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Schooling for Multiple Underactuated AUVs 

Ji-Hong Li, Bong-Huan Jun, Pan-Mook Lee and Yong-Kon Lim 
Maritime & Ocean Engineering Research Institute, KORDI, 

Republic of Korea 

1. Introduction     

In the past few decades, autonomous underwater vehicles (AUVs) have been playing one of 
most important roles in the applications ranging from scientific research, survey to industry 
and military operations. Today, there is an apparent trend that more and more underwater 
tasks are carrying out by cooperative operations of multiple AUVs instead of traditional 
method of using single AUV (Soura & Pereira, 2002; Edwards et al., 2004; Guo et al., 2004; 
Watanabe & Nakamura, 2005; Fiorelli et al., 2006). Multiple AUVs have cost-effective 
potential. However, a number of research efforts are still remained to be done before this 
advanced technology can be fully applied in the practice. And one of the efforts is about the 
efficient schooling scheme for these multiple underwater vehicles. 
The history of the formation or cooperative control of multiple agent systems can be traced 
back to the 1980’s. Reynolds (1987) introduced a distributed behavioural model for flocks of 
birds, herds of land animals, and schools of fishes. This model can be summarized as three 
heuristic rules: flock centring, collision avoidance and velocity matching. In the formation 
algorithm (Reynolds, 1987), each dynamic agent was modelled as certain particle system – a 
simple double-integrator system. This kind of agent model has been inherited in most of the 
following research works (Leonard & Fiorelli, 2001; Olfati-Saber & Murray, 2002, 2003; 
Fiorelli et al., 2006; Olfati-Saber, 2006; Do, 2007). Besides these works, another type of linear 
model was used in Smith et al. (2001), and certain nonlinear model was applied for 
underwater vehicles (Dunbar & Murray, 2002) and for wheel robots with terminal 
constraints (Fax & Murray, 2004). In both of Dunbar & Murray (2002) and Fax & Murray 
(2004), the nonlinear dynamics were all fully actuated. 
In this chapter, we consider the schooling problem for multiple underactuated AUVs, where 
only three control inputs - surge force, stern plane and rudder are available for each 
vehicle’s six degrees of freedom (DOF) motion. For these torpedo-type underwater flying 
vehicles, since there are non-integrable constraints in the acceleration dynamics, the vehicles 
do not satisfy Brockett’s necessary condition (Brockett et al., 1983), and therefore, could not 
be asymptotically stabilizable to an equilibrium point using conventional time-invariant 
continuous feedback laws (Reyhanoglu, 1997; Bacciotti & Rosier, 2005). Moreover, these 
vehicles’ models are not transformable into a drift-less chained form (Murray & Sastry, 
1993), so the tracking method proposed in Jiang & Nijmeiner (1999) cannot be directly 
applicable to these vehicles. Recently, quite a number of research works have been carried 
out on the tracking of underactuated surface ships (Jiang, 2002; Do et al., 2002a, 2002b, 2004, 
2005; Pettersen & Nijmeijer, 2001; Fredriksen & Pettersen, 2006). However, the presented O
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tracking methods were all case-by-case that strongly depended on the ship’s specifically 
simplified dynamics. Therefore, these tracking methods also cannot be directly applicable to 
the case of underwater vehicles. Since the sway and heave forces are unavailable, the most 
challenge in the tracking control is how to properly handle the vehicles’ sway and heave 
dynamics in the position tracking. To deal with this problem, in this chapter, we introduce a 
certain polar coordinates transformation for the vehicle’s velocities in the body-fixed frame. 
Through this coordinates transformation, each vehicle’s dynamics can be transformed to a 
certain two inputs nonlinear strict-feedback form, according to which the proposed 
schooling scheme is derived. 
For the torpedo-type underwater flying vehicles considered in this chapter, the pitch and 

yaw moments are proportional to the square of the vehicle’s forward speed. From this point 

of view, the pitch and yaw moments are not exactly independent with the surge force. If the 

vehicle’s forward speed is taken small value, then the pitch and yaw moments are also have 

to take small values, therefore, in this case we cannot fully excite the vehicle’s pitch and yaw 

dynamics. To appropriately taking these three only available control inputs – surge force, 

pitch and yaw moments as independent ones, the vehicle’s forward speed has to be 

guaranteed to take considerable magnitude. For this reason, in this chapter, firstly we 

assume that the vehicle’s forward speed satisfies the above consideration. And the proposed 

schooling scheme, which is derived under this assumption, reversely can guarantee the 

assumption always to be fulfilled under certain initial conditions.  

The common method of formation among the schemes presented so far is to apply certain 

potential function to conduct the agents’ group behaviour.  The potential function initially 

used in the robotics for mobile robot’s motion planning (Latombe, 1991; Rimon & 

Koditschek, 1992), and recently widely applied in the formation of multiple agents systems 

(Leonard & Fiorelli, 2001; Olfati-Saber, 2006; Do, 2007). Aforementioned Reynolds’s three 

heuristic rules of flock centring, collision avoidance, and velocity matching, which are also 

known as cohesion, separation, and alignment, are usually embodied by suitably selected 

potential functions. In Leonard & Fiorelli (2001), only 1 time differentiable function was 

used as potential for group formation, while )2( ≥pp  times differentiable one was applied 

in Do (2007) and a specific smooth potential was used in Olfati-Saber (2006). In this chapter, 

general form of smooth potential function is introduced and similar to Olfati-Saber (2006), 

the potential consists of three different components: one is for the interactions between 

vehicles, another is for group navigation, and the third is for obstacle avoidance. Unlike 

aforementioned previous works, in this chapter, the vehicle’s orientation is also considered. 

Therefore, we have to discuss the vehicles orientation matching as well as their velocity 

matching. Proposed schooling scheme guarantees local minimum of the vehicles formation, 

and the group’s velocity and orientation matching in terms of polar coordinates, while 

keeping obstacle avoidance. 

The remainder of this chapter is organized as follows. In Section 2, the vehicles’ kinematics 
and dynamics in the Cartesian frame are presented. Through certain polar coordinates 
transformation, the vehicle’s model can be transformed to certain two inputs strict-feedback 
form. Proposed vehicles schooling rules are discussed in Section 3, and corresponding 
formation control laws are derived in Section 4. To illustrate the effectiveness of proposed 
schooling scheme, some numerical simulations are carried out and analyzed in Section 5. 
Finally, a brief summary and some of future works are discussed in Section 6. 
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Fig. 1. General framework for an AUV in the horizontal plane. 

2. Problem formulation and preliminaries 

Consider a group of torpedo-type AUVs, where only surge force and yaw moment are 
available for each vehicle’s three DOF horizontal motion1, see Fig. 1. To date over 400 true 
AUVs have been built (Westwood et al., 2007) and most of them such as REMUS AUVs 
(Prestero, 2001) and HUGIN AUVs (Marthiniussen et al., 2004) have this type of mechanical 
structure. For this kind of underactuated underwater vehicles, their horizontal kinematics 
and dynamics can be expressed as following (Fossen, 2002; Li & Lee, 2008) 
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where niyx ii ,,1),,( A=  denotes the position of the ith vehicle and iψ  is yaw angle, all in 

the earth-fixed frame; ii vu ,  and ir  denote the velocities each in the surge, sway and yaw 

                                                 
1 For the convenienceof discussion, in this chapter we only consider the vehicle’s three DOF 
motion in the horizontal plane instead of its full six DOF motion. 
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directions in the vehicle’s body-fixed frame; 1)(),(),( Cfff riviui ∈⋅⋅⋅  are the vehicle’s 

nonlinear dynamics including hydrodynamic damping, inertia (including added mass 

terms) and gravitational terms in the surge, sway and yaw directions; surge force uiτ  and 

yaw moment riτ  are two available control inputs with nonzero constant gains uib  and rib . 

For this torpedo-type underwater flying vehicles, their yaw moments riτ  is proportional to 

the square of the forward speed, in other word, riiri u δτ 2∝  where riδ  is the vehicle’s rudder 

angle (Fossen, 2002), see Fig. 1. From this point of view, yaw moment riτ  is not exactly 

independent of surge force uiτ . Moreover, if the vehicle’s forward speed takes value too 

small, then the yaw moment is also forced to take small value. Therefore, in this case, we 

could not fully excite the vehicle’s yaw dynamics. In order to appropriately taking these two 

control inputs uiτ  and riτ  as independent ones, in the remainder of this chapter, we make 

the following assumption on each vehicle’s dynamics. 
Assumption 1. For each vehicle in the considering group, its dynamics satisfies the following 
conditions. 

C1. 0min >≥ uui , where minu is a design parameter. 

C2. For bounded iu  and ir , iv  is also bounded and have max|| vvi ≤  with maxv  a known 

positive constant. 

Remark 1. At first glance, in the above assumption, the condition that maxv  is known seems 

too restrictive in terms of control engineering. However, in the case of underwater vehicles, 
it becomes very reasonable. For underwater flying vehicles, because of the effect of 
hydrodynamic damping terms, which is usually proportional to the square of the vehicle’s 
corresponding speed (Fossen, 2002; Newman, 1977), they only have to take limited 
magnitude of velocities under the limited thrust force. Therefore, in practice, given a 
torpedo-type flying vehicle, it’s maximum forward and sway speeds and yaw angular 
velocity are all easy to bring out through certain simple experiments such as basin test. From 

this point of view, it is reasonable for us to design the parameter minu  such that maxmin vu ρ≥ . 

As aforementioned, since the sway force is unavailable, the most difficulty for the control of 
(1) is how to properly handling the vehicle’s sway dynamics. To deal with this problem, 
firstly we introduce a polar coordinates transformation which is defined in the vehicle’s 
body-fixed frame as following (see Fig. 1) 

 ,,22
aiiliiili vuu ψψψ +=+=  (2)  

where )/arctan( iiai uv=ψ  is a polar angle and also called as the sideslip angle (Fossen, 2002). 

Since 0>iu , it is easy to verify that aiψ  is defined and smooth in the domain )5.0,5.0( ππ− . 

Differentiating the first equation of (2) and further according to the relationships of 

ailii uu ψcos=  and ailii uv ψsin= , we can get 

 .sincos aiiaiili vuu ψψ $$$ +=  (3) 

Using polar coordinates liu  and liψ , vehicle’s kinematics can be rewritten as  

 .sin,cos liliililii uyux ψψ == $$  (4) 

For the convenience of discussion, in the remainder of this chapter, we will call liu  and liψ  

as the ith vehicle’s velocity and heading. 
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Combining with (3) and (4), the vehicle’s model (1) can be rewritten as following form 
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 (5) 

 

Since )5.0,5.0( ππψ −∈ai , 0cos ≠aiψ . Therefore, it is easy to see that (5) is in a form where 

the vehicle’s sway dynamics vif  can be properly handled by the surge force uiτ . 

3. Schooling rules 

Consider a group of n underwater vehicles, all of which have the same model as (1). Similar 

to the Reynolds’s (1987) three heuristic rules that are flock centring, collision avoidance and 

velocity matching, the schooling rules proposed in this chapter can be summarized as: 

geometry of schooling, group navigation, and obstacle avoidance.  As aforementioned, the group 

behaviour is conducted by suitably selected potential functions. 

Unlike the previous works (Leonard & Fiorelli, 2001; Olfati-Saber, 2006; Do, 2007), in this 

chapter we consider the following general form of smooth potential function. 

Definition 1 (Smooth potential function). A scalar function ),,( baf p ζ , where ),0[ ∞+∈ζ  and 

a  and b  are constants with ba ≤<0 , is called a smooth potential function, if it satisfies the 

following conditions. 

C3. ),,( baf p ζ  is smooth respect to ),0[ ∞+∈ζ  with monotonically decreasing at 

),0[ a∈ζ  and monotonically increasing at ),[ ∞+∈ aζ . 

C4. If ba < , then ),,( baf p ζ  has a global minimum of zero at a=ζ  with 0/ =∂∂ ζpf  for 

b≥∀ζ . 

C5. If ba = , then 0),,( =baf p ζ  for a≥∀ζ . 

Remark 2.  If +∞<b , then ),,( baf p ζ  is said to have a finite cut-off (Olfati-Saber, 2006). This 

kind of feature plays an important role in the group formation (Leonard & Fiorelli, 2001; 

Olfati-Saber, 2006; Do, 2007). On the other hand, in Olfati-Saber (2006), the potential 

function took a finite value when +→ 0ζ , while it took +∞  in Leonard & Fiorelli (2001) and 

Do (2007). From a collision-free point of view, the latter one seems to have its own benefit. 

However, the finite value case as in Olfati-Saber (2006) may be more natural in practical 

flocking or schooling. 

Remark 3. There are many functions satisfying C3~C5. For example, 

 ,)/()(),,( ∫ −= ζ ττρτζ
ap dbacbaf  (6) 

 ,)/()//1(),,( 2∫ −= ζ ττρττζ
ap dbacbaf  (7) 

where 0>c  is a constant and )(⋅ρ  is a smooth bump function taken as following 
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where )1,0(∈h  is a design parameter. It is easy to verify that when +→ 0ζ , 2/2
caf p →  

which is a finite value in (6) while +∞→pf  in (7). Moreover, in (6), if +∞→b , then the 

potential function becomes a general quadratic form as 2/)( 2ac −ζ . For another example of 

smooth potential and bump functions, refer to Olfati-Saber (2006). Functions (6) and (7) are 

depicted in Fig. 2. 
 

 

Fig. 2. Smooth potential functions for (6) and (7). 

3.1 Geometry of schooling 
The schooling geometry is constructed according to the following two kinds of potential 
functions 

 ,),||,(||
1

∑∑
= ≠

−=
n

i

n

ij
ijp baqqfV ααα  (9) 

 ,),||,(||
1 1

,∑∑
= =

−=
n

i

m

k
ikvp baqqfV βββ  (10) 

where ),( iii yxq =  is the ith vehicle’s coordinate and ),( ,,, kvkvkv yxq =  is the kth virtual 

vehicle’s coordinate with m the number of virtual vehicles needed to conduct the group 
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geometry, 0,,, >ββαα baba  are design parameters with αα ba ≤  and ββ ba ≤ , and |||| ⋅  

denotes the vector Euclidean norm. 

The potential αV  in (9) is presenting the interactions between vehicles. From (9), it is easy to 

see that the desired geometry of the vehicles group is a certain net of regular triangles with 

vehicles located at the vertices and all side lengths are equal to αa . If any two vehicles are 

apart from each other more than αb , then there is not any cohesion between them. For (9) to 

be applicable, for each vehicle, all other vehicles’ information including position and 

velocity information should be available. However, in some practical cases, this may not be 

available. Instead, only the information of the vehicles in its neighbour is available. In this 

case, the potential function can be chosen as  

 ,),||,(||
1 )(

∑ ∑
= ∈

−=
n

i qNj
ijp

i

baqqfV ααα  (11) 

where )( iqN  denotes the neighbour of the ith vehicle and is defined as 

 { }njijbqqqqN ijji ,,1,,||:||)( A=≠≤−= α . (12) 

In order to make αV  be smooth, in (11), it should be chosen that αα ba = . 

In (10), the potential function βV  is for the interactions between vehicles and virtual 

vehicles. Here the virtual vehicles are introduced to construct the geometry of the vehicles 

schooling. Moreover, these virtual vehicles are used to guide the group navigation, which 

will be discussed in details in the next subsection. In other word, these virtual ones lead the 

group to follow a given desired motion. From this point of view, these virtual vehicles are 

also called as virtual leaders. Different arrangements of these virtual leaders can lead to 

different geometry of the schooling, see Fig. 3. 

3.2 Group navigation  
In the literature, group navigation is usually led by certain leaders, which can be some 
specific actual agents (Guo et al., 2004; Edwards et al., 2004) or some virtual ones (Leonard 
& Fiorelli, 2001; Olfati-Saber, 2006). The group movement can be guided through properly 
designing the reference paths for these virtual leaders. As aforementioned, in this chapter 
we apply the virtual leader concept to guide the group navigation. 

Assumption 2. All virtual leaders move with the same velocity lvu  and same heading lvψ . 

Moreover, we have 2
max

2
min vuulv +> . 

In fact, these virtual leaders can take any complicated motions, which in turn can lead to 
various geometry of the schooling. However, the focus of this chapter is taken on that to 
propose a stable schooling for a group of underactuated underwater vehicles. Therefore, for 
the convenience of discussion, in this chapter we only consider a simple case where all 
virtual leaders take the same velocity and heading. Corresponding potential function is 
chosen as following 

 [ ]∑
=

−+−=
n

i
lilvlilvugn uuV

1

22 )()(
2

1 ψψγγ ψ . (13) 

where 0, >ψγγ u  are weighting factors. 

www.intechopen.com



 Underwater Vehicles 

 

302 

 

Fig. 3. Different arrangements of virtual leaders lead to different geometry of schooling. 

From (13), it is easy to see that the purpose of potential gnV  is to force the group to keep 

velocity and heading matching in terms of liu  and liψ . 

3.3 Obstacle avoidance 

All obstacles considered in this chapter are position fixed. Modelling of these obstacles is as 

Fig. 4. Inside the circle centred at the ith vehicle iq  with radius γb , each obstacle block is 

modelled as the point from which to iq  is the shortest. In Fig. 4, B1 and B2 which are two 

parts of the same obstacle B are considered to be independent and modelled as two different 

points 2,iq  and 3,iq . Also, it is notable that the same obstacle such as B in Fig. 4 can be 

modelled as different points according to different vehicles. 
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Fig. 4. Obstacle modelling. 

Vehicle’s obstacle avoidance is also guided by the following potential functions 

 ,),||,(||
1 )(

,∑ ∑
= Ω∈

−=
n

i qp
ipip

i

baqqfV γγγ  (14) 

where )( iqΩ  is a subgroup of obstacle points defined as following 

 },2,1,||:||{)( ,, A=≤−=Ω pbqqqq ipipii γ . (15) 

From obstacle avoidance point of view, there is not any need to have cohesion between 

vehicles and obstacles. For this reason, in (14), we design the parameters such that γγ ba = . 
As aforementioned, in this chapter the group navigation is guided by the virtual leaders. 
Therefore, the vehicles’ obstacle avoidances also have to be strongly related to the motion of 
virtual leaders. For this reason, we make the following assumption on the motion of the 
virtual leaders. 
Assumption 3. All virtual leaders are designed to satisfying the following conditions. 

C6. For any given obstacle, after a certain period of time, all virtual leaders always 
move away from this obstacle. 

C7. After a period of time such that γβ bbqq pikv
ik

+≥− ||||min ,,
,

, if one or more vehicles are 

still trapped by obstacles, in other word, k∀ , βbqq jkv ≥− |||| ,  with jq  the trapped 

vehicle, then all virtual leaders (smoothly) stop movement so that 0, =kvq$ . Otherwise, 

C6 still satisfies. 
Remark 4. From C7 in Assumption 3, we can see that the obstacle avoidance scenario 
introduced in this chapter cannot guarantee all vehicles to flee from any given obstacles. 
Instead, we only try to guarantee the vehicles to collision-free with obstacles. For example, 
as in C7, if one or more vehicles are trapped by obstacles, then we force these vehicle to stop 
movement so as to avoid collision with obstacles. In fact, obstacle avoidance is still being a 
complicated and open issue in the practical robotics. How to guide the group to move 
through the obstacles is out of the scope of this chapter. 
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4. Formation control design 

In this section, we will propose a formation control algorithm that can guarantee the stable 

schooling for multiple underactuated underwater vehicles whose models can be expressed 

as (1) or (5) with Assumption 1. It is easy to see that (5) is in a second-order nonlinear strict-

feedback form, and we will solve the schooling problem using general backstepping method 

(Krstic et al., 1995). 

Step 1. As aforementioned, the vehicles’ schooling is conducted by the various potential 

functions introduced in the previous section. For this reason, in this step, we consider the 

following Lyapunov function candidate 

 ,1 gnVVVVV +++= γγββαα γγγ  (16) 

where 0,, >γβα γγγ  are weighting factors. 

Differentiating (16) and substituting (9), (10), (13), and (14) into it, get 
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For expression convenience, we apply the following simplifications in the remainder of this 

chapter that ,,,/),,(),,( , ikvvkiijjipp bafbaf ξξξξξξζζζ −=−=∂∂=∂  and ipiipi ξξξ −= ,  with 

yxq ,,=ξ , and lilvlvililvlvi uuu ψψψ −=−= , . As aforementioned, all virtual leaders have the 

same velocity and heading with the kinematics of lvlvkv ux ψcos, =$  and lvlvkv uy ψsin, =$ . 

Substituting (5) into (17) and further expanding it, we can get 
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where iriri re −=α  with riα  a stabilizing function (Krstic et al., 1995) for virtual input ir , 

xiΛ  and oΛ  are defined as following 
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and yiΛ  is defined to have the same form with xiΛ  with only x  displaced by y . 
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According to (18), in this step we choose the control laws as following 

 ( )[ ],sincossincossec 11
liyilixilviuiuaiviaiuilvaiuiui ukffub ψψγψψψτ Λ+Λ++−−= −− $  (21) 
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ψ
ψψψψψψγψψα ψψ$$  (22) 

where 0, >iui kk ψ  are design parameters. 

Remark 5. According to (2), we can see that aiψ$  contains the acceleration terms u$  and v$ . 

However, since 2)(),(),( Cfff riviui ∈⋅⋅⋅ , it is not difficult to verify that the surge force control 

law (21) is differentiable, and this means that u$  and v$  are also differentiable. Consequently, 

we can conclude that aiψ$  is also differentiable and so is riα .  
Substituting (21) and (22) into (18), get 

 ( )∑
=

Λ++−−=
n

i
olvirilviilviui ekukV

1

22
1 ψγψ ψψ
$ . (23) 

Step 2. Rewrite the final equation of (5) as following 

 ririririri bfe τα −−= $$ . (24) 

Now, consider the following Lyapunov function candidate 

 ∑
=

+=
n

i
rieVV

1

2
12

2

1
. (25) 

Differentiating (25) and substituting (23)~(24) into it, finally we can have 

 [ ]∑
=

Λ+−−++−−=
n

i
oriririririlvirilviilviui bfeekukV

1

22
2 )( ταψγψ ψψ $$ . (26) 

According to (26), the control law for riτ  is chosen as 

 ( ),1
lviriririririri fekb ψγατ ψ+−+= − $  (27) 

where 0>rik  is a design parameter. Substituting (27) into (26), finally we can have 

 ( )∑
=

Λ+−−−=
n

i
oririlviilviui ekkukV

1

222
2 ψψ$ . (28) 

According to Assumption 3, after a certain period of time such that γβ bbqq pikv
ik

+≥− ||||min ,,
,

, 

if all vehicles are still following the virtual leaders (this means βbqkvi ≤|||| ), then 

0),||,(|| =γγ baqf ipip
$ , ni ,,1 A=∀  and )( iqp Ω∈∀ . Otherwise, we have 0=lvu . In both cases, 

it is easy to verify that 0=Λo . Consequently, after a certain period of time, we always have 

02 ≤V$ , and 02 =V$  if and only if 0=== rilvilvi eu ψ , ni ,,1 A=∀ . 
Theorem. Consider the schooling for multiple underactuated underwater vehicles whose 
kinematics and dynamics can be expressed as (1) with Assumption 1~3. If we choose the 
formation control laws as (21) and (27), then the schooling asymptotically converges to a 
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certain local minimum and all vehicles included in the group asymptotically move with the 
same velocity and heading while keeping obstacle avoidance. 

Remark 6. Consider the case where one or more vehicles are trapped by obstacles. If we 

design βV  to take finite cut-off ( +∞<βb ), which is different from Olfati-Saber (2006) and 

Do (2007), then after βbqvkj ≥||||  with jq  trapped vehicles, we have 0),||,(|| =ββ baqf vkjp
$ . 

This means that after a certain period of time, only two kinds of potentials αV  and γV  are 

remained to restrict the behaviour of the trapped vehicles. Therefore, we can guarantee the 

trapped vehicles to collision-free with obstacles even without C7 in Assumption 3. 

Remark 7. So far, we derive the schooling algorithms under the condition maxmin vuui ρ≥≥  as 

in Assumption 1. In fact, substituting (21) into (3), we have 

 ( )liyilixiulviuiulvi uku ψψγγ sincos11 Λ+Λ−−= −−$ . (29) 

On the other hand, if we take the smooth potential function as the form of (6), then it is not 

difficult to verify that pf∂  is bounded. Further according to (19), we can see that xiΛ  and 

yiΛ  are also bounded. Therefore, through proper selection of weighting factors βα γγ ,  and 

γγ , we can make liyilixi ψψ sincos Λ+Λ  arbitrarily small. Consequently, further through 

proper selection of uik , it is easy to get 

 |)0(||)(| lvilvi utu ≤ . (30) 

Therefore, if we design the virtual leaders’ motions such that Uuvulv ++≥ 2
min

2
max  with 

0>U  a design parameter, then it is not difficult to verify that 0≥∀t , have ui(t)≥umin  under 

the initial condition Uulvi ≤|)0(| . In other word, assumption of ui(t)≥umin always can be 

guaranteed in practice under suitable selection of initial conditions. Meanwhile, this means 

that the proposed formation control method only guarantees local stability of the schooling. 

Here it is notable that Uulvi ≤|)0(|  is a certain sufficient condition for min)( utu ≥ , not a 

necessary one. 

Remark 8. Since polar coordinate transformation does not satisfy to be a diffeomorphism, 

usually 0, →lvilviu ψ  does not guarantee the same convergence properties of vi uu → , →iv  

vv  and vi rr → , where vvv rvu ,,  are the virtual leader’s velocity components. This may be 

one of disadvantages to applying polar coordinate transformation. However, in practical 

applications, it is much more difficult to design the motion of virtual leaders in the Cartesian 

frame. For example, for given vu  and vr , because of high nonlinearity, it is difficult to 

directly calculate vv  through ),,( vvvvv rvufv =$ . On the contrary, in the corresponding polar 

frame, we can easily bring out the reference paths for virtual leaders from given lvu  and lvψ . 

5. Simulation studies 

In this section, we carry out some simulation studies to illustrate the effectiveness of 
proposed vehicles schooling scheme. In the simulation, the vehicles group consists of three 
vehicles, and each of them is modelled as the six DOF nonlinear dynamics of ISiMI AUV 
(Lee et al., 2003), which has the similar mechanical structure as REMUS AUV (Prestero, 
2001). For this ISiMI AUV, we use the saturation conditions as Nui 50|| ≤τ  and radri 6/|| πδ ≤  

in the simulation. And all virtual leaders are assumed move with the same velocity and 
heading as radsmu lvlv 0,/54.1 == ψ . 
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5.1 Straight line schooling 

In this case, we can choose the three virtual leaders to locate at the vertices of a certain 

isosceles triangle as in Fig. 3 (a) with the initial positions as )26,6()0(),10,6()0( 21 == vv qq  

and )18,34()0(3 =vq . Three vehicles’ initial conditions are as: ),12,12()0(),24,0()0( 21 == qq  

radradradq 15.0)0(,05.0)0(,1.0)0(),16,28()0( 3213 ==== ψψψ , and 5.0)0()0()0( 321 === uuu  

sm /  with all other variables taking zero values. Other design parameters are taken as: =uik  

3,,1,12,3,8 A=== ikk riiψ  and 2.0,100,5.0,3.0 ==== ψβα γγγγ u . 

For potential functions αV  and βV , both of them take the form as (6) and corresponding 

parameters are chosen as: 3,2,20,10,20,12 ====== βαββαα ccbaba  and 9.0=h . 
Simulation results are shown in Fig. 5 and 6. Fig. 5 shows the vehicles group schooling in its 
straight line movement. From Fig. 6, we can see that there is not any collision between 
vehicles in the schooling. 
 

 

Fig. 5. Schooling of the vehicles in a straight-line movement. 

 

Fig. 6. Schooling geometry for a straight-line movement. 

5.2 Triangular schooling 

For triangular schooling, we locate the three virtual leaders as in Fig. 3 (b) with the initial 

positions taken as )8,0()0(),40,0()0( 21 == vv qq  and )24,20()0(3 =vq . Three vehicles’ initial 

conditions are chosen as ===== )0(,1.0)0(),22,10()0(),10,3()0(),39,9()0( 21321 ψψ radqqq  
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radrad 15.0)0(,05.0 3 =ψ , and 5.0)0()0()0( 321 === uuu  sm /  with all other variables taking 

zero values. Other design parameters are taken as =uik 3,,1,12,8,12 A=== ikk riiψ  and 

3.0,60,5.0,3.0 ==== ψβα γγγγ u . 

Same as in the straight line case, both of αV  and βV  take the form as (6) with the parameters 

chosen as 3,2,20,8,15,12 ====== βαββαα ccbaba  and 9.0=h . 
Corresponding simulation results are presented in Fig. 7 and 8. The vehicles schooling in the 
triangular movement is shown in Fig. 7 with no collision between any of two vehicles (see 
Fig. 8). 
 

 

Fig. 7. Schooling of the vehicles in a triangular movement. 

 

Fig. 8. Schooling geometry for a triangular movement. 

5.3 Equilateral triangular schooling with obstacle avoidance 

In this case, we consider an equilateral triangular schooling of the vehicles with obstacle 

avoidance. The obstacle is modelled as a circle located at )10,40(=pq  with radius as 3m. For 
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the schooling, two virtual leaders are chosen as in Fig. 3 (c) with the initial positions taken as 

)10,32()0(1 =vq  and )10,310()0(2 =vq . The vehicles’ initial conditions are taekn as =)0(1q  

radradradqq 15.0)0(,05.0)0(,1.0)0(),11,37()0(),15,2()0(),1,0( 32132 ===== ψψψ and )0(1u  

smuu /5.0)0()0( 32 ===  with all other variables taking zero values. Other design parameters 

are taken as =uik 3,,1,12,10,18 A=== ikk riiψ  and ,240,15.0,2.0,15.0 ==== uγγγγ γβα  

6=ψγ . 

Both αV  and βV  are also taken as the form as (6) with the parameters as ,30,12 == αα ba  

90,5,4,6,30,34 ======= γβαγγββ cccbaba and 9.0=h . 
Simulation results are depicted in Fig. 9~12. Fig. 9 shows the vehicles schooling in the 

equilateral triangular movement with obstacle avoidance. From Fig. 10, we can see that 

there is not any collision between vehicles. Fig. 11 presents the vehicles’ velocity and 

heading matching in the schooling, and Fig. 12 shows the histories of proposed formation 

control laws for uiτ  and riδ . 

 
 

 

 

Fig. 9. Schooling of the vehicles in an equilateral triangular movement with obstacle 
avoidance. 

 
 

 

 

Fig. 10. Schooling geometry for an equilateral triangular movement with obstacle avoidance. 
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Fig. 11. Group velocity and heading matching. 

 

 

Fig. 12. Histories of proposed formation control laws. 
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6. Summary 

In this chapter, we have investigated an asymptotic schooling scheme for multiple 
underactuated underwater vehicles. For each vehicle, there are only two control inputs – 
surge force and yaw moment available for its three DOF motion in the horizontal plane. The 
main difficulty in the tracking of this kind of vehicle is how to properly handle the vehicle’s 
sway dynamics. To deal with this problem, in this chapter, we have introduced a certain 
polar coordinates transformation, through which the vehicle’s dynamics can be reduced to a 
two-inputs strict-feedback form. The vehicles schooling has been conducted by properly 
selected smooth potential function, which consists of three different parts: one is for the 
interaction between vehicles, another is for group navigation, and the third one is for 
obstacle avoidance. The proposed formation algorithm guarantees the vehicles asymptotic 
schooling and velocity and heading matching while keeping obstacle avoidance. 

Proposed schooling scheme has been derived under the condition of 0)( min >≥ utu , which 

inversely can be guaranteed by proposed formation control laws being combined with some 

suitable initial conditions. Therefore, the proposed schooling method only can guarantee the 

local stability. Moreover, it is notable that the following issues should be considered in our 

future works. 

• Finite cut-off ( +∞<b  in Definition 1) of potential function, which was applied in the 

previous works (Leonard and Fiorelli, 2001; Olfati-Saber, 2006; Do, 2007), also plays an 

important role in the vehicles schooling in this chapter. However, since +∞<b , it is 

easy to verify that 0/),,( =∂∂ ζζ baf p  if b≥ζ . For this reason, the proposed schooling 

scheme only guarantees certain local minimum. It is of interest to upgrade the present 
result to the one where the global minimum can be guaranteed in our future works. 

• Another practical concern is for the robustness of proposed schooling scheme. In 
practice, there various uncertainty terms have to be faced, such as vehicle’s modelling 
error, measurement noise, and disturbance, etc. All of these terms should be considered 
in our future practical applications.  
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