Phylogenetic CSPs are Approximation Resistant

Abstract

We study the approximability of a broad class of computational problems -- originally motivated in evolutionary biology and phylogenetic reconstruction -- concerning the aggregation of potentially inconsistent (local) information about nn items of interest, and we present optimal hardness of approximation results under the Unique Games Conjecture. The class of problems studied here can be described as Constraint Satisfaction Problems (CSPs) over infinite domains, where instead of values {0,1}\{0,1\} or a fixed-size domain, the variables can be mapped to any of the nn leaves of a phylogenetic tree. The topology of the tree then determines whether a given constraint on the variables is satisfied or not, and the resulting CSPs are called Phylogenetic CSPs. Prominent examples of Phylogenetic CSPs with a long history and applications in various disciplines include: Triplet Reconstruction, Quartet Reconstruction, Subtree Aggregation (Forbidden or Desired). For example, in Triplet Reconstruction, we are given mm triplets of the form ij∣kij|k (indicating that ``items i,ji,j are more similar to each other than to kk'') and we want to construct a hierarchical clustering on the nn items, that respects the constraints as much as possible. Despite more than four decades of research, the basic question of maximizing the number of satisfied constraints is not well-understood. The current best approximation is achieved by outputting a random tree (for triplets, this achieves a 1/3 approximation). Our main result is that every Phylogenetic CSP is approximation resistant, i.e., there is no polynomial-time algorithm that does asymptotically better than a (biased) random assignment. This is a generalization of the results in Guruswami, Hastad, Manokaran, Raghavendra, and Charikar (2011), who showed that ordering CSPs are approximation resistant (e.g., Max Acyclic Subgraph, Betweenness).Comment: 45 pages, 11 figures, Abstract shortened for arxi

    Similar works

    Full text

    thumbnail-image

    Available Versions