97 research outputs found

    Global tracking for an underactuated ships with bounded feedback controllers

    Get PDF
    In this paper, we present a global state feedback tracking controller for underactuated surface marine vessels. This controller is based on saturated control inputs and, under an assumption on the reference trajectory, the closed-loop system is globally asymptotically stable (GAS). It has been designed using a 3 Degree of Freedom benchmark vessel model used in marine engineering. The main feature of our controller is the boundedness of the control inputs, which is an essential consideration in real life. In absence of velocity measurements, the controller works and remains stable with observers and can be used as an output feedback controller. Simulation results demonstrate the effectiveness of this method

    ETC-based control of underactuated AUVs and AUV formations in a 2D plane

    Get PDF
    This master thesis is aimed at single auv (autonomous underwater vehicle) and auv formation control in two-dimensional horizontal plane. For sake of increasing services life and saving communication resources, event-triggered mechanism is taken into consideration. two coordinate systems are introduced: earth-fixed frame and body-fixed frame. Some motion parameters and force analysis are used in the process of establishing mathematical model. then the related theorems, lemmas and control method commonly used in analyzing control systems are introduced. then, the auv control system is divided into two subsystems with cascade relationship. considering each subsystem separately, a controller is designed that can simultaneously carry out trajectory tracking and point stabilization. considering the service life of actuator equipment, an event-triggered controller was designed, which can reduce the frequency of actuator adjustment, prolong the service life of equipment. finally, combining the idea of light-of-sight method and virtual structure method, the auv formation tracking control problem is solved similarly to single auv. in deep sea conditions, an event- triggered communicating mechanism is designed to reduce the frequency of communication and adapt to limited communication resources, which balances the reliability and economy. matlab simulink is used to simulate the controller designed in the thesis, and confirms the feasibility of the controller

    Nonlinear control of feedforward systems with bounded signals

    No full text
    Published versio

    A new guidance law for trajectory tracking of an underactuated unmanned surface vehicle with parameter perturbations

    Get PDF
    Publisher’s embargo period: Embargo set on 01.03.2019 by SR (TIS)

    Schooling for Multiple Underactuated AUVs

    Get PDF

    ADAPTIVE WAVELETS SLIDING MODE CONTROL FOR A CLASS OF SECOND ORDER UNDERACTUATED MECHANICAL SYSTEMS

    Get PDF
    The control of underactuated mechanical systems (UMS) remains an attracting field where researchers can develop their control algorithms. To this date, various linear and nonlinear control techniques using classical and intelligent methods have been published in literature. In this work, an adaptive controller using sliding mode control (SMC) and wavelets network (WN) is proposed for a class of second-order UMS with two degrees of freedom (DOF).This adaptive control strategy takes advantage of both sliding mode control and wavelet properties. In the main result, we consider the case of un-modeled dynamics of the above-mentioned UMS, and we introduce a wavelets network to design an adaptive controller based on the SMC. The update algorithms are directly extracted by using the gradient descent method and conditions are then settled to achieve the required convergence performance.The efficacy of the proposed adaptive approach is demonstrated through an application to the pendubot

    Experimental Validation Of A Robust Surge Speed Controller For Marine Surface Vessels

    Get PDF
    The focus of the current work is on providing experimental validation for the robust performance and good tracking characteristic of a surge speed controller for autonomous piloting of an under-actuated 16 ft boat in the completely uncontrolled setting of open-water Lake Saint Clair, Michigan. The controller is designed based on the sliding mode methodology and completely ignores the dynamics of the marine surface vessel (MSV) in its formulation. The testing was conducted under considerable unstructured uncertainties and unpredictable environmental disturbances induced by waves, sea-currents, and wind. The experimental results serve to validate the robust tracking characteristic of the controller and prove the successful implementation of the controller without prior knowledge of the system dynamics; thus, yielding a robust model-less controller

    Global inverse optimal stabilization of stochastic nonholonomic systems

    Get PDF
    Optimality has not been addressed in existing works on control of (stochastic) nonholonomic systems.This paper presents a design of optimal controllers with respect to a meaningful cost function to globally asymptotically stabilize (in probability) nonholonomic systems affine in stochastic disturbances. The design is based on the Lyapunov direct method, the backstepping technique, and the inverse optimal control design. A class of Lyapunov functions, which are not required to be as nonlinearly strong as quadratic or quartic, is proposed for the control design. Thus, these Lyapunov functions can be applied to design of controllers for underactuated (stochastic) mechanical systems, which are usually required Lyapunov functions of a nonlinearly weak form. The proposed control design is illustrated on a kinematic cart, of which wheel velocities are perturbed by stochastic noise

    Non-Linear Robust Observers For Systems With Non-Collocated Sensors And Actuators

    Get PDF
    Challenges in controlling highly nonlinear systems are not limited to the development of sophisticated control algorithms that are tolerant to significant modeling imprecision and external disturbances. Additional challenges stem from the implementation of the control algorithm such as the availability of the state variables needed for the computation of the control signals, and the adverse effects induced by non-collocated sensors and actuators. The present work investigates the adverse effects of non-collocated sensors and actuators on the phase characteristics of flexible structures and the ensuing implications on the performance of structural controllers. Two closed-loop systems are considered and their phase angle contours have been generated as functions of the normalized sensor location and the excitation frequency. These contours were instrumental in the development of remedial actions for rendering structural controllers immune to the detrimental effects of non-collocated sensors and actuators. Moreover, the current work has focused on providing experimental validation for the robust performances of a self-tuning observer and a sliding mode observer. The observers are designed based on the variable structure systems theory and the self-tuning fuzzy logic scheme. Their robustness and self-tuning characteristics allow one to use an imprecise model of the system and eliminate the need for the extensive tuning associated with a fixed rule-based expert fuzzy inference system. The first phase of the experimental work was conducted in a controlled environment on a flexible spherical robotic manipulator whose natural frequencies are configuration-dependent. Both controllers have yielded accurate estimates of the required state variables in spite of significant modeling imprecision. The observers were also tested under a completely uncontrolled environment, which involves a 16-ft boat operating in open-water under different sea states. Such an experimental work necessitates the development of a supervisory control algorithm to perform PTP tasks, prescribed throttle arm and steering tasks, surge speed and heading tracking tasks, or recovery maneuvers. This system has been implemented herein to perform prescribed throttle arm and steering control tasks based on estimated rather than measured state variables. These experiments served to validate the observers in a completely uncontrolled environment and proved their viability as reliable techniques for providing accurate estimates for the required state variables
    corecore