in the birds-eye view with coordinates (Xp,Zq), it is
always possible to infer the corresponding horizontal pixel coordinate in the image u using
camera geometry alone:

u =
αXp

Zq
+ cu (4.5)

where α is the scaled camera focal length and (cu,cv) the camera optical centre as described
in Section 3.2. Conversely however, it is not generally possible to infer the horizontal pixel
coordinate v, given by

v =
fY
Zq

+ cv (4.6)
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since the height Y of the scene at location (p,q) is unknown. Moreover, the point (X ,Z)
might actually map to multiple v values, in the case of a vertical surface such as the wall of a
building. If the object at (p,q) is occluded, there may be no values of v which map directly
to this point. This asymmetry naturally suggested that a different approach should be taken
between processing the horizontal rows and vertical columns of the image.

The proposed dense transformer layer therefore consisted of three steps:

Step 1 Each column of the image was encoded into a single feature vector. This resulted in
a 1D feature map with the same width W as the original image. In theory, each feature
vector incorporated information about both the world height Y and depth Z of every
pixel along the image column.

Step 2 Decode each column feature into a ray in the birds-eye view. This resulted in a 2D
feature map in the birds-eye view, where the vertical coordinate q represented the depth
of each location Zq, and the horizontal coordinate u represented the ratio X

Z .

Step 3 Resample this 2D feature map into a Cartesian coordinate system, such that each
location (p,q) represented a point (Xp,Zq) in the birds-eye view. The location in the
feature map to sample from was given by coordinates (αXp

Zq
+ cu,Zq).

In step 1, the encoding operation was implemented by concatenating the feature vectors along
the vertical image dimension, and then applying a 1D convolution kernel to the resulting 1D
feature map. Similarly, step 2 reversed this operation: applying a second 1D convolution
layer to the column embeddings before distributing the resulting features along the birds-eye
view depth axis. An illustration of the dense transformer layer is shown in Figure 4.3.

4.3.3 Transformer pyramid

The dense transformer layer described above was built on the observation that each vertical
column of the image-based feature map corresponds to a ray in the birds-eye view extending
outwards from the camera centre. A problem with this assumption, however, was that while
points along the rays which were near to the camera were spaced closely together, distant
points were spaced much further apart. In order to densely populate the birds-eye view
feature maps with features, it was therefore necessary to exploit higher-resolution feature
maps to increase the ray density at large distances. Unfortunately, as well as magnifying the
computational cost of the method, using higher-resolution feature maps at short distances
could lead to aliasing effects and narrow objects such as lamp-posts could potentially be
missed.
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Figure 4.3. The Dense Transformer Layer. (1) Each column of the image was encoded to
a single feature vector. (2) The column features were expanded along camera rays in the
birds-eye view. (3) The non-Cartesian feature map was resampled into a Cartesian coordinate
system, to give a single feature per birds-eye view location.

The solution to this dilemma was inspired by the image pyramid representation which
is ubiquitous to techniques such as mip-mapping in computer graphics (Williams, 1983) or
SIFT keypoint detection in computer vision (Lowe, 2004). The output from the front-end
feature extractor was a stack of multi-scale feature maps (denoted conv-k, k ∈ {3, . . . ,7}),
each of which was downsampled by a factor of 2k relative to the original input image. To
avoid aliasing effects, the birds-eye view space was divided into five zones based on the
distance of points from the camera. A point (p,q) on the birds-eye view which corresponds
to position (Xp,Zq) was sampled from feature map k if it satisfied

kpq =

⌊
log2

(
αρ

Zq

)⌋
, (4.7)

where ρ was the resolution of the birds-eye view feature map. This ensured that when
projected onto the image plane, the distance between two adjacent points (p,q) and (p+1,q)
was never greater than twice the resolution of the corresponding feature map k. From an
information theoretic standpoint, this can be viewed as enforcing that the sampling frequency
of the resampling process never exceeded the Nyquist frequency.

Feature pyramid

Unfortunately, utilising feature maps from different stages of the front-end feature hierarchy
introduced a further concern. Feature maps from the early stages of the network (e.g. conv-3 or
conv-4) had undergone considerably fewer layers of processing than those from deeper in the
network (e.g. conv-7). This meant that higher-resolution feature maps contained significantly
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less semantic content than low-resolution features. This imbalance was addressed by adopting
the approach of Lin, Dollár, et al. in their Feature Pyramid Network architecture (Lin, Dollár,
et al., 2017), which used a feature pyramid to overcome this challenge. In their proposed
feature pyramid, low resolution feature maps were upsampled to a larger spatial dimension
before being combined with higher-resolution feature maps at the next level of the pyramid.
This ensured that the high-resolution features incorporated both high-frequency information
from the current pyramid level, as well as deeper semantic reasoning from lower levels. The
impact of this addition to the Pyramid Occupancy Network is explored in Section 4.5.2.

4.3.4 Topdown network

The topdown network of the PyrOccNet network served a similar purpose to that within the
OFTNet architecture: processing features in the birds-eye view and reasoning about the 3D
structure of the scene. In design, it was also similar, consisting of a stack of residual blocks,
followed by a single convolutional layer to predict the final log-odds occupancy probability at
each birds-eye view location. The main departure from the architecture of Chapter 3 however
was that because of the improved efficiency of the dense transformer layer, it was possible to
process the birds-eye view at a higher resolution. The topdown network of PyrOccNet was
therefore divided into two stages: the first which operated on feature maps at a resolution
of 50cm, and the second at a resolution of 25cm. The transition between the two stages
was accomplished by means of a transposed convolution layer with a stride of two, which
is equivalent to applying a learned upsampling filter to the low-resolution birds-eye view
feature map.

4.4 Data curation and preprocessing

4.4.1 Datasets

One of the chief limitations of studying the problem of semantic map prediction was data
availability. Unlike other important scene understanding tasks such as semantic segmentation
(Cordts et al., 2016; Zhou, Zhao, et al., 2017; Neuhold et al., 2017), object detection (Lin,
Maire, et al., 2014; Geiger, Lenz, and Urtasun, 2012) or optical flow estimation (Butler et al.,
2012; Baker et al., 2011), no publicly-available dataset focused on addressing this problem
directly. Previous works have overcome the lack of data through the use of synthetically-
generated images (Schulter et al., 2018; Pan, Sun, et al., 2020), coarsely aligned online maps
(Schulter et al., 2018), or by using weak labels obtained automatically e.g. from stereo depth
estimates (Lu, Molengraft, et al., 2019). However, the release of several new object detection
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Figure 4.4. A complete specification of the Pyramid Occupancy Network architecture. Filled
blocks represent neural network layers with trainable parameters.
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datasets in 2019 offered a new and unique opportunity to learn a model for semantic map
prediction in a supervised manner directly from annotated data. In order to be useful for this
investigation however, such a dataset had to provide the following key elements:

1. Detailed birds-eye view semantic map labels for static elements of the scene such
as road, pavement, traffic signs etc.

2. 3D bounding box annotations for dynamic objects such as cars, pedestrians etc.

3. Accurate localisation information to align data from the semantic maps into the
image view.

4. Large-scale. From our investigations in Chapter 3, it was found that despite being
the largest dataset of its kind at the time, the KITTI dataset did not contain sufficient
variety to train a generalisable model. A key focus of this work was to train a map
detector which could generalise to unseen environments.

We identified two datasets which were able to meet this criteria: the NuScenes dataset of
Caesar, Bankiti, et al. (2019) and the Argoverse dataset of Chang et al. (2019).

NuScenes

NuScenes (Caesar, Bankiti, et al., 2019) is a large-scale autonomous driving dataset, which
is primarily focused on 3D object detection and sensor fusion. It consists of 1000 driving
sequences captured across four locations in two cities: Boston, USA and Singapore. Each
sequence is 20 seconds in length and includes data from a comprehensive sensor suite
including a LiDAR sensor, five radar sensors and six 1.4 megapixel surround-view cameras.
The data is annotated at 0.5s intervals with 3D bounding boxes for 23 object categories.
Most crucially for the application discussed in this chapter however, it also includes highly
detailed semantic maps of the routes traversed by the capture-vehicle. These consist of eleven
semantic categories including road, sidewalk, pedestrian crossing and traffic light. These
maps were human-annotated and were provided as vector graphics which means they could
be rendered at arbitrary resolutions. They were primarily intended to be used as priors to
inform object detection, but in this work were repurposed to provide ground truth labels for
the map detection task. Equally importantly, the maps were paired with precise trajectory
estimates, which used a Monte-Carlo localisation scheme (Chong et al., 2013) to localise the
ego-vehicle within the map to an accuracy of up to 10cm.

The NuScenes dataset is split into 650 training sequences and 150 validation sequences.
It also includes a private test set containing 200 sequences, however, since ground truth
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annotations for this split were not available, we conducted all experiments on a permutation
of the train-val set as described in Section 4.4.2.

Out of the 23 semantic object categories, we chose to focus on the 10 categories which
were part of the official NuScenes detection benchmark, ignoring certain low-frequency
classes such as wheelchairs and emergency vehicles. Some object classes were grouped into
supersets, for example pedestrian.adult and pedestrian.child were combined into a single
pedestrian class. Among the static map classes some did not have a well-defined spatial
area such as traffic lights, while others are defined more by their usage than their visual
appearance e.g. stopping zones. We therefore selected a subset of four classes which are
important to navigation: road, sidewalk, pedestrian crossing and parking space.

Argoverse

The second dataset considered for this task was the Argoverse dataset (Chang et al., 2019),
which places particular emphasis on the use of high-definition map data to aid other computer
vision tasks. It is smaller than NuScenes, consisting of 65 training sequences and 24 validation
sequences, which were captured in two US cities: Miami and Pittsburgh. Each sequence is
between 15 and 20s in length. Argoverse also includes a full sensor suite including a LiDAR
sensor and seven surround-view cameras, and provides 3D bounding box annotations for 15
object categories. The map information it provides is less detailed than that of NuScenes,
consisting of just a single semantic category representing the drivable area. However the
dataset also includes detailed geometrical information such as a rasterised elevation map of
ground heights and vectorised lane centrelines.

4.4.2 Training and validation split selection

Since both NuScenes and Argoverse focus first and foremost on problems such as object
detection and motion prediction, their data selection process emphasises interesting driving
scenarios such as dense traffic or construction zones, over geographical diversity. As a result,
many of the validation sequences in both datasets traversed the same areas of the maps as
those used in training (see Figure 4.5b for an example). This is of little concern in assessing
object detection performance, but has substantial impact on map prediction performance as it
permits a learning algorithm to overfit to a particular geographical location. To remedy this
situation, a refined set of dataset splits were proposed which did not share regional overlap
whilst also maintaining balanced statistics over locations, environmental conditions such as
day/night/rain, and object categories present. The NuScenes dataset consists of four distinct
locations captured in two cities: Singapore and Boston, US. An ideal solution would have
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(a) Original train-val split (b) Custom train-val split

Figure 4.5. Ego-vehicle trajectories over the Singapore OneNorth region, one of four locations
in the NuScenes dataset (Caesar, Bankiti, et al., 2019). Blue lines represent the sequences
used for training, orange for validation. Shaded areas represent the approximate regions
which are visible to the cameras over the sequences. In the original dataset split, there is
considerable overlap between the regions used for training and validation. In our custom
split, this overlap is minimised whilst still ensuring diversity of sequences.

been to use one of the locations for validation and the remaining for training. However, these
locations differed so substantially in appearance and object distribution that generalising
to completely unseen regions was impossible. We therefore proposed a semi-automatic
procedure for dividing the existing regions into disjoint dataset splits.

We first began by generating a graph where the nodes represent a sequence of ego-
vehicle poses Ti = X̄t

i. The edge costs di, j represent the minimum pairwise distance between
ego-vehicle positions along a pair of trajectories

di, j = min
t,t′

∥X̄t
i − X̄t′

j ∥2 (4.8)

This distance function was treated as infinite for trajectories captured in different cities or
locations. We then decomposed the graph into connected subgraphs by cutting the graph at a
distance threshold of di, j ≥D, and applying a depth-first search to find connected components
(Hopcroft and Tarjan, 1973). We then assign each subgraph a label l ∈ {train,validation},
ensuring that the same stretch of road is never traversed in both the train and validation sets.
Given an initial assignment, we manually permute the labels to find an optimal split which
satisfies the desired ratio of train sequences to validation sequences, as well as approximately
matching the distributions of sequences over locations, day/night/rainy sequences, and
number of objects of each category present.
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4.4.3 Label generation

Before training a deep neural network to perform the task of semantic map prediction, we
first had to convert the annotations provided by our two datasets, Argoverse and NuScenes,
into a suitable format. The ground truth map labels took the form of a rasterised 2D image,
with each pixel (p,q) representing a grid cell at location (Xp,Yq) in the global world space
and the colour channels representing the different semantic categories c ∈C. The mapping
between points in the 3D world space X and points in the label image (p,q) were given by
the orthographic projection matrix

Portho =

ρ 0 x0

0 ρ y0

0 0 1


1 0 0 0

0 1 0 0
0 0 1 0

[
R t
0T 1

]
(4.9)

as described in Section 3.2. Each entry in the ground truth label image may consist of one of
three values: 1 if an the semantic category is present, 0 if it is absent, and 0.5 if the status
of the cell is unknown. It was desirable to mark cells as unknown if for example they are
outside the field of view of the camera, in which case it would be unfair to expect our system
to predict a sensible value.

The ground truth semantic occupancy labels were constructed through the union of two
sources of information. For the static/background classes such as road, sidewalk etc., we
made use of the birds-eye view map annotations provided by the two datasets. For dynamic
objects such as cars and pedestrians, we repurposed the 3D object bounding boxes to indicate
birds-eye view regions in which an object is present.

Static labels

In the NuScenes dataset, semantic map labels were provided in the form of vector graphics,
with each segment of road, sidewalk etc. represented as a 2D polygon. Each map covers a
large geographical area and so to make searching for relevant polygons efficient, we repre-
sented the collection of polygons as an R-Tree (Guttman, 1984), a hierarchical spatial data
structure optimised for fast intersection queries. Given the 3D region of interest represented
by the occupancy grid, we queried the R-Tree to find all polygons which intersected this
region. We then transformed each polygon into the label image coordinate system using the
projection matrix Portho (see Section 3.2.2 for definition) and rasterised it to the label image
using the OpenCV software library (Bradski, 2000). In Argoverse, the drivable area labels
were already provided in the form of a rasterised binary mask, so we simply resampled this
mask using the pseudo-inverse of the projection matrix P∗

ortho.
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Dynamic labels

Across both NuScenes and Argoverse, dynamic semantic categories such as cars, pedestrians,
bicycles, were represented in the form of 3D bounding boxes, in the format discussed in
Chapter 3. In the absence of more detailed information, we assumed that the occupancy
of these dynamic objects is fully defined by the footprint of their 3D bounding boxes. We
therefore represented each object as a quadrilateral in the 2D label image whose vertices
(p,q)1:4

n are given by

[
p1

n p2
n p3

n p4
n

q1
n q2

n q3
n q4

n

]
= π

Portho

1
2

Rn

−wn wn −wn wn

−ln −ln ln ln
−hn −hn −hn −hn

+

Xn

Yn

Zn



 (4.10)

where π is the projection operator and X̄n = (Xn,Yn,Zn)
T , dn = (wn, ln,hn)

T are the transla-
tion and dimensions the bounding box n, and Rn is a 3×3 rotation matrix representing the
rotation of the object around the yaw axis. We then rasterised this quadrilateral to the label
image using OpenCV as before.

Uncertainty labels

The static map annotations described above represented what could be accomplished with
complete knowledge of the state of the world. In reality of course, only a small portion of the
map is visible to the autonomous vehicle at any given time, either due to the field of view
of the sensor, or because of occluding objects such as buildings and vehicles. It would be
unreasonable to expect a learning algorithm to correctly predict the occupancy state for parts
of the world which was hidden from it. We therefore injected a notion of uncertainty in the
label images by setting the ground truth occupancy to 0.5 if a given cell was deemed to be
out of sight of the input. This could occur for two reasons. Firstly, we marked as uncertain all
grid cells which fall outside the cameras viewing frustrum: this could easily be determined
by considering the camera focal length f and input image dimensions.

Secondly, a grid cell was also be marked as uncertain if it was occluded by another object.
This information is not known a priori, so we proposed a simple heuristic to determine
whether a grid cell is blocked. Taking advantage of the additional sensor data provided by
NuScenes and Argoverse, we marked a grid cell as occluded if it had no LiDAR rays passing
through it or terminating within it. This information was only available to the network at
training time: it was the responsibility of the algorithm to assign uncertainty to these regions
at test time.

88



4.5 Single Image Experiments

4.5 Single Image Experiments

The first scenario discussed in this chapter is the task of predicting a birds-eye view map
directly from a single monocular image. This is arguable the most challenging setting, since
the scene is viewed only from a single perspective, and so there is no opportunity for the
network to refine its predictions based on observations at subsequent timesteps. However
this setting also provides the fairest comparison between methods, since existing works in
the literature (Lu, Molengraft, et al., 2019; Pan, Sun, et al., 2020) do not explicitly tackle the
multi-view fusion problem.

4.5.1 Metrics

The primary metric used throughout this evaluation was the Intersection over Union (IoU)
score between the predicted and ground truth occupancy grids. The predicted occupancy
probabilities were first thresholded according to a Bayesian decision boundary i.e. m̂pq = 1
if p(mpq|zk)> 0.5. The IoU score for a semantic class was then given by

IoU(c) =
∑p,q1

(
m̂c

pq = 1
)
∧1

(
mc

pq = 1
)

∑p,q1
(
m̂c

pq = 1
)
∨1

(
mc

pq = 1
) =

T P
T P+FP+FN

(4.11)

where T P, FP and FN are the number of true positive, false positive and false negative
predictions respectively.

4.5.2 Ablation study

The first set of experiments conducted sought to assess the significance of each of the four
principal components of the Pyramid Occupancy Network: the backbone network, dense
transformer layer, transformer pyramid and topdown network. To do so, the network was
reduced to its most basic form and then each component was incrementally added back in
turn. Four variants of the network were considered, as defined below:

Baseline In the simplest variant of the pyramid occupancy network, the network was reduced
to just the ResNet-50 backbone network. In place of the dense transformer layer, the
transformation from the image view to the birds-eye view was achieved using a simple
inverse perspective mapping (further details of this mapping are given in Section 4.5.3).
A pixelwise linear layer was then applied at each location on the birds-eye view to
produce the final output logits. The network therefore had no opportunity to reason
about the 3D spatial structure of the world: all reasoning took place in the image space.
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Table 4.1. Ablation study showing the impact of each of the four principal components of
the pyramid occupancy network. Baseline - backbone only. D - Dense transformer layer. P -
Transformer pyramid. T - topdown network. Values are intersection over union scores on the
validation set of the Argoverse dataset.

Method Drivable Vehicle Pedest. Large veh. Bicycle Bus Trailer Motorcy. Mean

Baseline 58.5 23.4 3.9 5.2 0.5 11.0 0.4 1.9 13.1
Baseline + D 63.8 27.9 4.8 8.8 1.0 11.0 0.0 3.4 15.1

Baseline + D + P 65.9 30.7 7.3 10.2 1.7 9.3 1.7 2.2 16.1
Baseline + D + P + T 65.4 31.4 7.4 11.1 3.6 11.0 0.7 5.7 17.0

Baseline + Dense transformer In the second variant, the inverse perspective mapping in
the baseline model was replaced by a single dense transformer layer. There was still
no convolutional processing in the birds-eye view space, but the network could begin
to reason about the heights and depths of objects in a more informed way.

Baseline + Dense transformer + Pyramid Next, the dense transformer pyramid was incor-
porated into the network. The ResNet-50 backbone was augmented with a feature
pyramid as described by Lin, Dollár, et al. (2017), and multiple dense transformer
layers were applied in the manner described in Section 4.3.

Baseline + Dense transformer + Pyramid + Topdown network Lastly, the final compo-
nent of the pyramid occupancy network; the topdown network, was incorporated into
the architecture. This allowed the network to reason convolutionally in the birds-eye
view space and take greater account of the 3D structure of the scene. This variant was
equivalent to the full pyramid occupancy architecture described in Section 4.3.

The four variants were trained and evaluated on the Argoverse train and validation
splits described in Section 4.4.2. The results from this ablation study are tabulated in
Table 4.1, which shows intersection over union scores for each of the Argoverse dynamic
map categories.

4.5.3 Baseline methods

Having justified the design choices for the pyramid occupancy network in Section 4.5.2, the
subsequent sections in this chapter will focus on comparing the pyramid occupancy network
approach with existing state-of-the-art approaches in the literature. At the time of publishing
Roddick and Cipolla (2020), only two prior works: the Variational Encoder Decoder (VED)
approach of Lu, Molengraft, et al. (2019) and the view Parsing Network (VPN) of Pan, Sun,
et al. (2020), provided suitable candidates for evaluation. A third work by Schulter et al.
(2018) also tackled the birds-eye view map prediction task, however their approach relied
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extensively on a simulator which was not publicly available, making it impossible to provide
a fair comparison. The Pyramid Occupancy Network was therefore evaluated against the
Variational Encoder Decoder network and the View Parsing Network. To provide further
comparison, two additional baseline methods were implemented which reflected broad trends
in the literature but for which no specific approaches have been published which tackle the
specific map-prediction problem. These four approaches are outlined briefly below.

Variational Encoder Decoder

The Variational Encoder Decoder (VED) network of Lu, Molengraft, et al. (2019) was based
around a modified version of a variational autoencoder (Kingma and Welling, 2013), in which
a deep encoder network was used to compresses an image into a low-dimensional bottleneck
feature representation. This is subsequently decoded back to an image-like representation by
a second decoder network. Unlike a traditional autoencoder which seeks to reconstruct the
input, the VED took advantage of the non-spatial bottleneck features to transform the input
representation into a birds-eye view. In their original paper, Lu, Molengraft, et al. trained
VED on weak ground truth annotations from the Cityscapes dataset (Cordts et al., 2016),
which were obtained by back-projecting 2D image-based labels into 3D using approximate
stereo disparity estimates. The authors claimed that the use of variational sampling at the
information bottleneck makes the method robust to the imprecise nature of the ground truth.
The models used in this thesis were implemented using the code provided by Lu, Molengraft,
et al. In order to train on the real-world data described in Section 4.4, minor architectural
changes were made to the VED network, which are detailed in the Appendix. It was trained
using an equally-weighted combination of the cross entropy loss and the Kullback-Leibler
divergence, which enforces that the latent feature embedding at the bottleneck approximately
follows a normal distribution.

View Parsing Network

Similarly to VED, the View Parsing Network (VPN) of Pan, Sun, et al. (2020) also adopted
an encoder-decoder-like architecture comprising a deep convolutional encoder network and a
deconvolutional decoder network. The transformation from the image perspective to the birds-
eye view perspective was achieved using a subnetwork called the ‘View Relation Module’: a
two-layer perceptron which learned the change of perspective using fully-connected layers.
The network also included a ‘View Fusion Module’ to combine the features from different
views. However since this chapter focuses on the single-view case this module did not
have any effect in practice. In the original work of Pan, Sun, et al., their network was
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trained on simulated data and synthetic-to-real domain adaptation was used to evaluate the
model on realistic images. For this research, ground truth annotations for real images were
available, so it was possible to train the method directly on real data using binary cross
entropy loss. As with the VED network, the View Parsing Network was implemented using
code provided by the original authors, with minor modifications made to ensure the input
and output dimensions of the VPN matched the dimensions of the new dataset.

Inverse Perspective Mapping

A widely used approach in problems which involve mapping from an image to a birds-eye
view is known as inverse perspective mapping (IPM) (Hartley and Zisserman, 2003). Inverse
perspective mapping involves computing a 3×3 homography matrix which represents the
geometric relationship between points in the image and locations on the 2D ground plane. For
this baseline method we first predicted semantic labels for each pixel in the image space by
applying a state-of-the art semantic segmentation network: DeepLabv3 (Chen, Papandreou,
et al., 2017), to each image in Argoverse and NuScenes. Unfortunately, neither of these
datasets provide ground truth pixel label annotations in the image space, so the DeepLab
network was pre-trained on the Cityscapes dataset (Cordts et al., 2016) — a large semantic
segmentation segmentation dataset for urban autonomous driving. The homography matrix
was then computed from the normal vector and offset of the ground plane. In order to
demonstrate an upper-bound of the performance of this approach the ground plane paramters
were estimated by fitting a 2D plane to 3D LiDAR points using random sample consensus
(Fischler and Bolles, 1981): information which would not be available to a monocular
approach a priori.

Depth Unprojection

The IPM baseline described above represented only a relatively crude solution to the problem
since it assumed that all objects in the scene lie on a single two-dimensions plane: clearly
not the case in a realistic traffic scenario. To offer a more sophisticated benchmark, a second
baseline method was used which is referred to as depth unprojection. In addition to estimating
the semantic label of each pixel using DeepLabV3 as before, the distance of each pixel from
the camera was computed. Unprojecting each pixel to a 3D point using the camera calibration
parameters resulted in a semantic 3D point cloud in the ego-vehicle coordinate system. Each
point was then re-projected to the ground plane to obtain the semantic label for each location
in the birds-eye view. Multiple points being projected to the same birds-eye view grid
cell resulted in multiple semantic labels being present at that location, while cells with no
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Table 4.2. Per-class intersection-over-union scores on the Argoverse validation set. An
asterisk (*) indicates classes which are present in the CityScapes dataset. CS Mean is the
average over these classes only. Best scores are shown in bold.

Method Drivable* Vehicle* Pedest.* Large veh. Bicycle* Bus* Trailer Motorcy.* Mean CS Mean

IPM 43.7 7.5 1.5 - 0.4 7.4 - 0.8 - 10.2
Depth Unproj. 33.0 12.7 3.3 - 1.1 20.6 - 1.6 - 12.1

VED 62.9 14.0 1.0 3.9 0.0 12.3 1.3 0.0 11.9 15.0
VPN 64.9 23.9 6.2 9.7 0.9 3.0 0.4 1.9 13.9 16.8

PyrOccNet 65.4 31.4 7.4 11.1 3.6 11.0 0.7 5.7 17.0 20.8

projected points were treated as unknown. In a practical system, the depth estimates at each
pixel could be obtained using a monocular depth estimation network such as DORN (Fu,
Gong, et al., 2018), but to test the upper-bounds of this style of approach we took advantage
of highly accurate depth measurements from on-board LiDAR. Such LiDAR observations
are however naturally sparse, so a common depth in-painting approach was applied to fill the
gaps between observations (Levin et al., 2004).

4.5.4 Evaluation on the Argoverse Dataset

Having explored the impact of each of the main four components of the network in the
ablation study described in Section 4.5.2, we next conducted a large-scale comparison
between the final model (referred to subsequently as PyrOccNet) and the four baseline
methods described in Section 4.5.3. The first evaluation was conducted on the Argoverse
dataset using the same training-validation splits used in the ablation study. The results of
this experiment are tabulated in Table 4.2. The table shows per-class intersection over union
scores as well as the macro-average of the IoU scores, firstly across all classes and secondly
across only the classes which are also present in the Cityscapes dataset. This allows for
a fair comparison against the IPM and depth unprojection baseline which were trained on
Cityscapes data.

From the summary statistics in Table 4.2 it is clear that the PyrOccNet approach outper-
formed all of the existing approaches, including the state-of-the-art VED and VPN methods,
by a considerable margin. The Argoverse dataset includes a single map-based class repre-
senting the drivable area of a scene, and on this class the performance of the three end-to-end
methods (VED, VPN and PyrOccNet) was roughly equivalent. The area where PyrOccNet
truly excelled however was on the classes representing smaller objects, such as vehicle,
bicycle and pedestrian. Indeed on the pedestrian and bicycle classes, the performance of
Lu, Molengraft, et al.’s VED method breaks down completely. Surprisingly however, VED
outperformed both PyrOccNet and the VPN approach on the bus and trailer classes. This
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Image Ground truth IPM Depth Unproject. VED VPN PyrOccNet

Figure 4.6. Qualitative comparison of results on the Argoverse validation set.

could be attributed to the relatively small size of the Argoverse dataset and the fact that VED
contains significantly fewer parameters than VPN and PyrOccNet, resulting in a lesser degree
of overfitting on the relatively rare bus and trailer categories. Similarly, perhaps the biggest
anomaly in the results on the Argoverse dataset was the fact that the depth unprojection
baseline, which performed poorly across every other category, achieved the best results on
the bus category. However, while the Argoverse training split contained only 28 unique bus
instances, the Cityscapes dataset (which was used to train the DeepLabv3 network at the
heart of the depth unprojection method) is considerably larger-scale and contains significantly
more examples of buses. This discrepancy is likely to explain the unexpectedly high score
for the depth unprojection method.

To expand on the quantitative evaluation presented above, Figure 4.6 visualises the five
approaches. From these results, the weaknesses of the baseline IPM and depth unprojection
methods quickly become apparent. The IPM approach assumed that all objects lay at ground
level, and as a result the drivable surface class was reasonably well captured. However
pixel labels corresponding to objects which lay above the ground, such as the cars in row 2,
were artificially stretched along camera projection rays, causing the method to significantly
overestimate the prevalence of such classes. The depth unprojection approach on the other
hand suffered significantly from the sparsity of the point cloud: despite densifying the

94



4.5 Single Image Experiments

LiDAR points as described in Section 4.5.3, many points on the ground plane did not have a
corresponding pixel in the image.

In comparison to the IPM and depth unprojection methods, the three end-to-end ap-
proaches (VED, VPN and PyrOccNet) were able to achieve a much more accurate recon-
struction of the scene, both in terms of the static road geometry (see Figure 4.6, row 1, 2),
and in terms of the placement of objects within the scene (row 2, 5). The main difference
between the three methods was in the level of detail that they were able to capture. VED
in particular was unable to distinguish the gaps between individual cars as seen in row 2 of
Figure 4.6. It was also unable to detect smaller objects such as the clusters of pedestrians in
row 4. These failures may be attributed to the dense fully-connected bottleneck in the centre
of the VED encoder-decoder architecture, which removes the explicit spatial relationships
between features in the input and output, resulting in finer details being lost. The PyrOccNet
approach on the other hand was much more successful at distinguishing individual cars
and accurately localising clusters of pedestrians (rows 2, 4). All three end-to-end methods
suffered a failure case in row 3 where the buses were incorrectly classified as either trucks or
cars, validating the quantitative observation discussed above.

4.5.5 Evaluation on the NuScenes Dataset

As discussed above in Section 4.5.4, many of the challenges encountered by the proposed
PyrOccNet method and other learning-based baselines arose due to the relatively small size
of the Argoverse dataset, consisting of just 65 training sequences. Argoverse is also relatively
limited in terms of the available map categories, with just a single static category representing
the drivable area. We therefore conducted a much larger-scale evaluation on the NuScenes
dataset, which consists of 650 training sequences and 148 validation sequences. It also
includes a larger variety of static map categories including pedestrian crossings, pavements
and parking spaces. The results of this evaluation are presented in Table 4.3.

The overall trend in Table 4.3 largely mirrored the results on the Argoverse dataset,
where the three end-to-end methods achieved significantly better scores than the image-based
baselines, with the PyrOccNet network emerging as the most successful. The anomaly
discussed in Section 4.5.4 with the bus class was corrected, with VPN and PyrOccNet
outperforming the depth unprojection method by a considerable margin. The most notable
observation was that again the performance of the VED method collapsed completely for
many object categories: in particular for small object classes like pedestrian and motorcycle,
but also for larger but relatively rare classes such as truck and construction vehicle. This
may again be attributed to the fully-connected bottleneck layer, which reduced the localised
spatial information available to the network.
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Table 4.3. Per-class intersection-over-union scores on the NuScenes validation set. An
asterisk (*) indicates classes which are present in the CityScapes dataset. CS Mean is the
average over these classes only. Best scores are shown in bold.
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IPM 40.1 - 14.0 - 4.9 - 3.0 - - 0.6 0.8 0.2 - - - 9.1
Depth Unproj. 27.1 - 14.1 - 11.3 - 6.7 - - 2.2 2.8 1.3 - - - 9.4

VED 54.7 12.0 20.7 13.5 8.8 0.2 0.0 7.4 0.0 0.0 0.0 0.0 0.0 4.0 8.7 12.0
VPN 58.0 27.3 29.4 12.9 25.5 17.3 20.0 16.6 4.9 7.1 5.6 4.4 4.6 10.8 17.5 21.4

PyrOccNet 60.4 28.0 31.0 18.4 24.7 16.8 20.8 16.6 12.3 8.2 7.0 9.4 5.7 8.1 19.1 23.1

Differently to the Argoverse results, the performance gap between the VPN and PyrOc-
cNet networks was much closer, with VPN actually outperforming PyrOccNet slightly on
some important object categories such as car and barrier. Like VED, VPN also featured a
fully connected bottleneck at the centre of an encoder-decoder architecture. The bottleneck
of VPN was considerably larger than that of VED however, which may have made it able
to retain more information about the spatial layout of the scene. This denser bottleneck
came with the expense of a greater number of trainable parameters, which explains why
VPN performed better on the much larger NuScenes dataset compared to its performance on
Argoverse.

In contrast to both VED and VPN, the PyrOccNet network aimed to preserve as much
spatial information as possible through the use of a set of dense transformer layers (Sec-
tion 4.3.2). The success of this approach was demonstrated by the performance on small
object classes such as pedestrian, motorcycle and bicycle which considerably exceeded that
of other methods. PyrOccNet however also achieved the highest accuracy over the four
static map categories, which included drivable area and pedestrian crossing. This hinted
at the ability of the network to perform well across multiple scales: handling both small
objects such as pedestrians and large amorphous regions such as the drivable area of large
intersections. This was an explicit aim of the transformer pyramid described in Section 4.3.2.

A qualitative overview of the results on the NuScenes dataset is show in Figure 4.7.
As was the case with the Argoverse dataset, the IPM method was relatively accurate in
reconstructing the flat geometry of the scene, such as the location of the road surface and
pavements, but any objects which extended above the ground plane appear stretched along
the lines of projection, such as the pedestrian in row 6. The depth unprojection suffered from
a similar problem, where inaccuracies in the image-based segmentation led to a ‘bleeding’
effect around the boundaries of an object in the image, where road or other background
classes were incorrectly assigned to a foreground class. This effect highlighted one of the
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Image Ground truth IPM Depth Unproject. VED VPN PyrOccNet

Figure 4.7. Qualitative comparison of results on the NuScenes validation set.

main motivations for operating in the birds-eye view: points which are close together in the
image are not necessarily close together in 3D space.

The VED method of Lu, Molengraft, et al. typically outperformed the naïve baselines on
the static map classes drivable area and walkway, and this is apparent from the visualisations
in Figure 4.7, where VED produced a much smoother and more aesthetically pleasing result,
although it was interesting to note that VED significantly underestimated the distance to the
junction in row 2. The failure of the method on the smaller dynamic classes is however clear,
as the network failed to reliably detect either the pedestrians in rows 2 and 6 or the cars in
rows 1, 3 and 4.

In keeping with the quantitative results, the visualisations for the VPN and PyrOccNet
methods were qualitatively relatively similar. The PyrOccNet network appears to have
produced slightly sharper boundaries around individual objects, such as the bus in row 3 and
the row of parked cars in row 4. On the other hand, the network overpredicted the extents of
pedestrians in row 2 compared to VPN. Since the boundaries of these objects represent only
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a small fraction of the total number of object pixels, these qualitative variations may not have
been well reflected in the intersection over union scores used to assess the methods above.
The PyrOccNet’s superior quantitative performance on the static classes is however apparent
from the visualisations, for example in row 4 of Figure 4.7 where the network accurately
captured the complex road geometry including pavements and pedestrian crossings.

4.5.6 Cross-dataset Generalisation

An important aspect of the performance of a deep learning method is its ability to generalise
to novel and unseen scenarios. This capability in the PyrOccNet network was assessed by
conducting a cross-dataset analysis, where a model trained on the NuScenes dataset was
evaluated on the Argoverse dataset, and vice versa. Table 4.4 shows intersection over union
scores for the VED, VPN and PyrOccNet methods across the four possible permutations of
training and evaluation datasets. Since Argoverse contains fewer semantic classes, predictions
by models trained on the NuScenes dataset were mapped to the Argoverse categories to allow
a comparison between different datasets.

As one might expect, there was typically a considerable drop in performance across
all methods when the training and evaluation datasets differed. For example, the mean
intersection over union score for the PyrOccNet method fell from 17% when trained and
evaluated on the Argoverse dataset, to 14.1% when trained on NuScenes and evaluated on
Argoverse. The NuScenes and Argoverse datasets were captured in drastically different
geographical locations: the former in Boston, USA and Singapore, and the latter in Pittsburg
and Miami, USA. These locations featured drastically different vegetation, climate and
architecture, and since each model was trained on only two cities, it is unsurprising that the
network was unable to generalise robustly across this vast appearance gap. Nonetheless,
despite this drop in performance when transferring between datasets, it was encouraging
to see that the effectiveness of the methods did not collapse completely. In the first half of
the table for example, the IoU scores for the PyrOccNet method trained on NuScenes were
comparable to those of the VPN and VED networks trained on Argoverse, suggesting it still
provided a useful description of the objects and layout of road scenes.

Examining these results in further detail, it can be seen that much of the drop in perfor-
mance on the Argoverse validation set in particular was due to the larger, dominant classes
such as drivable area and vehicle. In some cases, some of these losses were partially offset by
the performance on rarer classes such as bicycle and trailer. Unexpectedly, the VPN model
trained on NuScenes actually outperformed the same model when trained on Argoverse, in
spite of the domain gap. This could largely be explained by significantly improved perfor-
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Table 4.4. Cross-dataset generalisation performance on the NuScenes and Argoverse val-
idation sets. The second column indicates which dataset was used to train each method,
third column indicates the dataset used for evaluation. Results from Tables 4.2 and 4.3 are
reproduced in the first and third section of the table for convenience.

Method Dataset Intersection over Union (%) Mean
IoUTrain Eval. Drivable Vehicle Pedest. Large veh. Bicycle Bus Trailer Motorcy.

VED
Argo. Argo.

62.9 14.0 1.0 3.9 0.0 12.3 1.3 0.0 11.9
VPN 64.9 23.9 6.2 9.7 0.9 3.0 0.4 1.9 13.9

PyrOccNet 65.4 31.4 7.4 11.1 3.6 11.0 0.7 5.7 17.0

VED
NuSc. Argo.

52.6 5.2 0.0 0.4 0.0 0.0 0.0 0.0 7.26
VPN 56.0 16.0 4.3 6.3 2.5 25.2 2.1 2.0 14.3

PyrOccNet 51.6 16.0 2.0 3.9 1.4 31.9 4.7 1.4 14.1

VED
NuSc. NuSc.

54.7 8.8 0.0 0.1 0.0 0.0 7.4 0.0 8.9
VPN 58.0 25.5 7.1 13.1 4.4 20.0 16.6 5.6 18.8

PyrOccNet 60.4 24.7 8.2 12.7 9.4 20.8 16.6 7.0 20.0

VED
Argo. NuSc.

46.9 10.1 0.8 2.9 0.1 0.3 0.1 0.1 7.7
VPN 44.8 14.8 4.1 3.7 2.0 0.6 0.0 1.9 9.0

PyrOccNet 45.3 15.4 2.3 6.4 1.1 4.9 0.0 0.0 9.4

mance on the bus class, supporting the conclusion from Section 4.5.4 that the Argoverse
training set contains insufficient examples of this class.

4.6 Multiple Frame Experiments

The previous section demonstrated the effectiveness of the proposed PyrOccNet neural
network on the problem of predicting a map-like representation of a scene from a single
image. This representation was useful in that it captured a snapshot of the immediate
surroundings of the autonomous vehicle in time, including the locations of dynamic agents
in the scene such as other cars or pedestrians; providing vital information for path planning
and obstacle avoidance. In many applications however it is also useful to obtain a larger
scale representation of the world, for example in the creation of high-definition maps for use
by other autonomous vehicles or for registration against an existing map. Fortunately, by
formulating the map prediction problem in terms of the semantic occupancy grid framework
as described in Section 4.2, we were able to take advantage of the binary Bayes filter
algorithm (Thrun, 2002), which provides a simple and elegant mechanism to combine the
single frame predictions from Section 4.5 to produce comprehensive large-scale maps. In this
section we will introduce the binary Bayes filter algorithm and discuss how the PyrOccNet
network from this chapter was used to generate large-scale maps, providing qualitative and
quantitative evaluation.
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4.6.1 Binary Bayes Filtering

One of the major advantages of the probabilistic occupancy grid framework described
in Section 4.2 is that it provides a powerful and simple mechanism for combining map
predictions over multiple observations. This can be achieved by means of the binary Bayes
filter (Thrun, 2002); a recursive algorithm which updates the current estimate of the map
state m using the most recent sensor observation zk at time k and the state estimate based on
the set of previous observations z1:k−1.

To derive the binary Bayes filter update equation, recall from Section 4.2 that the aim of
the occupancy grid approach is to estimate the marginal posterior probability of occupancy
P(mc

pq|z) given a single observation z. If we are instead presented with a sequence of
observations z1:k, we can update our previous estimate P(mc

pq|z1:k−1) by considering Bayes
rule:

P(mc
pq|z1:k) ∝ P(mc

pq|z1:k)P(zk|mc
pq) (4.12)

The term P
(
zk|mc

pq
)

is known as the measurement model and describes how observations
such as LiDAR returns or image patches are generated from the map state mc

pq.. Applying
Bayes rule a second time to P(zk|mc

pq) further implies that

P(mc
pq|z1:k) ∝ P(mc

pq|z1:k)
P(mc

pq|zk)

P(mc
pq)

(4.13)

where P(mc
pq|zk) = Φc

pq(zk) represents the output from the inverse sensor model (which
in our case is the PyrOccNet network described in Section 4.3), and P(mc

pq) is the prior
probability of occupancy for a given semantic class c (which is computed empirically over
ground-truth examples). In order to remove the coefficients of proportionality, it is helpful to
consider the ratio between the posteriors P(mc

pq = 1|z1:k) and P(mc
pq = 0|z1:k):

P(mc
pq = 1|z1:k)

P(mc
pq = 0|z1:k)

=
P(mc
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P(mc
pq = 0|z1:k−1)

P(mc
pq = 1|zk)

P(mc
pq = 0|zk)

P(mc
pq = 0|z1:k)

P(mc
pq = 1)

(4.14)

or equivalently

P(mc
pq = 1|z1:k)

1−P(mc
pq = 1|z1:k)

=
P(mc

pq = 1|z1:k−1)

1−P(mc
pq = 1|z1:k−1)
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pq = 1|zk)

1−P(mc
pq = 1|z1:k)

1−P(mc
pq = 1)

P(mc
pq = 1)

(4.15)
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This equation can be more conveniently expressed using a log odds ratio representation,
which for a binary random variable X is defined as

l(X) = log
P(X = 1)
P(X = 0)

= log
P(X = 1)

1−P(X = 1)
(4.16)

In our scenario, the log odds ratio of the posterior is given by

l1:k(mc
pq) = log

P
(
mc

pq = 1|zk
)

1−P
(
mc

pq = 1|zk
) + log

P
(
mc

pq = 1|z1:k−1
)

1−P
(
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pq = 1|z1:k−1
) − log

P
(
mc

pq = 1
)

1−P
(
mc

pq
)
= 1

= lk(mc
pq)+ l1:k−1(mc

pq)− lc
0

(4.17)

Here the terms l1:k(mc
pq) and l1:k−1(mc

pq) represent the current and previous estimate of the
map state, while lc

0 represents the prior likelihood that an object of class c is present before
any observations have been made. The term lk(mc

pq) meanwhile represents the output from
the single-frame inverse sensor model, which conveniently corresponds to the pre-sigmoid
outputs of the PyrOccNet network described in Section 4.3. Given the log odds expression
for the posterior l1:k(mc

pq), we can recover the posterior probabilities as

P
(
mc

pq = 1|z1:k
)
=

1
1+ exp

(
l1:k(mc

pq)
) (4.18)

By applying the simple update rule in Equation 4.17, the single-frame map predictions
from Section 4.5 could be readily accumulated over time to construct large-scale composite
maps and to resolve ambiguities due to occlusions or missing information.

4.6.2 Calibration

An implicit assumption of the Bayes filter algorithm described above is that the output of
the inverse sensor model Φpqc(zk) represents the true posterior probability of occupancy
P(mpq = 1|zk). In other words, if the network predicted a grid cell to be occupied with
confidence 0.9, we would expect it to be correct 90% of the time. We can formalise this as

P(mpq = 1|Φc
pq(zk)) = Φ

c
pq(zk) ∀p,q (4.19)

A predictive model which fulfils this property is referred to as a calibrated model. Unfortu-
nately, a widely observed phenomenon of deep neural networks is that predicted network
confidence scores are often poorly calibrated estimates of the true posterior (Guo et al., 2017).
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In particular, the cross-entropy loss function often produces results at the extreme ends of the
probability scale, resulting in predictions being overly confident. This presents a problem
for the Bayesian occupancy approach because over-confident predictions in areas where
the network is uncertain (such as parts of the scene which are occluded) can override more
reliable predictions at other timesteps.

Reliability diagrams

We can study the extent of this miscalibration problem through the use of reliability diagrams
(DeGroot and Fienberg, 1983; Niculescu-Mizil and Caruana, 2005). A reliability diagram is
a plot of the true probability p

(
mc

pq = 1|Φc
pq(zk)

)
against the network’s predicted confidence

Φc
pq(zk). Given a set of predictions from the network and corresponding ground truth

occupancies, we first assigned each prediction to one of N histogram bins, such that bn ≤
Φc

pq(zk) < bn+1, where bn is the lower boundary of the nth bin. We could then obtain
an approximation to the conditional probability p

(
mpq = 1|Φc

pq(zk)
)

by computing the
proportion of samples αc

m in each bin which correspond to occupied cells of semantic class c:

α
c
n =

∑pq1
(
mpq = 1

)
1
(
bn ≤ Φc

pq(Ik)< bn+1
)

∑pq1
(
bn ≤ Φc

pq(zk)< bn+1
) (4.20)

This was equivalent to computing the accuracy of predictions within each bin.
Figure 4.8a shows a reliability diagram for the PyrOccNet network, evaluated over the

NuScenes validation set. For a perfectly calibrated network, one would expect the model
confidence to be perfectly correlated with prediction accuracy, which corresponds a diagonal
line on the reliability diagram. From Figure 4.8 it is evident that the calibration curves
diverged significantly from the diagonal, indicating that the model-predicted confidences
significantly overestimated the true likelihood that a given grid cell contained an object.

Isotonic regression

To obtain better-calibrated estimates of the true posterior, a number of calibration procedures
have been proposed, an overview of which is provided by Guo et al. (2017). For this work,
we adopted the isotonic regression approach of Zadrozny and Elkan (2001) to calibrate the
PyrOccNet outputs. Isotonic regression is a non-parametric calibration approach which
generates a mapping from predicted confidences Φc

pq(zk) to calibrated confidences as a
piecewise-constant monotonic function f

(
Φc

pq(zk)
)
. The form of f was obtained by first

computing a reliability diagram as described above using a held-out subset of the training
data. The value qn of the piecewise-constant function f corresponding to histogram bin n is
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(a) Before calibration (b) After calibration

Figure 4.8. Reliability diagrams showing model accuracy against confidence, evaluated on
the NuScenes validation set. Dashed line represents a perfectly calibrated model.

found by minimising the expression

min
f

∑
n
( fn −an)

2 subject to fn ≤ fn+1 (4.21)

where an is the accuracy of histogram bin n as described above. The calibrated probability for
a prediction Φc

pq(zk) was then given by returning the value fn corresponding to the histogram
bin n into which Φc

pq(zk) falls.
Figure 4.8b shows a reliability diagram for the same PyrOccNet network as before, after

calibration using the isotonic regression approach. After calibration, each reliability curve
adhered much more closely to the diagonal, indicating that the returned network confidences
were a more reliable estimate of the true posterior P

(
mc

pq = 1|zk
)

that an object of class c
existed at location pq.

4.6.3 Multi-frame fusion

Given the calibrated inverse sensor model from Section 4.6.2, it was then possible to apply
the Bayesian filtering framework from Section 4.6.1 to generate large-scale occupancy grid
maps by fusing the predictions from multiple images over time. Each ‘scene’ of the NuScenes
dataset consisted of a 20s long sequence of video, captured from six surround view cameras.
Figure 4.9 shows several examples of maps produced by applying the Bayesian filtering
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Multi-frame Ground truth

Figure 4.9. Examples of large-scale maps from the NuScenes validation set. The left
column shows maps generated by applying the Bayesian filtering algorithm described in
Section 4.2, using a calibrated PyrOccNet network as the inverse sensor model. The right
column shows the corresponding ground truth map. Only the four static NuScenes classes
(drivable area, walkway, pedestrian crossing and parking space) are shown. See Figure 4.10
for a comparison to single-frame results.
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Table 4.5. Intersection over union scores for single-frame and multi-frame fusion methods
on the NuScenes validation set. Calibrated indicates that the inverse sensor model was
calibrated using isotonic regression before applying the Bayesian filtering algorithm.

Method Drivable Ped. crossing Walkway Carpark MEAN

Single frame 46.7 22.9 22.4 11.7 25.9
Multi-frame (uncalibrated) 47.5 19.9 23.7 12.2 25.8

Multi-frame (calibrated) 50.3 20.3 25.3 12.4 27.1

approach of Section 4.6.1 to each of these sequences. Only the four static NuScenes classes
(drivable area, walkway, pedestrian crossing and parking space) were considered for this
analysis, since the occupancy state of dynamic objects such as cars changes over time. Since
we were primarily interested in the map-building capabilities of the method rather than
localisation, ground-truth pose information was used to obtain the mapping from camera
coordinates to world coordinates at each timestep. The resulting maps, as shown in Figure 4.9,
provided useful representations of large-scale road scenes, capturing relevant and accurate
information about the road topology, locations of pedestrian crossings etc., making them
suitable inputs to further downstream tasks.

In addition to enabling the creation of large-scale maps, the Bayesian filtering algorithm
also provided quantitative advantages over generating local maps for each frame individually.
To assess the benefits of this approach, some of the evaluation from Section 4.5 was repeated
for the multiple frame, and the predicted local occupancy grid maps were compared against
local maps extracted from scene-level occupancy grids constructed using Bayesian filtering.
Unlike in previous experiments, parts of the scene which were occluded by foreground
objects were not excluded from the computation of accuracy.

Intersection over union scores for single-frame predictions, as well as predictions pro-
duced by accumulating information across multiple frames (using both a calibrated and
uncalibrated inverse sensor model), are shown in Table 4.5. Figure 4.10 also provides a
qualitative comparison between the two methods. The results in Table 4.5 confirmed that
applying the Bayesian filtering method with a calibrated inverse sensor model did improve
the accuracy of predictions compared to those obtained from a single image, particularly
over the drivable area and walkway classes, which achieved considerable improvement over
the single-image baseline. This was however slightly offset by lower performance on the
pedestrian crossing class.

The results in Table 4.5 also highlighted the importance of the calibration procedure
described in Section 4.6.2. Applying the Bayesian filtering algorithm naiv̈ely to the un-
calibrated PyrOccNet model actually resulted in slightly worse average IoU score than the
single-frame case. Using a correctly calibrated model on the other hand, resulted in a moder-
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Image Single frame
Multi-frame

(uncalibrated)
Multi-frame
(calibrated) Ground truth

Figure 4.10. Qualitative comparison of single-frame vs multi-frame fusion methods on the
NuScenes validation set. Multi-frame results are warped back into the single-frame field of
view for comparison.
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ate improvement in performance. This implied that correctly calibrated probabilities were
essential to the success of the Bayesian filtering approach.

The advantage of the multi-frame approach is particularly apparent from the qualitative
examples in Figure 4.10. In row 1 of the figure, the road scene in front of the camera was
temporarily occluded by a large truck. In the single image case, the PyrOccNet predictions
broke down in the unseen part of the image. In the multi-frame scenario however, information
from previous and subsequent frames could be incorporated to help resolve the ambiguity.
Similar situations arose in rows 4 and 5 where distant parts of the scene were incorrectly
classified by the single frame due to occlusion as the car rounded the bend in row 4 or due to
the low light conditions in row 5. In rows 2 and 3, the single image model falsely assumed
only a single carriageway, whereas the additional context provided by the Bayesian filtering
method correctly identified the dual carriageway. Row 6 of the figure shows an example
of a failure case of the Bayesian approach: combining multiple inconsistent predictions
sometimes led to narrow structures, such as the pedestrian crossings, being blurred over a
large area. This may explain the reduced performance on this class reported in Table 4.5. It
can be seen however by comparing the calibrated and uncalibrated cases in rows 4 and 5 of
Figure 4.10 that the use of a calibrated inverse sensor model helped alleviate this problem to
some extent.

4.6.4 Sensor fusion

As discussed above, one of the limitations of the Bayesian filtering approach is that it does
not provide a natural mechanism for fusing observations of dynamic objects over time. A
special case, however, was where multiple observations were captured simultaneously. The
NuScenes data collection platform featured a set of six cameras arranged to provide full
360◦coverage around the vehicle, and a top-mounted LiDAR rotating at a speed of 20Hz.
The cameras were synchronised such that each shutter was triggered as the rotating LiDAR
beam swept over them. This meant that the six cameras were synchronised to within 50ms of
one another: a small enough time interval that the occupancy state of the world would not
change substantially between observations. It was therefore possible to apply the Bayesian
filtering framework to create composite local maps of the ego vehicle’s surroundings for a
given moment in time. Examples of such maps, which captured both the static scene layout
and dynamic objects, are illustrated in Figure 4.11. The white lines in the figure indicate
the boundaries of each camera’s field of view. As can be seen from Figure 4.11, the overlap
between adjacent cameras was fairly small, which made any quantitative improvements in
accuracy from merging multiple observations minimal. However, this fused representation
may be highly useful for future downstream tasks. For example, if it were required to extract
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Figure 4.11. Composite local maps (right) generated by applying Bayesian filtering to images
from six surround-view cameras (left).
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individual instances from the occupancy grids, using a fused representation would avoid
counting objects which span multiple images twice.

4.7 Conclusions

The aim of this chapter was to solve the problem of estimating dense birds-eye view maps
of a traffic scene using monocular cameras alone. We began by defining the problem in
terms of a powerful and flexible framework called a semantic Bayesian occupancy grid. This
framework provided a representation which provided a comprehensive summary of the scene
at a given moment in time: capturing both moving objects such as cars and pedestrians,
as well as static regions such as the road area and pedestrian crossings. Furthermore, the
framework provided a powerful mechanism for fusing predictions from multiple sensors and
accumulating information over time.

Within this framework, a novel neural network called the Pyramid Occupancy Network
was introduced. The PyrOccNet took a monocular image as input, transformed the image to
a birds-eye view representation, and processed it to produce the final occupancy grid map.
The architecture was inspired by its predecessor from the previous chapter, but incorporated
several new innovations which enabled it to function more efficiently. In particular, a new
Dense Transformer Layer provided the means to transform features to the birds-eye view
without the need to explicitly build a memory-intensive 3D voxel grid. This was combined
with a feature pyramid structure to extract more expressive image-based features.

The proposed algorithm was evaluated in two distinct settings. For the first task, we
considered the problem of using a single monocular image to generate a local map of the
scene visible from a single camera. The evaluation was based on two large-scale autonomous
driving datasets: NuScenes and Argoverse, which were adapted to the map prediction task.
An ablation study confirmed the effectiveness of the Dense Transformer Layer, and further
experiments against both state-of-the-art published methods and hand-crafted baselines
showed that the PyrOccNet was able to capture the scene in greater detail than alternative
approaches. An examination of the generalisability of the various methods found that a
PyrOccNet trained on one dataset could achieve moderate success on another, although this
remained a challenge for all approaches discussed. This finding suggested that in spite of
the availability of large-scale datasets such as NuScenes, more work must be done to obtain
reliable generalisation across methods.

In the second scenario, the Bayes filtering algorithm was applied to the single frame
predictions from the first scenario to generate larger-scale maps of entire streets or neigh-
bourhoods. We were able to demonstrate that accumulating predictions over multiple frames
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produced more accurate maps than the single frames alone. This achievement however relied
on careful calibration of the output probabilities to overcome the neural network’s tendency
towards overconfident predictions. Work in this section addressed the problem of generating
large-scale maps of the static world, but left open the question of incorporating dynamic
motion into the occupancy grid framework.

4.7.1 Limitations

The work presented in this chapter represented an initial step towards the goal of building
high-definition semantic maps of scenes from monocular video. Whilst the results were
promising, the accuracy of the method currently (for example the results in Table 4.2 and
Table 4.3) were not yet sufficient to enable full self-driving from the map representation
alone. In particular smaller objects such as pedestrians, which only occupy a few pixels in the
occupancy grid, were still challenging to reliably detect. This may in part be explained by the
challenges of operating purely from monocular images, which, as established in Chapter 3,
cannot yet match the performance of methods relying on LiDAR and other sensors. However
there is a representation issue as well: dividing the world into discrete grid cells necessarily
places a limitation on the minimum size of objects that can be detected. It is likely that for
these types of objects, representing them within a rasterised semantic map may always remain
a challenge and that other methods, such as more traditional object detection approach, may
be more appropriate.

Another significant significant limitation of the proposed method was the inability to
represent dynamic objects using the multi-frame fusion strategy discussed in Section 4.6.
This capability would be a valuable asset in an online setting, where it is necessary to track
and predict the motion of objects such as cars in real time. Extensions to the occupancy grid
framework which can handle dynamic objects do exists, and are referred to as DOGMAs
(dynamic occupancy grid maps) (Nuss, Reuter, et al., 2018). However such methods rely on
accurate estimates of the dynamic motion of every grid cell, and determining this information
from monocular video sequences represents a challenging research problem in itself. A
simpler solution would be to use a 3D object detection algorithm such as the one proposed in
Chapter 3 to detect moving objects and to track them at the instance level. This may represent
a more natural way to express motion in road scenes than the grid-based approach described
in this thesis.
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4.7.2 Current context

Since the time of the work conducted in this chapter, interest in the problem of predicting
semantic birds-eye view maps from monocular images has grown (Mani et al., 2020; Reiher
et al., 2020; Can et al., 2020; Philion and Fidler, 2020). Encouragingly, a common trend
among more recent works is a move away from purely learned transformations to the birds-
eye view (such as those used by the VED (Lu, Molengraft, et al., 2019) and VPN (Pan, Sun,
et al., 2020) networks discussed in this chapter) and instead sharing our approach in placing
greater emphasis on the underlying projective camera geometry. For example Reiher et al.
(2020) and Can et al. (2020) used an inverse perspective mappings (Hartley and Zisserman,
2003) to transform features to the birds-eye view, and then trained networks to correct the
errors introduced by the assumption of a flat plane. Philion and Fidler (2020) meanwhile
used an approach similar to the OFT layer described in Chapter 3 to lift pixels to 2D points,
before accumulating them over vertical pillars to obtain a birds-eye view. Among these
works there is increased focus on the multi-frame setting discussed in Section 4.6, with Can
et al. (2020) having used a symmetric max-pooling operation to combine predictions across
multiple frames. In addition to predicting birds-eye view maps, Philion and Fidler (2020)
also learned a differentiable cost map which was directly used for path planning and future
trajectory prediction. The success of their work offers further compelling evidence of the
advantages of the birds-eye view representation when only monocular video is available.
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Chapter 5

Conclusions

5.1 Summary

This thesis has addressed two fundamental tasks which are central to the future success of
autonomous driving technology: 3D object detection and semantic map prediction. These
tasks were constrained to the case where only monocular camera imagery is available: an
important case study for lowering the cost of future autonomous vehicles, extending their
perception range and improving sensor redundancy. The central philosophy of this thesis was
that such camera images, whilst a rich medium, are a challenging representation to work with.
To the greatest extent possible, therefore, all reasoning about the 3D structure of the world
should take place in a separate, metric representation space called the birds-eye view. To
this end, we introduced two neural network components: the orthographic feature transform
and the dense transformer layer; which were capable of manipulating image-based feature
representations into the birds-eye view using a combination of deep learning and geometry.
These were integrated into two end-to-end deep neural network architectures: the OFTNet
and the Pyramid Occupancy Network.

For the problem of 3D object detection, we showed that applying the OFTNet network
resulted in state-of-the-art monocular performance on the KITTI object detection benchmark:
the largest autonomous driving dataset at the time. Extensive analysis of the types of errors
encountered by the OFTNet and other leading methods was conducted, and found that the
OFTNet shared many features in common with other approaches which had direct access to
depth information via stereo or LiDAR.

The second part of this thesis proceeded to formulate the problem of semantic map
prediction: a task which had previously been difficult to study due to lack of appropriate
data. This limitation was overcome by leveraging two recent two recent datasets: Argoverse
and NuScenes; to generate camera-centric birds-eye view map labels which combined
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both static road geometry information and dynamic agent bounding boxes. The Pyramid
Occupancy Network was then used to predict these local maps directly from monocular
images, outperforming both existing works and hand-crafted baselines. A framework called
Bayesian occupancy grid mapping, which was extended to the case of semantic mapping,
was then used to accumulate the predictions from multiple cameras and timesteps. We was
able to show that this approach could be used to generate maps of entire streets or regions,
and achieved greater accuracy than simply predicting each frame independently.

5.2 Future Work

Naturally, over the course of this PhD there were numerous ideas and extensions which have
not been discussed which remain open as future research opportunities. A few of these ideas
are summarised below:

Explicit knowledge of depth This thesis introduced two neural network modules for
performing transformations between an image-based and birds-eye view perspective: the
orthographic feature transform and the dense transformer layer. In both cases, the modules
relied on the network’s ability to implicitly reason about the depth of points in the scene.
However as established in the previous section, a common theme among more recent works
(Xu and Chen (2018), Wang, Chao, et al. (2019), and You et al. (2019)) has been a more
explicit representation of depth, where the network is trained to directly output a geometric
representation of the world before passing this on for further processing. Combining ideas of
both explicit depth estimation and end-to-end learning has the potential for further impacts
on object detection and map prediction performance.

Alternative output representations The notion of transforming monocular images into
a birds-eye view representation is a powerful and flexible one, and many other problems
may benefit outside of the two that have been considered in this thesis. Examples of other
potential tasks which lend themselves well to a similar framework include digital elevation
map estimation (Malartre et al., 2010), lane detection (Tang et al., 2021), and cost map
estimation for online path planning (Ferguson and Likhachev, 2008). Furthermore, the
same environmental structure which makes birds-eye view representations applicable for
autonomous driving is also present in many other applications: indoor domestic robotics,
agricultural robotics and some augmented reality applications to name just a few.
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Improved models of uncertainty Section 4.6 illustrated the importance of neural networks
which produce correctly calibrated probabilities to the Bayesian filtering algorithm. More
generally within scene understanding task, predicting confidences which better reflect a
system’s true probability of error is important for decision making; for example by identifying
objects that the system hasn’t seen before. The work discussed in Chapter 4 adopted the
relatively crude approach of isotonic regression to obtain calibrated probabilities. However
other ways of dealing with uncertainty have been proposed, such as Bayesian neural networks
(Gal, 2016; Kendall and Gal, 2017), which may provide a more elegant solution to the
problem of model uncertainty and could be explored further.

Path planning and prediction The results in this thesis have demonstrated the value of the
birds-eye view representation as applied to 3D structure problems such as 3D object detection
and map prediction. However perhaps the most valuable application of the birds-eye view
is to tasks involving motion such as trajectory planning and future prediction. Performing
such tasks in the image space is hugely challenging: small ego-vehicle movements can have
a profound effect on appearance, and the motion of other objects varies wildly depending on
the distance from and direction relative to the camera. Since the birds-eye view is metric,
motion in this space reflects the true velocities of objects in 3D. As a result of this property,
most existing works which tackle these types of problems (see Bansal et al., 2018; Lee,
Choi, et al., 2017; Salzmann et al., 2020; Rhinehart et al., 2019 for examples) operate in
this space. However, no existing works which adopt this strategy operate exclusively from
monocular images, presenting considerable scope for further research.
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