1,195 research outputs found

    Deterministic Automata for Unordered Trees

    Get PDF
    Automata for unordered unranked trees are relevant for defining schemas and queries for data trees in Json or Xml format. While the existing notions are well-investigated concerning expressiveness, they all lack a proper notion of determinism, which makes it difficult to distinguish subclasses of automata for which problems such as inclusion, equivalence, and minimization can be solved efficiently. In this paper, we propose and investigate different notions of "horizontal determinism", starting from automata for unranked trees in which the horizontal evaluation is performed by finite state automata. We show that a restriction to confluent horizontal evaluation leads to polynomial-time emptiness and universality, but still suffers from coNP-completeness of the emptiness of binary intersections. Finally, efficient algorithms can be obtained by imposing an order of horizontal evaluation globally for all automata in the class. Depending on the choice of the order, we obtain different classes of automata, each of which has the same expressiveness as CMso.Comment: In Proceedings GandALF 2014, arXiv:1408.556

    The power of linear programming for general-valued CSPs

    Full text link
    Let DD, called the domain, be a fixed finite set and let Γ\Gamma, called the valued constraint language, be a fixed set of functions of the form f:DmQ{}f:D^m\to\mathbb{Q}\cup\{\infty\}, where different functions might have different arity mm. We study the valued constraint satisfaction problem parametrised by Γ\Gamma, denoted by VCSP(Γ)(\Gamma). These are minimisation problems given by nn variables and the objective function given by a sum of functions from Γ\Gamma, each depending on a subset of the nn variables. Finite-valued constraint languages contain functions that take on only rational values and not infinite values. Our main result is a precise algebraic characterisation of valued constraint languages whose instances can be solved exactly by the basic linear programming relaxation (BLP). For a valued constraint language Γ\Gamma, BLP is a decision procedure for Γ\Gamma if and only if Γ\Gamma admits a symmetric fractional polymorphism of every arity. For a finite-valued constraint language Γ\Gamma, BLP is a decision procedure if and only if Γ\Gamma admits a symmetric fractional polymorphism of some arity, or equivalently, if Γ\Gamma admits a symmetric fractional polymorphism of arity 2. Using these results, we obtain tractability of several novel classes of problems, including problems over valued constraint languages that are: (1) submodular on arbitrary lattices; (2) kk-submodular on arbitrary finite domains; (3) weakly (and hence strongly) tree-submodular on arbitrary trees.Comment: A full version of a FOCS'12 paper by the last two authors (arXiv:1204.1079) and an ICALP'13 paper by the first author (arXiv:1207.7213) to appear in SIAM Journal on Computing (SICOMP

    Phylogenetic CSPs are Approximation Resistant

    Full text link
    We study the approximability of a broad class of computational problems -- originally motivated in evolutionary biology and phylogenetic reconstruction -- concerning the aggregation of potentially inconsistent (local) information about nn items of interest, and we present optimal hardness of approximation results under the Unique Games Conjecture. The class of problems studied here can be described as Constraint Satisfaction Problems (CSPs) over infinite domains, where instead of values {0,1}\{0,1\} or a fixed-size domain, the variables can be mapped to any of the nn leaves of a phylogenetic tree. The topology of the tree then determines whether a given constraint on the variables is satisfied or not, and the resulting CSPs are called Phylogenetic CSPs. Prominent examples of Phylogenetic CSPs with a long history and applications in various disciplines include: Triplet Reconstruction, Quartet Reconstruction, Subtree Aggregation (Forbidden or Desired). For example, in Triplet Reconstruction, we are given mm triplets of the form ijkij|k (indicating that ``items i,ji,j are more similar to each other than to kk'') and we want to construct a hierarchical clustering on the nn items, that respects the constraints as much as possible. Despite more than four decades of research, the basic question of maximizing the number of satisfied constraints is not well-understood. The current best approximation is achieved by outputting a random tree (for triplets, this achieves a 1/3 approximation). Our main result is that every Phylogenetic CSP is approximation resistant, i.e., there is no polynomial-time algorithm that does asymptotically better than a (biased) random assignment. This is a generalization of the results in Guruswami, Hastad, Manokaran, Raghavendra, and Charikar (2011), who showed that ordering CSPs are approximation resistant (e.g., Max Acyclic Subgraph, Betweenness).Comment: 45 pages, 11 figures, Abstract shortened for arxi

    Neutralization in Aztec Phonology – the Case of Classical Nahuatl Nasals

    Get PDF
    This article investigates nasal assimilation in Classical Nahuatl. The distribution of nasal consonants is shown to be the result of coda neutralization. It is argued that generalizations made for root and word level are disproportionate and cannot be explained through the means of rule-based phonology. It is shown that the process responsible for nasal distribution can only be accounted for by introducing derivational levels in Optimality Theor

    Complexity of Unordered CNF Games

    Get PDF
    The classic TQBF problem is to determine who has a winning strategy in a game played on a given CNF formula, where the two players alternate turns picking truth values for the variables in a given order, and the winner is determined by whether the CNF gets satisfied. We study variants of this game in which the variables may be played in any order, and each turn consists of picking a remaining variable and a truth value for it. - For the version where the set of variables is partitioned into two halves and each player may only pick variables from his/her half, we prove that the problem is PSPACE-complete for 5-CNFs and in P for 2-CNFs. Previously, it was known to be PSPACE-complete for unbounded-width CNFs (Schaefer, STOC 1976). - For the general unordered version (where each variable can be picked by either player), we also prove that the problem is PSPACE-complete for 5-CNFs and in P for 2-CNFs. Previously, it was known to be PSPACE-complete for 6-CNFs (Ahlroth and Orponen, MFCS 2012) and PSPACE-complete for positive 11-CNFs (Schaefer, STOC 1976)

    Subsampling Mathematical Relaxations and Average-case Complexity

    Full text link
    We initiate a study of when the value of mathematical relaxations such as linear and semidefinite programs for constraint satisfaction problems (CSPs) is approximately preserved when restricting the instance to a sub-instance induced by a small random subsample of the variables. Let CC be a family of CSPs such as 3SAT, Max-Cut, etc., and let Π\Pi be a relaxation for CC, in the sense that for every instance PCP\in C, Π(P)\Pi(P) is an upper bound the maximum fraction of satisfiable constraints of PP. Loosely speaking, we say that subsampling holds for CC and Π\Pi if for every sufficiently dense instance PCP \in C and every ϵ>0\epsilon>0, if we let PP' be the instance obtained by restricting PP to a sufficiently large constant number of variables, then Π(P)(1±ϵ)Π(P)\Pi(P') \in (1\pm \epsilon)\Pi(P). We say that weak subsampling holds if the above guarantee is replaced with Π(P)=1Θ(γ)\Pi(P')=1-\Theta(\gamma) whenever Π(P)=1γ\Pi(P)=1-\gamma. We show: 1. Subsampling holds for the BasicLP and BasicSDP programs. BasicSDP is a variant of the relaxation considered by Raghavendra (2008), who showed it gives an optimal approximation factor for every CSP under the unique games conjecture. BasicLP is the linear programming analog of BasicSDP. 2. For tighter versions of BasicSDP obtained by adding additional constraints from the Lasserre hierarchy, weak subsampling holds for CSPs of unique games type. 3. There are non-unique CSPs for which even weak subsampling fails for the above tighter semidefinite programs. Also there are unique CSPs for which subsampling fails for the Sherali-Adams linear programming hierarchy. As a corollary of our weak subsampling for strong semidefinite programs, we obtain a polynomial-time algorithm to certify that random geometric graphs (of the type considered by Feige and Schechtman, 2002) of max-cut value 1γ1-\gamma have a cut value at most 1γ/101-\gamma/10.Comment: Includes several more general results that subsume the previous version of the paper
    corecore